Saint Louis University
School of Accountancy, Management,
Computing and Information Studies
Department of Computing and Information
Studies

Applications Development
CS 311 -9374
MTH 4:30-5:30 / WS 1:30-3:00

TEAM 3 SWIFT CODING STANDARD

Members:
Agustin, Aljay
Aque, Eurecho

Avillanoza, Felitra
Diola, Josh McKenzie
Natividad, Rhyen Jan

Roque, Genrev
Sollorin, John Michael

Professor:

Sir Roderick Makil

Submission Date:
November 22, 2023

TABLE OF CONTENTS

[. NAMING CONVENTION.ouiiiiiiiii ittt e e e e et e e e e e e e e e e e e e e e e e ensaaeeeaaeeeeeennsneees 2
N = Tor = To [T A £ 0 =T 2

= Y oTo [U] 1SN =T g =TSSR 2
C.Variable NAMIES.ot e et e e e e e e e e e e e eea b e e e aaaaeeeeraaa 2

D. Types(Classes, StruCtS, ENUMS)......cccoiiiiiiiiiiiiiie e 2

E. Constants and ENUM Cases:......ccooiiiiiiiiiiiieic e s e e e eeeeeeeeeeeeeeeeees 3

F. Method NamIEs.ottt e et e e e e e e e e eeeeeeeeeeas 3

G. Folders and File NAmMES...........uuuiiiiiie e e e e e e e e e e neeeeeens 4

[l FORMATTING. ...ttt ettt e e e e e e ettt e e e e e e e e s st e e e e eaaeeaaannsaseeeeaeeesannnssseeeeaeneaans 4
AL Line Length lIMit......ooo e 4

ST 0 F= Lo = PRI 5

G BlANK LINES.....eeeeeeeee ettt ettt e e e e e et e e e e e e et e e e e e e e e e nnnaaneaeeeeeaann 5

I TR = = Vo 6

S T=T o 01 TeTo] (o] o 1= TSRO 7
(0T 01T 1 7

G. Property and Variable Declarations. ... 8

H. Control FIOW Statements........oooo e 9

(. CODE ORGANIZATION. ...ttt ettt et e e e e e e ettt e e e e e e s e nsaeeeeaaeeeeannnsnneeeeaeeaannns 11
YN B =T o 1= o (=T o Tor =TT 11

B. DECIaration OFAEr..........uueiii it e e et e e e e e e e e e eer s 12

LR o | =3 =l s Teo o |1 T TR O PPRRT 13

[TR To Yo 8 4 T o1 =1 (o T o PSPPSR 13

T T =Yoo 1= SR 14

IV. BEST PRACTICES..... ..ottt e e e e e ettt e e e e e e e st e e e e e e e eansaneeaaaeeeeannnsnnees 14
N =4 o il F= T o | [T T T OO PEPT PR 14

B. Use Test Driven Development (TDD)......coceeieieiiieiieieeeee et 15
Why Write The Tests First? TDD forces you to consider how you design your code...... 16

C. VEISION CONTIOL.....eeiiiiee ittt e e e e e e ettt e e e e e e e s nnnneeeeaeaeeeeanssneeeeaeeeeanns 16

V. REFERENGES ...ttt e e e e e e et e e e e e e e e s nsaaeeeeaaeeeennnnnneees 18

. NAMING CONVENTION

A. Package Names
1. Use the CamelCase naming convention.
2. Avoid using underscores.

Unset

Package (name:"StudenAttendance")

B. Module Names
1. Use short lowercase words separated with underscores.

Unset

// Module for handling user authentication
public struct UserAuth {

/1l ...
}
C. Variable Names
1. Use camelCase.
2. Be descriptive and avoid abbreviations unless widely known.
Unset

var firstName: String
func appendFirstname() {}

D. Types(Classes, Structs, Enums)
1. Use PascalCase.
2. Be explicit and choose meaningful names.

Unset

struct familyNames{
// properties and methods

E. Constants and Enum Cases:
1. Use uppercase and underscore for constants to easily distinguish from
variables
2. Start enum cases with a capital letter.

Unset

//Constants
let MAX_NUMBER_OF_STUDENTS = 50

//enum

enum StudentStatus{
case complete
case incomplete
case noFinalExam

}

F. Method Names
1. Use camelcase (initial lowercase letter) for function or method,

Acceptable: Using camelCase with an initial lowercase letter. If the function name is
more than a word, add underscore after the first word.

