-
Notifications
You must be signed in to change notification settings - Fork 32
/
stb_truetype.d
1217 lines (1068 loc) · 42 KB
/
stb_truetype.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/// D translation of stb_truetype v0.7 by Sean Barrett
/// More information on http://nothings.org/stb/stb_truetype.h
/// Removed:
/// - texture baking API
/// - font finding in the TTF itself. Make sure there is only one font in the TTF.
module dplug.graphics.stb_truetype;
import core.stdc.stdlib : malloc, free;
import core.stdc.string : memcpy, memset;
import core.stdc.math : floorf, ceilf;
import std.math : ceil, floor, sqrt;
import dplug.core.nogc;
import dplug.core.vec;
int ifloor(float x) nothrow @nogc
{
return cast(int)(floorf(x));
}
int iceil(float x) nothrow @nogc
{
return cast(int)(ceilf(x));
}
/// The following structure is defined publically so you can declare one on
/// the stack or as a global or etc, but you should treat it as opaque.
struct stbtt_fontinfo
{
const(ubyte) * data; // pointer to .ttf file
int fontstart; // offset of start of font
int numGlyphs; // number of glyphs, needed for range checking
int loca,head,glyf,hhea,hmtx,kern; // table locations as offset from start of .ttf
int index_map; // a cmap mapping for our chosen character encoding
int indexToLocFormat; // format needed to map from glyph index to glyph
Vec!stbtt__edge edgeBuf; // edge buffer, used in rasterizing
Vec!stbtt__edge edgeScratchBuf; // scratch buffer, used for sorting edges.
}
enum STBTT_vmove = 1,
STBTT_vline = 2,
STBTT_vcurve = 3;
alias stbtt_vertex_type = short;
struct stbtt_vertex
{
stbtt_vertex_type x,y,cx,cy;
ubyte type, padding;
}
struct stbtt__bitmap
{
int w,h,stride;
ubyte *pixels;
}
enum // platformID
STBTT_PLATFORM_ID_UNICODE =0,
STBTT_PLATFORM_ID_MAC =1,
STBTT_PLATFORM_ID_ISO =2,
STBTT_PLATFORM_ID_MICROSOFT =3;
enum // encodingID for STBTT_PLATFORM_ID_MICROSOFT
STBTT_MS_EID_SYMBOL =0,
STBTT_MS_EID_UNICODE_BMP =1,
STBTT_MS_EID_SHIFTJIS =2,
STBTT_MS_EID_UNICODE_FULL =10;
// Accessors to parse data from file
ubyte ttBYTE(const(ubyte)* p) nothrow @nogc
{
return *p;
}
byte ttCHAR(const(ubyte)* p) nothrow @nogc
{
return *p;
}
int ttFixed(const(ubyte)* p) nothrow @nogc
{
return ttLONG(p);
}
ushort ttUSHORT(const(ubyte) *p) nothrow @nogc
{
return p[0]*256 + p[1];
}
short ttSHORT(const(ubyte) *p) nothrow @nogc
{
return cast(short)(p[0]*256 + p[1]);
}
uint ttULONG(const(ubyte) *p) nothrow @nogc
{
return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3];
}
int ttLONG(const(ubyte) *p) nothrow @nogc
{
return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3];
}
bool stbtt_tag4(const(ubyte) *p, ubyte c0, ubyte c1, ubyte c2, ubyte c3) nothrow @nogc
{
return (p[0] == c0 && p[1] == c1 && p[2] == c2 && p[3] == c3);
}
bool stbtt_tag(const(ubyte) *p, string s) nothrow @nogc
{
return stbtt_tag4(p, s[0], s[1], s[2], s[3]);
}
bool stbtt__isfont(const(ubyte) *font) nothrow @nogc
{
// check the version number
if (stbtt_tag4(font, '1',0,0,0))
return true; // TrueType 1
if (stbtt_tag(font, "typ1"))
return true; // TrueType with type 1 font -- we don't support this!
