Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


The package bayesGARCH (Ardia and Hoogerheide, 2010) implements in R the Bayesian estimation procedure described in Ardia (2008) for the GARCH(1,1) model with Student-t innovations. The approach consists of a Metropolis-Hastings (MH) algorithm where the proposal distributions are constructed from auxiliary ARMA processes on the squared observations. This methodology avoids the time-consuming and difficult task, especially for non-experts, of choosing and tuning a sampling algorithm.

Please cite the package in publications!

By using bayesGARCH you agree to the following rules:

  1. You must cite Ardia and Hoogerheide (2010) in working papers and published papers that use bayesGARCH.
  2. You must place the following URL in a footnote to help others find bayesGARCH:
  3. You assume all risk for the use of bayesGARCH.

Ardia, D., Hoogerheide, L.F. (2010).
Bayesian estimation of the GARCH(1,1) model with Student-t innovations.
R Journal, 2(2), 41-47.

Ardia, D. (2008).
Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications.
volume 612 series Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany.