
Approximating the unweighted k-set cover
problem: greedy meets local search

Asaf Levin1

Department of Statistics, The Hebrew University, Jerusalem, Israel.
levinas@mscc.huji.ac.il

Abstract. In the unweighted set-cover problem we are given a set of el-
ements E = {e1, e2, . . . , en} and a collection F of subsets of E. The prob-
lem is to compute a sub-collection SOL ⊆F such that

⋃
Sj∈SOL

Sj = E

and its size |SOL| is minimized. When |S| ≤ k for all S ∈ F we obtain
the unweighted k-set cover problem. It is well known that the greedy
algorithm is an Hk-approximation algorithm for the unweighted k-set
cover, where Hk =

∑k

i=1
1
i

is the k-th harmonic number, and that this
bound on the approximation ratio of the greedy algorithm, is tight for
all constant values of k. Since the set cover problem is a fundamental
problem, there is an ongoing research effort to improve this approxi-
mation ratio using modifications of the greedy algorithm. The previous
best improvement of the greedy algorithm is an

(
Hk − 1

2

)
-approximation

algorithm. In this paper we present a new
(
Hk − 196

390

)
-approximation al-

gorithm for k ≥ 4 that improves the previous best approximation ratio
for all values of k ≥ 4. Our algorithm is based on combining local search
during various stages of the greedy algorithm.

1 Introduction

In the weighted set-cover problem we are given a set of elements E =
{e1, e2, . . . , en} and a collection F of subsets of E, where ∪S∈FS = E and
each S ∈ F has a positive cost cS . The goal is to compute a sub-collection
SOL ⊆ F such that

⋃
S∈SOL S = E and its cost

∑
S∈SOL cS is minimized. Such

a sub-collection of subsets is called a cover. When we consider instances of the
weighted set-cover such that each Sj has at most k elements (|S| ≤ k for all
S ∈ F), we obtain the weighted k-set cover problem. The unweighted
set cover problem and the unweighted k-set cover problem are the
special cases of the weighted set cover and of weighted k-set cover,
respectively, where cS = 1 ∀S ∈ F .

It is well known (see [2]) that a greedy algorithm is an Hk-approximation
algorithm for the weighted k-set cover, where Hk =

∑k
i=1

1
i is the k-th harmonic

number, and that this bound is tight even for the unweighted k-set cover problem
(see, [12, 15]). For unbounded values of k, Slav́ık [19] showed that the approx-
imation ratio of the greedy algorithm for the unweighted set cover problem is
ln n− ln lnn+Θ(1). Feige [5] proved that unless NP ⊆ DTIME(npolylog n) the

unweighted set cover problem cannot be approximated within a factor (1−ε) ln n,
for any ε > 0. Raz and Safra [18] proved that if P 6= NP then for some constant
c, the unweighted set cover problem cannot be approximated within a factor
c log n. This result shows that the greedy algorithm is an asymptotically best
possible approximation algorithm for the weighted and unweighted set cover
problem (unless NP ⊆ DTIME(npolylog n)). The unweighted k-set cover prob-
lem is known to be NP-complete [13] and MAX SNP-hard for all k ≥ 3 [3, 14,
16]. Another algorithm for the weighted set cover problem by Hochbaum [10]
has an approximation ratio that depends on the maximum number of subsets
that contain any given item (the local-ratio algorithm of Bar-Yehuda and Even
[1] has the same performance guarantee). See Paschos [17] for a survey on these
results.

In spite of the above bad news Goldschmidt, Hochbaum and Yu [7] modified
the greedy algorithm for the unweighted set cover and showed that the resulting
algorithm has a performance guarantee of Hk − 1

6 . Halldórsson [8] presented
an algorithm based on local search that has an approximation ratio of Hk − 1

3
for the unweighted k-set cover, and a (1.4 + ε)-approximation algorithm for
the unweighted 3-set cover. Duh and Fürer [4] further improved this result and
presented an (Hk − 1

2)-approximation algorithm for the unweighted k-set cover.
We will base our algorithm on the algorithm of Duh and Fürer [4], and therefore
we will review their algorithm and results in Section 3. All of these improvements
[7, 8, 4] are based on running the greedy algorithm until each new subset covers
at most t new elements (where t = 2 in [7] and larger values of t in [8, 4]) and
then switch to another algorithm.

