
Best Practices for

Developing Apache

Kafka® Applications

on Confluent Cloud

Yeva Byzek, © 2020 Confluent, Inc.

Table of Contents

Introduction . 1

What is Confluent Cloud? . 1

Architectural Considerations . 2

Scope of Paper . 4

Fundamentals for Developing Client Applications . 5

Connecting to a Cluster . 5

Kafka-Compatible Programming Languages. 7

Data Governance with Schema Registry . 9

Topic Management . 9

Security. 10

Networking . 12

Multi-Cluster Deployments . 14

Monitoring . 16

Metrics API. 16

Client JMX Metrics . 18

Producers. 19

Consumers . 20

Optimizations and Tuning . 22

Benchmarking. 22

Service Goals . 24

Optimizing for Throughput . 27

Optimizing for Latency. 31

Optimizing for Durability . 35

Optimizing for Availability . 39

Next Steps . 43

Additional Resources . 43

Introduction

What is Confluent Cloud?

Confluent Cloud is a fully managed service for Apache Kafka®, a distributed streaming

platform technology. It provides a single source of truth across event streams that

mission-critical applications can rely on.

With Confluent Cloud, developers can easily get started with serverless Kafka and the

related services required to build event streaming applications, including fully managed

connectors, Schema Registry, and ksqlDB for stream processing. The key benefits of

Confluent Cloud include:

• Developer acceleration in building event streaming applications

• Liberation from operational burden

• Bridge from on premises to cloud with hybrid Kafka service

As a fully managed service available in the biggest cloud providers, including Amazon

Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP), Confluent

Cloud can be self-serve and is deployable within seconds. Just point your client

applications at Confluent Cloud, and the rest is taken care of: load is automatically

distributed across brokers, consumer groups automatically rebalance when a

consumer is added or removed, the state stores used by applications using the Kafka

Streams APIs are automatically backed up to Confluent Cloud with changelog topics,

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 1

and failures are automatically mitigated.

Confluent Cloud abstracts away the details of operating the platform—no more

choosing instance types, storage options, network optimizations, and number of

nodes. It is as elastic as your workload, and you pay only for the resources that you use.

In true serverless fashion, you just need to understand your data requirements.

Architectural Considerations

While a discussion on different types of architectures deserves much more than this

section provides, we will briefly touch upon three topics:

1. Serverless architectures

2. Stateless microservices

3. Cloud-native applications

Serverless architectures rely extensively on either ephemeral functions reacting to

events (FaaS or Lambda) or third party services that are exposed only via API calls.

Applications require serverless architectures to be elastic, with usage-based pricing

and zero operational burden. As such, Confluent Cloud Basic and Standard clusters are

elastic, automatically scaling up when there is higher demand, i.e., more events and

more API calls, and automatically scaling down when demand is lower. They have

usage-based pricing that is based on per-event or per-API call. And Confluent Cloud

has zero operational burden. Other than calling an API or configuring the function,

there is no user involvement in scaling up or down, failure recovery, or upgrades;

Confluent is responsible for the availability, reliability, and uptime of your Kafka

clusters. Confluent Cloud’s serverless offering includes not just the core Kafka broker

services but also event streaming processing with ksqlDB, and moving data into and

out of end systems with fully managed connectors. At a very high level, this achieves

an ETL pipeline: move data into Confluent Cloud (extract), create long-running, auto-

scaling streams transformations by publishing SQL to a REST API (transform), and

persist this data (load).

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 2

You also may build your application to speak to Confluent Cloud with stateless

microservices. Microservices architectures build applications as a collection of

distributed, loosely coupled services, which works well in a cloud environment where the

cloud providers themselves give you access to distributed services. Data storage in its

many forms is typically handled by external services, whether it’s fully managed Kafka

with Confluent Cloud or any of the cloud provider services. This means that the

microservices that make up your cloud-native application can be stateless and rely on

other cloud services to handle their state. Being stateless also allows you to build more

resilient applications, since loss of a service instance doesn’t result in a loss of data

because processing can instantly move to another instance. Additionally, it is far easier

to scale components or usage automatically, such that you deploy another

microservice component as elastically as you are able to grow your Confluent Cloud

usage elastically.

When using Confluent Cloud, we recommend that your Kafka client applications are

also cloud native such that your applications are also running in the cloud. While new

applications can be developed on Confluent Cloud from inception, it may be the case

that some of your legacy applications migrate to the cloud over time. The path to

cloud may take different forms:

1. Application is cloud native, also running in the cloud

2. Application runs in an on-prem Kafka cluster, and then you have the bridge-to-

cloud pattern in which Confluent Replicator streams data between your Kafka

cluster and Confluent Cloud

3. Application runs on prem to Confluent Cloud, and then you migrate the

application to cloud over time

Developers who run applications in the cloud for the first time are often surprised by

the volatility of the cloud environment. IP addresses can change, certificates can

expire, servers are restarted, entire instances sometimes are decommissioned, and

network packets going across the WAN are lost more frequently than in most data

centers. While it is always a good idea to plan for change, when you are running

applications in the cloud, this is mandatory. Since cloud environments are built for

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 3

frequent change, a cloud-native design lets you use the volatile environment to your

advantage. The key to successful cloud deployments is to build applications that

handle the volatility of cloud environments gracefully, which results in more resilient

applications.