if (stbtt_tag(font, "OTTO"))
return true; // OpenType with CFF
if (stbtt_tag4(font, 0,1,0,0))
return true; // OpenType 1.0
return false;
}
// @OPTIMIZE: binary search
uint stbtt__find_table(const(ubyte)* data, uint fontstart, string tag) nothrow @nogc
{
int num_tables = ttUSHORT(data+fontstart+4);
uint tabledir = fontstart + 12;
for (int i=0; i < num_tables; ++i) {
uint loc = tabledir + 16*i;
if (stbtt_tag(data+loc+0, tag))
return ttULONG(data+loc+8);
}
return 0;
}
/// Each .ttf/.ttc file may have more than one font. Each font has a sequential
/// index number starting from 0. Call this function to get the font offset for
/// a given index; it returns -1 if the index is out of range. A regular .ttf
/// file will only define one font and it always be at offset 0, so it will
/// return '0' for index 0, and -1 for all other indices. You can just skip
/// this step if you know it's that kind of font.
int stbtt_GetFontOffsetForIndex(const(ubyte)* font_collection, int index) nothrow @nogc
{
// if it's just a font, there's only one valid index
if (stbtt__isfont(font_collection))
return index == 0 ? 0 : -1;
// check if it's a TTC
if (stbtt_tag(font_collection, "ttcf")) {
// version 1?
if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) {
int n = ttLONG(font_collection+8);
if (index >= n)
return -1;
return ttULONG(font_collection+12+index*14);
}
}
return -1;
}
/// Given an offset into the file that defines a font, this function builds
/// the necessary cached info for the rest of the system. You must allocate
/// the stbtt_fontinfo yourself, and stbtt_InitFont will fill it out.
int stbtt_InitFont(stbtt_fontinfo* info, const(ubyte)* data2, int fontstart) nothrow @nogc
{
const(ubyte) *data = data2;
uint cmap, t;
int i,numTables;
info.data = data;
info.fontstart = fontstart;
cmap = stbtt__find_table(data, fontstart, "cmap"); // required
info.loca = stbtt__find_table(data, fontstart, "loca"); // required
info.head = stbtt__find_table(data, fontstart, "head"); // required
info.glyf = stbtt__find_table(data, fontstart, "glyf"); // required
info.hhea = stbtt__find_table(data, fontstart, "hhea"); // required
info.hmtx = stbtt__find_table(data, fontstart, "hmtx"); // required
info.kern = stbtt__find_table(data, fontstart, "kern"); // not required
if (!cmap || !info.loca || !info.head || !info.glyf || !info.hhea || !info.hmtx)
return 0;
t = stbtt__find_table(data, fontstart, "maxp");
if (t)
info.numGlyphs = ttUSHORT(data+t+4);
else
info.numGlyphs = 0xffff;
// find a cmap encoding table we understand *now* to avoid searching
// later. (todo: could make this installable)
// the same regardless of glyph.
numTables = ttUSHORT(data + cmap + 2);
info.index_map = 0;
for (i=0; i < numTables; ++i) {
uint encoding_record = cmap + 4 + 8 * i;
// find an encoding we understand:
switch(ttUSHORT(data+encoding_record))
{
case STBTT_PLATFORM_ID_MICROSOFT:
switch (ttUSHORT(data+encoding_record+2))
{
case STBTT_MS_EID_UNICODE_BMP:
case STBTT_MS_EID_UNICODE_FULL:
// MS/Unicode
info.index_map = cmap + ttULONG(data+encoding_record+4);
break;
default:
assert(0);
}
break;
default:
break;
}
}
if (info.index_map == 0)
return 0;
info.indexToLocFormat = ttUSHORT(data+info.head + 50);
info.edgeBuf = makeVec!stbtt__edge();
info.edgeScratchBuf = makeVec!stbtt__edge();
return 1;
}
void stbtt_FreeFont(stbtt_fontinfo* info) nothrow @nogc
{
destroyNoGC(info.edgeBuf);
destroyNoGC(info.edgeScratchBuf);
}
/// If you're going to perform multiple operations on the same character
/// and you want a speed-up, call this function with the character you're
/// going to process, then use glyph-based functions instead of the
/// codepoint-based functions.
