
Backpropagation in Convolutional Networks

Saniya Maheshwari
saniya@firstcry.in

July 16, 2021

Abstract

This is a short note describing how backpropagation is performed in
a CNN. In a regular feedforward neural network, the backward pass is
straightforward to understand. In a convolutional network, however, we
have convolution and max pooling operations which make the backward
pass a little complicated. In this note, we discuss how the backward pass
through the convolution and max pooling operations can be performed
by means of two other operations, namely the transposed convolution and
max unpooling operations respectively. We also look at how we can take
the gradients of the convolution weights, which is essential for training
the network.

1 Max Unpooling

Let us start with the backward pass through the max pooling operation because
it is easier to understand. Consider a 4× 4 feature map

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


Then a max pooling operation (with kernel size 2 and stride 2) identifies the

maximal elements (shown in bold) and discards the others:


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

→

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

→ [
a21 a14
a31 a43

]

Now, in the backward pass, we essentially have a 2× 2 matrix of gradients ∂F
∂a21

∂F
∂a14

∂F
∂a31

∂F
∂a43


1



of a function F with respect to the same maximal elements, and the goal is to
somehow “expand” this matrix to get a 4× 4 matrix containing the backprop-
agated gradient. (If we were training the CNN, F would be the loss function –
but in general it can be any scalar-valued function of the network.)

The key point is that the non-maximal elements are discarded during the
max pooling step, so they play no role in the computation afterward. This
means that the gradient of F with respect to these elements must be zero.

So, the backward pass through a max pooling operation essentially reduces
to two steps:

1. Move the gradients of the maximal elements to the locations originally
occupied by the maximal elements, and

2. fill up the rest of the locations with zeros.

 ∂F
∂a21

∂F
∂a14

∂F
∂a31

∂F
∂a43

→

· · · ∂F

∂a14

∂F
∂a21

· · ·
∂F
∂a31

· · ·

· · ∂F
∂a43

·

→


0 0 0 ∂F
∂a14

∂F
∂a21

0 0 0

∂F
∂a31

0 0 0

0 0 ∂F
∂a43

0


That’s it!

This operation is known as max unpooling. It can also be used in another
sense – if we were to “unpool” the maximal values themselves, instead of their
gradients: [

a21 a14
a31 a43

]
→


0 0 0 a41

a21 0 0 0
a31 0 0 0
0 0 a43 0


Here, as you can see, the maximal values have been restored to their original

locations, while the non-maximal values have been replaced by zeros. In this
way, max unpooling can be viewed as computing a partial inverse of the max
pooling operation [8].

One thing to note is that, in order to perform a max unpooling operation, we
have to keep track of the locations of the maximal elements during the forward
pass through the max pooling operation. These locations are sometimes known
as switches [8].

2 Transposed Convolutions

Consider a convolution operation involving a 4× 4 feature map, represented by
the matrix of aij ’s, and a 3 × 3 kernel represented by the matrix of kij ’s. The
convolution between these two is denoted by ∗ and the stride used is 1.

2




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ∗
k11 k12 k13
k21 k22 k23
k31 k32 k33

 (1)

The result of this convolution is a 2× 2 feature map: ∑3
i=1

∑3
j=1 kijaij

∑3
i=1

∑3
j=1 kijai,j+1∑3

i=1

∑3
j=1 kijai+1,j

∑3
i=1

∑3
j=1 kijai+1,j+1


Now, suppose we were to flatten out the 4 × 4 input feature map into a

16-dimensional vector. Then, realize that the following matrix multiplication


k11 k12 k13 0 k11 k12 k13 0 . . . 0
0 k11 k12 k13 0 k11 k12 k13 . . . 0
0 0 0 0 k11 k12 k13 0 . . . 0
0 0 0 0 0 0 0 0 . . . k33





a11

a12

a13

a14

a21

a22

a23

a24

...
a44


is identical to the 2×2 feature map we found above, flattened into a 4-dimensional
vector.

