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Preface

Many applications of ultrasonic guided waves exist, but, as the reader may confirm,
getting the dispersion curves of guided waves is difficult. Although there are many re-
searchers who are able to calculate dispersion diagrams with their own code, most people
who deal with guided waves do not have such code, either because they don’t know where
to get it, or they don’t have the money to buy DISPERSE. Clearly, writing such code is
difficult, in particular in case of multilayered anisotropic laminates, and those who can
do it keep the code like a treasure. When I started conducting air-coupled ultrasonic
inspection of carbon composites using Lamb waves at the DLR in Augsburg, Germany,
in 2013, I had no code for calculating dispersion diagrams, too. Fortunately I got the
budget in 2016 for buying DISPERSE. With this software, I am able to write and val-
idate the DC to this day. I found soon that it would be worth to make the DC open
to the public because of the high demand and lack of free software, but also because I
considered it a waste of resources spending years on the code, and then only I could use
it. Therefore, I released the DC in 2018, and many user feedback from many countries
as well as publications citing the DC prove that the DC is widely used today. I may
say that it is a great pleasure for me to see how my “baby” performs, and I draw much
satisfaction and motivation from it to continue the work on it. It is my sincere hope
that the scientific community will benefit from the DC, and that it might help create
connections between humans belonging to different cultures or countries, which tend to
compete or even fight each other.

In that sense, I want to express my gratitude to the great researchers who have supported
me in my work, namely to Dr. Michael Lowe, Dr. Michel Castaings, Dr. Stanislav
Rokhlin, Dr. Marc Deschamps, Dr. Eric Ducasse, Dr. Victor Giurgiutiu, and Dr.
Markus Sause.

Armin Huber Augsburg, Germany

April 2022
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1 Introduction

The nondestructive inspection (NDI) of components by means of guided waves is an
emerging technology in fields like aerospace or pipeline construction. The guided waves’
capability of propagating many meters in a structure is utilized for swift inspection
tasks as well as structural health monitoring and acoustical emission. The German
Aerospace Center (DLR) uses Lamb waves excited by air-coupled ultrasound for the
quality assurance of large-scale aerospace vehicle components made from carbon com-
posites. However, the use of guided waves in NDI requires knowledge of the dispersion
curves. DISPERSE [1, 2] (Imperial College London, London, UK) is the most renown
software for the calculation of dispersion curves. It has been developed since the early
1990s by Lowe and Pavlakovic, and it is used for the validation of the Dispersion Cal-
culator (DC). But there are also free tools other than the DC. GUIGUW [3, 4] is a
software package developed by Marzani and Bocchini. Since it is based on the semi-
analytical finite-element method (SAFE), it has the advantage of being able to model
waveguides of arbitrary cross sections. Another promising contender, the open source
Matlab®-toolbox ElasticMatrix [5, 6], was released by Ramasawmy et al. in 2020.
It is able to compute dispersion curves for multilayered media made of isotropic and
transversely isotropic layers where the wave propagation occurs in a material plane of
symmetry. However, this covers decoupled cases only, so far excluding the majority of
composites where we have arbitrary fiber orientations and wave propagation directions.
Nonetheless, it is a promising project meant to be extended in the future. Then, the
Matlab®-based “The Dispersion Box” was released by Orta et al. in 2022 [7,8]. This
tool is able to compute dispersion and attenuation curves in multilayered, viscoelastic,
orthotropic plates. Its special feature is that up to six different methods can be used
simultaneously, namely the global matrix method (GMM), the stiffness matrix method
(SMM), the hybrid compliance-stiffness matrix method (HCSMM), the SAFE method,
the Legendre polynomial method (LPM), and the fifth order shear deformation theory
(5-SDT). The latter was developed also by Orta et al. [9] as an improvement to the
previous lower order plate theories. A not to be underestimated advantage is also that
The Dispersion Box has an easy-to-use graphical user interface. Most recently, Kiefer
released the “GEW dispersion script” [10] for Matlab®. It uses the spectral collocation
method (SCM) discussed below.

The task that triggered the development of the DC was the calculation of incidence
angles for the excitation of Lamb waves for the air-coupled ultrasonic inspection of
rocket booster pressure vessels of the future launcher Ariane 6. These vessels are made
of carbon fiber reinforced plastics (CFRP) in order to make them lighter, and therefore
enable the launcher to carry more payload. In some areas, such pressure vessels can
consist of up to four hundred layers, which is a challenging task to calculate them.
To facilitate the calculation, it is a common practice to group layers, but this is not
possible here because the layups are very complicated and irregular in terms of the
winding angle (fiber orientation) and layer thicknesses. Therefore, every single layer
has to be calculated, and the SMM, which has been developed by Rokhlin and Wang
[11–13] in 2002, has been implemented in Matlab® to perform these calculations.
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A very useful paper for the coding of the SMM is that of Kamal and Giurgiutiu [14].
Tan in 2005 introduced an improvement in efficiency [15], and shortly thereafter he
presented the HCSMM [16], which solved the instability of the SMM for very small
frequency-thickness products. Other researchers who use the SMM are Barksi et al.
[17–19] and Muc et al. [20]. However, initially, the excellent and highly instructive book
of Nayfeh [21] featuring the transfer matrix method (TMM) served as the backbone
for the programming of the DC. The TMM was developed by Thomson [22] in 1950,
and a small correction was conducted by Haskell [23] in 1953. However, the SMM
solved the well-known numerical instability which the TMM suffers from. Moreover, the
SMM retains the concise form and efficiency of the TMM, unlike other stable methods
such as the GMM, which is used by DISPERSE and ElasticMatrix. The GMM was
proposed by Knopoff [24] in 1964, and it is discussed in the famous paper of Lowe [25].
The SAFE method, introduced by Gavric [26] in 1995, and used by GUIGUW and
The Dispersion Box, is an alternative to root-finding methods. The SAFE method
discretizes the waveguide’s cross section into finite elements, allowing the modeling of
guided waves in complex geometries. At the same time, the wave propagation direction
is solved analytically, which makes this approach more efficient than full FEM modeling.
It should be noted, however, that the SAFE method (similarly as the SCM) is only an
approximate method, i.e., the accuracy of the results depends on the number of discrete
elements set through the thickness of the waveguide. Another method worth noting is the
already mentioned SCM, introduced by Adamou and Craster for guided wave modeling
in elastic media in 2004 [27]. The SCM is similar to the SAFE approach in that it is using
a one-dimensional mesh over the system’s cross section, but the SCM possesses a higher
accuracy and speed of computation. Instead of solving a differential equation directly,
the SCM uses a spectral approximation, which satisfies the differential equation and
boundary conditions. Hernando-Quintanilla et al. have provided comprehensive studies
of guided wave modeling in generally anisotropic media by means of the SCM [28–31].
The authors claim that the SCM is easier to code than root-finding methods, that it is
faster, and most importantly, that it can definitely not miss any modal solution. More
recently, the method has been used to model also leaky waves [32, 33]. The SCM is
currently implemented in DISPERSE. Personally, I consider the SCM the discretizing
method and the SMM the best root finding method. Dispersion curves for isotropic
plates are obtained most efficiently by applying the Rayleigh-Lamb equations [34, 35],
and the excellent book of Rose [36] served well for the coding. The theoretical work
on guided wave modeling and the implementation into the DC is reported in detail
in Refs. [37, 38]. The advanced model for the group/energy velocity of guided waves
in anisotropic specimen, introduced in the DC v1.11, has been developed with help of
the highly recommended new book of Giurgiutiu [39]. The coding of the characteristic
equations used for fluid-loaded cases, introduced in the DC v2.0, was done with help of
the excellent book of Rokhlin et al. [13].

The initial release of the DC [40] took place in November 2018. The download contains
the DC both as a stand-alone application as well as the Matlab®-code (notice that the
Curve Fitting Toolbox is required also). The DC is an interactive and fully validated
stand-alone software for the computation of dispersion curves (phase velocity, energy
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velocity, attenuation, and more) and mode shapes (displacement, stress, strain, and
more) of guided waves in isotropic plates and multilayered anisotropic laminates. The
plate material can be fully elastic or viscoelastic, and the plate can be immersed in
fluids. The DC features the particularly challenging capability of calculating laminates
consisting of several hundreds of layers, and it is able to distinguish the different mode
families, like symmetric, antisymmetric, and nonsymmetric Lamb, shear horizontal, and
Scholte waves, depending on the symmetry and coupling properties of a given layup.
Starting in the DC v2.0, Scholte waves can be distinguished in case of fluid-loading.
Lastly, the DC features highly efficient and robust dispersion curve tracing algorithms.
The specimen geometry is currently limited to flat plates, but the results can be used
for curved specimens with a not too small radius in good approximation.

The manual is organized as follows. A short recipe for obtaining your first results
quickly is given in Sec. 2, whereas the detailed handling of the DC is explained in
Sec. 3. Section 4 contains some examples to enable the reader to use the settings
systematically depending on what kind of problem he encounters in the dispersion curve
tracing procedure. Appendix A gives the equations for calculating the energy and
power flow of guided waves, and the advanced group/energy velocity model introduced
in the DC v1.11 is discussed in Appendix B. In Appendix C, the bulk wave velocities
along the principal directions in elastic media are addressed, and the default materials
available in the DC are listed in Appendix D. More material data are found on MatWeb
http://www.matweb.com/. For a list of more than two hundred viscoelastic material
data sets, consult the work of Ono [41–43].
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2 Getting started quickly

1. Go to the Material editor.

2. In the Anisotropic materials panel, enter the engineering constants or stiffness
components of your material.

3. Enter a New material’s name and press Save material.

4. Go to the Anisotropic tab.

5. Press Edit, select your material, and enter your layup.

6. Press Calculate to calculate the dispersion diagram.

7. Press Plot in the Dispersion diagrams panel.

8. Click on a dispersion curve to display values. Press the Shift key to place multiple
data tips.

9. Press Plot in the Through-thickness profiles panel to display the displace-
ment components of the A0 Lamb wave at the highest frequency covered by the
dispersion diagram.

10. Activate the Animate check box in the Animation settings panel and press
Plot below to animate the displacement pattern of the A0 Lamb wave at the
above frequency.
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3 The graphical user interface

The GUI of the DC requires 1200×800 pixels so that it does not fit on smaller screens
like the common 1366×768 notebook screen. In this case, maximize the GUI and use
the slider in the lower left corner of the Isotropic tab to shift the GUI up and down.

3.1 Menu bar

In the File menu, an existing project file can be opened or the current project be saved
as *.mat by pressing Open project or Save project, respectively. A project file
comprises the complete GUI including your data. If you open a project, the current DC
instance will be closed. Wait until the loaded project has opened in a new instance. The
Materials menu allows to export material lists from the DC or import them from local.
Upon pressing Export, you are asked to select a directory to which the material lists
are exported. Five separate txt-files containing orthotropic, transversely isotropic, cubic,
and isotropic materials as well as fluids will be exported to the selected directory. You
can rename the material lists. Export material lists when you want to install a new DC
version and transfer your custom materials to it. To import material lists, press Import
and select one or multiple material lists. The names of the imported lists do not matter.

1

2
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5

6

7 8

9
10
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12

13

FIG. 1. The tab for the calculation of isotropic specimens.
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The DC will assign the material lists automatically to the respective material symmetry
class. Once you have imported all lists, you have to restart the DC to make the materials
available. In the Multicore menu, you can enable parallel computing. The two bars
in the upper right corner of the GUI will turn blue, indicating that multicore computing
is active. In this case, the following calculation tasks will be faster. Symmetric and
antisymmetric Lamb wave dispersion curves will be traced in parallel in the Isotropic
and Anisotropic tabs. In the polar diagrams tab, the polar dispersion diagram will
be calculated by two CPU-cores working in parallel. During parallel computation, the
two bars will turn green, and turn back to blue when the computation is completed. By
pressing Disable, multicore computing will be switched off. The two blue bars will turn
gray, indicating that multicore computing is inactive. By default, multicore computing
is inactive. In this case, symmetric and antisymmetric Lamb waves will be calculated
sequentially, and polar dispersion curves will be calculated by a single core. Press Help
to read the DC’s manual.

3.2 Isotropic

The Isotropic tab consists of several panels. Start by defining the Specimen (1) (see
Fig. 1). At first, decide if you want to consider Fluid-loading or not. If yes, check the
check box and select a fluid from the Fluid drop-down menu.

In case of fluid-loading, the guided waves are damped because energy is radiating
into the upper and lower half-spaces. In this case, the wavenumber turns complex, and
the dispersion curve tracing is much more demanding compared to the free case where
the plate is assumed to be surrounded by a vacuum so that no energy can leave the
plate. In the latter case, the wavenumber is real, which means that the DC has to
perform just a one-dimensional search on the real wavenumber axes instead of a two-
dimensional search in the complex plane spanned by the real and imaginary wavenumber
axes. The dispersion curve tracing algorithms in the cases with and without fluid-
loading are discussed in Sec. 3.9. Therefore, apply fluid-loading only if you are explicitly
interested into the damping, and if the fluid has a notable effect on the guided waves’
propagation. The effect of the fluid becomes the more significant the “heavier” the
fluid-loading is, i.e., the greater the mass density of the fluid is with respect to that
of the plate. For instance, guided wave dispersion curves for a metal plate immersed
in air will be hardly different from those for a free metal plate. Skip the fluid-loading
in this case because the dispersion curve tracing is much faster and also more stable
then. Figure 2 shows the dispersion diagram for a free (in vacuum) aluminum alloy 1100
plate. The opposite situation is present when you have water as a surrounding medium
and a low-mass density plate material such as a (carbon fiber reinforced) polymer. The
guided waves will be strongly damped, and the dispersion curves will look completely
different from the free case. Unfortunately, the greater the damping becomes the more
difficult becomes the dispersion curve tracing. You will notice that the dispersion curves
look more and more unusual in strongly damped cases, and it becomes more likely that
the dispersion curve tracing fails. Figure 3 shows such a heavily damped case phase
velocity dispersion diagram, namely that for an epoxy plate immersed in water. The
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FIG. 2. Dispersion diagram for a free aluminum alloy 1100 plate. Solid lines indicate Lamb
modes, dashed lines are shear horizontal modes. Red curves represent symmetric and
blue ones antisymmetric modes.

corresponding attenuation is plotted in Fig. 4. Notice that Scholte and shear horizontal
modes are not damped. For the latter, the reason is because they do not couple to the
nonviscous water. Both wave types are damped only in case the plate or the fluid is
viscoelastic.