int stbtt_FindGlyphIndex(const(stbtt_fontinfo) *info, int unicode_codepoint) nothrow @nogc
{
const(ubyte)* data = info.data;
uint index_map = info.index_map;
ushort format = ttUSHORT(data + index_map + 0);
if (format == 0) { // apple byte encoding
int bytes = ttUSHORT(data + index_map + 2);
if (unicode_codepoint < bytes-6)
return ttBYTE(data + index_map + 6 + unicode_codepoint);
return 0;
} else if (format == 6) {
uint first = ttUSHORT(data + index_map + 6);
uint count = ttUSHORT(data + index_map + 8);
if (cast(uint) unicode_codepoint >= first && cast(uint)unicode_codepoint < first+count)
return ttUSHORT(data + index_map + 10 + (unicode_codepoint - first)*2);
return 0;
} else if (format == 2) {
assert(0); // @TODO: high-byte mapping for japanese/chinese/korean
} else if (format == 4) { // standard mapping for windows fonts: binary search collection of ranges
ushort segcount = ttUSHORT(data+index_map+6) >> 1;
ushort searchRange = ttUSHORT(data+index_map+8) >> 1;
ushort entrySelector = ttUSHORT(data+index_map+10);
ushort rangeShift = ttUSHORT(data+index_map+12) >> 1;
ushort item, offset, start, end;
// do a binary search of the segments
uint endCount = index_map + 14;
uint search = endCount;
if (unicode_codepoint > 0xffff)
return 0;
// they lie from endCount .. endCount + segCount
// but searchRange is the nearest power of two, so...
if (unicode_codepoint >= ttUSHORT(data + search + rangeShift*2))
search += rangeShift*2;
// now decrement to bias correctly to find smallest
search -= 2;
while (entrySelector) {
ushort start2, end2;
searchRange >>= 1;
start2 = ttUSHORT(data + search + 2 + segcount*2 + 2);
end2 = ttUSHORT(data + search + 2);
start2 = ttUSHORT(data + search + searchRange*2 + segcount*2 + 2);
end2 = ttUSHORT(data + search + searchRange*2);
if (unicode_codepoint > end2)
search += searchRange*2;
--entrySelector;
}
search += 2;
item = cast(ushort) ((search - endCount) >> 1);
assert(unicode_codepoint <= ttUSHORT(data + endCount + 2*item));
start = ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item);
end = ttUSHORT(data + index_map + 14 + 2 + 2*item);
if (unicode_codepoint < start)
return 0;
offset = ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item);
if (offset == 0)
return cast(ushort) (unicode_codepoint + ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item));
return ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item);
} else if (format == 12 || format == 13) {
uint ngroups = ttULONG(data+index_map+12);
int low,high;
low = 0;
high = ngroups;
// Binary search the right group.
while (low < high) {
int mid = low + ((high-low) >> 1); // rounds down, so low <= mid < high
uint start_char = ttULONG(data+index_map+16+mid*12);
uint end_char = ttULONG(data+index_map+16+mid*12+4);
if (unicode_codepoint < start_char)
high = mid;
else if (unicode_codepoint > end_char)
low = mid+1;
else {
uint start_glyph = ttULONG(data+index_map+16+mid*12+8);
if (format == 12)
return start_glyph + unicode_codepoint-start_char;
else // format == 13
return start_glyph;
}
}
return 0; // not found
}
// @TODO
assert(0);
}
/// Returns: Number of vertices and fills *vertices with the pointer to them.
/// These are expressed in "unscaled" coordinates.