Unset

func assign_StudentNumber () -> Int {
// Function implementation
return studentNumber

Unacceptable: Using a name with an initial uppercase letter.

Unset

func AssignStudenNumber() -> Int {
// Function implementation
return StudentNumber

G. Folders and File Names

It is recommended to use CamelCase for writing the names of folders and
files and giving them a descriptive name.

Recommended

Unset

CustomerCart.swift
CustomerInterface.swift
ManagerInterface.swift
Storeltems.swift

Avoid

Unset

Cart.swift
UI.swift
Items.swift

Il. FORMATTING

- No one wants to work with a clumsy developer and a developer who is not
consistent in their coding style is bound to be clumsy with their code.
A. Line Length limit
1. a single line of code should not exceed 120 characters.
2. Consider breaking long expressions or statements into multiple lines for
better clarity.

Acceptable:

Unset

// Breaking it intomultiple lines
let sampleSentence = "This string does not exceed the recommended length, " +
"because it's broken intomultiple lines for better readability."

Unacceptable:

Unset

// Original code with a 1ine length violation

let sampleSentence= "This is a long string that exceeds the recommended line length,
so it's broken intomultiple lines for better readability."

B. Spaces
1. There should generally be no more than one space between any two
characters.

Acceptable:

Unset

var oneSpace = 0;

Unacceptable:

Unset

var threeSpaces = 0 ;

C. Blank Lines
1. There should be no more than one blank line between any two lines of
code.

Acceptable:

Unset

print("Line of Code")

print("One Blank Line")

Unset

print("Line of Code")
print("No Blank Lines")

Unacceptable:

Unset

print("Line of Code")

print("Too Many Blank Lines")

D. Braces
1. Opening braces: Must be consistent with placing the opening brace, can
be placed either immediately following or on the next line.
2. Closing braces: Should always be on their own line and either lined up
with the opening brace.

Acceptable:

Unset
if <#condition#> {
<#tstatement/s#>

Unset

if <#condition#>

{

<#statements#>

}

Unacceptable:

Unset
if <#condition#> {
<#statements#>

}

Unset

if <#condition#>

{

<#statements#>

E. Semicolons
1. Trailing semicolons (;) are not allowed.

2. Swift does not require a semicolon after each statement in your code. It is
only required to be used as a delimiter if you are using multiple
statements on a single line.

Acceptable:

Unset

self.backgroundColor =UIColor.whiteColor()
self.completion = {
/] ...

forvari=0;i<5; i++{
// loop body
}

let newInt =5; print(newInt)

Unacceptable:

Unset

self.backgroundColor = UIColor.whiteColor();
self.completion = {

/...
¥
F. Properties
1. The get and set statement and their close braces (}) should all be
left-aligned. If the statement in the braces can be expressed in a single
line, the get and set declaration can be inlined.
Acceptable:
Unset

struct Rectangle {
/] ...
var right: Float {

get {

return self.x + self.width

}
set {
self.x = newValue - self.width
}
}
}

Unacceptable:

Unset

struct Rectangle {
/...
var right: Float {

get
{
return self.x + self.width
}
set
{
self.x = newValue - self.width
}
}
}
G. Property and Variable Declarations
1. A given property or variable declaration must be for one and only one
property or variable.
Acceptable:
Unset

var firstName:String
var lastName:String

Unacceptable:

Unset

var firstName:String, lastName:String

H. Control Flow Statements

1. if, else, switch, do, catch, repeat, guard, for, while, and defer statements
should be left-aligned with their respective close braces (}).

Acceptable:

Unset

if array.isEmpty {
/] ...

}

else {
/] ...

Unacceptable:

Unset

if array.isEmpty {

1 oo
} else {
/] ...
}
2. case statements should be left-aligned with the switch statement.
Single-line case statements can be inlined and written compact. Multi-line
case statements should be indented below case: and separated with one
empty line.
Acceptable:
Unset

switch inputType{
case .Typel:
self.doFirst()
self.doSecond()
case .Type2:
self.doFirst()
self.doSecond()

}

Unacceptable:

Unset

switch result {

case .Success: self.doSomething()
self.doSomethingElse()

case .Failure: self.doSomething()

self.doSomethingElse()
}

3. Conditions for if, switch, for, and while statements should not be enclosed
in parentheses (()).
Acceptable:

Unset
if array.isEmpty {
/] ...