Viscoelasticity is the second physical phenomenon causing attenuation of elastic waves.
Viscoelasticity means that vibrational energy is dissipated as heat, thereby reducing
the amplitude of the vibration with propagated distance. Its effect of attenuation is
generally smaller than that caused by fluid-loading with water (but not necessarily with
air). Technically, viscoelasticity is expressed by complex stiffness components, where the
imaginary parts account for the damping. In the DC, viscoelasticity can be considered
for the plate materials but not for surrounding fluids. The DC uses the hysteretic
damping model where the damping loss increases linearly with frequency, i.e., the loss
per wavelength is constant. Many viscoelastic default materials are available in the DC,
listed in Appendix D. To distinguish them from the fully elastic materials, they carry
the suffix “ viscoelastic”. Of course, you can model viscoelastic plates which are also
fluid-loaded.

After having decided about fluid-loading, select an isotropic Material from the drop-
down menu and set the Thickness of the plate in millimeters. You can directly Calcu-
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FIG. 3. Phase velocity dispersion diagram for an epoxy plate immersed in water. The dashed-
dotted curves are the Scholte modes.

late (7) the dispersion diagram or change the Computational settings (2) first. The
Phase velocity limit determines up to which phase velocity the dispersion curves are
calculated. A value is proposed based on the material’s plate wave velocity. The Fre-
quency limit determines up to which frequency the dispersion curves are calculated.
Again, a value is proposed, now depending on the plate wave velocity and the Thick-
ness of the plate. The Frequency step sets the frequency resolution of the dispersion
curves. It is set to 1e-3 of the default Frequency limit.

In the Mode selection (3) panel, you can select which mode families shall be calcu-
lated and whether the higher order modes shall be calculated in addition to the funda-
mental ones or not. There exist symmetric and antisymmetric Lamb and shear horizontal
waves. If you have checked Fluid-loading, Scholte modes can be selected, otherwise
the corresponding check box in inactive.

If you want to calculate the higher order modes, a frequency sweep at the Phase
velocity limit is performed to detect their cut-off frequencies. This can be done in the
Manually detect higher order modes (4) panel by pressing Detect. Otherwise, it
will be performed automatically upon pressing Calculate. The Step determines the
increments at which the characteristic functions of all mode families are evaluated. It is
set to 1e-4 of the default Frequency limit. Vary this value if you are not sure whether
you have detected all modes. A smaller Step yields a higher mode cut-off frequency
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FIG. 4. Attenuation dispersion diagram for an epoxy plate immersed in water. Shear horizon-
tal and Scholte modes are not damped.

detection probability. It is essential for the dispersion curve tracing that you must have
detected all higher order modes. Notice that, even if you are considering fluid-loading
or viscoelasticity, the frequency sweep is always performed for the nonattenuated case,
i.e., without fluid-loading and viscoelasticity. The resulting cut-off frequencies will be
the starting points for the search of the higher order modes also in the attenuated case.
In this case, the dispersion curves start at more or less shifted cut-off frequencies, and
some modes, which are present without attenuation, are not present at all otherwise.

The upper output windows (5) list the detected Lamb and shear horizontal modes with
their cut-off frequencies. The lower output windows (6) summarize how many modes of
each family have been found.

Upon pressing Calculate (7), a window opens showing the dispersion curve tracing
in live. Press Stop calculation (8) to terminate the calculation. When the calculation
is complete, a message informs you about the elapsed time.

Now you can go to the Dispersion diagrams (9) panel. Use the Quantity drop-
down menu to choose between the phase velocity, energy velocity, propagation time,
coincidence angle, wavelength, wavenumber, and attenuation. Notice that attenuation is
nonzero only in case of fluid-loading and/or viscoelasticity. The option below Quantity
switches depending on what kind of Quantity you have selected. If you have selected
“Phase velocity” or “Energy velocity”, you have a check box to choose whether the Bulk
velocities should be displayed in the dispersion diagram or not. If you have selected
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“Propagation time”, you can enter the Distance for which the propagation time shall be
calculated. Finally, if you have chosen “Coincidence angle”, you have a drop-down menu
that allows to choose the Couplant for which the coincidence angle shall be calculated.
The coincidence angle is given with respect to the normal to the plate. Use the X-axis
mode drop-down menu to draw the dispersion curves as function of the frequency in
kHz, MHz, or frequency-thickness product in MHz·mm. Set the X-axis, e.g., [0 1000],
and the Y-axis limits, e.g., [0 20]. Upon pressing Plot, the diagram is plotted in a
new window. In the menu bar of the dispersion diagram, you can export the plot by
going to File → Save, or Save As, or Export Setup. The Show modes menu
allows you to show/hide dispersion curves of Lamb and shear horizontal modes in an
easy way. Use the Analyze menu to read values at constant frequency, phase velocity,
wavelength, etc. Select the quantity which shall be kept constant from the drop-down
menu and enter the value into the field on the right. A line will be drawn and all
intersections with the dispersion curves are indicated with the corresponding coordinates.

Upon hovering the cursor over the plot, the axes toolbar be-
comes visible. It offers up to seven tools, depending on the plot
type (see on the left). The first symbol opens a drop-down menu
containing three more symbols. The floppy disk symbol allows
to export tightly cropped png and pdf-images, a very useful tool
if you want to insert the plots into publications. The other two
symbols below copy the image to the clipboard as a pixel or as a

vector graphic, respectively. If you want to remove data or replace them by NaN, toggle
the Brush/Select Data tool and left-click on a data point or drag an rectangle over
the data while pressing the left mouse button. Then right-click on the selected data
and choose an action from the pop-up menu. Note that data are removed only from the
plot, but not from the storage, i.e., your changes will be lost once you close the plot
window. Activate the Data Tips and click on a curve to display actual values. You
can place multiple data tips by pressing the “Shift” key. Move the curves by using Pan
and Zoom In and Zoom Out. Use Restore View to reset the plot.

Let’s have a closer look at the dispersion diagram in Fig. 2, showing the phase velocity
dispersion of Lamb and shear horizontal waves in a free aluminum alloy 1100 plate.
Red curves indicate modes with a symmetric displacement pattern, blue curves are
antisymmetric modes. Solid lines indicate Lamb waves, dashed ones represent shear
horizontal waves. The fundamental antisymmetric Lamb mode A0 starts at zero phase
velocity while S0 starts at the plate wave velocity of that material. Both fundamental
modes tend toward the Rayleigh velocity for high frequencies. The fundamental shear
horizontal wave SSH

0 is nondispersive at the transverse bulk velocity. The higher order
modes start at their respective cut-off frequencies at high phase velocity and tend toward
the transverse velocity. The higher order modes are labeled An, Sn for Lamb modes and
ASH
n , SSH

n , n = 1, 2, ..., for shear horizontal modes from left to right in the dispersion
diagram. Figure 3 shows the dispersion diagram of an epoxy plate immersed in water.
Because of the fluid-loading, Scholte waves are present. These are indicated by the
dashed-dotted lines. Similar as with the Lamb-tpye modes, there are the fundamental
Scholte modes AScholte

0 and SScholte
0 , where AScholte

0 starts at zero phase velocity and SScholte
0

10



starts at the wave speed in the fluid. Interestingly enough, the higher order Scholte
modes appear only if the wave speed of the fluid is higher than the shear wave speed in
the plate. Otherwise, SScholte

0 will stay more or less non-dispersive at the wave speed in
the fluid.

Now go to the Through-thickness profiles (10) panel. This is a useful tool, which
allows you to plot the field components of displacement, stress, strain, energy density,
and power flow density for a selected mode at a selected frequency. All these quantities
change through the thickness of the plate and with the frequency-thickness product. For
instance, Figs. 5(a) and 5(b) show the through-thickness displacement and stress field
components of the A0 Lamb wave at 10 MHz propagating in a 1 mm thick free aluminum
alloy 1100 plate, and in Figs. 5(c) and 5(d) the same is plotted if the plate is immersed
in water. The latter plots show the behavior also in the half-spaces above and below
the plate to a depth of 1 mm on both sides. For the immersed case, the corresponding
phase information is plotted in Fig. 6. In all these plots, x3 = 0 mm on the ordinate
corresponds to the top surface of the plate, and x3 = −d (plate thickness d) corresponds
to the bottom surface of the plate. The amplitudes, respectively, phase angles are given
to the left and right. For the calculation of these amplitudes and phases, the following
three conventions are adopted from DISPERSE:

1. Phase normalization of amplitudes. The field components of displacement,
stress, and strain vary harmonically both in time and space. Therefore, they have
amplitudes and phases. For each component of displacement ui, stress σij, and
strain εij, i, j = 1, 2, 3, the phase at the second point from the top surface is taken
and the amplitudes at rest of the points are plotted with this phase (the second
point is taken because the amplitude at the surface can be zero sometimes). For
instance, suppose that ϕu1(2) is the phase of u1(2) at the second point from the

top surface, then all phase normalized points û1 are calculated by û1 = u1e
−iϕu1(2) .

This is done for each component separately, e.g., σ̂22 = σ22e
−iϕσ22(2) . If fluid-filled

half-spaces are involved, then the second point from the top of the top half-space
is used as a reference, except for components which are zero in the fluid, which
is the case for u2, σ23, σ13, σ12, ε23, ε13, ε12. In this case, the second point from
the top surface of the immersed plate is used, as we had without fluid-loaded
half-spaces. The reference point has now zero phase, i.e., it lies on the positive
real axis of the complex plane. The other points, however, are still complex in
general. The DC plots only their real parts, i.e., their projections onto the real
axis in a consistent manner. The energy and power flow density components are
already real-valued because they are calculated using integrals over a complete
cycle, according to Eqs. (9), (10), and (11) in Appendix A, so there is no phase
information to consider.

2. Normalization of phases. The phases of displacements, stresses, and strains are
arbitrary, but the phase differences between components are useful information.
As the reference point, the top point of the in-plane displacement component u1
is taken, no matter if half-spaces are involved or not. The phase at this point is
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set to zero, and the phase differences of all points of all components are plotted in
degrees with respect to it.

3. Power normalization. The amplitudes of the field components are calculated
by summing up the contributions of the superposing bulk waves, and since their
amplitudes are scaled arbitrarily, power normalization is done so that the field
components can be compared between different points on the dispersion curves.
Therefore, all amplitudes are calculated for guided waves carrying a power flow of
one Watt in the propagation direction x1, with the assumption that the waveg-
uide has a width (x2-direction) of one meter. The calculation of the power flow
is done using Eq. (11). For instance, to get the power normalized displacements,
the displacements are divided through the square root of the power flow in the
propagation direction P1. Similar as in DISPERSE, the power normalization is
not strictly right in case of fluid-loading because the power flow in the fluid is ne-
glected. The developer of DISPERSE, Prof. Michael Lowe, describes the benefit
of power normalization as follows:

“[...] once we normalise the mode shapes to power flow then we can
do some meaningful comparison from one point on a curve to another,
provided our understanding of the comparison is in that context only
- e.g., if the mode has unit power flow, then it has a displacement at
frequency xxx that is yyy times bigger than it would be at frequency
zzz.”

Asked about the dimensions of the through-thickness energy density and power flow
density, Prof. Lowe explains:

“The basis for unit power normalisation is that the steady state
guided wave carries 1 Watt of energy past the observation point.
Clearly the amount of energy depends on the width of the wavefront,
so we choose to say that the 1 Watt is per metre width of wavefront
(thus units are W/m). This is how this approach was set up by Auld
when he was working on guided wave scattering and how his theory
of reciprocity contributes to that. Normalisation of the power flow in
this manner simplifies the equations for reciprocity and scattering.
More detail of that in his book [44] if you want to follow it up.

The strain energy density is a local quantity that is evaluated
at any chosen location in the field of the cross section. So this has to
be J/m2. If you integrate this through the thickness of the plate and
then across 1 m of wavefront, then you get J/m. This is the energy
of the wave per metre width. The rate, per second, of this energy
passing the observation point is then W/m, i.e. as we had for the
paragraph above.”
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FIG. 5. (a), (c) Displacement and (b), (d) stress field components of the A0 Lamb wave at
10 MHz in a 1 mm thick aluminum alloy 1100 plate. (a), (b) stress free surfaces (vac-
uum) and (c), (d) immersed into water.
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(a) (b)

FIG. 6. Phase of the (a) displacement and (b) stress field components of the A0 Lamb wave
at 10 MHz in a 1 mm thick aluminum alloy 1100 plate immersed into water.

Displacement is given in nm, stress in kPa, strain is dimensionless, energy density in
J/m2, and power flow density in W/m.

A note on the accuracy of the through-thickness profiles should be made. Notice that
the calculation of the field components depends on the accuracy of the solutions of the
dispersion curves. Small errors occur if the dispersion curves have not been obtained
with high accuracy. If you need high accuracy profiles, go to the Advanced tab, and
set a smaller value for Phase velocity resolution, see Sec. 3.9. You will notice that
the dispersion curve tracing will be slower the smaller you set the value because it takes
more bisections to reach the desired resolution.

Use the Quantity drop-down menu to choose between “Displacement”, “Stress”, “Strain”,
“Energy density”, and “Power flow density”. Select the Mode you want to analyze from
the drop-down list. Set the Frequency at which to analyze the selected mode. Samples
x3 determines the number of sample points over the plate’s thickness (x3) at which the
selected quantity is calculated. If you are considering fluid-loading, the Half-spaces
check box and the edit field are active. With the check box, you can switch the vi-
sualization of the half-spaces on and off. In the edit field, you can set how deep the
half-spaces above and below the plate should be shown in multiples of the plate’s thick-
ness. The Phase check box is only active if you have selected “Displacement”, “Stress”,
or “Strain” in the Quantity drop-down menu. Press Plot to plot the through-thickness
profile of the plate in a new window. If you have checked the Phase check box, an extra
plot with the phase angles will be shown in addition to the amplitude plot. To the left
of the Plot button are six check boxes from which you can select which components of
the selected Quantity shall be plotted. This facilitates analyzing a single component
that is otherwise hidden in a plot crowed with up to six curves. In case you have chosen
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FIG. 7. Mode shape of the A4 Lamb wave at 10 MHz·mm in an aluminum alloy 1100 plate
immersed in water.

