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Abstract

Cirrhosis is a late stage of scarring(fibrosis) of the liver caused by
many forms of liver diseases and conditions, such as hepatitis and
chronic alcoholism.Now I am working for predicting the possible sur-
vival time to end the study with either incurred with censor or death
for a randomized placebo control trial of the drug D-penicillamine
The following data contains the information collected from the Mayo
Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted
between 1974 and 1984
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Chapter 1

Introduction

Survival Analysis is a collection of statistical procedures for data
analysis for which the outcome variable of interest is time until an
event occurs.

By time,we mean years, months,weeks,or days from the begin-
ning of follow-up of an individual until an event occurs;alternatively,time
can refer to the age of an individual when am event occurs.
By event,we mean death,disease incidence,relapse from remission,
recovery (e.g.,return to work) or any designated experience of inter-
est that may to an individual.
Although more than one event may be considered in the same anal-
ysis, we will assume that only one event is of designated interest.
When more than one event is considered (e.g., death from any of
several causes), the statistical problem can be characterized as ei-
ther a recurrent event or a competing risk problem.
In a survival analysis, we usually refer to the time variable as sur-
vival time, because it gives the time that an individual has “sur-
vived” over some follow-up period. We also typically refer to the
event as a failure, because the event of interest usually is death, dis-
ease incidence, or some other negative individual experience. How-
ever, survival time may be “time to return to work after an elective
surgical procedure,” in which case failure is a positive event.Due
to presence of censoring,which is data whose event is not occurred
yet,survival analysis model require special consideration.

Cox proportional hazard(Cox PH) and accelerated failure time
model(AFT) are widely used to handle right censored data.Yet the
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assumptions made by these model are violated in the real worlds .Re-
cent studies showed that the Ordinary Differential Equation(ODE)
modeling framework unifies many existing Survival analysis models
including Cox PH and AFT. They also showed that the ODE mod-
eling framework is flexible and widely applicable.
However, naively applying the ODE framework to survival analy-
sis problems may result in wildly oscillating density function that
may worsen the model’s performance. Regularization techniques
that can regularize this undesirable behavior are understudied.The
cluster assumption from semi-supervised learning states that the de-
cision boundaries should not cross high-density regions. Likewise,
survival analysis models need hazard functions that slowly change
in high-density regions.
In this paper ,we propose Cox Proportional Hazard Model to predict
exact Survival Time where the individuals are either incurred with
death or censored.Our method has several advantages 1)The model
is computationally efficient.2)The model is theoretically sound.3)It
is easy to implement.4)The model is applicable to any Survival anal-
ysis problem containing censored data.
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Chapter 2

Methods and Materials

2.1 Study Design

The Survival analysis was performed using Kaplan-Meier and Cox
Proportional Hazard methods. Kaplan-Meier model was used to de-
termine the survival probability of Liver Cirrhosis patients.Then,Log-
Rank test was used to determine the significance difference between
survival expression of patient.Cox proportional hazard was used
to determine the difference ratio of prognostic factors which were
including age,stages,Drug,Sex,Ascites and other factors like Biliru-
bin,Edima,Albumin,Copper,SGOT etc.

2.2 The Survival Function

Individual opportunities to survive for time x are expressed by S(x) =
p(X > x). Let X be the continuous random variables, then the
survival function is the complement of the cumulative distribution
function S(x) = 1 − F (x) where F (X) = P (X ≤ x). The survival
function is the integral of the probability density function f(x):

S(x) = P (X > x) =

∫ ∞

x

f(t)dt

f(x) = −dS(x)

d(x)

Then if X is the discrete random variables, and can be obtained
xj, j = 1, 2, 3, . . . with the probability mass function (p.m.f) p(xj) =
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P (X = xj), j = 1, 2, 3, . . . where x1 < x2 < x3. . . then the survival
function for the discrete variables X is given by:

S(x) = P (X > x) =
∑
xj>x

p(xj)

2.3 Hazard Functions

The hazard function of the hold time X is denoted by h(x) and
defined as individual probability fails in the time interval (x, x +
∆x) that the individual has lived for time x, the hazard function is
expressed as:

h(x) = limx→∆x

[
P (x < X < x+∆x|X > x)

∆x

]
The relationship between the hazard function and sur-

vival function is expressed by :

h(x) =
f(x)

S(x)

2.4 Kaplan Meier’s Survival curve and Log Rank
Test:

Estimated Kaplan Meier survival function.expressed by:

Ŝ(x(j)) = Ŝ(x(j − 1)P̂ [X > x(j)|X ≥ x(j)]

A further log rank test is used to compare Kaplan Meier’s survival
curves formed by the following hypothesis: H0: There is no dif-
ference between the survival curves. H1: At least one difference
between the survival curves:

LogRankStatistic =
(Oi − Ei)

2

V ar(Oi − Ei

mij denotes the number of individuals who experience the event at
time xj, and eij is the value of hope. The null hypothesis will be
rejected if log rank statistics ≥ χ(a, df) α,df with degrees of freedom
(df) = 1 or p value < α
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Figure 2.1: Kaplan Meier Curv
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2.5 Cox Proportional Hazard Model:

The relationship between the hazard rate and the covariate set can
be ecpressed using the model:

ln[h(t) = ln[h0(t)] +
n∑

i=1

xiβi

or
h(t) = ho(t) exp

∑n
i=1 xiβi

where x1, x2, ..., xn are covariates.β1, β2, ..., βn are the regression co-
efficient to be estimated .andh0(t) is baseline hazard rate when all
the covariates are zero.
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Chapter 3

Results and Discussion

3.1 Kaplan Meier Analysis

time n.risk n.event survival std. error lower 95 CI Upper 95 CI
533 382 1 0.99738 0.00261 0.992271 1.00
691 370 1 0.99203 0.00458 0.983096 1.0000
837 350 1 0.98101 0.00711 0.967167 0.9950
839 349 1 0.97820 0.00763 0.963362 0.9933
994 330 1 0.95807 0.01061 0.937507 0.9791
1022 326 1 0.95513 0.01097 0.933865 0.9769
1030 325 1 0.95219 .01133 0.930251 0.9747
1055 323 1 0.94925 0.01167 0.926649 0.9724
1234 290 1 0.88920 0.01698 0.856529 0.9231
1236 288 1 0.88611 0.01720 0.853030 0.9205
1250 287 1 0.88303 0.01742 0.849539 0.9178
1260 286 1 0.87994 0.01763 0.846057 0.9152
2301 143 1 0.52903 0.02882 0.475452 0.5886
2318 142 1 0.52531 0.02886 0.471681 0.5850
2330 141 1 0.52158 0.02889 0.467915 0.5814

Table 3.1: Summary table of Kaplan Meier fit
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Figure 3.1: Decreasing Number at Risk with Time
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3.2 Rank Log Test

To determine whether there are difference between the survival curvethen
used the log rank test.

Variable Log rankChi−Squre df P-Value
Bilirubin 0.51384 1 0.47348
Albumin 11.065669 1 0.00088
Copper 0.36833 1 0.54391
AlkPhos 1.12439 1 0.28898

Prothrombin 0.07198 1 0.78848

Table 3.2: Rank Log Test Factors affecting Survival of Liver Cirrhosis

Based on table 3.2, it can be seen that the survival pf Liver cirrho-
sis patients based on variables Bilirubin,Albumin,Alk-Phos,Copper
were statistically significantly different with p-value¡0.05.

3.3 Cox Proportional Hazard Model

Let,Bilirubil(x1) ,Albumin(x2), Copper(x3) ,Alp-Phos(x4), Prothrombin(x5)
allegedly affecting survival of Liver cirrhosis patients are generally
modeled as:

h(t) = h0(t) exp β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (3.1)

Based on table 3.3 the obtained model:

h(t) = h0(t) exp 1.87x1 − 17.31x2 + 4.03x3 − 7.19x4 − 15.52x5

(3.2)
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Figure 3.2: Hazard Ratio
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Figure 3.3: Global Schoenfeld Test
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Values coef exp(coef) se(coef) robust se z Pr(> |z|)
Bilirubin 1.056e-01 1.111e+00 4.247e-02 3.902e-02 2.77 0.00678
Albumin -6.738e-01 5.098e-01 2.568e-01 2.205e-01 -3.056 0.00224
Copper 2.587e-03 1.003e+00 1.365e-03 1.010e-03 2.561 0.01044
Alk-Phos -4.129e-04 9.996e-01 7.444e-05 6.163e-05 -6.699 2.10e-11
Cholesterol -5.673e-04 9.994e-01 5.900e-04 7.974e-04 -0.711 0.47684
Prothrombin -6.083e-01 5.443e-01 1.301e-01 1.534e-01 -3.966 7.32e-05

Table 3.3: Value of the Coeff. with Z score

Tests Value df P-Value
Lik.Ratio 110.5 18 3e-15
Wald 88.83 18 2e-11

Score(logrank) 82.78 18 3e-10
Robust 87.83 - 4e-11

Table 3.4: Tests for Cox PH
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Chapter 4

Goodness of fit test

4.1 Test of Exponentiality

To test the hypothesis that the observed residuals ξ̂1, ξ̂2, ξ̂3, ..., ξ̂n
are realizations from a standard exponential distribution,
we use a number of goodness-of-fit tests for exponentiality.
The approaches used to construct these tests can broadly
be categorized into two groups: Classical tests based on
the EDF and new tests based on empirical transforms. We
also consider a recent moment-based test for the exponen-
tial distribution.