What this shows us is that a convolution operation can be expressed as a
regular linear multiplication operation of a feedforward neural network. If we
flatten out the input and output feature maps, the convolution kernel can be
written out as a weight matrix [1]. This weight matrix will have a lot of zeros
and will repeat the kernel weights throughout. Indeed – it is a well-known fact
that a CNN is equivalent to a feedforward neural network, with two additional
properties: sparse connections and weight sharing [2].

Then, computing the backward pass through a convolution operation is sim-
ply a matter of applying the regular chain rule. If h and a denote the flattened
output and input feature maps respectively, the forward pass is

h = Wa

and the backward pass is

∂F

∂a
= WT

(
∂F

∂h

)
(2)

Remember that W is a weight matrix derived from the kernel weights. The
backward pass uses the transpose of the weight matrix, hence this operation is
known as a transposed convolution.

Now, let us go ahead and expand the right-hand side of the rule (2).

3





k11 0 0 0
k12 k11 0 0
k13 k12 0 0
0 k13 0 0
k11 0 k11 0
k12 k11 k12 0
k13 k12 k13 0
0 k13 0 0
...

...
...

...
0 0 0 k33




∂F

∂h11

∂F
∂h12

∂F
∂h21

∂F
∂h22



If you observe carefully, the result of this matrix multiplication, when “un-
flattened”, is identical to the result of the following convolution operation (with
stride 1): 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ∂F
∂h11

∂F
∂h12

0 0

0 0 ∂F
∂h21

∂F
∂h22

0 0

0 0 0 0 0 0

0 0 0 0 0 0


∗


k33 k32 k31

k23 k22 k21

k13 k12 k11

 (3)

The feature map on the left is the gradient matrix that arrives as input during
the backward pass, with a padding of 2. On the right is a kernel which is
identical to the original convolution kernel in (1), except that it is flipped about
the horizontal and vertical axes.

This means that the backward pass through a convolution operation can
be performed using another convolution operation – which utilizes sufficient
padding and a kernel formed by flipping the kernel of the original convolution
operation horizontally and vertically [8, 3]. (This explains the “convolution”
part of the name “transposed convolution”.)

(Do note that it is the weight matrix derived from the convolution kernel
that is transposed, and not the convolution kernel itself. The kernel is flipped
horizontally and vertically, which is not the same as transposing.)

Recall that the stride used in the original convolution operation (1) was 1.
If we had used a different stride, it turns out that the corresponding transposed
convolution would be slightly different from the one in (3). The kernel would
be flipped in the same way, but along with adding zeros on the boundary of
the feature map as padding, we would also have to add zeros in between the
elements of the feature map [1]. For example, consider the following convolution
operation with a stride of 2:

4




a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ∗
k11 k12 k13
k21 k22 k23
k31 k32 k33

 (4)

This will produce a 2× 2 feature map: ∑3
i=1

∑3
j=1 kijaij

∑3
i=1

∑3
j=1 kijai,j+2∑3

i=1

∑3
j=1 kijai+2,j

∑3
i=1

∑3
j=1 kijai+2,j+2


Then the corresponding transposed convolution takes the form

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 ∂F
∂h11

0 ∂F
∂h12

0 0

0 0 0 0 0 0 0

0 0 ∂F
∂h21

0 ∂F
∂h22

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


∗


k33 k32 k31

k23 k22 k21

k13 k12 k11



As you can see, one row/column of zeros has been added between the elements
of the gradient matrix.

Such a convolution operation, which has zeros in between the elements of the
input feature map, can be viewed as having a stride less than 1 (though while
hand-doing the convolution we use a stride of 1), because the kernel moves
over the feature map at a slower pace than before. For this reason, transposed
convolutions are also known as fractionally-strided convolutions [1].

Another name that is often given to the transposed convolution operation is
that of a deconvolution. However, this is a misnomer [1] because the transposed
convolution does nothing to invert the convolution operation – it uses WT , not
W−1. At most, this operation only inverts the shape of a convolution operation,
i.e. if a convolution operation produces 2 × 2 feature maps given 4× 4 feature
maps, the corresponding transposed convolution operation produces 4×4 feature
maps given 2× 2 feature maps.

