
 (4/26/2018)
Multitemporal Python Library
"Efficient, chainable time series processing of raster stacks"

1. General

This Python library provides an efficient means of flexibly performing time series analysis on
stacks of gridded data. Multitemporal is composed of a core python application that breaks
the processing job into pieces and launches workers to perform the processing, plus reusable
modules that perform the steps. Each worker handles a configurable sequence of processing
steps for a spatial chunk of data. All the inputs and each step are prescribed in a
user-configured JSON files.

The code is available at https://github.com/Applied-GeoSolutions/multitemporal, distributed
under a GPLv2 open source license.

Authors and contributors: Bobby Braswell, Justin Fisk, Ian Cooke, Nate Rubin, Beth Ziniti

Initial code development was performed at Applied Geosolutions LLC (AGS) and the
University of New Hampshire, supported in part by NASA Interdisciplinary Science Grant
"Tropical Forest Resilience and Vulnerability to Drought" (Michael Palace PI). Applied
Geosolutions serves as the host and maintainer of the code base.

Possible new name: MultitemPyral (-:

2. Structure

The multitemporal repository is structured as a Python package:

multitemporal/
├── Dockerfile
├── LICENSE.txt
├── README.md
├── install.sh
├── multitemporal/
│ ├── __init__.py
│ ├── bin/
│ ├── mt.py
│ └── test/
├── requirements.txt
├── setup.cfg
└── setup.py

The bin/ subdirectory contains a large and growing collection of Cython files which are
compiled on package build and serve as the primary processing modules that are available
for configuring the “steps” of a process..

The test/ subdirectory currently contains very few cases but the goal is for developers to
archive a test for each new module that demonstrates usage. A test case for multitemporal is
represented by a single JSON configuration file.

https://github.com/Applied-GeoSolutions/multitemporal

The Python mt.py file is the primary wrapper script that serves as CLI entry point and library.

3. Data Flow

Chaining of modules allows each module to be written to perform a single task that can be
reused within multiple chains. Processing and summarizing time series is a primary focus for
modules, and the first step in the chain sequence always expects multitemporal data (hence
the name of the package) but downstream modules can ingest and produce other products,
for example summary statistics, e.g. quantiles or regression coefficients.

Every module has the same function prototype, and expect three inputs: data, missingval, and
params, described below:

The data array has either 3 or 4 dimensions (more on this later) and represents the input to the
module. Module inputs originate either from data sources or from upstream modules. If the
array is 3-dimensional, then the indices represent: layer, year, and pixel, in that order. The
layer dimension indexes over time, or over some other kind of values. If the module is first in
the chain, then the layer will index over time. If the data array is 4-dimensional, then the
indices represent: input, layer, year, and pixel. So the added dimension just represents
multiple (strictly more than one) upstream inputs, either from sources or steps.

The missingval is a single value that represents “no data” in the input. Multitemporal will attempt
to detect the missing value from the data source and propagate this through without the user
having to worry about it. However the user can override this value on the command line.

The params array is always a one-dimensional array, that originates as a JSON list in the
configuration file. The length of this list is dependent on the module requirements, and in
some cases on the user choice. Typically the list is a relatively small number of control
parameters that govern how the processing step operates. For example, a smoothing module
will require the smoothing window size. Parameter values start out as floats but can represent
integer values as well (this is up to the module developer).

5. Module processing

Within each module, the entire time series (or layer values in some cases for non-initial steps)
are available for each pixel, and for each year. The module developer can apply whatever
logic or numerical processing is needed to that time series in order to produce the desired
output. For example, in some of the most simple cases, one summary value is produced for
each year for each pixel (e.g. an annual mean). In other cases, the module might perform an
analysis that results in the same number of output layers (e.g. time steps) as inputs.

The module developer controls two aspects of the model output: number of layers (where
layer can be time steps or derived quantities), and the number of output years. The number of
output layers is controlled by the nout function in the module, which allows the user flexibility to
make the number of layers dependent on the input parameters, the number of inputs, or a
constant chosen by the developer. Typically, the number of output years is set to be equal to
the number of input years, but in some cases it is useful to set the number of output years to

be 1, so that the result represents an aggregate or summary across years, not tied to a
specific year. This is done by setting the nyrout function in the module.

Currently all modules are written in Cython for computational efficiency, but the module can
be anything importable that meets the requirements above. In most cases it will be much
easier to develop a new module based on an existing one. All the Cython modules in the
repository are built on installation and obviously a module will need to be recompiled if it is
modified.

6. Chaining modules

Each module expects inputs of a certain type and structure, and produces outputs of a certain
type and structure, depending on the purpose of the module as implemented by the module
developer. It is the responsibility of the developer to document those expectations, and the
responsibility of the user to implement module steps (as captured in the JSON configuration
file) that are consistent with those expectations. Some checks are implemented but there is
no general protection against wiring together modules that don’t fit together.

A typical module block, representing a single step in a multitemporal chain, looks like this:

 {
 "name" : "ndvi-MCD-runningmean",
 "module" : "runningmean",
 "params" : [7,3],
 "inputs" : ["ndvi-MCD-interpolate"],
 "output" : false
 },

This block says, (1) "this processing step is called ndvi-MCD-runningmean; (2) the name of the
modoule to use is runningmean; (3) the parameters are the window size 7 and the shift 3, so this
is a moving window smoother that is centered; (4) take the output from the step called
ndvi-MCD-interpolate and use it as input; (5) don't save the output to a file, which means this is
probably an intermediate step.