Regarding approximation algorithms for the weighted k-set cover problem
within a factor better than Hk, a first improvement step was given by Fujito
and Okumura [6] who presented Hk − 1

12 -approximation algorithm for the k-
set cover problem where the cost of each subset is either 1 or 2. More recently,
Hassin and Levin [9] provided an

(
Hk − k−1

8k9

)
-approximation algorithm.

The maximum set packing problem is the following related problem: We
are given a set of elements E = {e1, e2, . . . , en} and a collection F of subsets of E,
where ∪S∈FS = E, and the goal is to compute a maximum size set packing, i.e., a
sub-collection F ′⊆ F of disjoint subsets. Hurkens and Schrijver [11] proved that
a local-search algorithm for the maximum set packing problem where each subset
in F has at most k elements, is a

(
2
k − ε

)
-approximation algorithm. Therefore,

this local-search algorithm has a better performance guarantee than the greedy
selection rule that returns any maximal sub-collection. The greedy selection rule
has an approximation ratio of 1

k .
We first observe that w.l.o.g., there is an optimal solution to the set cover

problem such that each element is covered by exactly one subset of the optimum:
Let an optimal solution to the problem consist of a collection of sets S∗j , j ∈
J∗, with ∪j∈J∗S

∗
j = E. We now construct another optimal solution formed of

element-disjoint sets S′j where S′j ⊆ S∗j for all j ∈ J∗. To do that, we assign
each element e ∈ E to the smallest index set S∗j , j ∈ J∗ that contains e. We
modify the instance by adding the sets S′j for all j to the collection F . If the

algorithm or the optimal solution decides to pick such a set S′j , we interpret
this as picking the set S∗j . Henceforth, any optimal solution will be considered
to have this disjointness property, so each e ∈ E∗ belongs to exactly one set S∗j .
We consider an optimal solution OPT that satisfies the disjointness property.

We define a j-set to be a set with j elements. We fix an optimal solution
OPT , and we say that a k-set is an optimal k-set if it is contained in OPT .

Paper overview: In Section 2 we review the greedy algorithm for the un-
weighted minimum k-set cover problem, and its analysis. In Section 3 we review
the semi-local optimization algorithm of [4]. In Section 4 we present our im-
proved algorithm. We analyze its performance in Section 5, i.e., we show that
our algorithm is an

(
Hk − 196

390

)
-approximation algorithm for the unweighted k-

set cover problem where k ≥ 4, improving the earlier
(
Hk − 1

2

)
-approximation

algorithm of [4]. We conclude in Section 6 by discussing open questions.

2 The greedy algorithm

In this section we review the greedy algorithm for the unweighted k-set cover
problem and the proof of its performance guarantee.

The greedy algorithm starts with an empty collection of subsets in the solu-
tion and no item being covered. Then, it iterates the following procedure until
all items are covered:

Let wS be the number of uncovered items in a set S ∈ F , and the current
ratio of S is rS = 1

wS
. Let S∗ be a set such that rS∗ is minimized. The algorithm

adds S∗ to the collection of subsets of the solution, defines the items of S∗ as
covered, and assigns a price of rS∗ to all the items that are now covered but were
uncovered prior to this iteration (i.e., the items that were first covered by S∗).

Johnson [12], Lovász [15] and Chvátal [2] showed that the greedy algorithm
is an Hk-approximation algorithm for the unweighted k-set cover.