3 Convolution Weights

We have seen how to take gradients through a convolution operation but we
still have to take gradients with respect to the parameters of the convolution
operation, i.e. the kernel weights. Let us discuss this next.

5



Consider again the convolution operation (1). Its output is a 2 × 2 feature
map which we shall denote as [

h11 h12

h21 h22

]
Take one of the elements in this feature map, say h12. Clearly

h12 =

3∑
i=1

3∑
j=1

kijai,j+1

Now fix a particular kij . Then

∂h12

∂kij
= ai,j+1

In a similar manner, this particular kij influences all the other elements in the
feature map and not just h12.

∂hi′j′

∂kij
= ai+i′−1,j+j′−1

Then, by the chain rule, the expression for the gradient of F with respect to kij
would be

∂F

∂kij
=

2∑
i′=1

2∑
j′=1

∂F

∂hi′j′

∂hi′j′

∂kij

or

∂F

∂kij
=

2∑
i′=1

2∑
j′=1

(
∂F

∂hi′j′

)
ai+i′−1,j+j′−1

To better understand what this expression means, let us substitute some values
of i and j. First take i = j = 1, i.e. we are looking at the gradient of k11:

∂F

∂k11
=

2∑
i′=1

2∑
j′=1

(
∂F

∂hi′j′

)
ai′j′

Then take i = 1, j = 2:

∂F

∂k12
=

2∑
i′=1

2∑
j′=1

(
∂F

∂hi′j′

)
ai′,j′+1

You should see a familiar pattern emerging. Indeed, the gradients with respect
to the kernel weights can be obtained using the following convolution operation
[3]:

6




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ∗
 ∂F

∂h11

∂F
∂h12

∂F
∂h21

∂F
∂h22


where the feature map on the left is the input to the convolution operation
during the forward pass, and the kernel on the right is the gradient matrix that
arrives as input during the backward pass. Neat!

What if the stride of the original convolution is greater than 1? The same
result holds, except that we would have to introduce some dilation. For example,
if the original convolution was of the form of (4) with a stride of 2, then the
convolution yielding the gradients of the kernel weights would be

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 ∗
 ∂F

∂h11

∂F
∂h12

∂F
∂h21

∂F
∂h22


with a stride of 1 but a dilation of 2.

4 Applications

Transposed convolution and max unpooling operations are used behind-the-
scenes in deep learning libraries to compute the backward pass through a CNN
[7].

They have found explicit use in architectures known as deconvolutional net-
works. In [8], these operations are used to perform a modified backward pass
[6] through the convolutional layers of AlexNet [4]. Other examples include [9]
which aims to reconstruct images passed as input to the network, and [5] which
performs semantic image segmentation.

References

[1] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: arXiv preprint arXiv:1603.07285 (2016).

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[3] Jefkine Kafunah. Backpropagation in Convolutional Neural Networks. Ac-
cessed: 2021-07-14. url: https://jefkine.com/general/2016/09/05/
backpropagation-in-convolutional-neural-networks/.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems 25 (2012), pp. 1097–1105.

7



[5] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2015, pp. 3431–3440.

[6] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside
convolutional networks: Visualising image classification models and saliency
maps”. In: arXiv preprint arXiv:1312.6034 (2013).

[7] PyTorch Team. torch/nn/grad.py. Accessed: 2021-07-14. url: https://
github.com/pytorch/pytorch/blob/master/torch/nn/grad.py#L165.

[8] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convo-
lutional networks”. In: European conference on computer vision. Springer.
2014, pp. 818–833.

[9] Matthew D Zeiler et al. “Deconvolutional networks”. In: 2010 IEEE Com-
puter Society Conference on computer vision and pattern recognition. IEEE.
2010, pp. 2528–2535.

8