Unacceptable:

Unset
if (array.isEmpty) {
/] ...

4. Try to avoid nesting statements by returning early when possible.

Acceptable:

Unset

guard let strongSelf = self else {
return

}
// domany things with strongSelf

Unacceptable:

Unset

if let strongSelf = self {
// do many things with strongSelf

}

10

lll. CODE ORGANIZATION

A. Dependencies

1. import statements for OS frameworks and external frameworks should be
separated and alphabetized.

Acceptable:

Unset

import Foundation
import UIKit
import Alamofire
import Cartography
import SwiftyJSON

Unacceptable:

Unset

import Foundation
import Alamofire
import SwiftyJSON
import UIKit
import Cartography

B. Declaration Order

The MARK comment is a useful tool for organizing code within a file, especially in

larger projects. It is recognized by Xcode, the integrated development environment (IDE) for
Swift and Objective-C. The MARK comment is followed by a hyphen and a brief description,
creating a visually distinct section marker in the code editor.

1. All type declarations such as class, struct, enum, extension, and

protocols, should be marked with // MARK: - <name of declaration> (with
hyphen)

Acceptable:

Unset

// MARK: - Icon
class Icon {
// MARK: - CornerType

11

enum CornerType {

case Square
case Rounded

I oo

}

Unacceptable:

Unset

// Icon
class Icon {
// MARK: CornerType

enum CornerType {

case Square
case Rounded

2. All properties and methods should be grouped into the superclass/protocol they
implement and should be tagged with // MARK: <superclass/protocol name>.
The rest should be marked as either // MARK: Public, // MARK: Internal, Or
// MARK: Private.

C. File Encoding
1. Source files are encoded in UTF-8.

D. Documentation
1. If a function is more complicated than a simple O(1) operation, you should
generally consider adding a doc comment for the function since there
could be some information that the method signature does not make
immediately obvious. If there are any quirks to the way that something

12

was implemented, whether technically interesting, tricky, not obvious, etc.,
this should be documented. Documentation should be added for complex
classes/structs/enums/protocols and properties. All public
functions/classes/properties/constants/structs/enums/protocols/etc.
should be documented as well (provided, again, that their signature/name
does not make their meaning/functionality immediately obvious).

160 character column limit (like the rest of the code).

Even if the doc comment takes up one line, use block (/** */).

Do not prefix each additional line with a *.

Use the new - parameter syntax as opposed to the old :param:
syntax (make sure to use lower case parameter and not Parameter).
Option-click on a method you wrote to make sure the quick help looks
correct.

o 0b

Unset

class Human {
/**

This method feeds a certain food to a person.

- parameter food: The food you want to be eaten.
- parameter person: The person who should eat the food.
- returns: True if the food was eaten by the person; false otherwise.

53/
func feed(_ food: Food, to person: Human) -> Bool {
//

}

}
6. When mentioning code, use code ticks

Unset
/**

This does something with a "UIViewController', perchance.
- warning: Make sure that “someValue® is “true’ before running this function.
w/
func myFunction() {
/* ... %/

7. When writing doc comments, prefer brevity where possible.

13

E. Directories

The most recommended structure for a Swift project is the Model-View-Controller
by separating the data, user interfaces and controlling logic.

NOoO Ok

Source
Scripts
Plotting
Docs
Notebooks
Tests
Examples

IV. BEST PRACTICES

A. Error Handling

Unset

s

Guidelines:

When a function, such as readFile, encounters a situation where it can't
perform its intended operation, it's common to use Swift's optionals
(String?) to indicate failure by returning nil. However, for more informative
and structured error handling, prefer Swift's try/catch mechanism

Prefer try/catch for error handling instead of returning optionals.

Use a custom error type, like CustomError, for structured error
information.

Throw errors to convey meaningful reasons for failures.