Chvátal’s proof is the following: first note that the cost of the greedy solution
equals the sum of prices assigned to the items. Second, consider a set S that
belongs to an optimal solution OPT . Then, OPT pays 1 for S. When the i-th
item of S is covered by the greedy algorithm, the algorithm could choose S as a
feasible set with a current ratio of 1

|S|−i+1 . Therefore, the price assigned to the
this item is at most 1

|S|−i+1 . It follows that the total price assigned to the items

of S is at most
∑|S|

i=1
1

|S|−i+1 =
∑|S|

i′=1
1
i′ ≤ Hk, and therefore, the approximation

ratio of the greedy algorithm is at most Hk.

3 The semi-local optimization algorithm

Duh and Fürer [4] suggested the following procedure to approximate the un-
weighted 3-set cover problem. In a pure local improvement step, we replace a
number of sets with fewer sets to form a new cover with a reduced cost. To define
a semi-local step, they observed that once the 3-sets are selected the remaining
instance can be solved optimally in polynomial time. Thus a local change in the

3-sets allows any global changes in the 2-sets and 1-sets and such a change is
called a semi-local change.

They allowed the algorithm to remove one 3-set and insert at most a pair
of 3-sets if one of the following happens: either the total cost is reduced, or the
total cost remains the same and the number of 1-sets in the resulting solution
is reduced (thus the total cost is the primary objective whereas the number of
1-sets is a secondary objective). This results in the approximation algorithm for
the unweighted 3-set cover of [4]. They showed that this is a 4

3 -approximation
algorithm. More precisely, the following proposition was proved in [4].

Proposition 1. Assume that an optimal solution for the unweighted 3-set cover
instance has b1, b2, and b3 1-sets, 2-sets and 3-sets, respectively. Then the solu-
tion that the semi-local optimization algorithm returns, costs at most b1+b2+ 4

3b3.
Moreover, the number of 1-sets in the solution that the algorithm returns, is at
most b1.

In order to extend their result to larger values of k, they suggested the fol-
lowing algorithm:

1. Greedy Phase For j = k down to 6 do:
greedily choose a maximal collection of j-sets.

2. Restricted Phase For j = 5 down to 4 do:
choose a maximal collection of j-sets with the restriction that the choice of
these j-sets does not increase the number of 1-sets.

3. Semi-local Optimization Phase Run the semi-local optimization algo-
rithm on the remaining instance.

Note that the following question is answered within polynomial time during
the Restricted phase: Does the addition of a j-set S to the current solution in-
crease the number of 1-sets in the resulting solution (returned by the algorithm)?
Duh and Fürer proved that this algorithm is an

(
Hk − 1

2

)
-approximation, and

they also showed that this bound is tight for the semi-local optimization algo-
rithm.

4 The algorithm

In this section we present our modification of the semi-local optimization algo-
rithm where we use a local-search algorithm during the phase where each new
set covers exactly four previously uncovered elements.

Algorithm A:

1. Greedy Phase For j = k down to 6 do:
greedily choose a maximal collection of disjoint j-sets (each covering exactly
j new elements).

2. Restricted Phase Choose a maximal collection of disjoint 5-sets with the
restriction that the choice of these 5-sets does not increase the number of
1-sets.

3. Local-Search Phase Choose a collection of disjoint 4-sets such that the
choice of these 4-sets does not increase the number of 1-sets and this col-
lection has a local maximum size. The requirement of local maximum size
means that removing a 4-set from this collection does not allow us to add at
least a pair of 4-sets (without increasing the number of 1-sets).

4. Semi-Local Optimization Phase Run the semi-local optimization algo-
rithm on the remaining instance.

In Phase 3 we are using local-search whose neighborhood is defined by re-
moving one 4-set and inserting at least a pair of 4-sets as long as the number
of 1-sets in the returned solution does not increase. The use of this local-search
procedure is motivated by the approximation algorithm of [11] for the maxi-
mum set packing problem. This improved phase is the corner stone on which
our improved approximation ratio is based.

Each iteration takes polynomial time because checking whether the number
of 1-sets in the resulting solution increases, takes polynomial time. Therefore,
Algorithm A is a polynomial time algorithm that returns a feasible solution.
Therefore, we establish the following lemma:

Lemma 1. For every value of k, Algorithm A returns a feasible solution in
polynomial time.

