Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


AdMit (Ardia et al., 2009a) is an R package which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm fits an adaptive mixture of Student-t distributions to the density of interest, and then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. Full description of the algorithm and numerous applications are available in Ardia et al. (2009a) and Ardia et al. (2009b).

Please cite the package in publications!

By using AdMit you agree to the following rules:

  1. You must cite Ardia et al. (2009a) in working papers and published papers that use AdMit.
  2. You must place the following URL in a footnote to help others find AdMit:
  3. You assume all risk for the use of AdMit.

Ardia, D., Hoogerheide, L., van Dijk, H.K. (2009a).
Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: The R package AdMit.
Journal of Statistical Software, 29(3), 1-32.

Ardia, D., Hoogerheide, L., van Dijk, H.K. (2009b).
AdMit: Adaptive mixture of Student-t distributions.
R Journal, 1(1), 25-30.