“Displacement”, “Energy density”, and “Power flow density”, only three check boxes
are active. The labels of the check boxes change according to the selected Quantity.
Let us discuss the displacement. u1 is the in-plane component along the propagation di-
rection (x1) of the guided wave. u2 is in-plane but perpendicular (x2) to the propagation
direction, usually referred to as shear horizontal, and u3 is the out-of-plane or normal
displacement. In isotropic materials, there exist only pure Lamb and shear horizontal
waves. Pure Lamb waves have only nonzero u1 and u3 components (see Fig. 5(a)), and
pure shear horizontal modes have only a nonzero u2 component. A symmetric Lamb
wave is defined by having the same displacement component u1 (sign and absolute value)
at the top and bottom of the plate, while an antisymmetric Lamb wave has the same
absolute component u1 at the top and bottom, but with opposite sign, as depicted in
Fig. 5(a). The character of a shear horizontal wave is determined by the same rules
applied to u2. Figure 5(b) displays the four nonzero and the two zero stress components
present in a pure Lamb wave. The components σi3 vanish at the surfaces, i.e., the sur-
faces are traction-free, and no energy can leak into the assumed surrounding vacuum.
The displacement component u1, the stress component σ11, and the strain component
ε11 at the top are always positive (to the right). Let us now consider the fluid-loaded
case shown in Figs. 5(c) and 5(d). The half-spaces are shown up to a depth of one plate
thickness above and below the plate. The stress component σ33 does not vanish anymore
at the plate’s surfaces, so energy is transmitted into the water. However, σ13 and σ23
still vanish because non-viscous fluids such as water do not support shear stresses. For
the same reason, only σ11, σ22, and σ33 are nonzero in the fluid, having all the same
amplitude. Although counter-intuitive, it is a known effect that the amplitude of leaky
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waves grows exponentially with distance from the plate. Plotting deeper into the half-
spaces than in Figs. 5(c) and 5(d) (and in Fig. 7) shows this more clearly. The reason for
this is that the further we go away from the plate the earlier have the rays been emitted
from the plate, when the amplitude of the guided wave propagating in the plate was
higher (see also Ref. [33]). A shear horizontal wave does not couple to a non-viscous fluid
surrounding the plate since its only non-zero stress components are the shear stresses
σ23 and σ12.

In the Mode shape (11) panel, you can visualize the displacement pattern (mode
shape) in a plate and in the adjacent half-spaces as they are deformed by propagating
Lamb, shear horizontal, and Scholte waves. This is particularly helpful to get an idea
how a certain mode looks like at a certain frequency. Figure 7 shows the mode shape of
ten wavelengths of the A4 Lamb wave at 10 MHz·mm in an aluminum alloy 1100 plate
immersed in water. Notice the wave fronts in the water and how the Lamb wave is
damped through the loss of energy to the water. Of course, the displacement is highly
exaggerated in this plot. Select the Mode you want to analyze from the drop-down list.
Set the Frequency at which to analyze the selected mode. Wavelengths determines
how many wavelengths along the propagation direction are displayed. Samples x1
determines at how many sample points along the propagation direction the mode shape
is calculated, while Samples x3 determines the number of sample points over the plate’s
thickness. Use Scale to scale the displacement for clarity. The value n in Grid line
specifies that a grid line is drawn at every nth sample point. If you change Samples
x1 by a certain factor, n is adjusted accordingly to maintain the number of grid lines
drawn in the mode shape. Check Undistorted to toggle the undistorted grid. If you
are considering fluid-loading, the Half-spaces field and the check box below are active.
In the edit field, you can set how deep the half-spaces above and below the plate should
be shown in multiples of the plate’s thickness. With the check box, you can switch the
visualization of the half-spaces on and off. Go to the Animation settings sub-panel
to set up an animation of the grid. If you don’t want to export a movie, it is enough
to calculate only one Cycles. That cycle will be repeated as long as the animation
keeps running, and there should not be a notable break between each repetition. If you
want to export a movie, however, it is better to compute multiple Cycles. The Cycle
duration determines how long an animated cycle takes. Adjust the Frame rate of the
movie. The Movie quality affects only the quality of the exported movie. Set a value
between zero and one hundred. If you check Animate and press Plot, the animation
starts running in an extra window until you close that window. If you leave Animate
unchecked, only a static grid is plotted.

If you want to export plots and movies in an easy way, you can use the Export
settings (12). Use the check boxes PDF and PNG to specify the format of the
exported plot. PDF is a vectorized graphic that I used for the plots made by the
DC for this manual. PNG in contrast is a rendered graphic for which you can set the
PNG resolution in dots per inch (dpi). The better performance of a vectorized graphic
becomes obvious upon zooming in. Compare Fig. 7, which is a PDF, to one of the DC
screenshots, which are PNG. The font in all plots made by the DC is the standard
LATEX-font “Computer Modern”. Type the File name and the Directory to specify
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where the plot/movie is exported to. If you check Export plots and then press any
of the three Plot buttons (their labels change to “Export”), the respective plot will be
exported. If you check Crop plots, all exported plots will cropped with minimal white
space around your contents automatically. This is the faster way of cropping images than
using the floppy disk symbol from the axes toolbar menu inside the plot figures. If you
check Animate in (11) and then press the Export button, the animation is displayed
in a new window. Once all frames are captured, the window will close automatically
and the movie be exported.

If you want to perform your own processing on the dispersion curves, you can export
them. Enable the Dispersion curves check box and select from the top drop-down
menu to the right which dimension the frequency axis should have, namely kHz, MHz,
or MHz·mm. Then press the “*.mat”, “*.xlsx”, and “*.txt” buttons to export the
data in the specific file format. For each mode family, a separate file will be gener-
ated in the specified Directory, containing all modes belonging to the respective fam-
ily. For each mode, phase velocity (m/ms), energy velocity (m/ms), propagation time
(µs), coincidence angle (◦), wavelength (mm), wavenumber (rad/mm), and attenuation
(Np/m) are exported. In the second drop-down menu, you can select to arrange the
modes’ data horizontally or vertically in the files. You can also export the through-
thickness profiles selected in the Through-thickness profiles (10) panel. Enable the
Through-thickness check box and upon pressing the “*.mat”, “*.xlsx”, and “*.txt”
buttons, the selected through-thickness Quantity of the selected Mode at the cho-
sen Frequency is exported to the desired file format. If you have checked the Phase
check box in the Through-thickness profiles (10) panel, the phase information will
be exported, too.

Adjust the Plot layout settings (13) according to your preferences. For the plots
in this manual, I switched the Title off. You can also toggle the Mode labels on
the fundamental Lamb modes A0 and S0 and on the fundamental shear horizontal mode
SSH
0 . Use the Legend location drop-down menu to place the legend in through-thickness

plots inside or outside the axes. You can also adjust the Box line width and the Curve
line width. Only for the dispersion curves, you can also adjust the Dispersion curve
colors, for symmetric modes in the field S and for antisymmetric modes in the field
A. You can compose any color by setting the proportions of red, green, and blue. Set
a value between zero and one for each proportion, e.g., [1 0 .5]. Shift the mode labels
along the three fundamental modes named above by using Mode labels x-position.
Set values between zero and one. Change the Font size of the Title, Axes labels,
Axes ticks, Mode labels, and of the Legend. Press Default, to restore the default
settings.

3.3 Anisotropic

In this section, we conduct guided wave modeling in multilayered anisotropic laminates
such as the fiber reinforced composite sketched in Fig. 8. Hybrid laminates containing
layers of different materials and material symmetry classes are also possible. Avail-
able material classes are orthotropic, transversely isotropic, cubic, and isotropic. Com-
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FIG. 8. (a) Single composite layer with local (crystallographic) coordinate system x′i and global
coordinate system xi, i = 1, 2, 3. (b) Layered composite plate with [0/90/0] orientation
with respect to the x′1-axis.

posite laminates are basically stackings of m layers with layer thicknesses dm, consist-
ing of an orthotropic or, more often, of a transversely isotropic fiber-epoxy combina-
tion. For each layer, we assign a local (crystallographic) Cartesian coordinate system
x′i,m = (x′1, x

′
2, x
′
3)m residing on the top of the mth layer, and we define the layers to lie

parallel to the x′1-x
′
2-plane. The fibers are oriented along x′1,m, while x′3,m is normal to the

layer. To describe this system with arbitrary layer orientations in a convenient way, we
introduce the nonprimed global coordinate system xi = (x1, x2, x3). We choose it such
that the laminate lies in the x1-x2-plane, x1 is the direction of guided wave propagation,
and x3 is the thickness direction of the laminate. With respect to the global coordinate
system, the local coordinate systems are yielded by a counterclockwise rotation of an
angle Φm between x1 and x′1,m about the x3-axis. Hence, x3 and x′3,m coincide.

The Anisotropic tab looks similar to the Isotropic tab. Only panels that are new
or different will be explained in this section. First, define the laminate in the Specimen
(14) panel shown in Fig. 9. Press Edit to open the specimen setup depicted for two
different situations in Fig. 10. First of all, decide whether you want to consider fluid-
loading or not. In contrast to the Isotropic tab, you now can assign different fluids to
the upper and lower half-spaces. If you want to add a fluid to the upper half-space,
check the Upper fluid check box to activate the drop-down menu on the right, and
then select a fluid from it. The same goes for the lower half-space via the Lower fluid
check box and the respective drop-down menu. Leaving a check box unchecked means
that the corresponding half-space will be filled with a vacuum. You can fill one half-
space with a fluid and leave the other one stress free, i.e., filled with a vacuum. Of
course, even if only one half-space is filled with a fluid, this causes attenuation. Next,
decide whether you want to set up a laminate containing layers from only one material,
as the case in typical composites, or if you want to create a hybrid laminate containing
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FIG. 9. The tab for the calculation of anisotropic specimens.

layers of different materials, like for instance glass laminate aluminum reinforced epoxy
(GLARE) [19]. In the first case, leave Hybrid unchecked, as shown in Fig. 10(a).
Select a material class from the Class drop-down menu. According to your choice,
the corresponding materials will be listed in the Material drop-down menu. Select a
material. In the second case, check Hybrid, as shown in Fig. 10(b). The Class and
Material drop-down menus will be inactive, but the four columns in the Unit cell
table named “Orthotropic”, “Trans. iso.”, “Cubic”, and “Isotropic” are now active
(they are inactive in case Hybrid is unchecked). For each layer, represented by one
row in the Unit cell table, you can select any material from the four drop-down menus.
Any selection will overwrite a preceding selection in the same row. Now, decide if the
layup should have Uniform layer thickness or not. If yes, the DC deduces the layer
thicknesses from the Total thickness, which you can enter below. You will see the
layer thicknesses in the “d (mm)” column update automatically when you change the
number of layers or the Total thickness. Notice that the Total thickness is the
overall thickness of the laminate, not just of the Unit cell. The values in the “d (mm)”
column can not be edited if you have checked Uniform layer thickness. If you uncheck
Uniform layer thickness, the “d (mm)” column will be active, and you must enter
each layer’s thickness in millimeters. In this mode, the Total thickness field cannot be
edited, but it will show the total thickness calculated from your entries. Complete your
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(a)

(b)

FIG. 10. The specimen setup. (a) Single material laminate. (b) Hybrid laminate (GLARE).

definition of the Unit cell by filling the “Phi (◦)” column with the layers’ orientations.
Typically, Phi (Φ) is the fiber direction in composite materials. In order to delete a layer,
click the corresponding check box in the “Delete” column. The Unit cell table offers
an immense amount of four hundred entries. This ensures that even the largest rocket
booster laminates, which can be a nonrepeated unit cell by their own, can be entered.
By contrast, unit cells in more common laminates are much smaller, often having only
four or eight layers. Note that the uppermost layer in the table refers to the uppermost
layer of the laminate. Use Unit cell repetitions to specify how many repetitions of
the unit cell are contained in the layup. Use only integer numbers. Check Symmetric
system if the layup is symmetric with respect to the middle plane of the plate/laminate.
Now, you can Save the specimen definition and Load it in future sessions. Press Reset
to reset the specimen definition to a single orthotropic layer. Press OK to accept the
specimen definition or Cancel to discard it. The setup closes and the specimen definition
is displayed below the Edit-button.

A few words should be said about setting up a unit cell in a proper way. With
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reference to the usual composite layup notation, we write the layup as [unitCell]n(s),
where n = 1, 2, ... is the number of unit cell repetitions and “s” stands for symmetric.
Basically, the unit cell should be kept as simple as possible in order to maximize efficiency
and robustness in the dispersion curve calculation. Let us consider a few examples:

• [0]. Users are tempted to set up a unidirectional laminate by multiple layers, e.g.,
[0/0/0/0] because this is how the laminate was manufactured. Layups containing
layers with all the same orientation and material will not be accepted. Replace
this by one layer [0] having the total thickness of the four layers. This will be the
same because the DC assumes rigid bonding between the layers. Furthermore, it
will be more efficient since the computational expense scales with the number of
layers.

• [0/90/45/0/0/0/0]. The same thing, but the DC will not prevent you from doing
this. Avoid adjacent layers with the same layer orientation and material, but
group them into one single layer of greater thickness. Uncheck Uniform layer
thickness and enter the layers’ thicknesses into the “d (mm)” column.

• [0/90]2. Do not set up the unit cell as [0/90/0/90], but set it to [0/90] and set the
Unit cell repetitions to two, similarly as shown in Fig. 10(a). This will be more
efficient.

• [0/90]s. The DC will not let you define symmetric unit cells like [0/90/90/0]
or [0/90/0]. Instead, set [0/90] and check Symmetric system, as shown in
Figs. 10(a) and 10(b). Only by doing so, the DC will automatically recognize that
symmetric and antisymmetric modes can be distinguished. In case of [0/90/0],
uncheck Uniform layer thickness and divide the thickness of the 90 ◦ layer in
[0/90] in half in the “d (mm)” column. Such a situation is present in Fig. 10(b).
The center layer of this GLARE laminate (taken from Ref. [19]) is a 0.5 mm thick
aluminum layer. In row no. 7, it is cut in half.

• [Al/0/0/0/0/0/Al/0/0/0/0/0/Al]. This is another GLARE laminate taken from
Ref. [19]. Set this up as [Al/0/Al]s. The corresponding layer thicknesses in this
unit cell are 0.5 mm, 1.25 mm, and 0.25 mm, adding up to a 4 mm thick laminate.

Now, go to the Computational settings (15). Define the Propagation angle Φ
for the guided waves with respect to the layer orientations. Consider for example the
[0/90/45/-45] layup sketched in Fig. 11. A positive Propagation angle Φ results in a
counterclockwise rotation of the propagation direction vs. the fiber orientations, yield-
ing the Effective layup, respectively, the angles Φm [0/90/45/-45]-10 = [-10/80/35/-55].
The Phase velocity limit is set to 20 m/ms by default, and it does not change auto-
matically. The Frequency limit is set such that a maximal frequency·thickness product
of 2 MHz·mm is covered by default. The Frequency step is set to 5e-3 of the default
Frequency limit.