In the next section we analyze the performance guarantee of Algorithm A.

5 The analysis of Algorithm A

In this section we analyze the performance guarantee of Algorithm A. We con-
sider an optimal solution OPT , and bound the performance guarantee of A.
Recall that we assume that OPT is a partition of the element set E. We now
further characterize the structure of OPT .

Lemma 2. W.l.o.g., each set of OPT is a k-set.

Proof. Assume that the claim does not hold on an instance I. We create a new
instance I ′ such that the optimal solution OPT ′ for I ′ costs k times the cost of
OPT , and the solution returned by A on I ′ costs more than k times the solution
returned by algorithm A on I, and we will conclude that if there is a bad example
for the algorithm there is a bad example for the algorithm that shows the same
approximation ratio such that the property of the lemma holds.

To do so we first take k disjoint copies of the instance I. Clearly, the optimal
solution ˆOPT for this new instance costs exactly k times the cost of OPT , and
it is a union of k copies of OPT . Then, we add new elements to ˆOPT ’s existing
sets so that each set in this sub-collection is a k-set. Note that the number of the
new elements is divisible by k. Last, we add new k-sets of these new elements,
such that the algorithm picks these new k-sets (of the new elements) in its first
steps, and then continue like it acts on I on each of the k copies of I. Therefore,
OPT ′ costs exactly k times the cost of OPT (we can use the sets of ˆOPT that

we increased), however the cost of the solution returned by A on I ′ is strictly
larger than k times the cost of the solution returned by A on I. ut

Next, we allocate a price for each element in the following way:

– For an element that is covered by an i-set during Phases 1, 2 and 3 of
Algorithm A, we allocate a price of 1

i .
– We consider special 2-sets and 3-sets that are named sibling 2-sets defined as

follows (see [4] for introduction of this term): a 2-set or a 3-set S chosen by
the semi-local optimization phase such that one of the elements in S is the
last uncovered element of an optimal k-set (this element is called the primary
element) and the remaining elements of S belong to a common optimal k-set
(i.e., to the same set in the optimal solution). The elements of a sibling 2-set
that are not primary are called secondary elements. A sibling 2-set is the
result of the fact that the Semi-Local Optimization phase does not create a
new singleton, and therefore, if an optimal k-set has k − 1 covered elements
at the end of Phase 3 out of which at least one is covered during Phases 2 or
3, then the last element belongs to at least a 2-set (and is not a singleton).
We allocate a cost of α = 4

5 for the primary element of a sibling 2-set, and
for each of its secondary elements we allocate a cost of 1− α = 1

5 .
– For the other elements that we cover during Phase 4, we assign at most a unit

price for each selected set such that the following holds (such an allocation
of prices is feasible according to Proposition 1):
• For each three elements that belong to a common k-set of OPT , are

covered during Phase 4, and do not intersect with a sibling 2-set, we
assign a total price of 4

3 .
• For each pair of elements that belong to a common k-set of OPT , are

covered during Phase 4, and do not intersect with a sibling 2-set, we
assign a total price of one unit.

By the allocation of the prices and Proposition 1, we conclude the following
lemma:

Lemma 3. The cost of the solution returned by Algorithm A is at most the total
price of all the elements.

Next, we define a bad set. Given an optimal k-set S, if k ≥ 5, then S is a bad
set if at the end of Phase 1 S has exactly five uncovered elements from which
exactly one element is covered during Phase 3 and one of the following holds:
Either exactly one element of S is covered during Phase 2 and none of the three
remaining elements belongs to a sibling 2-set, or none of the elements of S is
covered during Phase 2 and exactly one element of S belongs to a sibling 2-set.
If k = 4, then S is a bad set if exactly one of its elements is covered during Phase
3. An optimal k-set that is not bad is a good set.