int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices) nothrow @nogc
{
return stbtt_GetGlyphShape(info, stbtt_FindGlyphIndex(info, unicode_codepoint), vertices);
}
void stbtt_setvertex(stbtt_vertex *v, ubyte type, int x, int y, int cx, int cy) nothrow @nogc
{
v.type = type;
v.x = cast(short) x;
v.y = cast(short) y;
v.cx = cast(short) cx;
v.cy = cast(short) cy;
}
int stbtt__GetGlyfOffset(const stbtt_fontinfo *info, int glyph_index) nothrow @nogc
{
int g1,g2;
if (glyph_index >= info.numGlyphs) return -1; // glyph index out of range
if (info.indexToLocFormat >= 2) return -1; // unknown index.glyph map format
if (info.indexToLocFormat == 0) {
g1 = info.glyf + ttUSHORT(info.data + info.loca + glyph_index * 2) * 2;
g2 = info.glyf + ttUSHORT(info.data + info.loca + glyph_index * 2 + 2) * 2;
} else {
g1 = info.glyf + ttULONG (info.data + info.loca + glyph_index * 4);
g2 = info.glyf + ttULONG (info.data + info.loca + glyph_index * 4 + 4);
}
return g1==g2 ? -1 : g1; // if length is 0, return -1
}
/// As above, but takes one or more glyph indices for greater efficiency
int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1) nothrow @nogc
{
int g = stbtt__GetGlyfOffset(info, glyph_index);
if (g < 0) return 0;
if (x0) *x0 = ttSHORT(info.data + g + 2);
if (y0) *y0 = ttSHORT(info.data + g + 4);
if (x1) *x1 = ttSHORT(info.data + g + 6);
if (y1) *y1 = ttSHORT(info.data + g + 8);
return 1;
}
/// Gets the bounding box of the visible part of the glyph, in unscaled coordinates
int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1) nothrow @nogc
{
return stbtt_GetGlyphBox(info, stbtt_FindGlyphIndex(info,codepoint), x0,y0,x1,y1);
}
/// Returns: non-zero if nothing is drawn for this glyph
int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index) nothrow @nogc
{
short numberOfContours;
int g = stbtt__GetGlyfOffset(info, glyph_index);
if (g < 0) return 1;
numberOfContours = ttSHORT(info.data + g);
return numberOfContours == 0;
}
int stbtt__close_shape(stbtt_vertex *vertices, int num_vertices, int was_off, int start_off,
int sx, int sy, int scx, int scy, int cx, int cy) nothrow @nogc
{
if (start_off) {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy);
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, sx,sy,scx,scy);
} else {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve,sx,sy,cx,cy);
else
stbtt_setvertex(&vertices[num_vertices++], STBTT_vline,sx,sy,0,0);
}
return num_vertices;
}
/// Returns: Number of vertices and fills *vertices with the pointer to them.
/// These are expressed in "unscaled" coordinates.
int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices) nothrow @nogc
{
short numberOfContours;
const(ubyte)* endPtsOfContours;
const(ubyte)* data = info.data;
stbtt_vertex* vertices = null;
int num_vertices=0;
int g = stbtt__GetGlyfOffset(info, glyph_index);
*pvertices = null;
if (g < 0) return 0;
numberOfContours = ttSHORT(data + g);
if (numberOfContours > 0) {
ubyte flags=0,flagcount;
int ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0;
int x,y,cx,cy,sx,sy, scx,scy;
const(ubyte)* points;
endPtsOfContours = (data + g + 10);
ins = ttUSHORT(data + g + 10 + numberOfContours * 2);
points = data + g + 10 + numberOfContours * 2 + 2 + ins;
n = 1+ttUSHORT(endPtsOfContours + numberOfContours*2-2);
m = n + 2*numberOfContours; // a loose bound on how many vertices we might need
vertices = cast(stbtt_vertex *) malloc(m * stbtt_vertex.sizeof);
if (vertices == null)
return 0;
next_move = 0;
flagcount=0;
// in first pass, we load uninterpreted data into the allocated array
// above, shifted to the end of the array so we won't overwrite it when
// we create our final data starting from the front
off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated
// first load flags
for (i=0; i < n; ++i) {
if (flagcount == 0) {
flags = *points++;
if (flags & 8)
flagcount = *points++;
} else
--flagcount;
vertices[off+i].type = flags;
}
// now load x coordinates
x=0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
if (flags & 2) {
short dx = *points++;
x += (flags & 16) ? dx : (-cast(int)dx);
} else {
if (!(flags & 16)) {
x = x + cast(short) (points[0]*256 + points[1]);
points += 2;
}
}
vertices[off+i].x = cast(short) x;
}
// now load y coordinates
y=0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
if (flags & 4) {
short dy = *points++;
y += (flags & 32) ? dy : (-cast(int)dy);
} else {
if (!(flags & 32)) {
y = y + cast(short) (points[0]*256 + points[1]);
points += 2;
}
}
vertices[off+i].y = cast(short) y;
}
// now convert them to our format
num_vertices=0;
sx = sy = cx = cy = scx = scy = 0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
x = cast(short) vertices[off+i].x;
y = cast(short) vertices[off+i].y;
if (next_move == i) {
if (i != 0)
num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
// now start the new one
start_off = !(flags & 1);
if (start_off) {
// if we start off with an off-curve point, then when we need to find a point on the curve
// where we can start, and we need to save some state for when we wraparound.