In the Mode selection (16) panel, some of the check boxes can be inactive. The
Scholte modes check box will be inactive if you do not consider fluid-loading. The
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FIG. 11. Wave propagation along a Propagation angle of Φ = 10 ◦ in a [0/90/45/-45] layup.
A positive Φ results in a counterclockwise rotation of the propagation direction (red
arrow) vs. the fiber orientations, yielding the Effective layup [0/90/45/-45]-10 =
[-10/80/35/-55].

active state of the other check boxes depends on the Specimen settings and on the
Propagation angle in the following way:

Decoupled case

The decoupling into pure Lamb waves (only sagittal motion (x′1-x
′
3-plane)) and shear

horizontal waves (motion only in x′2) depends on material symmetries and on the prop-
agation direction of the guided waves. In case of decoupling, both mode families can be
traced separately. Otherwise, sagittal and shear horizontal motion are coupled, and no
separation into Lamb and guided shear horizontal modes is possible.

• Orthotropic and transversely isotropic. Decoupling occurs for wave propa-
gation parallel or normal to the fibers (Φ = 0 ◦, 90 ◦). This is possible in a single
layer or in a cross-ply laminate [0/90]n(s), n = 1, 2, ....

• Cubic. Decoupling occurs for guided wave propagation along Φ = 0 ◦, 45 ◦, 90 ◦.

• Isotropic. Decoupling occurs for any propagation direction.

In case we have a hybrid layup, the whole system allows decoupling only in case all
contributing layers support decoupling in the given situation.

Symmetric system

In symmetric systems, the DC traces symmetric and antisymmetric Lamb, shear hor-
izontal, and, in case of fluid-loading, also Scholte waves separately. If the system is
nonsymmetric, so are the modes and no separation is possible. The only exception from
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TABLE 1. Possible configurations in fluid-loaded anisotropic
laminates.

symmetric decoupled modes

3 3 S, A, SSH, ASH, SScholte, AScholte

3 7 S, A, SScholte, AScholte

7 3 B, BSH (SSH, ASH)a , BScholte

7 7 B, BScholte

a If the half-spaces are covered by different fluids, but the layup is
symmetric, SSH and ASH can be distinguished.

this are shear horizontal modes. If the laminate is symmetric, but the upper and lower
half-spaces are covered by different fluids, the shear horizontal modes are still symmetric
and antisymmetric because shear horizontal modes do not couple to non-viscous fluids.

• A system is symmetric if the top half of the layup mirrors the bottom half in terms
of layer (fiber) orientations, layer thicknesses, and layer materials. This is always
the case in a single layer. In case of fluid-loading, a symmetric system requires in
addition that the upper and lower half-spaces are filled with the same fluid.

The four possible configurations are listed in Table 1. If Lamb and shear horizontal
waves are coupled, they are called Lamb waves anyway in reminiscence to Sir Horace
Lamb who described Lamb waves mathematically for the first time in 1917 [35]. Lamb
dealt only with isotropic media wherein the coupling does not occur. In contrast to pure
modes, coupled modes have three nonzero displacement components. If the system is
nonsymmetric, the modes do not have a clear symmetric or antisymmetric character,
except for shear horizontal modes, as said above. In the DC, nonsymmetric modes are
unconventionally denoted with the letter “B”. To the best of my knowledge, there does
not exist an official notation for nonsymmetric modes.

If you have a symmetric system, you can choose to calculate the Symmetric modes
and/or the Antisymmetric modes, otherwise the corresponding check boxes will be
inactive. If the above described exception for the shear horizontal waves occurs, symmet-
ric and antisymetric shear horizontal modes will be calculated anyway. In the decoupled
case, you can calculate Shear horizontal modes separately, otherwise the correspond-
ing check box will be inactive

In the Through-thickness profiles (17) panel and in the Mode shape (18) panel,
the Samples x3 option is replaced by Samples per layer. Of course, now you can
also analyze B-type modes. In coupled cases, i.e., for wave propagation along arbitrary
directions in anisotropic media, instead of the energy velocity, it is calculated the energy
velocity components, its magnitude, and skew angle. Therefore, if you Export the
dispersion curves in the Export settings panel, you get the energy velocity components
ce1 and ce2 (m/ms), the energy velocity magnitude |~ce| (m/ms), and the energy velocity
skew angle (◦). For a discussion on the energy velocity in anisotropic specimens, read
Appendix B. In the Plot layout settings (19) panel, you can use the Title drop-
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down menu to display the plot title with or without the layup or no title at all. In the
Dispersion curve colors sub-panel, you find an additional option for B-type modes.

3.4 Signal simulator

The Signal simulator (see Fig. 12) simulates the temporal and frequency responses
of single and multiple guided wave modes after propagating a certain distance in a
specimen, based on the dispersion curves obtained in the Isotropic and Anisotropic
tabs. Therefore, the tool is valuable to any individual performing NDI or SHM using
guided waves. The dispersion diagrams calculated before will help him to excite the
desired mode in a specimen. However, it is often difficult to excite only one particular
mode, especially when the frequency-thickness product becomes large. In situations
where dispersion curves get close to each other in the dispersion diagram, it is very likely
that multiple modes will be excited. Then, the inspector has to deal with multiple wave
packets appearing in the measured signal of voltage versus time. The Signal simulator
enables him identifying the modes in the signal. The tool is also useful to interpret signals
obtained from acoustical emission experiments. Or suppose you want to perform long-
range testing on a pipe or on an aircraft wing structure. The dispersive nature of guided
waves leads to a spreading and to a reduction in amplitude of the wave packet with
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FIG. 12. The Signal simulator.
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FIG. 13. Top: Simulated signal (ten cycles, Gaussian window) of the A1 Lamb wave at 7 MHz
after propagating a distance of 100 mm in a 1 mm thick free aluminum alloy 1100
plate. Bottom: Excitation spectrum (left) and propagated spectrum (right).

increasing propagation distance because the different frequency components propagate
at different phase velocities. Therefore, you would want to excite a weakly dispersive
Lamb wave, retaining the shape of its wave packet over long distances. Another effect
that becomes evident in the signals is damping due to fluid-loading and/or viscoelasticity.
You would prefer a mode that suffers minimal damping loss in the required frequency
range. With the Signal simulator, you can simulate the wave packets to find an
appropriate mode for your task.

Notice that no particular method of excitation and reception is considered here. The
assumption is that guided waves are generated somehow at x = 0, with the excitation
signal plotted on the left-hand side in the signal window (22), starting at t = 0. The
propagated signal calculation is then based only on the dispersion diagram, which you
calculated before, i.e., plane harmonic waves are superposed, having the phase velocities
(and attenuations) given by the dispersion curve of the respective mode in the frequency
range seen in the Excitation spectrum (24). The plotted amplitude can be chosen as
the out-of-plane displacement (u3) for Lamb waves or the in-plane displacement (u1) for
Lamb waves or u2 for shear horizontal waves at the top of the plate, which are assumed
to correlate most directly to the detected signal of voltage versus time. The signal is
simulated for ideal and simplified conditions, so experimentally measured signals will
look more or less different due to many influences present under real conditions. These
are, for instance, the specific shape of the ultrasonic beam or a certain angle of incidence,
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whereas in the simulation, the “perfect” (coincidence) angle (for each contributing phase
velocity in the spectrum) is assumed. Furthermore, waveguide imperfections are ignored
such as surface roughness, layer debonding or other flaws. Calculating fully realistic sig-
nals requires a sophisticated model of the experimental setup, i.e., a detailed model of
the sensors as well as of the waveguide to model the generated ultrasonic beam, the
propagating wave field, and the received signal. This requires an FEM software such
as COMSOL Multiphysics®. You can, however, choose to plot the in-plane or the
out-of-plane displacement, depending on what component your sensor is more sensitive
to. Usually, in non-contact air-coupled ultrasonics, one would choose the out-of-plane
displacement, whereas in SHM, where you have sensor attached to the component, the
in-plane displacement is more favored. In practice, the received signal will map a mix-
ture of both components. The key point is that the Signal simulator calculates the
displacement caused by the guided waves at the top surface, but the signal displayed on
your measurement screen depends on how your sensor reacts to this displacement, and
this can obviously not be included in the Signal simulator.

Once you have calculated a dispersion diagram in the Isotropic and Anisotropic
tabs, the data will be available in the Signal simulator. The field above the Com-
putational settings (20) gives the name of the material whose dispersion curves are
used. Therefore, notice that whenever you calculate a new dispersion diagram, the prior
data will be replaced by the new ones. To set up the simulation, go to the Computa-
tional settings (20) panel. At first, the excitation signal must be defined. Select the
Frequency of the sinusoidal carrier wave and the number of Cycles within the wave
packet. Enter the Samples per cycle in the excitation signal. This determines the
sample rate, i.e., the resolution of the temporal signal. Then, choose a window function
from the Window drop-down menu. There are listed four functions, namely “Gauss”,
“Hann”, “Hamming”, and “Triangular”1. By multiplying the carrier wave with the se-
lected window function, the excitation wave packet is obtained. Define the Distance
which the modes are supposed to propagate in the specimen. The option n·Distance/ce
defines the temporal length tend of the simulation in multiples n according to

tend = nx/ce1, (1)

where x is the propagation distance and ce1 is the energy velocity component in the
propagation direction of the chosen mode. n is set to two by default in order to ensure
that the temporal axis covers the whole wave packet of a strongly dispersive mode. For
short propagation distances, higher multiples n can be necessary. If you have checked
Multi-mode, the lowest energy velocity among all contributing modes is used for the
calculation of tend. The advantage of defining tend in the described way is that an appro-
priate temporal range is obtained automatically so that the user does not have to try
and calculate by himself. Notice that you can edit the temporal axis later in the X-axis
(26) field. The Spectral threshold defines which frequency range shall be used for
the construction of the propagated wave packet(s). Only frequencies with spectral am-
plitudes exceeding this threshold in percent of the maximum spectral amplitude shown

1https://en.wikipedia.org/wiki/Window function
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in the Excitation spectrum (24) will contribute to the simulation. This spectral am-
plitude maximum in the excitation signal is located exactly at the center Frequency
defined above. By decreasing the threshold, a wider frequency range will be taken into
account. This contributing frequency range is indicated by the white area in the Exci-
tation spectrum (24) plot. When the threshold is changed, you will notice that the
white area’s width changes accordingly. The same happens also in the Propagated
spectrum (25) plot. If you set a Frequency close to a cut-off frequency or to the
top frequency in the dispersion diagram, a red area will appear, showing where no data
are available (see Fig. 13). Therefore, when you calculate a dispersion diagram, set the
top frequency high enough to not miss data for simulating a signal at high frequencies.
From the Displacement component drop-down menu, you can choose to calculate
the “out-of-plane (u3)” displacement or the “in-plane (u1/2)” displacement. Notice
that the out-of-plane displacement of shear horizontal waves is zero, so choose “in-plane
(u1/2)” in this case. With the Gate, you can define the signal range for which the
Propagated spectrum (25) shall be calculated. This range is indicated by the two
vertical black lines in the signal plots (22) and (23). In case you have multiple wave
packets in the signal, as shown in Fig. 12, you can put the gate around a particular
mode to get its spectral amplitude distribution (25). If Multi-mode is unchecked, you
can simulate only one propagated mode at a time. The Mode selection (21) panel (it
is renamed to Mode selection and magnification when you check Multi-mode) is
updated automatically to show the modes available at the Frequency defined above.
Check a check box to simulate the corresponding mode. In the top window (22), the
excitation signal will be plotted in red. Its amplitude is scaled to the LEFT amplitude
axis, ranging from -1 to 1. The propagated signal (temporal response) is plotted in blue,
and its amplitude is scaled to the RIGHT amplitude axis. The displacement amplitudes
are power-normalized and given in nanometers in the same way as are the displacement
components drawn in the through-thickness profiles of the Isotropic and Anisotropic
tabs, as explained in Sec. 3.2, Through-thickness profiles (10). The middle window
(23) appears only if Multi-mode is enabled. As mentioned above, you can change
the default temporal axis by editing X-axis (26). The displacement axis in the signal
window (22) can be changed by editing Y-axis (26). We have already discussed the Ex-
citation spectrum (24), displayed in the bottom left-hand window. The Propagated
spectrum (25) (frequency response) is displayed in the bottom right-hand window. For
a better view and in order to read values using the data tip tool, you can Plot (26) the
simulations in a separate window. Figure 13 shows the simulated signal of the A1 Lamb
wave at 7000 kHz after propagating a distance of 100 mm in a 1 mm thick free aluminum
alloy 1100 plate. The excitation signal consists of ten cycles multiplied with a Gaussian
window. The wave packet arrives after a propagation time of 34.5µs. Due to dispersion,
it has spread significantly. Its spectrum, shown in the bottom right plot, is shifted to
lower frequencies, peaking at a frequency of 6860 kHz, a shift of 140 kHz with respect to
the excitation spectrum, shown in the bottom left plot. The output window (27) gives
some more information:

Time domain:
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• “Time limit”: It is the calculated length of the temporal axis tend.

• “Coherence time”: The coherence time tc is the time after which the temporal
response repeats itself, i.e., we will see a twin of the wave packet at each instant
of time n · tc, n = 1, 2, ..., away from the actual wave packet. The coherence time
is calculated by

tc = 1/∆f, (2)

where ∆f is the Frequency step, i.e., the frequency resolution of the calculated
dispersion curves. Therefore, to avoid unwanted wave packet twins, we require
that tc > tend. You can satisfy this by setting a small enough value for Frequency
step, but you don’t have to. If you have tc < tend, the DC will interpolate the
dispersion curves with a value of ∆f small enough to meet tc > tend. In this case,
the output window will read “Coh. time (original)”, giving the coherence time
resulting from the native frequency resolution, followed by “Coh. time (interp.)”,
giving the coherence time resulting from the interpolated frequency resolution.

• “Sample rate”: It is calculated by multiplying the Frequency with the Samples
per cycles.

• “Samples”: It gives the total number of sample points contained in the temporal
signal.

Frequency domain:

• “Spectral range”: This is the frequency range contributing to the construction of
the propagated wave packets. It is indicated by the white areas in the spectral
amplitude plots in the windows (24) and (25).

• “Resolution”: It is the frequency resolution of the dispersion curves, as set by
Frequency step. In case of tc < tend, the output window will read “Res. (origi-
nal)”, giving the native frequency resolution, followed by “Res. (interp.)”, giving
the interpolated frequency resolution.

• “Frequencies”: This is the total number of frequency sample points contained in
the “Spectral range”.

In the example shown in Fig. 13, the spectral range is from 4720 kHz to 9290 kHz. The
red areas indicate where no dispersion curve data are available. The cut-off frequency of
A1 at a phase velocity of 20 m/ms is 1615 kHz so that no data are available below this
value. The top frequency in the dispersion diagram is 10000 kHz, just high enough to
not cut the white area contributing to the simulation.