The outline of the proof of our improved approximation ratio is as follows:
in Lemma 4 we will prove that the total price of an optimal set is better than
Hk − 1

2 if the optimal set is good and it equals Hk − 1
2 for bad sets. Afterwards,

in Lemma 5 we will show that there is a constant proportion of the optimal sets
that have to be good sets. Combining the two results together we will establish
our improved approximation ratio.

Lemma 4. Assume that k ≥ 4. The total price assigned to an optimal bad k-set
is at most ρb = Hk − 1

2 . The total price assigned to an optimal good k-set is at
most ρg = Hk − 16

30 .

Proof. Let S be an optimal k-set. Denote by price(S) the total price assigned to
the elements of S. First assume that S is a bad set. If k ≥ 5, then the j-th covered
element from S during Phase 1 is assigned a price of at most 1

k−j+1 , the element
that is covered during Phase 2 is assigned a price of 1

5 (if it exists), the element
that belongs to a sibling 2-set is assigned a price of 1

5 (if it exists), the element
that is covered during Phase 3 is assigned a price of 1

4 , and the remaining three
elements are assigned a total price of at most 4

3 . Hence, price(S) ≤ ∑k
i=6

1
i +

1
5 + 1

4 + 4
3 = Hk − 1

2 = ρb. If k = 4, then S has a single element covered during
Phase 3 that pays a price of 1

4 and the three remaining elements are assigned a
total price of at most 4

3 . So again price(S) ≤ Hk − 1
2 = ρb.

It remains to prove the second part of the lemma regarding the total price
of a good set. So assume that S is a good set. We denote by Ng the number of
elements of S that remains uncovered at the end of Phase 1. We denote by Nr

(Nl) the number of elements of S that are covered during Phase 2 (Phase 3).
Our proof is based on a detailed case analysis.

First assume that k = 4. Then, the Greedy phase and the Restricted phase
do not select sets, and therefore Ng = 4 and Nr = 0.

– Assume that Nl = 4. Then, each element of S is covered during Phase 3 and
pays a price of 1

4 . Therefore, price(S) = 1 < H4 − 16
30 = ρg.

– Assume that Nl = 3. Then, each element of S that is covered during Phase 3
pays a price of 1

4 , and the remaining element pays a price of at most 4
5 (this is

because since no singletons are created, this remaining element either belongs
to a sibling 2-set and then it pays at most 4

5 , or it belongs to a 3-set and in this
case it pays 1

3). Therefore, price(S) ≤ 3
4 + 4

5 = 93
60 = 125

60 − 32
60 = H4− 16

30 = ρg.
– Assume that Nl = 2. Then, each element of S that is covered during Phase

3 pays a price of 1
4 . The two remaining elements pay a total price of at most

1. Thus, price(S) ≤ 3
2 < ρg.

– Assume that Nl = 1. Then, the element of S that is covered during Phase
3, pays a price of 1

4 . Since S is a good set, it contains at least one element
that belongs to a sibling 2-set that pays 1

5 (since Nl = 1, it is not the
primary element). The other two elements of S have total price of at most
1. Therefore, price(S) ≤ 1

4 + 1
5 + 1 = 87

60 < 93
60 = ρg.

– Assume that Nl = 0. Since S is not added to the solution during Phase 3, it
must contain an element that belongs to a sibling 2-set, and pays a price of 1

5 .
The other three elements pay a total price of at most 4

3 (this is also the case if
some of them belong to sibling 2-sets). Therefore, price(S) ≤ 1

5+ 4
3 = 92

60 < ρg

It remains to consider the case where k ≥ 5. First note that by the greedy
selection rule during the greedy phase, we conclude that Ng ≤ 5. Moreover, the
j-th covered element from S during the greedy phase (for 1 ≤ j ≤ k − 5) is
assigned a price of at most 1

k−j+1 . Moreover, since the Restricted phase and the
Local-Search phase do not create new singletons, we conclude that if Ng ≥ 2,
then the maximum price of an element of S is at most 4

5 .