scx = x;
scy = y;
if (!(vertices[off+i+1].type & 1)) {
// next point is also a curve point, so interpolate an on-point curve
sx = (x + cast(int) vertices[off+i+1].x) >> 1;
sy = (y + cast(int) vertices[off+i+1].y) >> 1;
} else {
// otherwise just use the next point as our start point
sx = cast(int) vertices[off+i+1].x;
sy = cast(int) vertices[off+i+1].y;
++i; // we're using point i+1 as the starting point, so skip it
}
} else {
sx = x;
sy = y;
}
stbtt_setvertex(&vertices[num_vertices++], STBTT_vmove,sx,sy,0,0);
was_off = 0;
next_move = 1 + ttUSHORT(endPtsOfContours+j*2);
++j;
} else {
if (!(flags & 1)) { // if it's a curve
if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy);
cx = x;
cy = y;
was_off = 1;
} else {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, x,y, cx, cy);
else
stbtt_setvertex(&vertices[num_vertices++], STBTT_vline, x,y,0,0);
was_off = 0;
}
}
}
num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
} else if (numberOfContours == -1) {
// Compound shapes.
int more = 1;
const(ubyte)* comp = data + g + 10;
num_vertices = 0;
vertices = null;
while (more) {
ushort flags, gidx;
int comp_num_verts = 0, i;
stbtt_vertex* comp_verts = null,
tmp = null;
float[6] mtx = [1,0,0,1,0,0];
float m, n;
flags = ttSHORT(comp); comp+=2;
gidx = ttSHORT(comp); comp+=2;
if (flags & 2) { // XY values
if (flags & 1) { // shorts
mtx[4] = ttSHORT(comp); comp+=2;
mtx[5] = ttSHORT(comp); comp+=2;
} else {
mtx[4] = ttCHAR(comp); comp+=1;
mtx[5] = ttCHAR(comp); comp+=1;
}
}
else {
// @TODO handle matching point
assert(0);
}
if (flags & (1<<3)) { // WE_HAVE_A_SCALE
mtx[0] = mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = mtx[2] = 0;
} else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE
mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = mtx[2] = 0;
mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
} else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO
mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[2] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
}
// Find transformation scales.
m = cast(float) sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]);
n = cast(float) sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]);
// Get indexed glyph.
comp_num_verts = stbtt_GetGlyphShape(info, gidx, &comp_verts);
if (comp_num_verts > 0) {
// Transform vertices.
for (i = 0; i < comp_num_verts; ++i) {
stbtt_vertex* v = &comp_verts[i];
stbtt_vertex_type x,y;
x=v.x; y=v.y;
v.x = cast(stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
v.y = cast(stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
x=v.cx; y=v.cy;
v.cx = cast(stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
v.cy = cast(stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
}
// Append vertices.
tmp = cast(stbtt_vertex*) malloc((num_vertices+comp_num_verts)*stbtt_vertex.sizeof);
if (!tmp) {
if (vertices) free(vertices);
if (comp_verts) free(comp_verts);
return 0;
}
if (num_vertices > 0) memcpy(tmp, vertices, num_vertices*stbtt_vertex.sizeof);
memcpy(tmp+num_vertices, comp_verts, comp_num_verts*stbtt_vertex.sizeof);
if (vertices) free(vertices);
vertices = tmp;
free(comp_verts);
num_vertices += comp_num_verts;
}
// More components ?