If you enable Multi-mode, as shown in Fig. 12, you must first Calculate all modes
present at the selected Frequency. You can terminate the calculation by pressing the
Stop-button. After the calculation is finished, all modes will be plotted. You can
show/hide any particular mode to see only those you want. The background colors of
the checkboxes in the Mode selection and magnification (21) panel match the line
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colors of the corresponding modes plotted in the top window (22). To the right of each
check box, the amplitude magnification can be entered. The (displacement) amplitudes
are calculated for modes carrying a power flow of unity. However, in reality, each of the
modes will carry a different power flow because they are excited at different efficiency.
To account for that, the user can magnify the amplitude of each mode individually.
Notice again that the amplitudes of the propagated wave packets are scaled to the right
amplitude axis, whereas the excitation signal (red) scales to the left one. The middle
window (23) shows the sum amplitude of all simulated modes, thereby representing the
signal which the user measures in his experiment. By comparing it with the top window
(22), he can ascribe particular modes to the contributions in window (23). The lower
right-hand window now shows the Propagated spectrum (25) of the sum amplitude
shown in window (23).

3.5 Polar diagrams

Often it is useful to have the guided wave dispersion versus the propagation direction
in a laminate at a certain frequency rather than versus the frequency for a certain
propagation direction. In the Polar diagram tab (see Fig. 14), you can calculate polar
diagrams that give a very intuitive picture of the anisotropic propagation characteristics
of the fundamental modes in a laminate. These are set up as usual except that only unit
cells that contain at least one zero degree layer are accepted. Notice that fluid-loading
and viscoelasticity cannot be considered here. Then use the Computational settings
(28) panel. The dispersion curves are traced in the frequency space, as usual, up to
the Frequency limit with a certain Frequency step. Notice that after calculating
the polar dispersion diagram(s), data are available not only at the Frequency limit
but at each Frequency step from zero to Frequency limit. With the Propagation
angle limit drop-down menu, you can choose to calculate the dispersion curves for
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FIG. 14. The tab for the calculation of polar dispersion diagrams of the fundamental modes.
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FIG. 15. Polar dispersion diagram at 500 kHz for 1 mm thick unidirectional T800M913.

propagation angles ranging from 0 ◦ to 180 ◦ or only to 90 ◦. In the first case, to obtain
the full polar diagram, the data will be copied to the third an fourth quadrant. In
the second case, the data of the first quadrant will be copied to the three remaining
ones. Notice that the second option is insufficient for unit cells such as [0/45]. This
will become obvious by kinks in the polar diagrams at the quadrant borders. Use
Propagation angle step to define the propagation angle increments for which the
dispersion curves will be calculated. In the Mode selection (29) panel, you can choose
which ones of the fundamental modes A0/B0, S0/B1, and S1/B2 shall be calculated. In
the Dispersion diagrams (30) panel, you can choose which Quantity to plot, namely
the phase velocity, energy velocity, propagation time, coincidence angle, wavelength,
and wavenumber versus the propagation direction. From the Frequency drop-down
menu, select a frequency for which to plot the polar diagram. Upon pressing Plot, a
new window will open with a polar diagram like the one displayed in Fig. 15. In the
Export settings (31) panel, you can export the plots. Press the “*.mat”, “*.xlsx”,
and “*.txt” buttons to export the polar dispersion curves at the selected Frequency
to the desired file format.

3.6 Bulk waves

In the Bulk wave tab (see Fig. 16), you can model the behavior of elastic waves (bulk
waves) in bulk material and their scattering on interfaces. In isotropic materials, the
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FIG. 16. The Bulk waves tab.

phase velocity of bulk waves is independent from the propagation direction, and the
polarization is along the wave propagation direction for longitudinal waves (L) and
perpendicular for shear vertical (SV) and shear horizontal waves (SH). Therefore, if
we consider bulk waves emanating from a point source in an isotropic bulk material,
the phase velocity surfaces for both wave types are spherical with the radii being the
longitudinal velocity for L waves and the transverse velocity for SH and SV waves.
These velocities are given in the Material editor (Sec. 3.8) tab. The group velocity
surfaces coincide with the phase velocity surfaces. L waves are polarized along the radial
direction, and SH and SV waves normal to it. In anisotropic materials, however, each of
the three bulk wave types has its own phase velocity, which depends on the propagation
direction ~n′ in Fig. 17(a), and the group velocity surface does not coincide with the phase
velocity surface. In general, the group velocity vector deviates from the phase velocity
vector, where the latter is parallel to the propagation direction unit vector ~n′. In absence
of attenuation, the group velocity is the same as the energy flow velocity, and its vector
represents the actual direction of the acoustic beam. See Appendix B for information
on the similar problem of the group velocity of guided waves in anisotropic media. This
situation leads also to differences in the magnitude of the phase and group velocities. The
bulk waves’ polarization is either along or perpendicular to the propagation direction,
respectively, only in case of propagation along or perpendicular to the fibers (in these
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FIG. 17. Crystallographic and global coordinate systems x′i, xi and fiber orientation in trans-
versely isotropic material. (a) Elastic wave propagation in the bulk material as
treated in the Elastic waves in bulk material (32) panel. (b) A plane wave
impinging from a fluid generates three bulk waves in transversely isotropic material
propagating in the x1-x3-plane of the global coordinate system. This topic is covered
in the Bulk waves on interfaces (33) panel.

cases, the modes are called ‘pure’), except for one shear type bulk wave in transversely
isotropic materials, which has pure character for any propagation direction. The shear
waves do not have the same phase velocity anymore. Because of that, the bulk waves in
anisotropic materials are called quasilongitudinal waves (L), fast quasishear waves (Sfast),
and slow quasishear waves (but slow shear waves in transversely isotropic material)
(Sslow). Figure 17(a) displays the conventions used for the elastic wave propagation in a
fiber-epoxy system. Here, x′1 is along the fiber direction, and x′2 and x′3 are normal to it.
Θ defines the wave propagation angle with respect to the x′1-x

′
2-plane (elevation), and

Φ is the angle between the propagation direction projected into the x′1-x
′
2-plane and x′1

(azimuth).
In the Elastic waves in bulk material (32) panel, you can plot the phase velocity,

group velocity, the corresponding slownesses s, the energy skew angle γ between the
bulk waves’ phase velocity vectors and the group velocity (or energy) vectors, and the
polarization skew angle δ of bulk waves in anisotropic materials in 2-D and 3-D. The
slowness is the inverse phase velocity, and the polarization skew angle is the deviation
angle from transverse polarization (β = 90 ◦) in case of Sfast and Sslow, and longitudinal
polarization (β = 0 ◦) in case of L. In transversely isotropic material, δ for Sslow is
always zero since it is a pure mode for any propagation direction in this material class.
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FIG. 18. Bulk waves in T800M913. (a) Phase velocity, (c) group velocity, and (e) polarization
skew angle profiles at Φ = 0 ◦, and (b) Sfast phase velocity, (d) Sfast group velocity,
and (f) L and Sfast polarization skew angle surfaces.
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From the Class drop-down menu, select which material class you want to consider.
The Material drop-down menu will be updated accordingly. Select a material from
the Material drop-down menu. Choose the Quantity to be plotted and use ∆Θ to
determine the Θ resolution. In the 2-D profiles sub-panel, you can plot the quantity
for a given angle Φ, as shown in Figs. 18(a), 18(c), and 18(e) for T800M913 at Φ = 0 ◦.
By using the Plane drop-down menu, you can select to plot the 1-3-plane or the 1-2-
plane. This is useful for orthotropic materials where the modules E2 and E3 are not
equal. If you select the 1-2-plane, the axes x′2 and x′3 in Fig. 17(a) are swapped. In the
3-D surfaces and vectors sub-panel, you can plot the complete surface. Now, you
have to set ∆Φ to determine also the Φ resolution. Upon pressing Calculate, the point
cloud made up by ∆Θ and ∆Φ will be calculated and the key data be displayed in the
output window (34). Use the Mode drop-down menu to select which one of the three
bulk wave mode surfaces you want to plot. Figures 18(b) and 18(d) show the phase
and group velocity surfaces of Sfast in T800M913, respectively, and Fig. 18(f) shows the
(coinciding) polarization skew angle from pure mode polarization of L and Sfast. It can
readily be seen that the skew angle becomes zero for wave propagation parallel and
normal to the fibers. These are the propagation directions for which pure L and Sfast

modes occur. In the center column of the 3-D surfaces and vectors sub-panel, you
can plot the slowness and polarization vectors of bulk waves propagating along a specific
direction. Define the propagation direction using Φ and Θ, and press Plot to get an
image like the one shown in Fig. 19. In addition to the Plot layout settings, which
apply to all plots on the current tab, you find some additional layout settings in the 3-D
surfaces and vectors sub-panel, which apply only to the 3-D plots. You can adjust
the view by using View Φ and View Θ. Of course, you can also use the Rotate 3-D
tool inside the plot window. You can also change the Marker size and the x-position
of the colorbar.

In the Bulk waves on interfaces (33) panel, you can model the bulk waves that
are generated in an isotropic or anisotropic material when a plane wave impinges from
a fluid. This situation is depicted in Figs. 17(b) and 20(a). Here, the upper half-space
is covered by water and the lower half-space by transversely isotropic T800M913. The
incident as well as the reflected and transmitted waves propagate in the Φ = 0 ◦ plane,
i.e., x1 = x′1. The curves represent the slownesses in water and T800M913. Water as
well as any other nonviscous fluid supports only the longitudinal wave type (because
the shear modulus is zero), represented by the red vectors in the upper half-space. The
plane wave is incident under an angle of ΘI = 8 ◦. Its wavenumber ζI is given by

ζI =
ω

vI
= ωsI, (3)

where ω is the angular frequency 2πf , with the frequency f , and vI is the phase velocity
in water. At the boundary to the solid, a certain proportion of energy is reflected, and
the rest is transmitted into T800M913 where three bulk waves with the wavenumbers
ζL, ζSfast , ζSslow are generated. For these waves, Eq. (3) applies with their respective phase
velocities and slownesses vL, vSfast , vSslow , sL, sSfast , sSslow . According to Snell’s law, all scat-
tered waves (reflected and transmitted ones) must have the same projected wavenumber
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FIG. 19. Bulk wave slownesses and polarizations in T800M913 for propagation along Φ = 30 ◦,
Θ = 10 ◦. The polarization vectors are always mutually orthogonal.
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FIG. 20. Bulk waves generated in T800M913 through plane wave incidence from water at
Φ = 0 ◦, ΘI = 8 ◦. The upper half-space is covered by water, the lower half-space by
T800M913. (a) Construction of the bulk wave slownesses based on Snell’s law. (b)
Slownesses and polarizations of the generated bulk waves.

along the boundary ζIx1 as the incident wave, i.e.,

ζI sinΘI = ζ(k) sinΘ(k) = ζI1, k = 1, 2, ...4, (4)

where ζ(k) stands for the wavenumber of any scattered wave, and Θ(k) is the correspond-
ing reflection or refraction angle, respectively. With the use of Eq. (3), we can write
Eq. (4) in terms of the slownesses of the scattered waves s(k) as

sI sinΘI = s(k) sinΘ(k) = sI1. (5)

This important constraint is indicated by the two vertical guide lines in Fig. 20(a). The

utility of this picture is that the wave slowness vectors ~ζ(k)/ω can be constructed sim-
ply by drawing lines from the origin to the points, where the right guide line intersects
the slowness profiles. Then, by assigning a frequency, the actual wavenumber can be
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FIG. 21. Reflected and transmitted energy scattering coefficients versus incidence angle for the
bulk waves scattered on the interface between water and T800M913 at Φ = 30 ◦

obtained. From Fig. 20(a), it becomes also clear that, as the incidence angle increases,
critical angles will be reached beyond which a slowness vector for a given bulk wave
cannot be constructed anymore. Physically, these waves are evanescent, i.e., their am-
plitude decays exponentially with depth, and they are confined to a certain area below
the boundary. Basically, these are surface waves (Rayleigh waves). By contrast, below
the critical angles, we have propagating bulk waves. Now, let us look at Fig. 20(b) to
find out more about the polarization of the bulk waves in T800M913. Here, only the
lower half-space from Fig. 20(a) is displayed. The bold lines emanating from the middle
of the wave vectors indicate their polarization.

The final question is how much energy each of the scattered waves carries. Clearly, the
conservation of energy has to be satisfied, so the sum of the energies of the reflected and
transmitted waves must be the same as that of the incident wave. Figure 21 displays
the reflected and transmitted energy scattering coefficients versus incidence angle for
the bulk waves scattered on the interface between water and T800M913 at Φ = 30 ◦.
Four subplots represent the reflected longitudinal wave (upper left), the transmitted
longitudinal wave (upper right), the transmitted fast quasishear wave (lower left), and
the transmitted slow shear wave (lower right). The red line in the upper right subplot
indicates the summation of all four energy scattering coefficients, confirming the result of
unity. The kinks and peaks in the blue curves mark exactly the critical angles. Consider
for instance the upper right subplot showing the transmitted longitudinal wave. There is
a notable peak at 9.9 ◦. Beyond this angle, L will not be generated in the solid anymore.
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The other critical angles are 53.4 ◦ and 76.6 ◦. Beyond the latter, total reflection occurs,
i.e., the reflected energy coefficient reaches unity.

To do your modeling, select a Fluid from the drop-down menu. Then select the
Class. Depending on your choice, you can now select an isotropic, a cubic, a transversely
isotropic, or an orthotropic Solid. All other parameters in this panel work similarly to
those in the Elastic waves in bulk material (32) panel. Whenever you make an
entry, information about the generated bulk waves in the solid, including critical angles
and energy scattering coefficients, will be displayed in the output window (34). Press
Plot 2-D, Plot 3-D, and Plot R,T to generate (and export) the kind of plots shown
in Figs. 20 and 21.

3.7 Laminate stiffness

The Laminate stiffness tab depicted in Fig. 22 is an additional tool that allows to cal-
culate the laminate stiffness matrix, which is also referred to as the homogenized stiffness
tensor. The laminate stiffness matrix is the stiffness matrix of a layered, anisotropic lam-
inate. It is calculated using the classical laminate theory (CLT). First, the layer stiffness
matrices are transformed into the global coordinate system to account for their individ-
ual fiber orientations, and then the transformed stiffness matrices are multiplied by their
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FIG. 22. The Laminate stiffness tab.
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respective layer thickness-to-unit cell thickness ratio and summed up to obtain the unit
cell stiffness matrix. Since every unit cell has the same stiffness matrix, and because
of the multiplication with the thickness ratios, the laminate stiffness matrix does not
depend on the repetitions of the unit cell, i.e., it is equal to the unit cell stiffness matrix.