Use optionals only when the result should semantically be nil, not when
something goes wrong during the operation.

struct CustomError: Swift.Error {
public let
public let
public let
public let

public

StaticString

file: StaticString
function: StaticString
line: UInt

message: String

init(message: String, file: StaticString = #file, function:

#function, line: UInt = #line) {

self.file = file
self.function = function

14

self.line = line
self.message = message

}

func readFile(named filename: String) throws -> String {
guard let file = openFile(named: filename) else {
throw CustomError(message: "Unable to open file named \(filename).")

}

let fileContents = file.read()
file.close()
return fileContents

}
func printSomeFile() {
do {
let fileContents = try readFile(named: filename)
print(fileContents)
} catch {
print(error)
}

B. Use Test Driven Development (TDD)

Majority are "testing" applications all the time: They write the code, test the app manually
(via the browser or the console/terminal), make code revisions, repeat. This is how they
currently develop an app. But with TDD, the order is different:

TDD or Test Driven Development is the practice of writing tests before we write code.
The idea is we would make assertions of what we would like our code to do before we actually
write the implementation.

Guidelines:
1. Write Tests First:

a. Begin by creating tests that define the expected behavior before implementing
any new feature or addressing a bug.

2. TDD Cycle:

a. Follow the Red-Green-Refactor cycle: Start with a failing test (Red), implement
the minimum code to make the test pass (Green), and then refactor the code
while maintaining functionality.

3. Tests as Living Documentation:

15

a. Recognize tests as living documentation, providing insights into the intended
functionality of the code and serving as a reliable reference for future
development.

Why Write The Tests First? TDD forces you to consider how you design your code.

C. Version Control
1. Git commits
a. Start with a Type/Use Specific Commit Types:
i. Begin your commit message with a type that describes the
purpose:
1. Feat: for adding a new feature
Fix: for fixing a bug
Docs: for documentation changes
Style: for style or formatting adjustments
Perf: for performance improvements
6. Test: for adding or modifying tests
ii. Write a Clear Message:
iii. Craft a concise and clear commit message using the
imperative mood. Describe what the commit does.
b. Include Details (if needed):
c. Optionally, provide more details in the description. Mention related
tickets or issues for context.

ar0b

Example:
Unset
git commit -m "Feat: Add login feature

Closes #123

Implemented a secure login feature for users to access the application. Changes
cover both backend API and frontend UI components."

2. Avoid Direct Commits to Main Branch
a) Always create and work in feature branches for new features or
enhancements.

Unset

git checkout -b feature/new-feature
... make changes ...

16

git checkout develop
git merge --no-ff feature/new-feature
git push origin develop

17

V. REFERENCES

Swift Style Guide. (n.d.). Google.github.io. https://google.github.io/swift/

Inc, A. (nd.). Swiftorg. Swiftorg. Retrieved November 22, 2023, from
https://swift.org/documentation/api-design-guidelines/

Improving build efficiency with good coding practices. (n.d.). Apple Developer Documentation.
Retrieved November 22, 2023, from
https://developer.apple.com/documentation/xcode/improving-build-efficiency-with-good-c
oding-practices

Documentation. (n.d.). Docs.swift.org. Retrieved November 22, 2023, from
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/stateme
nts/

Coding Standard for Swift Programs. (n.d.). Retrieved November 22, 2023, from
https://www.cs.utexas.edu/~bulko/2023fall/SwiftCodingStandard.pdf

Sithara, M. S. (2020, February 28). iOS Best Practices and SWIFT Coding Standards: A
Developer’s Guide. Perfomatix | Product Engineering Services Company.
https://www.perfomatix.com/ios-best-practices-and-swift-coding-standards/

Swift Coding Standards. (n.d.). Engineering.vokal.io.
https://engineering.vokal.io/iOS/CodingStandards/Swift. md.html

Swift Style Guide. (2023, November 20). GitHub. https://github.com/linkedin/swift-style-guide

How to implement coding standards in your organization. (n.d.). Www.linkedin.com.
https://www.linkedin.com/pulse/how-implement-coding-standards-your-organization-coda
cy/

How to Write a Good Git Commit Message | Git Best Practices. (n.d.). Www.gitkraken.com.

https://www.gitkraken.com/learn/git/best-practices/git-commit-message#:~:text=Git%20C
ommit%20Message%20Structure&text=The%20commit%20message %20title%20is

18

https://google.github.io/swift/
https://swift.org/documentation/api-design-guidelines/