more = flags & (1<<5);
}
} else if (numberOfContours < 0) {
// @TODO other compound variations?
assert(0);
} else {
// numberOfCounters == 0, do nothing
}
*pvertices = vertices;
return num_vertices;
}
void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing) nothrow @nogc
{
ushort numOfLongHorMetrics = ttUSHORT(info.data+info.hhea + 34);
if (glyph_index < numOfLongHorMetrics) {
if (advanceWidth) *advanceWidth = ttSHORT(info.data + info.hmtx + 4*glyph_index);
if (leftSideBearing) *leftSideBearing = ttSHORT(info.data + info.hmtx + 4*glyph_index + 2);
} else {
if (advanceWidth) *advanceWidth = ttSHORT(info.data + info.hmtx + 4*(numOfLongHorMetrics-1));
if (leftSideBearing) *leftSideBearing = ttSHORT(info.data + info.hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics));
}
}
int stbtt_GetGlyphKernAdvance(const(stbtt_fontinfo)* info, int glyph1, int glyph2) nothrow @nogc
{
const(ubyte)* data = info.data + info.kern;
uint needle, straw;
int l, r, m;
// we only look at the first table. it must be 'horizontal' and format 0.
if (!info.kern)
return 0;
if (ttUSHORT(data+2) < 1) // number of tables, need at least 1
return 0;
if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format
return 0;
l = 0;
r = ttUSHORT(data+10) - 1;
needle = glyph1 << 16 | glyph2;
while (l <= r) {
m = (l + r) >> 1;
straw = ttULONG(data+18+(m*6)); // note: unaligned read
if (needle < straw)
r = m - 1;
else if (needle > straw)
l = m + 1;
else
return ttSHORT(data+22+(m*6));
}
return 0;
}
/// an additional amount to add to the 'advance' value between ch1 and ch2
/// @TODO; for now always returns 0!
int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2) nothrow @nogc
{
if (!info.kern) // if no kerning table, don't waste time looking up both codepoint.glyphs
return 0;
return stbtt_GetGlyphKernAdvance(info, stbtt_FindGlyphIndex(info,ch1), stbtt_FindGlyphIndex(info,ch2));
}
/// leftSideBearing is the offset from the current horizontal position to the left edge of the character
/// advanceWidth is the offset from the current horizontal position to the next horizontal position
/// these are expressed in unscaled coordinates
void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing) nothrow @nogc
{
stbtt_GetGlyphHMetrics(info, stbtt_FindGlyphIndex(info,codepoint), advanceWidth, leftSideBearing);
}
/// Ascent is the coordinate above the baseline the font extends; descent
/// is the coordinate below the baseline the font extends (i.e. it is typically negative)
/// lineGap is the spacing between one row's descent and the next row's ascent...
/// so you should advance the vertical position by "*ascent - *descent + *lineGap"
/// these are expressed in unscaled coordinates, so you must multiply by
/// the scale factor for a given size
void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap) nothrow @nogc
{
if (ascent ) *ascent = ttSHORT(info.data+info.hhea + 4);
if (descent) *descent = ttSHORT(info.data+info.hhea + 6);
if (lineGap) *lineGap = ttSHORT(info.data+info.hhea + 8);
}
/// the bounding box around all possible characters
void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1) nothrow @nogc
{
*x0 = ttSHORT(info.data + info.head + 36);
*y0 = ttSHORT(info.data + info.head + 38);
*x1 = ttSHORT(info.data + info.head + 40);
*y1 = ttSHORT(info.data + info.head + 42);
}
/// Computes a scale factor to produce a font whose "height" is 'pixels' tall.