The Specimen (35) setup is reduced accordingly. The Laminate stiffness compo-
nents (36) are displayed for the chosen Azimuthal angle. This matrix has the form
of monoclinic material symmetry. In the polar diagram (37), every laminate stiffness
component can be plotted with respect to the wave propagation angle in the defined
laminate. Use the check boxes on the left accordingly. You can export the laminate
stiffness matrix displayed in (36) to the desired file format.

3.8 Material editor

Starting in the DC v2.1, viscoelastic damping can be considered. To account for this,
the Engineering constants and Stiffness components (GPa) are complex. With
only non-zero Real parts, one describes a fully elastic material, as it was prior to the
DC v2.1. To consider viscoelastic damping, you need to enter non-zero Imaginary
parts. Many complex default materials are available in the DC. These are listed in
Appendix D. To distinguish them from the fully elastic materials, they carry the suffix
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FIG. 23. The Material editor.
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“ viscoelastic”. For the guided wave modeling in viscoelastic materials, the DC uses
the hysteretic damping model, corresponding to a linear increase of attenuation with
frequency, i.e., a constant loss per wavelength.

In the Material editor tab, you can view the parameters of the available materials
and add or remove materials. In the Isotropic materials (39) panel shown in Fig. 23,
you can choose an isotropic Material from the drop-down menu. If you want to add
a new material, enter its Mass density, and then you can choose one of the following
three options:

1. Engineering constants. Enter Young’s modulus E (GPa) and Poisson’s ratio
v. In case you want to consider viscoelastic damping, enter non-zero Imaginary
parts in addition to the Real parts.

2. Stiffness components (GPa). Enter C11 and C66. Similarly as for the above,
enter non-zero Imaginary parts for viscoelastic damping.

3. Bulk waves. Enter the Longitudinal velocity (m/s) and the Shear veloc-
ity (m/s). To consider viscoelastic damping, you also need to fill Longitudinal
attenuation and Shear attenuation. From the Attenuation unit drop-down
menu, you can choose one of four units in which you enter the attenuation val-
ues. These are “Np/λ”, “dB/λ”, “Np/m”, and “dB/m”. If you choose “Np/m”
or “dB/m”, the At frequency (kHz) field becomes active. Enter the frequency
at which the Longitudinal attenuation and the Shear attenuation were mea-
sured.

Notice that if you change a material parameter, all parameters which depend on it are
updated automatically. After you have edited your material, assign a New material’s
name and press Save material. If you want to remove a material from the list, select
it from the Material drop-down menu and press Delete material.

The Anisotropic materials (40) panel works in the same way except that you can
only enter the Engineering constants or the Stiffness components (GPa), but not
the Bulk wave velocities (m/s). These are calculated from the Stiffness compo-
nents (GPa) and the Mass density by using the equations listed in Appendix C.
Notice, that the direction 1 is along the fibers, while 2 and 3 are normal to it. 2 is
in-plane and 3 is out-of-plane. You can use the Class drop-down menu to choose be-
tween orthotropic, transversely isotropic, and cubic materials. If you select “Transversely
isotropic”, four of the nine engineering constants and four of the nine stiffness compo-
nents will be inactive so that you just need to enter the remaining five independent
engineering constants or stiffness components. If you select “Cubic”, six engineering
constants and six stiffness components will be inactive so that you just need to enter
the remaining three independent engineering constants or stiffness components.

In the Bulk wave velocities section, you get the Longitudinal velocity, Fast
shear velocity, and the Slow shear velocity of the three bulk wave types for prop-
agation along the three principal axes 1, 2, and 3. Notice that in transversely isotropic
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materials, the bulk wave velocities are equal for propagation along the axes 2 and 3 (nor-
mal to the fibers), i.e., for propagation in the plane of (transverse) isotropy. In cubic
materials, all longitudinal velocities are equal and all transverse velocities are equal. In
Appendix C, it is shown how to calculate those velocities.

In the Fluids (41) panel, you can add fluids or solid coupling media like the Olym-
pus wedge. The latter is meant for the calculation of the coincidence angle dispersion
diagrams available in the Isotropic, Anisotropic, and Polar diagrams tabs. Fluids
are currently treated as non-viscous.

3.9 Advanced

The Advanced tab offers options, which do not need to be changed on a regular basis,
but which might help to overcome specific dispersion curve tracing problems. There
are three panels. The Phase velocity sweeps (42) panel affects the most part of the
dispersion curves tracing whereas the Frequency sweeps... (43) panel affects only the
dispersion curve tracing used to complete the higher order modes around the cut-off
frequency. The Fluid-loading and viscoelasticity settings (44) panel adjusts the
dispersion curve tracing algorithm used in case of fluid-loading and viscoelasticity. For
each option, you have two fields. The left field is for isotropic materials, and the right
field is for anisotropic materials.

Let us discuss the Phase velocity sweeps (42) panel. In the Phase velocity
resolution field, you can give the resolution down to which the bisections are performed.
Notice that the through-thickness profiles and modes shapes, as well as the simulated
signals will be the more accurate the smaller the value of the Phase velocity resolution
is. The number of Phase velocity sections determines the ability to find a modal
solution. At each frequency step, starting at low frequency, a first guess is made in
which phase velocity search interval the modal solution for a particular mode should
lie. This is necessary to avoid an extremely slow curve tracing. It is then checked,
whether there is a modal solution in the search interval. A modal solution is defined by
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FIG. 24. The Advanced tab.
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FIG. 25. The search interval as it is applied by the phase velocity sweeps.

a simultaneous sign change and minimum in the characteristic function amplitude. If
yes, then a bisection algorithm starts to converge upon the root until the desired Phase
velocity resolution is reached. If no root is found, an x-loop starts to divide the search
interval into 5x sections, until a root in a section is found, and then the bisection of the
critical section starts unless the desired Phase velocity resolution has already been
reached. At this point, if symmetric and antisymmetric modes can be distinguished
(see Table 1), a final check is made whether the modal solution has the right symmetry.
The in-plane displacement component u1 is calculated at the top and at the bottom
surfaces of the plate. It they have the same sign, the mode is symmetric, otherwise it is
antisymmetric. If the search interval covers any previously traced lower mode(s), those
solution(s) will be ignored in the tracing of the current mode. The number of Phase
velocity sections x as the power of five sets the maximum number of sections into
which the search interval is divided. In order to understand the Lamb wave search
width for negative curvature, please have a look at Fig. 25. It shows the tracing of
the S0 Lamb wave in a 10 mm thick free aluminum alloy 1100 plate. Consider situation
A. Suppose the sample at 210 kHz has already been obtained, and we are now searching
for the 220 kHz sample. It is expected at a lower phase velocity. It is therefore taken
the difference of the phase velocities between the 200 kHz and the 210 kHz sample ∆i.
The curvature is determined to be negative here. The 220 kHz sample is expected to lie
within the search intervali+1, which reaches from the 210 kHz sample’s phase velocity
down by the multiple n1 ·∆i, where n1 is the Lamb wave search width for negative
curvature. The 220 kHz is indeed found there. As the tracing progresses, we pass the
turning point B and reach situation C. Since the curvature is now positive, the DC uses
the Lamb wave search width for positive curvature n2, which is smaller than the
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FIG. 26. The search interval and the phase velocity step as used by the frequency sweeps.

value for negative curvatures n1. The Shear horizontal wave search width is used
for shear horizontal waves in anisotropic media only. In isotropic materials, the shear
horizontal modes are calculated by an analytic equation so that dispersion curve tracing
is unnecessary.

Since the higher order modes are more or less parallel to the phase velocity axis
at high phase velocities, the usual phase velocity sweeps at fixed frequencies do not
work there very well, and the dispersion curves are often incomplete. Therefore, Fre-
quency sweeps to complete dispersion curves at high phase velocity (43) are
performed up to the top phase velocity required in the dispersion diagram. The Fre-
quency sections work similarly to the Phase velocity sections. Higher values in
Phase velocity sections and Frequency sections increase the chance to find modal
solutions, and therefore accomplish the tracing successfully at the cost of processing
time. However, setting low numbers does not necessarily cause problems in the curve
tracing because there is a routine involved that replaces missing samples. This routine
fits the already known samples and extrapolates them to the current frequency step.
However, if more than five consecutive samples have been missed, the tracing of the
current curve stops and continues with the next mode. Please consider Fig. 26. After
the tracing of the fundamental modes, the higher order modes are traced. S1 comes first.
The cut-off frequency at 20 m/ms is 286.129 kHz. Since we have a Frequency step of
10 kHz, the phase velocity sweeps starts at 290 kHz, leaving the curve incomplete be-
low 290 kHz. The frequency sweeps continue the curve at point D, which is above the
290 kHz sample by an amount of Phase velocity step. This point is within a search
interval spanning from a certain offset above 290 kHz to 290 kHz−Search interval in
kHz/mm. The aforementioned offset is needed to overcome point E, where the curve
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turns to higher frequencies again. This procedure continues until the cut-off frequency
is reached. A more detailed description of this dispersion curve tracing algorithm can
be found in Ref. [38].

Prof. Lowe describes a different tracing routine in Refs. [25, 45, 46], which he applies
in DISPERSE. An extrapolation method is used to make a guess for the next sample
point. This works well in the wavenumber space since the curves are more straight there
than in the frequency space.

Let us now move to the dispersion curve tracing algorithm used in case of fluid-loading
and viscoelasticity, causing attenuation of elastic waves. It was mentioned earlier that in
this case, the wavenumber of guided waves turns complex, i.e., it has a real part and an
imaginary part, whereas without attenuation, the wavenumber remains real. The phase
velocity cp of an attenuated guided wave is given by

cp =
ω

ξreal
, (6)

where ω is the angular frequency (= 2πf) and ξreal is the real part of the complex
wavenumber. The attenuation α in Nepers per wavelength is given by

α = 2π
ξimag

ξreal
, (7)

or, more simple, in Nepers per meter by

α = ξimag. (8)

Hence, dispersion curve tracing in the attenuated case requires a two-dimensional search
for the modal solutions in the complex wavenumber plane rather than a one-dimensional
search only on the real axis. Programming a two-dimensional dispersion curve tracing
algorithm is particularly difficult. It took me many months to develop that used by
the DC, and it has to be very complex, almost to the point where it is intelligent,
to enable a robust dispersion curve tracing with descent speed. More important than
speed is robustness. Therefore, the algorithm performs extensive search for the solutions
if they are not found immediately, and since a two-dimensional search is much more
computationally expensive than a one-dimensional, obtaining a dispersion diagram can
take much longer in the attenuated case than in the nonattenuated case. I tried in
particular that actually no advanced adjustments have to be done by the user to get the
dispersion curve tracing working in a particular case. For instance, usual code requires
that the user sets an appropriate range for the imaginary wavenumber part. In the
Fluid-loading and viscoelasticity settings (44) panel, this can be adjusted by the
Imaginary part search width and Search area extensions options. However, the
dispersion curve tracing algorithm is designed in such a way that a reasonable guess
for the imaginary search range will be done automatically, and in case a solution is
not found anyway, the search range will be extended step by step. A good software
should not bother the user with such specific adjustments, requiring knowledge which
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FIG. 27. Absolute values of the complex symmetric Rayleigh-Lamb equation calculated for
a 1 mm thick viscoelastic epoxy plate (DC material: “Epoxy Disperse Viscoelastic”)
immersed in water at 400 kHz. The equation is evaluated on a 51-by-51 point raster in
the complex wavenumber plane and plotted in the phase velocity-attenuation space.
The minimum indicates the modal solution of the S0 Lamb wave, which is located
at cp = 2.09008 m/ms, α = 143.175 Np/m. A denser raster makes the “singularity”
deeper.

an unexperienced user does not have. Of course though, the dispersion curve tracing
algorithm is far from being perfect, and there is no guarantee that all modes will be
found and traced from the start to the end (see Secs. 4.5 and 4.6). Notice that, unlike in
the nonattenuated case, it is possible that dispersion curves can stop at certain points
for physical reasons. In these cases, the dispersion curve tracing algorithm did no fail.
See for instance Fig. 3. A0 stops at a point where its attenuation approaches zero. The
same for the higher order modes when they drop below the wave speed in water.

The two-dimensional dispersion curve tracing algorithm starts with an initial guess
for the phase velocity as well as for the attenuation, based on the solutions found at
previous frequencies. In damped systems, it is normal that dispersion curves can tend
towards higher and lower phase velocities with increasing frequency. Therefore, for the
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calculation of the phase velocity search intervali+1 wherein we expect the solution at
the current frequency, it is taken the difference of the phase velocities between the two
preceding samples ∆i. The upper bound of the search intervali+1 is at a multiple of n1 ·∆i

above the phase velocity of the last found solution, where n1 is the left number in Real
part search width. Similarly, the lower bound is at a multiple of n2 ·∆i below the phase
velocity of the last found solution, where n2 is the right number in Real part search
width. The attenuation can also increase or decrease with frequency. The upper bound
of the attenuation search interval lies at the previous solution’s attenuation multiplied
by the left number in Imaginary part search width, and the lower bound is at
the previous solution’s attenuation multiplied by the right number in Imaginary part
search width. The phase velocity and attenuation search intervals are divided into five
equally spaced samples. From these, a square raster of twenty-five complex wavenumbers
are calculated, and the characteristic function is evaluated at these samples. Figure 27
shows the absolute values of the characteristic function amplitude G, evaluated at 51-
by-51 sample points in this example. For better visualization, the amplitude is drawn
on a logarithmic scale. Since we are evaluating the absolute value, a modal solution is
indicated by a minimum. This is clearly visible in Fig. 27. Next, the algorithm takes the
outer border of the four squares adjacent to the minimum and evaluates another raster
of twenty-five samples within these borders. This process continues until the desired
resolution (Phase velocity resolution) has been reached for both the phase velocity
and for the attenuation.