– Assume that Ng ≤ 2. Then, the k − 4-th, the k − 3-rd, and the k − 2-nd
covered elements from S are covered during Phase 1, and therefore assigned
a price of at most 1

6 for each. The last two elements of S are assigned a total
price of at most 4

5 + 1
4 (this is the case where one of them is covered during

Phase 3 and the last element is from sibling 2-set, and the other cases cause
a smaller cost). Therefore, price(S) ≤ Hk−H5 + 3

6 + 4
5 + 1

4 = Hk−H5 + 31
20 =

Hk − 137
60 + 93

60 = Hk − 44
60 < ρg.

– Assume that Ng = 3. Then, the k − 4-th and the k − 3-rd covered elements
from S are covered during Phase 1, and therefore assigned a price of at most
1
6 for each.
• If Nr + Nl = 0, then the last three elements of S are covered during

Phase 4, and pay a total price of at most 4
3 . Therefore, price(S) ≤

Hk −H5 + 2
6 + 4

3 = Hk − 137
60 + 5

3 = Hk − 37
60 < ρg.

• If Nr +Nl = 1, then the last two elements of S are covered during Phase
4, and pay a total price of at most 1. The k−2-nd element of S is covered
during either Phase 2 or Phase 3, and so it pays a price of at most 1

4 .
Therefore, the last three elements of S pay a total price of at most 5

4 < 4
3

and again price(S) < ρg.
• If Nr + Nl = 2, then the last uncovered element pays at most 4

5 (if it
belongs to a sibling 2-set, and otherwise it pays less). The k − 2-nd and
the k − 1-st covered elements from S are covered during either Phase 2
or Phase 3, and therefore each of these is assigned a price of at most 1

4 .
Again the last three elements of S pay at most 4

5 + 2
4 < 4

3 , and therefore
price(S) < ρg.

• If Nr + Nl = 3, then each of the last three elements of S pays a price of
at most 1

4 , and in total they pay less than 4
3 . Therefore, price(S) < ρg.

– Assume that Ng = 4. Then, the k − 4-th covered element from S is covered
during Phase 1, and therefore pays a price of at most 1

6 . Among the last
four elements of S there is at least one element that pays at most 1

4 . To see
this fact note that if none of the elements of S belong to a set that is chosen
during Phase 2 or Phase 3, then S has an element that belongs to a sibling
2-set (otherwise, we add S to the solution during Phase 3 contradicting the
maximality of the collection that we choose during Phase 3), and in each
of these cases the element pays at most 1

4 . The other three elements pay at
most max{ 4

3 , 4
5 + 2

4} = 4
3 . Therefore, price(S) ≤ Hk − H5 + 1

6 + 1
4 + 4

3 =
Hk − 137

60 + 105
60 = Hk − 32

60 = ρg.
– Assume that Ng = 5.

• Assume that Nr = Nl = 0. By the maximality of the sets chosen during
Phase 3, we conclude that S has at least two elements that belong to

sibling 2-sets, and therefore each of these pays 1
5 . The other three ele-

ments of S pay at most 4
3 . Therefore, price(S) ≤ Hk − H5 + 2

5 + 4
3 =

Hk − 137
60 + 104

60 = Hk − 33
60 < ρg.

• Assume that Nr = 1 and Nl = 0. The element of S that is covered
during Phase 2, pays a price of 1

5 . By the maximality of the sets chosen
during Phase 3, we conclude that S has an element that belongs to a
sibling 2-set and pays 1

5 . The remaining three elements pay at most 4
3 .

Therefore, price(S) ≤ Hk −H5 + 1
5 + 1

5 + 4
3 = Hk − 33

60 < ρg.
• Assume that Nr ≥ 2. The elements of S that are covered during Phase

2 pay a price of 1
5 each. The last three elements pay a total price of at

most 4
3 . Therefore, price(S) ≤ Hk −H5 + 2

5 + 4
3 = Hk − 33

60 < ρg.
• Assume that Nr ≤ 1 and Nl = 1. Since S is a good set, we conclude

that either Nr = 1 and S has an element that belongs to a sibling 2-
set, or S has at least two elements that belong to sibling 2-sets. The
element of S that is covered during Phase 2 (if it exists) pays a price
of 1

5 , the element of S that is covered during Phase 3 pays a price of
1
4 , and each element of S that belongs to a sibling 2-set pays 1

5 . The
two last remaining elements have a total price of at most 1. Therefore,
price(S) ≤ Hk −H5 + 1

5 + 1
4 + 1

5 + 1 = Hk − 137
60 + 99

60 = Hk − 38
60 < ρg.