/// Height is measured as the distance from the highest ascender to the lowest
/// descender; in other words, it's equivalent to calling stbtt_GetFontVMetrics
/// and computing:
/// scale = pixels / (ascent - descent)
/// so if you prefer to measure height by the ascent only, use a similar calculation.
float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float height) nothrow @nogc
{
int fheight = ttSHORT(info.data + info.hhea + 4) - ttSHORT(info.data + info.hhea + 6);
return cast(float) height / fheight;
}
/// computes a scale factor to produce a font whose EM size is mapped to
/// 'pixels' tall. This is probably what traditional APIs compute, but
/// I'm not positive.
float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels) nothrow @nogc
{
int unitsPerEm = ttUSHORT(info.data + info.head + 18);
return pixels / unitsPerEm;
}
///
void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *v) nothrow @nogc
{
free(v);
}
//////////////////////////////////////////////////////////////////////////////
//
// antialiasing software rasterizer
//
void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) nothrow @nogc
{
int x0, y0, x1, y1;
if (!stbtt_GetGlyphBox(font, glyph, &x0, &y0, &x1, &y1))
{
// e.g. space character
if (ix0) *ix0 = 0;
if (iy0) *iy0 = 0;
if (ix1) *ix1 = 0;
if (iy1) *iy1 = 0;
}
else
{
// move to integral bboxes (treating pixels as little squares, what pixels get touched)?
if (ix0) *ix0 = ifloor( x0 * scale_x + shift_x);
if (iy0) *iy0 = ifloor(-y1 * scale_y + shift_y);
if (ix1) *ix1 = iceil( x1 * scale_x + shift_x);
if (iy1) *iy1 = iceil(-y0 * scale_y + shift_y);
}
}
void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) nothrow @nogc
{
stbtt_GetGlyphBitmapBoxSubpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1);
}
/// Same as stbtt_GetCodepointBitmapBox, but you can specify a subpixel
/// shift for the character.
void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1) nothrow @nogc
{
stbtt_GetGlyphBitmapBoxSubpixel(font, stbtt_FindGlyphIndex(font,codepoint), scale_x, scale_y,shift_x,shift_y, ix0,iy0,ix1,iy1);
}
/// Gets the bbox of the bitmap centered around the glyph origin; so the
/// bitmap width is ix1-ix0, height is iy1-iy0, and location to place
/// the bitmap top left is (leftSideBearing*scale,iy0).
/// (Note that the bitmap uses y-increases-down, but the shape uses
/// y-increases-up, so CodepointBitmapBox and CodepointBox are inverted.)
void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1) nothrow @nogc
{
stbtt_GetCodepointBitmapBoxSubpixel(font, codepoint, scale_x, scale_y,0.0f,0.0f, ix0,iy0,ix1,iy1);
}
struct stbtt__edge
{
float x0,y0, x1,y1;
int invert;
}
struct stbtt__active_edge
{
int x,dx;
float ey;
stbtt__active_edge* next;
int valid;
}
enum FIXSHIFT = 10;
enum FIX = (1 << FIXSHIFT);
enum FIXMASK = (FIX-1);
stbtt__active_edge *new_active(stbtt__edge *e, int off_x, float start_point) nothrow @nogc
{
stbtt__active_edge *z = cast(stbtt__active_edge *) malloc(stbtt__active_edge.sizeof); // @TODO: make a pool of these!!!