There are two possible reasons why the algorithm does not find a solution with the
initial search. Either the solution lies outside the complex search area, or the five-by-five
raster is too coarse to detect a minimum. The algorithm has strong and sophisticated
measures to find even difficult-to-find solutions. In short, in case a solution has not
been found, the search will be repeated with a finer raster, i.e., with a higher density of
samples, but with an increase in size (phase velocity and attenuation), too. There exist
different strategies for how the number of samples is increased, and whether the raster
will be square or rectangular. These strategies are applied to solve various complicated
situations that can occur. Search area sections gives the number of how many times
a yet unsuccessful search is repeated with an ever finer raster covering an ever larger
complex plane area. Search area extensions gives the number of how many times
the above repeated searches are repeated with an extra increase in the size of the search
raster. Suppose you have five Search area sections and three Search area exten-
sions. In case a modal solution is not found, the search will be repeated five times,
every time with a finer and larger raster. After that, the size of the raster will be extra
enlarged by a factor of three in both phase velocity and attenuation so that it will be
nine times larger. At the same time, the number of samples will be increased also, but
only a little bit so that the density of the previous raster will not be reached anymore.
The five searches will be repeated a second time, followed by a third time with an again
nine times larger raster. If the solution is still not found, the previous found solutions
for phase velocity and attenuation will be fitted and extrapolated. If solutions have not
been found at more than five consecutive frequency steps, the dispersion curve tracing
stops and continues with the next mode.
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The described routine enables a high robustness, but it can also be slow, in particular
when the first solution around the cut-off frequency of a higher order mode is sought.
Here, in case the algorithm does not find the solution at the cut-off frequency, it will
continue the search at the next frequency step until a frequency/thickness range of
50 kHz/mm has been covered. Remember that, even if you are considering fluid-loading
and/or viscoelasticity, the initial frequency sweep for the cut-off frequencies is always
performed for the nonattenuated case, i.e., without fluid-loading and viscoelasticity. The
resulting cut-off frequencies will be the starting points for the search of the higher order
modes also in the attenuated case. In this case, the dispersion curves start at more or less
shifted cut-off frequencies, and some modes, which are present without attenuation, are
not present at all otherwise. In the latter case, it will take some time for the algorithm
to complete the search and then go to the next mode. However, it is better to wait some
time longer and then have a more complete dispersion diagram rather than getting the
diagram fast but missing dispersion curves or parts of them. If you want to increase the
speed of computation anyway, you can reduce the values of Search area sections and
Search area extensions.

To improve robustness, the algorithm has quite some flexibility in dealing with com-
plicated situations. Only some prominent features can be described here briefly:

• The DC ignores any minimum in the raster that coincides with any previously
traced dispersion curve.

• If a found solution lies too far from the current dispersion curve in terms of phase
velocity or attenuation, it is discarded as an outlier.

• In case multiple minima are found in the raster, the DC will pick the one which
lies closest to the last solution found on the currently traced dispersion curve.

• If the DC does not find a minimum, it checks if there are border minima, i.e.,
valleys in the characteristic function amplitude, which cut into one of the four
borders of the raster and which get deeper towards the border. Such a valley points
towards a full minimum. The raster is therefore extended towards the suspected
minimum until it is found. Border minima on the four corners are ignored.

• In case multiple border minima are found in the raster, the DC will extend the
raster towards the one which lies closest to the last solution found on the currently
traced dispersion curve.

47



4 Examples

4.1 T800M913 single layer @ 45 ◦

We want to obtain the dispersion diagram for a unidirectional layer of the fiber-matrix
system T800M913. The thickness shall be 2 mm and the wave propagation along an
angle of 45 ◦ with respect to the fiber orientation. Since a single layer is symmetric, we
can determine symmetric and antisymmetric modes. Lamb and shear horizontal waves
are coupled. Take a look at situation A in Fig. 28. The symmetric modes S13 and S14 are
very close without crossing each other. If you use the default Frequency step of 5 kHz,
Phase velocity step of 100 m/s, and Search interval of 20 kHz·mm, the frequency
sweeps of S14 will hit S13, and follow S13 up to its cut-off frequency. This problem can
be solved in two ways:

1. Use a Phase velocity step of 50 m/s and a Search interval of 6 kHz/mm.

2. Or set the Frequency step to 1 kHz.
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FIG. 28. Dispersion diagram for wave propagation along 45 ◦ with respect to the fiber direction
in 2 mm thick unidirectional T800M913.
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4.2 T800M913 [0/90]4 @ 45 ◦

Now, let us compute a 2 mm thick layup [0/90]4 from the same material, and again we
let the guided waves propagate along 45 ◦. Since the layup is nonsymmetric, symmetric
and antisymmetric waves cannot be distinguished. Lamb and shear horizontal waves are
coupled. Look at B3 and B4 in Fig. 29. They appear to tend towards the same cut-off
frequency and therefore get closer to each other with increasing phase velocity. First
of all, you must set the default Step of 0.5 kHz to 0.2 kHz in order to detect B3 at all.
Therefore, once you see in the output window that modes have almost the same cut-off
frequencies, consider taking finer steps than the default. You can also reduce the Phase
velocity limit to avoid problems. Then, with the default Frequency step of 5 kHz,
B3 cannot be traced. To solve the problem, set the Frequency step to 2 kHz.
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FIG. 29. Dispersion diagram for wave propagation along 45 ◦ in a 2 mm thick layup [0/90]4
T800M913.
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4.3 T700PPS [25/-25] @ 0 ◦

We consider a 2 mm thick layup [25/-25] of T700PPS for wave propagation along 0 ◦.
This is a nonsymmetric layup and a coupled case, too. Check out situation A in Fig. 30.
If you are using the default Lamb wave search width for negative curvature of
ten, the tracing routine will drop from B4 to B5 at point A, and then return to B4 in
point B. In consequence, the tracing of B5 will be problematic, and B4 will have a dip.
To obtain a proper dispersion curve tracing, set the Lamb wave search width for
negative curvature to five. Since the phase velocity search range in point A during
the tracing of B4 will not intersect B5 anymore, B4 and then B5 can be traced correctly.
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FIG. 30. Dispersion diagram for wave propagation along 0 ◦ in a 2 mm thick layup [25/-25]
T700PPS.
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4.4 T800M913 [0/90]100s @ 0 ◦

It was mentioned in the introduction that modern rocket booster pressure vessels can
consist of up to four hundred layers in certain areas. Now, we want to calculate such kind
of laminate. We assume a layup [0/90]100s with layer thicknesses of 0.125 mm yielding a
50 mm thick laminate. In contrast to booster layups, this highly repetitive layup could
be simplified to [0/90]20s, for instance, having only 80 layers with layer thicknesses of
0.625 mm, although the dispersion curves would not be exactly the same. However, the
point we want to prove here is that the DC can deal with four hundred layers. Set
the Lamb wave search width for negative curvature to five and the Lamb wave
search width for positive curvature to two in order to accelerate the calculation.
The phase velocity search interval is narrower so that the solution will be found faster.
The resulting dispersion diagram is shown in Fig. 31. Lamb and shear horizontal waves
decouple and can therefore be calculated separately. Figure 32 shows the displacement
and stress field components of the S0 Lamb wave at 50 kHz. The periodicity of the layup
becomes obvious in the displacement u1 and in the stresses σ11 and σ22.
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FIG. 31. Dispersion diagram for wave propagation along 0 ◦ in a 50 mm thick layup [0/90]100s
T800M913.
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FIG. 32. (a) Displacement and (b) stress field components of the S0 Lamb wave at 50 kHz in
a 50 mm thick layup [0/90]100s T800M913.
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4.5 CarbonEpoxy Hernando 2015 Viscoelastic single layer @ 30 ◦

Let us consider now a viscoelastic case. We want to obtain the dispersion diagram for a
unidirectional layer of the fiber-matrix system CarbonEpoxy Hernando 2015 Viscoelastic.
The thickness shall be 1 mm and the wave propagation be along 30 ◦. If you use the de-
fault Frequency step of 10 kHz, the tracing has two problems. In point A, A1 makes
a small kink, and in point B, S2 jumps to S3 and vice versa. Both issues are solved by
setting the Frequency step to 5 kHz. You may have noticed that many problems can
be solved by reducing the Frequency step. S2 is incomplete at high phase velocity.
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FIG. 33. Dispersion diagram for wave propagation along 30 ◦ in 1 mm thick unidirectional
CarbonEpoxy Hernando 2015 Viscoelastic.
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4.6 AS4M3502 [0/90]2s @ 45 ◦ in water

Let us compute the dispersion diagram for a 1 mm thick [0/90]2s layup of AS4M3502
immersed in water. Wave propagation shall take place in the 45 ◦-direction. Due to
the water-loading, the two fundamental Scholte modes SScholte

0 and AScholte
0 are present.

These are indicated by the dashed-dotted lines. Notice that SScholte
0 starts at the wave

speed in water. Higher order Scholte modes do not occurs in this situation. The problem
is that S2 cannot be traced when the propagation direction is exactly 45 ◦. To help with
this, we change the propagation direction slightly to 45.1 ◦. While this has hardly any
impact on the dispersion curves themselves, dispersion curve tracing seems to become
easier. Also the tracing of S0 starts much faster. A small error is present at the cut-off
frequency of S2. It is connected to S3.
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FIG. 34. Dispersion diagram for wave propagation along 45 ◦ in a 1 mm thick [0/90]2s layup of
AS4M3502 immersed in water.
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A Energy and power of guided waves

Let us introduce a coordinate system xi = (x1, x2, x3), where the plate lies in the x1-x2-
plane, x1 is the propagation direction of the guided wave, and x3 is normal to the plate.
The total energy Etotal is the energy per unit volume carried by a guided wave. It has
two contributions, namely the strain energy Estrain and the kinetic energy Ekin so that
Etotal = Estrain + Ekin, where

Estrain =
1

2

∫
S

σijεijdS, i, j = 1, 2, 3, (9)

with the stress tensor σij and the strain tensor εij, and

Ekin =
1

2
ρ

∫
S

v2i dS, (10)

where integration of the respective energy densities is performed over the cross section S
of the laminate, and where ρ is the material’s density and vi = u̇i is the particle velocity
vector.

The power flow Pj is the energy flow per unit volume and unit time carried by a
guided wave. It is obtained by integration of the power flow density (Poynting vector)
pj, indicating the magnitude and direction of the power flow

Pj =

∫
S

pjdS = −1

2

∫
S

Re(σijv
∗
i )dS = −1

2

∫
S

Re

σ11v∗1 + σ21v
∗
2 + σ31v

∗
3

σ12v
∗
1 + σ22v

∗
2 + σ32v

∗
3

σ13v
∗
1 + σ23v

∗
2 + σ33v

∗
3

 dS. (11)

The star (∗) indicates the complex conjugate. In absence of attenuation, there is only
power flow along the propagation direction P1, (and P2 in coupled cases in anisotropic
media) while P3 (normal to the plate) is zero.
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B Group velocity and energy velocity of guided waves

The group velocity of a guided wave is the speed at which a wave packet propagates, i.e.,
the speed at which energy is transported. It is calculated by the well-known equation

cg =
dω

dξ
, (12)

where ω is the circular frequency (= 2πf), and ξ is the wavenumber of the guided wave.
Equation (12) can be manipulated into

cg = c2p

(
cp − f

dcp
df

)−1
. (13)

To carry out Eq. (13) programmatically, the phase velocity dispersion curve is fitted so
that its derivative can be taken from the fitted function.

However, Eq. (13) is insufficient for use in the DC for two reasons. Firstly, the group ve-
locity has physical significance only in non-dissipative systems, i.e., without attenuation
caused by viscoelasticity or energy leakage to the surrounding medium (fluid-loading).
With attenuation, the wavenumber turns complex so that Eq. (12) does not make sense
anymore. The energy velocity is the more generic quantity. It is valid both with and
without attenuation, where in the latter case, group and energy velocity are equivalent.
Secondly, Eq. (12) gives only the group velocity component in the direction of wave
propagation. Therefore, the DC calculates the energy velocity. The energy velocity
components ce1 and ce2 are calculated from the ratios of the power flow Pj to the total
energy Etot as

~ce =
1

Etot

P1

P2

0

 =

ce1ce2
0

 , (14)

where the total energy is obtained with the use of Eqs. (9) and (10) by

Etot =
1

2

∫
S

(σ11ε11 + σ33ε33 + σ23ε23 + σ13ε13 + σ12ε12)dS,

+
1

2
ρ

∫
S

(v21 + v22 + v23)dS,

(15)

(ε22 is zero), and the power flow components are calculated from Eq. (11) by

P1 = −1

2

∫
S

Re(σ11v
∗
1 + σ12v

∗
2 + σ13v

∗
3)dS,

P2 = −1

2

∫
S

Re(σ12v
∗
1 + σ22v

∗
2 + σ23v

∗
3)dS.

(16)

Obviously, Eq. (14) describes a vector with a component ce1 along and a component
ce2 normal to the wave propagation direction x1. The magnitude of the energy velocity
vector is given by

ce = |~ce| =
√
c2e1 + c2e2. (17)
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FIG. 35. The energy velocity vector. (a) In the decoupled case such as in an isotropic medium,
the energy velocity direction coincides with wave propagation direction. (b) In the
coupled case in anisotropic media, the energy velocity direction skews from the wave
propagation direction.

~ce points in the direction of energy flow so that it indicates the actual direction of the
guided wave beam (ray angle Φr). In general, Φr deviates from the wave propagation
angle Φ by the skew angle γ, given by

γ = Φ− Φr. (18)

With the energy velocity vector components obtained from Eq. (14), we can calculate

γ = −tan−1
ce2
ce1
. (19)

The negative sign in Eq. (19) accounts for the fact that the guided wave beam, i.e., the
energy flow, skews towards the fiber direction because energy can be transported more
efficiently in that direction.

In decoupled cases such as in isotropic media or in anisotropic media for wave prop-
agation along or normal to the fibers, Φr is equal to Φ. This situation is illustrated
in Fig. 35(a), where the slowness is plotted versus the wave propagation angle in an
isotropic medium. The slowness is the inverse phase velocity s = c−1p , and the energy
velocity vector ~ce is oriented perpendicular to the slowness profile. Since the slowness
profile in an isotropic medium is a circle, the energy velocity vector is always aligned
with the slowness vector and with the wave propagation direction, i.e., γ = 0 so that
ce2 = 0 and ~ce = ce1. By contrast, in coupled cases, i.e., for wave propagation other than
along axes of symmetry in an anisotropic medium, the energy velocity direction is not
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ce1, Φ

~ce, Φr

FIG. 36. The two main scenarios encountered in guided wave-based non-destructive inspection.
Left: A guided wave is sent along a chosen propagation angle Φ, like in air-coupled
ultrasonic inspection. Right: Guided waves are emanating outwards from a point
source such as from a crack to be detected by a sensor array.

anymore aligned with the wave propagation direction, but skews by an angle γ 6= 0, as
illustrated in Fig. 35(b).