If the block is the last step in the chain (or in a chain because there can be multiple chains in
the config), you will need to make sure that output is set to true, assuming that you want to
see the output. If the block is the first step in a chain, it will need to have inputs consisting
only of data which are "sources", which are defined at the top of the config file in a block
called sources.

A typical source block looks like this:

 {
 "name" : "ndvi-TOF",
 "regexp" : "^(\\d{7})_TOF_ndvi-toa-cmasked.tif$",
 "bandnum": 1
 },

This block says, (1) the name of this source is called ndvi-TOF; (2) this source will be identified
in the input directory as files that match the pattern given by regexp; (3) the band to use for this

source will be the first band in the file. It is also possible to refer a band by name if that name
is included in the file metadata. Instead of overloading bandnum, we use the keyword bandname,
e.g.,

 {
 "name" : "ndvi-modis",
 "regexp" : "^(\\d{7})_MCD_ndvi.tif$",
 "bandname": "NDVI"
 },

As mentioned above, some modules support more than one input (notice that the input field in
the configuration file is a list). Those modules will expect input data arrays with 4 dimensions
instead of three, with the length of the first dimension equal to the number of inputs. For
example, the fusion module accepts two inputs, from two upstream steps.

 {
 "name" : "daysofgreen",
 "module" : "daysofgreen",
 "params" : [0.25, 0.35],
 "inputs" : ["ndvi-landsat-fused", "rc-landsat-fused"],
 "output" : true
 }

Module inputs are always represented as a list, even when there is only one input source.
Just to clarify terminology, the module inputs are the layers of all the sources listed. In this
example the module inputs have two sources, but are equal to 1 layer of NDVI.

7. Usage

The main precondition for usage of multitemporal is the existence of a directory containing
raster files, some subset of which will serve as the inputs to the multitemporal run. The
specific run time options, including location of the input directory, location of output directory,
data sources, and processing steps (see more detail below).

There are several multitemporal command line options:

 parser.add_argument('--nproc', type=int,
 help='Number of processors to use')

 parser.add_argument('--blkrow', type=int,
 help='Rows per block')

 parser.add_argument('--compthresh', type=float,
 help='Completeness required')

 parser.add_argument('--dperframe', type=int,
 help='Days per time step (frame)')

 parser.add_argument('--projdir',
 help='Directory containing timeseries')

 parser.add_argument('--nongips', action="store_true",
 help='Projdir is not gips compliant')

 parser.add_argument('--ymd', action="store_true",

 help='Date string is YYMMDD (not GIPS-compliant)')

 parser.add_argument('--projname',
 help='Project name to use for output files')

 parser.add_argument('--outdir',
 help='Directory in which to place outputs')

However, the most straightforward and most common usage of multitemporal is to simply
specify the path to a configuration file, i.e.,

 multitemporal --conf /path/to/conf.json

Additional options can be supplied on top of this configuration by supplying the desired
additional flags on the command line (thanks Justin!). All the options have defaults that work
for most cases. A few exceptions: to process data from a GIPS export directory set non-gips
to false; if the file name date string is YYYYMMDD instead of the expected YYYYDDD, then
use the --ymd option; if you want to set the implicit time step to something other than 1 day,
use the --dperframe option.

8. Existing modules

This list is not intended to be complete. There are 43 modules. The purpose of the list in this
document is to illustrate the different types of modules, and suggest examples to base future
modules on based on the desired properties.

See also /multitemporal/multitemporal/bin/module_info.txt which was an early attempt to document
modules and contains a longer listing.

name nout output nyrout params inputtype outputtype

annualstats 5

min, max,
mean, std,
count nyr

thresh,
nframe=1,
maxframe=nfr time layer

crossings params[0] crossings,... nyr

ncross,
thresh,
minframe time layer

gapfill nin input nyr

minval,
maxval,
maxgapfrac time time

interannualslope nin input 1
minframe,
maxframe layer/time layer

overallmean 2 mean, count 1
minframe,
maxframe layer/time layer

phenology 5

annmean,
height, start,
duration,
argmax nyr

thresh,
minval,
maxval,
minframe,
maxframe time layers

recomposite params[0]
recomposite,
.... nyr nout time time

This table shows descriptive aspects of a few of the modules.

nout indicates the number of outputs per year for the module. This is equal to the number of
layers in the output, or the length of the first dimension of the output array. In some cases it is
a fixed number; for example the annualstats module always has an output array that is 5 x nyr
x npixels. In some cases it is equal to the number of inputs; for example the gapfill module
always returns an array that is nin x nyr x npixels. In some cases it is determined at run time
by a configuration parameter; for example the recomposite module has an input parameter
that determines the number of composites per year, so the output is always param[0] x nyr x
npixels where param[0] in this case is the first parameter in the input parameter list.

output indicates the actual outputs produced by the module. If nout is a constant, then the
outputs can be enumerated as in the table. If nout is equal to nin, then the outputs have the
same number as the inputs. This is often a result of the module performing some direct
transformation of the inputs, e.g. smoothing or gap filling.

nyrout indicates the number of output years for the module, and is usually equal to the
number of input years. Alternatively it could be anything, but the most common example is
having one output year that represents an aggregate across years.

params indicates the input parameters to the module. As mentioned above, a parameter can
be used to set the number of output layers or output years. However, parameters are typically
used to control the function of a particular numerical analysis.

inputtype indicates whether the module is expecting the layer dimension to represent time
steps (e.g. days, 8-days, months) or some generic layer that is non-temporal (e.g. mean,
median, min, max), or both. For example, you could perform basic statistics on temporal or
non-temporal data.

All of the preceding discussion applies to module inputs that are derived from multiple data
sources, except that when there are multiple data sources, the input arrays have an additional
first dimension (as discussed above).