• Assume that Nr ≤ 1 and Nl = 2. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0 then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has an
element that pays 1

5 (this is the one that is covered during Phase 2, or
the one that belongs to a sibling 2-set). Each of the elements of S that is
covered during Phase 3, pays a price of 1

4 . The two remaining elements
pay a total price of 1. Therefore, price(S) ≤ Hk − H5 + 1

5 + 2
4 + 1 =

Hk − 137
60 + 102

60 = Hk − 35
60 < ρg.

• Assume that Nr ≤ 1 and Nl = 3. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0, then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has an
element that pays 1

5 (this is the one that is covered during Phase 2, or
the one that belongs to a sibling 2-set). Each of the elements of S that is
covered during Phase 3, pays a price of 1

4 . The remaining element pays
at most 4

5 . Therefore, price(S) ≤ Hk−H5+ 1
5 + 3

4 + 4
5 = Hk− 137

60 + 105
60 =

Hk − 32
60 = ρg.

• Assume that Nr ≤ 1 and Nl = 4. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0, then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has
an element that pays 1

5 (this is the one that is covered during Phase 2,
or the one that belongs to a sibling 2-set). Each of the elements of S
that is covered during Phase 3, pays a price of 1

4 . Therefore, price(S) ≤
Hk −H5 + 1

5 + 4
4 = Hk − 137

60 + 72
60 = Hk − 65

60 < ρg.
ut

Denote by nb the number of bad sets in OPT and by ng the number of good
sets in OPT .

Lemma 5. nb ≤ 12ng.

Proof. Consider a bad set S in OPT . At the beginning of Phase 3, S has four
uncovered elements such that none of these belong to a sibling 2-set. Since S is
a bad set we cover exactly one of its elements during Phase 3. Consider a set S′

chosen in Phase 3. Then, there is a good set S′′ ∈ OPT such that S′′ ∩ S′ 6= ∅.
To see this note that otherwise during Phase 3 we could replace S′ by the bad
sets it intersects (each such set has four elements that consist of a 4-set that we
could add to the solution without increasing the number of singletons). Since
we did not apply this step, we conclude that at least one of its intersecting sets
from OPT is a good set.

A good set S ∈ OPT can intersect at most four sets that we choose during
Phase 3. These four sets can intersects at most 12 other sets of OPT . These 12
sets might be bad sets. Therefore, the claim follows. ut
Theorem 1. Algorithm A is a

(
Hk − 196

390

)
-approximation algorithm for the un-

weighted k-set cover problem.

Proof. By Lemma 1, the algorithm returns a feasible solution in polynomial
time. It remains to establish its approximation ratio.

A ≤ ng · ρg + nb · ρb

= ng ·
(

Hk − 16
30

)
+ nb ·

(
Hk − 1

2

)

≤ (ng + nb) ·
[

1
13
·
(

Hk − 16
30

)
+

12
13
·
(

Hk − 1
2

)]

= OPT ·
[

1
13
·
(

Hk − 16
30

)
+

12
13
·
(

Hk − 1
2

)]

= OPT ·
(

Hk − 196
390

)
,

where the first inequality follows by Lemma 3, the first equation follows by
Lemma 4, the second inequality follows by Lemma 5, the second equation follows
because the cost of OPT is exactly nb + ng, and the last equation follows by
simple algebra. ut

6 Concluding remarks

In this paper we addressed the fundamental problem of unweighted k-set cover
problem, and introduced an improvement over the previously best known algo-
rithm for all values of k such that k ≥ 4. Although we obtain a small improvement
over the algorithm of Duh and Fürer [4], we think that our analysis is not tight
and the approximation ratio of our algorithm can be improved. Improving the
analysis of our Algorithm A is left for future research.