The DC applies Eqs. (14) to (19) to every sample point in every phase velocity disper-
sion curve to obtain results as those presented in Fig. 37. Therein, the energy velocity
components are illustrated for a coupled case, namely for wave propagation along an
angle of Φ = 45 ◦ in a 1 mm thick layer T800M913. Figure 37(a) shows the energy veloc-
ity component along the wave propagation direction ce1. The plot is useful for scenarios
like air-coupled ultrasonic inspection where you send a guided wave in a certain (wave
propagation) direction, and detect the signal after propagating a certain distance in that
direction (see on the left in Fig. 36). Figure 37(b) shows the energy velocity component
ce2 normal to the propagation direction. It can take positive and negative values, mean-
ing that the energy velocity vector, i.e., the energy flux, can skew at some angle γ to the
left and to the right side with respect to the wave propagation direction. This relates to
the negative and positive skew angles seen in Fig. 37(d). The energy velocity magnitude
ce is displayed in Fig. 37(c). It is the speed at which energy is transported in the direc-
tion determined by the ray angle Φr, in this case Φr = 45 ◦ − γ. Figure 37(e) displays
a propagation time dispersion diagram for a propagation distance of 100 mm. These
kind of diagrams are useful for acoustical emission experiments to identify modes in the
measured signals of voltage versus time. The propagation time diagram is calculated
based on ce1, namely tprop = distance/ce1. Similarly, the signals simulated in the Signal
simulator correlate with the energy velocity component ce1. The onsets of the wave
packets appear as predicted by the propagation time dispersion diagram. Similarly as
stated for the energy velocity component ce1, the propagation time dispersion diagram
is valid for modes excited and detected in a chosen wave propagation direction angle Φ.

The difference between ce1 and ~ce becomes even more striking when we look at polar
dispersion diagrams. Figure 38(a) shows the energy velocity component ce1 of the funda-
mental modes at 200 kHz versus the wave propagation angle Φ in 1 mm thick T800M913.
By contrast, Fig. 38(b) shows the energy velocity magnitude ce versus the ray angle Φr.
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This plot, also called wavecrest plot, shows how the guided waves generated by a point
source advance outwards with time. Therefore, these plots are useful for scenarios like
acoustical emission where an array of sensors is placed on a specimen to detected ultra-
sonic signals emitted from a point source (see on the right in Fig. 36). It is striking how
different the profiles of the extensional modes in Fig. 38(a) look compared to those in
Fig. 38(b). They are equal only at Φ = 0 ◦, 90 ◦ because these are the axes of symmetry
where the skew angle and ce2 become zero so that ce = ce1. It shows how much the
fiber direction Φ = 0 ◦ is preferred for the actual transport of energy. In the profile of
S0, we notice that multiple energy velocity values are possible for a given ray angle.
This is closely related to the skew angle plotted versus the wave propagation direction
in Figure 38(c). Finally, Fig. 39 presents the corresponding polar propagation time for
a propagation distance of 100 mm. Figure 39(a) is calculated from ce1, so use it only for
directed signals, whereas Fig. 39(b) is deduced from ce and appropriate for point sources
radiating outwards.
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FIG. 37. Energy velocity and propagation time dispersion diagrams of the fundamental modes
for propagation along Φ = 45 ◦ in a 1 mm thick layer T800M913. (a) Energy velocity
component ce1, (b) component ce2, (c) magnitude |~ce|, and (d) skew angle γ. (e) The
propagation time for a distance of 100 mm is calculated from ce1.
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FIG. 38. Polar energy velocity dispersion diagrams of the fundamental modes at 200 kHz in a
1 mm thick layer T800M913. (a) Energy velocity component ce1, (b) magnitude |~ce|,
and (c) skew angle γ.
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FIG. 39. Propagation time dispersion diagrams of the fundamental modes at 200 kHz in a
1 mm thick layer T800M913. (a) Propagation time based on ce1 and (b) based on
|~ce|.

C Bulk wave velocities in elastic media

Of particular significance are the bulk waves’ phase velocities for propagation along the
principal axes in elastic media. The Table 2 lists the velocities as function of the stiffness
components Cij and of the density ρ. The direction 1 is along the fibers, while 2 and 3
are normal to it. In transversely isotropic media, the velocities are equal for propagation
along 2 and 3 (and in fact for any direction within the 2-3-plane) since C33 = C22 and
C55 = C66. In cubic materials, all longitudinal velocities are equal since C11 = C22 = C33,
and all shear waves are also equal because C44 = C55 = C66. Both is true also in isotropic
media with the specialty that C44 = C55 = C66 = 0.5(C11 − C12). Notice that in case of
complex stiffnesses Cij, only the real parts are used in the below equations.

TABLE 2. Bulk wave velocities along principal
axes.

Velocity 1 2 3

Longitudinal =
√

C11

ρ
=
√

C22

ρ
=
√

C33

ρ

Fast shear =
√

C55

ρ
=
√

C66

ρ
=
√

C55

ρ

Slow shear =
√

C66

ρ
=
√

C44

ρ
=
√

C44

ρ
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D List of default materials

D.1 Isotropic

If not stated otherwise, the materials are taken from Ref. [47].

ρ E ν αL αT

(kg/m3) (GPa) (Np/λ) (Np/λ)

AluminumAlloy1100 2710 69 0.33 0 0
AluminumAlloy2011 Ono 2020 Viscoelastic [42] 2830 72.64 0.3355 0.0046 0.0075
AluminumAlloy2024 2770 72.4 0.33 0 0
AluminumAlloy2024 Ono 2020 Viscoelastic [42] 2770 71.56 0.3442 0.0012 0.0011
AluminumAlloy6061 2700 69 0.33 0 0
AluminumAlloy6061 Ono 2020 Viscoelastic [42] 2700 73.53 0.3298 0.0105 0.0092
AluminumOxide 3980 380 0.22 0 0
Aluminum Disperse [2] 2700 70.76 0.3375 0 0
Aluminum Disperse Viscoelastic [2] 2700 70.76 0.3375 0.003 0.01
CastIronG3000 7300 101.5 0.26 0 0
CastIronG4000 7300 124 0.26 0 0
Concrete 2400 31 0.2 0 0
Copper110 Ono 2020 Viscoelastic [42] 8940 135.7 0.3174 0.0222 0.0244
CopperAlloyBrass260 Ono 2020 Viscoelastic [42] 8500 112.1 0.3382 0.0311 0.0191
CopperAlloyBrass360 Ono 2020 Viscoelastic [42] 8530 108.1 0.3333 0.0136 0.0092
CopperAlloyC17200BerylliumCopper 8250 128 0.3 0 0
CopperAlloyC26000CartridgeBrass 8530 110 0.35 0 0
CopperAlloyC36000FreeCuttingBrass 8500 97 0.34 0 0
CopperAlloyC71500CopperNickel30 8940 150 0.34 0 0
CopperAlloyC93200BearingBronze 8930 100 0.34 0 0
CopperAlloyCuAgZr Ono 2020 Viscoelastic [42] 9920 149.7 0.3324 0.0132 0.025
CopperAlloyCuAl2O3 Ono 2020 Viscoelastic [42] 8900 137.6 0.2982 0.0122 0.0116
CopperOFHC Ono 2020 Viscoelastic [42] 8960 171.8 0.1323 0.013 0.0389
DiamondNatural 3510 950 0.2 0 0
DiamondSynthetic 3360 863 0.2 0 0
Epoxy Disperse [2] 1170 3.94 0.39 0 0
Epoxy Disperse Viscoelastic [2] 1170 3.94 0.39 0.04 0.1
Epoxy Ono 2020 Viscoelastic [42] 1390 7.039 0.3319 0.0867 0.1636
GlassBorosilicate 2230 70 0.2 0 0
GlassCeramic 2600 120 0.25 0 0
GlassQuartz 2200 73 0.17 0 0
GlassQuartz Ono 2020 Viscoelastic [42] 2560 69.06 0.2538 0.0126 0.0178
GlassSodaLime 2500 69 0.23 0 0
GlassSodaLime Ono 2020 Viscoelastic [42] 2480 74.29 0.2227 0.0059 0.0065
Gold 19320 77 0.42 0 0
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Ice [2] 900 9.55 0.33 0 0
Inconel625 8440 207 0.31 0 0
Inconel625 Ono 2020 Viscoelastic [42] 8440 209.2 0.3064 0.0104 0.0075
Inconel718 Ono 2020 Viscoelastic [42] 8190 199.5 0.3005 0.0144 0.0278
Inconel738 Ono 2020 Viscoelastic [42] 8110 199.4 0.2958 0.0122 0.0262
Iron Ono 2020 Viscoelastic [42] 7870 211.4 0.304 0.09 0.0606
Lead 11340 13.5 0.44 0 0
MagnesiumAlloyAZ31B 1770 45 0.35 0 0
MagnesiumAlloyAZ61 Ono 2020 Viscoelastic [42] 1800 42.31 0.3147 0.0013 0.0014
Magnesium Ono 2020 Viscoelastic [42] 1740 43.95 0.2974 0.0044 0.0056
Molybdenum 10220 320 0.32 0 0
Monel400 8800 180 0.32 0 0
Monel400 Ono 2020 Viscoelastic [42] 8800 179.3 0.3276 0.0214 0.0065
Nickel200 8890 204 0.31 0 0
Nickel200 Ono 2020 Viscoelastic [42] 8910 206.7 0.3156 0.0398 0.1029
NickelAlloyNi3Al Ono 2020 Viscoelastic [42] 8100 214.7 0.2261 0.1178 0.1292
Nylon 1140 2.69 0.39 0 0
Nylon Ono 2020 Viscoelastic [42] 1140 4.506 0.3735 0.0827 0.0991
Platinum 21450 171 0.39 0 0
Plexiglass 1190 2.74 0.31 0 0
Plexiglass Ono 2020 Viscoelastic [42] 950 4.625 0.2421 0.0253 0.0408
Polycarbonate 1200 2.38 0.36 0 0
Polycarbonate Ono 2020 Viscoelastic [42] 1200 3.178 0.383 0.1653 0.2008
PolyethyleneHighDensity Ono 2020 Viscoelastic [42] 940 3.499 0.3613 0.0642 0.136
PolyethyleneLowDensity Ono 2020 Viscoelastic [42] 910 3.825 0.3483 0.133 0.1785
Polypropylene Ono 2020 Viscoelastic [42] 900 4.465 0.3062 0.1358 0.2002
Polystyrene 1050 2.78 0.33 0 0
PolyvinylChloride 1440 3.28 0.38 0 0
PolyvinylChloride Ono 2020 Viscoelastic [42] 1400 4.665 0.3533 0.0641 0.1059
SiliconNitride 3300 304 0.3 0 0
Silver 10490 74 0.37 0 0
StainlessSteelAlloy304 8000 193 0.3 0 0
StainlessSteelAlloy304 Ono 2020 Viscoelastic [42] 8000 203.1 0.2875 0.014 0.0062
StainlessSteelAlloy405 7800 200 0.3 0 0
SteelAlloy1020 7850 207 0.3 0 0
SteelAlloy1020 Ono 2020 Viscoelastic [42] 7820 208 0.2908 0.0067 0.0058
SteelAlloy4340 Ono 2020 Viscoelastic [42] 7840 202.8 0.295 0.004 0.0024
Tantalum 1660 185 0.35 0 0
Teflon 2170 0.475 0.46 0 0
Tin 7170 44.3 0.33 0 0
Titanium 4510 103 0.34 0 0
TitaniumAlloyTi6Al4V 4430 114 0.34 0 0
TitaniumAlloyTi6Al4V Ono 2020 Viscoelastic [42] 4500 114.7 0.3267 0.0271 0.014
TitaniumAlloyTi6Al6V2Sn Ono 2020 Viscoelastic [42] 4540 111.5 0.3289 0.01 0.011
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ToolSteelT8 Ono 2020 Viscoelastic [42] 8430 220.2 0.2757 0.0375 0.0135
Tungsten 19300 400 0.28 0 0
Tungsten Ono 2020 Viscoelastic [42] 19250 405.2 0.2867 0.008 0.0039
Zinc 7140 104.5 0.25 0 0
Zirconium 6510 99.3 0.35 0 0

D.2 Cubic

C33 = C22 = C11, C13 = C23 = C12, C44 = C55 = C66

ρ in kg/m3, Cij in GPa

ρ C11 C12 C66

GaAs [44] 5310 118.8 53.8 59.4
InAs [44] 5670 83.29 45.26 39.59

D.3 Transversely isotropic

C13 = C12, C33 = C22, C44 = 0.5(C22 − C23), C55 = C66

ρ in kg/m3, Cij in GPa

ρ C11 C12 C22 C23 C66

AS4M3502 [48] 1550 147.1 4.1 10.6 3.1 6
CarbonEpoxy Rokhlin 2011 [13] 1610 162 11.8 17 8.2 8
SAERTEX7006919RIMR135 [38] 1454 122.692 4.31945 9.21241 4.20204 6.02
SigrafilCE125023039 [48] 1500 131 3.7 8.1 3.1 6.1
T300M914 [49] 1560 143.8 6.2 13.3 6.5 5.7
T700M21 [50] 1571 129.986 6.06192 11.1918 5.19179 4.135
T700PPS [48] 1600 152.7 4.7 11.7 4.4 4.5
T800M913 [48] 1550 154 3.7 9.5 5.2 4.2
T800M924 [51] 1500 164.708 5.45328 11.2997 4.73939 6
T800 Castaings 1510 184 7.09964 12.9996 6.99943 5.5
TVR380M12R GFRP [19] 1800 49.7605 6.16767 17.1601 5.68314 5.233

65



D.4 Orthotropic

ρ in kg/m3, Cij in GPa

CarbonEpoxy2 Rokhlin 2011 [13]

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

1610 162 10.6 13 15.3 8.2 18.7 4.4 8.8 7.2

CarbonEpoxy Castaings

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

1500 125 6.3 5.4 14 7.1 14 3.45 5.4 5.4

CarbonEpoxy Castaings Viscoelastic

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

1500 125 6.3 5.4 14 7.1 14 3.45 5.4 5.4
+2.5i +0.126i +0.108i +0.28i +0.1421i +0.28i +0.069i +0.108i +0.108i

CarbonEpoxy Hernando 2015 [29]

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

1500 132 6.9 5.9 12.3 5.5 12.1 3.32 6.21 6.15

CarbonEpoxy Hernando 2015 Viscoelastic [29]

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

1500 132 6.9 5.9 12.3 5.5 12.1 3.32 6.21 6.15
+0.4i +0.001i +0.016i +0.037i +0.021i +0.043i +0.009i +0.015i +0.02i

HIO3 [52]

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

4640 30.1 16.1 11.1 58 8 42.9 16.9 20.6 15.8

Oak [2]

ρ C11 C12 C13 C22 C23 C33 C44 C55 C66

597 8.61313 2.17462 2.77298 1.73528 1.06095 2.40251 0.3 0.89 0.92
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