4.2 Tests Based on EDF

The EDF-based tests are expreterms of distances between the EDF

Gn(t) =
1

n

n∑
j=1

(I(ξ̂j))

of the residuals ξ̂1, ξ̂2, ξ̂3, ..., ξ̂n defined in Eq. (4) and the corre-
sponding population quantity for the standard exponential distri-
bution G(t) = 1 − exp(t) The following EDF-based test statistics
are considered: The Kolmogorov-Smirnov (KS) test statistic:

ˆKSn = supt≥0[|Gn(t)−G(t)|]
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the Cramer-von Mises (CM) test statistic:

CMn =

∫ ∞

0

[Gn(t)−G(t)]2dG(t)

and the Anderson-Darling test (AD) statistic:

ADn =

∫ ∞

0

[Gn(t)−G(t)]2

G(t)[1−G(t)]
dG(t)

There are computationally efficient formulae for the EDF-based
statistics that can be found in D’Agostino and Stephens (1986).
Specifically, the KS, the CM and the AD test statistics simplify to

ˆKSn = maxKS+
n , KS+

n

KS+
n = max1≤j≤n[

j

n
− (1− eξ̂(j))]

KS−
n = max1≤j≤n[(1− e−̂ξ(j)) − j − 1

n
]

CMn =
1

12n
+

n∑
j=1

[(1− e−
ˆξ(j))]− 2j − 1

2n
]

and

ADn = −n−
n∑

j=1

2j − 1

n
[ln(1− exp− ˆξ(j))− ˆξ(n+ 1− j)]

respectively, and where
ˆ

ξ(1) ≤
ˆ

ξ(2)... ≤ ˆξ(n) denotes the ordered
residuals. For the KS test statistic we use the Bolshev correction
that rejects the null hypothesis for large values of

KSn =
6n. ˆKSn + 1

6
√
n
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Chapter 5

Conclusion

The main factor causing low survival time was because the patient
comes for treatment already in an advanced stage even accompanied
by comorbidities (such as diabetes, anemia and hypertension). It is
recommended that health workers conduct promotions to motivate
women at risk for early selfexamination if they know of any signs of
Liver Cirrhosis earlier.

5.1 Estimated Result

As per prediction and tests : After 3000 Days the number
of patient at Risk is minimizes drastically.

1

1Cirrhosis Prediction :Arjun Samanta:github:https://github.com/Arjun392/
Prediction-of-Recovery-Time-from-Liver-Cirrhosis

19

https://github.com/Arjun392/Prediction-of-Recovery-Time-from-Liver-Cirrhosis
https://github.com/Arjun392/Prediction-of-Recovery-Time-from-Liver-Cirrhosis


Chapter 6

References :

** Data Set Link :https://www.kaggle.com/datasets/fedesoriano/
cirrhosis-prediction-dataset

1. Cox Proportional Hazard Survival Analysis to Inpatient Breast
Cancer Cases : M. Nadjib Bustan et al 2018 J. Phys.: Conf. Ser.
1028 012230

2. Statistics for Biology and Health:Survival Analysis,A Self-
Learning Text:M. Gail, K. Krickeberg, J.M. Samet, A. Tsiatis, W.
Wong http://www.springer.com/series/2848

3. Goodness-of-fit tests in the Cox proportional hazards model:Marike
Cockeran, Simos George Meintanis James S. Allison https://www.

tandfonline.com/loi/lssp20

4. Chi-Squared Goodness-of-Fit Tests for the Proportional Haz-
ards Regression Model:David Schoenfeld :TrustChi-Squared Goodness-
of-Fit Tests for the Proportional Hazards Regression ModelAuthor(s):
David SchoenfeldSource: Biometrika, Vol. 67, No. 1 (Apr., 1980),
pp. 145-153Published by: Biometrika TrustStable http://www.

jstor.org/stable/2335327Accessed

20

https://www.kaggle.com/datasets/fedesoriano/cirrhosis-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/cirrhosis-prediction-dataset
http://www.springer.com/series/2848
https://www.tandfonline.com/loi/lssp20
https://www.tandfonline.com/loi/lssp20
 http://www.jstor.org/stable/2335327Accessed
 http://www.jstor.org/stable/2335327Accessed

	Introduction
	Methods and Materials
	Study Design
	The Survival Function
	Hazard Functions
	Kaplan Meier's Survival curve and Log Rank Test:
	Cox Proportional Hazard Model:

	Results and Discussion
	Kaplan Meier Analysis
	Rank Log Test
	Cox Proportional Hazard Model

	Goodness of fit test
	Test of Exponentiality
	Tests Based on EDF

	Conclusion
	Estimated Result

	References :