In this paper we showed that incorporating a local-search procedure in var-
ious stages of the greedy algorithm instead of only where each set has at most

three uncovered elements, provides a better approximation ratio. We conjecture
that incorporating local-search procedures in each greedy phase decreases the
approximation ratio further. Such an algorithm replaces the Greedy phase by
the following phase:
Improved phase: For j = k, k− 1, k− 2, . . . , 6 do: apply local-search to choose
an approximated maximum size collection of j-sets (each covering exactly j new
elements).
It is easily noted that using the Improved phase instead of the Greedy phase in
Algorithm A does not harm the approximation ratio of the resulting algorithm.
We leave the analysis of this improved algorithm for future research.

References

1. R. Bar-Yehuda and S. Even, ”A linear time approximation algorithm for the
weighted vertex cover problem,” Journal of Algorithms, 2, 198-203, 1981.

2. V. Chvátal, ”A greedy heuristic for the set-covering problem,” Mathematics
of Operations Research, 4, 233-235, 1979.

3. P. Crescenzi and V. Kann, ”A compendium of NP optimization problems”,
http://www.nada.kth.se/theory/problemlist.html, 1995.

4. R. Duh and M. Fürer, ”Approximation of k-set cover by semi local optimiza-
tion,” Proc. STOC 1997, 256-264, 1997.

5. U. Feige, “A threshold of ln n for approximating set cover”, Journal of the
ACM, 45, 634-652, 1998.

6. T. Fujito and T. Okumura, ”A modified greedy algorithm for the set cover
problem with weights 1 and 2,” Proc. ISAAC 2001, 670-681, 2001.

7. O. Goldschmidt, D. S. Hochbaum and G. Yu, ”A modified greedy heuristic
for the set covering problem with improved worst case bound,” Information
Processing Letters, 48, 305-310, 1993.

8. M. M. Halldórsson, ”Approximating k set cover and complementary graph
coloring,” Proc. IPCO 1996, 118-131, 1996.

9. R. Hassin and A. Levin, ” A better-than-greedy approximation algorithm for
the minimum set cover problem,” SIAM J. Computing, 35, 189-200, 2006.

10. D. S. Hochbaum, ”Approximation algorithms for the weighted set covering
and node cover problems,” SIAM Journal on Computing, 11, 555-556, 1982.

11. C. A. J. Hurkens and A. Schrijver, “On the size of systems of sets every t of
which have an SDR, with an application to the worst-case ratio of heuristics for
packing problems”, SIAM Journal on Discrete Mathematics, 2, 68-72, 1989.

12. D. S. Johnson, ”Approximation algorithms for combinatorial problems,” Jour-
nal of Computer and System Sciences, 9, 256-278, 1974.

13. R. M. Karp, ”Reducibility among combinatorial problems,” Complexity of
computer computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press,
New-York, 1972, 85-103.

14. S. Khanna, R. Motwani, M. Sudan and U. V. Vazirani, ”On syntactic versus
computational views of approximability,” SIAM Journal on Computing, 28,
164-191, 1998.

15. L. Lovász, ”On the ratio of optimal integral and fractional covers,” Discrete
Mathematics, 13, 383-390, 1975.

16. C. H. Papadimitriou and M. Yannakakis, ”Optimization, approximation and
complexity classes,” Journal of Computer System Sciences, 43, 425-440, 1991.

17. V. T. Paschos, ”A survey of approximately optimal solutions to some covering
and packing problems,” ACM Computing Surveys, 29, 171-209, 1997.

18. R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and
sub-constant error-probability PCP characterization of NP”, Proc. STOC
1997, 475-484, 1997.

19. P. Slav́ık, ”A tight analysis of the greedy algorithm for set cover,” Journal of
Algorithms, 25, 237-254, 1997.

