
A P2P application with
Python
how to make a P2P network



Key Discussion Points:
Understand how this new network works

What was the problem?

Types of P2P networks

Centralized vs. Decentralized model

How to implement the code

Provide solutions for network congestion time



problem:
We intend to design a network in which each user is all our

customers and server. This grid is to be used to multiply large

matrices.



P2P network
Types of P2P networks



Decentralized
This architecture has more limitations than

centralized architecture. In this architecture,

there is no server to manage peers, and each

peer with the information it has from a limited

part of the network and its neighboring peers

can exchange information with those parts.

The most important issue in this architecture

is its more limited resources compared to

other models.

Centralized
In a P2P network with a centralized

architecture, the main server stores the

information of each peer in a table. This

architecture is very similar to the client-server

architecture, but with the difference that

each peer can independently communicate

with the list of other peers, it receives from

the main server and exchange information

with each other. It should be noted that this

architecture is very scalable and the main

server is responsible for managing peers and

the number of threads created on each peer.



How to implement
Main server

To implement the requested network in the given problem, we

designed the main server. When connecting to the peer, this main

server uses the Data Frame provided by the pandas library, the

information of that peer including IP number and port, the number of

times allowed to send data simultaneously on each peer, and

object connection in this table saves.

We have designed various queries for this main server through

which we can request that the server send seven peer

communication information to the requester or release the bound

peers.



How to implement
Peer

Each peer must be both a server and a client at the same time.

It waits to receive information from the main server through the

server_recving function, and it waits to receive information from

other peers through the server_isListening function. Each peer

can request the main server to send information to the other

seven peers to communicate with them. By connecting each

peer, a thread of the peer_handler function is created.

The input_handler function executes user queries, which are:

I need seven peers, release these peers, make matrices,

multiply matrices

 

The Strassen function is also responsible for breaking the

desired matrix into smaller matrices and sending each piece of

the matrix to a peer.



In this architecture, network congestion management is the
responsibility of the main server, one of the limitations that can
be considered for this network is that each peer can play the role
of server a limited number of times, and if the peer requests a list
from peer And all those peers are being used as much as the
intended restriction, the requesting peer goes into Suspended
state until the other peers are released.

Provide solutions for
network congestion time



However, this method alone does not work, because if there is a
problem in releasing the requested peers, then the other requesting
peer may enter a dull state, so through the round-robin algorithm, the
amount of time that each peer can be bound. We specify that the
algorithm for using the table on the main server is first to come first out,
and when a request is made to the server, other queries are prevented
from entering through a semaphore lock until that query is completed.
Interference that may occur in the table or the Data Frame is prevented.

Provide solutions for
network congestion time



Free Resources
https://medium.com

https://pandas.pydata.com

https://stackoverflow.com

https://realpython.com