float dxdy = (e.x1 - e.x0) / (e.y1 - e.y0);
assert(e.y0 <= start_point);
if (!z) return z;
// round dx down to avoid going too far
if (dxdy < 0)
z.dx = -ifloor(FIX * -dxdy);
else
z.dx = ifloor(FIX * dxdy);
z.x = ifloor(FIX * (e.x0 + dxdy * (start_point - e.y0)));
z.x -= off_x * FIX;
z.ey = e.y1;
z.next = null;
z.valid = e.invert ? 1 : -1;
return z;
}
// note: this routine clips fills that extend off the edges... ideally this
// wouldn't happen, but it could happen if the truetype glyph bounding boxes
// are wrong, or if the user supplies a too-small bitmap
void stbtt__fill_active_edges(ubyte *scanline, int len, stbtt__active_edge *e, int max_weight) nothrow @nogc
{
// non-zero winding fill
int x0=0, w=0;
while (e) {
if (w == 0) {
// if we're currently at zero, we need to record the edge start point
x0 = e.x; w += e.valid;
} else {
int x1 = e.x; w += e.valid;
// if we went to zero, we need to draw
if (w == 0) {
int i = x0 >> FIXSHIFT;
int j = x1 >> FIXSHIFT;
if (i < len && j >= 0) {
if (i == j) {
// x0,x1 are the same pixel, so compute combined coverage
scanline[i] = cast(ubyte)( scanline[i] + ((x1 - x0) * max_weight >> FIXSHIFT) );
} else {
if (i >= 0) // add antialiasing for x0
scanline[i] = cast(ubyte)( scanline[i] + (((FIX - (x0 & FIXMASK)) * max_weight) >> FIXSHIFT) ) ;
else
i = -1; // clip
if (j < len) // add antialiasing for x1
scanline[j] = cast(ubyte)( scanline[j] + (((x1 & FIXMASK) * max_weight) >> FIXSHIFT) );
else
j = len; // clip
for (++i; i < j; ++i) // fill pixels between x0 and x1
scanline[i] = cast(ubyte)( scanline[i] + max_weight );
}
}
}
}
e = e.next;
}
}
void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y) nothrow @nogc
{
stbtt__active_edge* active = null;
int y,j=0;
int max_weight = (255 / vsubsample); // weight per vertical scanline
int s; // vertical subsample index
ubyte[512] scanline_data;
ubyte* scanline;
if (result.w > 512)
scanline = cast(ubyte *) malloc(result.w);
else
scanline = scanline_data.ptr;
y = off_y * vsubsample;
e[n].y0 = (off_y + result.h) * cast(float) vsubsample + 1;
while (j < result.h) {
memset(scanline, 0, result.w);
for (s=0; s < vsubsample; ++s) {
// find center of pixel for this scanline
float scan_y = y + 0.5f;
stbtt__active_edge **step = &active;
// update all active edges;
// remove all active edges that terminate before the center of this scanline
while (*step) {
stbtt__active_edge * z = *step;
if (z.ey <= scan_y) {
*step = z.next; // delete from list
assert(z.valid);
z.valid = 0;
free(z);
} else {
z.x += z.dx; // advance to position for current scanline
step = &((*step).next); // advance through list
}
}
// resort the list if needed
for(;;) {
int changed=0;
step = &active;
while (*step && (*step).next) {
if ((*step).x > (*step).next.x) {
stbtt__active_edge *t = *step;
stbtt__active_edge *q = t.next;
t.next = q.next;
q.next = t;
*step = q;
changed = 1;
}
step = &(*step).next;
}
if (!changed) break;
}
// insert all edges that start before the center of this scanline -- omit ones that also end on this scanline
while (e.y0 <= scan_y) {
if (e.y1 > scan_y) {
stbtt__active_edge *z = new_active(e, off_x, scan_y);
// find insertion point
if (active == null)
active = z;
else if (z.x < active.x) {
// insert at front
z.next = active;
active = z;
} else {
// find thing to insert AFTER
stbtt__active_edge *p = active;
while (p.next && p.next.x < z.x)
p = p.next;
// at this point, p.next.x is NOT < z.x
z.next = p.next;
p.next = z;
}
}
++e;
}
// now process all active edges in XOR fashion
if (active)
stbtt__fill_active_edges(scanline, result.w, active, max_weight);
++y;
}
memcpy(result.pixels + j * result.stride, scanline, result.w);
++j;
}
while (active) {
stbtt__active_edge *z = active;
active = active.next;
free(z);
}
if (scanline != scanline_data.ptr)
free(scanline);
}
struct stbtt__point
{
float x,y;
}
void stbtt__rasterize(stbtt_fontinfo *info, stbtt__bitmap *result, stbtt__point *pts, int *wcount, int windings, float scale_x, float scale_y, float shift_x, float shift_y, int off_x, int off_y, int invert) nothrow @nogc
{
float y_scale_inv = invert ? -scale_y : scale_y;
stbtt__edge *e;
int n,i,j,k,m;
int vsubsample = result.h < 8 ? 15 : 5;
// vsubsample should divide 255 evenly; otherwise we won't reach full opacity
// now we have to blow out the windings into explicit edge lists