Skip to content
This repository has been archived by the owner on Jul 16, 2021. It is now read-only.
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
//! Logistic Regression module
//!
//! Contains implemention of logistic regression using
//! gradient descent optimization.
//!
//! The regressor will automatically add the intercept term
//! so you do not need to format the input matrices yourself.
//!
//! # Usage
//!
//! ```
//! use rusty_machine::learning::logistic_reg::LogisticRegressor;
//! use rusty_machine::learning::SupModel;
//! use rusty_machine::linalg::Matrix;
//! use rusty_machine::linalg::Vector;
//!
//! let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
//! let targets = Vector::new(vec![0.,0.,1.,1.]);
//!
//! let mut log_mod = LogisticRegressor::default();
//!
//! // Train the model
//! log_mod.train(&inputs, &targets).unwrap();
//!
//! // Now we'll predict a new point
//! let new_point = Matrix::new(1,1,vec![10.]);
//! let output = log_mod.predict(&new_point).unwrap();
//!
//! // Hopefully we classified our new point correctly!
//! assert!(output[0] > 0.5, "Our classifier isn't very good!");
//! ```
//!
//! We could have been more specific about the learning of the model
//! by using the `new` constructor instead. This allows us to provide
//! a `GradientDesc` object with custom parameters.
use linalg::{Matrix, BaseMatrix};
use linalg::Vector;
use learning::{LearningResult, SupModel};
use learning::toolkit::activ_fn::{ActivationFunc, Sigmoid};
use learning::toolkit::cost_fn::{CostFunc, CrossEntropyError};
use learning::optim::grad_desc::GradientDesc;
use learning::optim::{OptimAlgorithm, Optimizable};
use learning::error::Error;
/// Logistic Regression Model.
///
/// Contains option for optimized parameter.
#[derive(Debug)]
pub struct LogisticRegressor<A>
where A: OptimAlgorithm<BaseLogisticRegressor>
{
base: BaseLogisticRegressor,
alg: A,
}
/// Constructs a default Logistic Regression model
/// using standard gradient descent.
impl Default for LogisticRegressor<GradientDesc> {
fn default() -> LogisticRegressor<GradientDesc> {
LogisticRegressor {
base: BaseLogisticRegressor::new(),
alg: GradientDesc::default(),
}
}
}
impl<A: OptimAlgorithm<BaseLogisticRegressor>> LogisticRegressor<A> {
/// Constructs untrained logistic regression model.
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::logistic_reg::LogisticRegressor;
/// use rusty_machine::learning::optim::grad_desc::GradientDesc;
///
/// let gd = GradientDesc::default();
/// let mut logistic_mod = LogisticRegressor::new(gd);
/// ```
pub fn new(alg: A) -> LogisticRegressor<A> {
LogisticRegressor {
base: BaseLogisticRegressor::new(),
alg: alg,
}
}
/// Get the parameters from the model.
///
/// Returns an option that is None if the model has not been trained.
pub fn parameters(&self) -> Option<&Vector<f64>> {
self.base.parameters()
}
}
impl<A> SupModel<Matrix<f64>, Vector<f64>> for LogisticRegressor<A>
where A: OptimAlgorithm<BaseLogisticRegressor>
{
/// Train the logistic regression model.
///
/// Takes training data and output values as input.
///
/// # Examples
///
/// ```
/// use rusty_machine::learning::logistic_reg::LogisticRegressor;
/// use rusty_machine::linalg::Matrix;
/// use rusty_machine::linalg::Vector;
/// use rusty_machine::learning::SupModel;
///
/// let mut logistic_mod = LogisticRegressor::default();
/// let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]);
/// let targets = Vector::new(vec![5.0, 6.0, 7.0]);
///
/// logistic_mod.train(&inputs, &targets).unwrap();
/// ```
fn train(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>) -> LearningResult<()> {
let ones = Matrix::<f64>::ones(inputs.rows(), 1);
let full_inputs = ones.hcat(inputs);
let initial_params = vec![0.5; full_inputs.cols()];
let optimal_w = self.alg.optimize(&self.base, &initial_params[..], &full_inputs, targets);
self.base.set_parameters(Vector::new(optimal_w));
Ok(())
}
/// Predict output value from input data.
///
/// Model must be trained before prediction can be made.
fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>> {
if let Some(v) = self.base.parameters() {
let ones = Matrix::<f64>::ones(inputs.rows(), 1);
let full_inputs = ones.hcat(inputs);
Ok((full_inputs * v).apply(&Sigmoid::func))
} else {
Err(Error::new_untrained())
}
}
}
/// The Base Logistic Regression model.
///
/// This struct cannot be instantianated and is used internally only.
#[derive(Debug)]
pub struct BaseLogisticRegressor {
parameters: Option<Vector<f64>>,
}
impl BaseLogisticRegressor {
/// Construct a new BaseLogisticRegressor
/// with parameters set to None.
fn new() -> BaseLogisticRegressor {
BaseLogisticRegressor { parameters: None }
}
}
impl BaseLogisticRegressor {
/// Returns a reference to the parameters.
fn parameters(&self) -> Option<&Vector<f64>> {
self.parameters.as_ref()
}
/// Set the parameters to `Some` vector.
fn set_parameters(&mut self, params: Vector<f64>) {
self.parameters = Some(params);
}
}
/// Computing the gradient of the underlying Logistic
/// Regression model.
///
/// The gradient is given by
///
/// X<sup>T</sup>(h(Xb) - y) / m
///
/// where `h` is the sigmoid function and `b` the underlying model parameters.
impl Optimizable for BaseLogisticRegressor {
type Inputs = Matrix<f64>;
type Targets = Vector<f64>;
fn compute_grad(&self,
params: &[f64],
inputs: &Matrix<f64>,
targets: &Vector<f64>)
-> (f64, Vec<f64>) {
let beta_vec = Vector::new(params.to_vec());
let outputs = (inputs * beta_vec).apply(&Sigmoid::func);
let cost = CrossEntropyError::cost(&outputs, targets);
let grad = (inputs.transpose() * (outputs - targets)) / (inputs.rows() as f64);
(cost, grad.into_vec())
}
}