Scope of Paper

This paper consists of three main sections that will help you develop, tune, and monitor

your Kafka applications:

1. Fundamentals: required information for developing a Kafka client application to

Confluent Cloud

2. Monitoring: monitor and measure performance

3. Optimizations: tune your client application for throughput, latency, durability, and

availability

It refers to configuration parameters relevant for developing Kafka applications to

Confluent Cloud. The parameter names, descriptions, and default values are up to

date for Confluent Platform version 5.5 and Kafka version 2.5. Consult the

documentation for more information on these configuration parameters, topic

overrides, and other configuration parameters.

Although this paper is focused on best practices for configuring, tuning, and

monitoring Kafka applications for serverless Kafka in Confluent Cloud, it can serve as a

guide for any Kafka client application, not just for Java applications. These best

practices are generally applicable to a Kafka client application written in any language.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 4

https://docs.confluent.io

Fundamentals for Developing Client

Applications

Connecting to a Cluster

This white paper assumes you already completed the Confluent Cloud Quick Start,

which walks through the required steps to obtain:

• A Confluent Cloud user account: email address and password that logs you into

the Confluent Cloud UI

• Access to a Confluent Cloud cluster: identification of the broker’s endpoint via the

Confluent Cloud UI or the Confluent Cloud CLI command ccloud kafka cluster

describe (if you don’t have a cluster yet, follow the quick start above to create

one)

• Credentials to the cluster: a valid API key and secret for the user or service

account (see the section Security for more details)

As a next step, configure your client application to connect to your Confluent Cloud

cluster using the following three parameters:

1. <BROKER ENDPOINT>: bootstrap URL for the cluster

2. <API KEY>: API key for the user or service account

3. <API SECRET>: API secret for the user or service account

You can either define these parameters directly in the application code or initialize a

properties file and pass that file to your application. The latter is preferred in case the

connection information changes, in which case you don’t have to modify the code, only

the properties file.

On the host with your client application, initialize a properties file with configuration to

your Confluent Cloud cluster. The client must specify the bootstrap server, SASL

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 5

https://docs.confluent.io/current/quickstart/cloud-quickstart/index.html
https://docs.confluent.io/current/cloud/cli/index.html
https://confluent.cloud/
https://confluent.cloud/

authentication, and the appropriate API key and secret. In both examples below, you

would substitute <BROKER ENDPOINT>, <API KEY>, and <API SECRET> to match your

Kafka cluster endpoint and user or service account credentials.

If your client is Java, create a file called $HOME/.ccloud/client.java.config that looks

like this:

bootstrap.servers=<BROKER ENDPOINT>
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModu
le required \
 username\="<API KEY>" password\="<API SECRET>";
ssl.endpoint.identification.algorithm=https
security.protocol=SASL_SSL
sasl.mechanism=PLAIN

If your client is based on one of the librdkafka bindings, create a file called

$HOME/.ccloud/client.librdkafka.config that looks like this:

bootstrap.servers=<BROKER ENDPOINT>
sasl.username=<API KEY>
sasl.password=<API SECRET>

If your system/distribution does not provide root CA certificates in a standard location,

you may need to also provide that path with ssl.ca.location. For example:

ssl.ca.location=/usr/local/etc/openssl/cert.pem

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 6

Kafka-Compatible Programming

Languages

Since most popular languages already have Kafka libraries available, you have plenty

of choices to easily write Kafka client applications that connect to Confluent Cloud.

The clients just need to be configured using the Confluent Cloud cluster information

and credentials.

Confluent supports the Kafka Java clients, Kafka Streams APIs, and clients for C, C++,

.Net, Python, and Go. Other clients, and the requisite support, can be sourced from the

community. This list of GitHub examples represents many of the languages that are

supported for client code, written in the following programming languages and tools:

C, Clojure, C#, Golang, Apache Groovy, Java, Java Spring Boot, Kotlin, Node.js, Python,

Ruby, Rust, and Scala. These Hello World examples produce to and consume from

Confluent Cloud, and for the subset of languages that support it, there are additional

examples using Confluent Cloud Schema Registry and Apache Avro™.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 7

https://github.com/confluentinc/examples/tree/latest/clients/cloud

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 8

Data Governance with Schema Registry

Confluent Schema Registry provides a serving layer for your metadata with a RESTful

interface for storing and retrieving schemas. It stores a versioned history of all

schemas based on a specified subject name strategy, provides multiple compatibility

settings, and allows schemas to evolve according to the configured compatibility

settings. Schema Registry provides serializers that plug into Kafka clients, which

handle schema storage and retrieval for Kafka messages that are sent in the Avro,

JSON, or Protobuf format. For all these reasons, we recommend that applications use

Confluent Schema Registry. We’ve seen many users make operational mistakes when

self-managing their own Schema Registry (e.g., bad designs, inconsistent

configurations, and operational faux pas)—instead, you can leverage the Confluent

Cloud Schema Registry from the start. Confluent Cloud Schema Registry is a fully

managed service, and all you have to do is enable it in your Confluent Cloud

environment, and then configure your applications to use Avro, JSON, or Protobuf

serialization/deserialization.

basic.auth.credentials.source=USER_INFO
schema.registry.basic.auth.user.info=<SR API KEY>: <SR API SECRET>
schema.registry.url=<SR ENDPOINT>

Topic Management

There are at least three important things to remember about your topics in Confluent

Cloud.

First, auto topic creation is completely disabled so that you are always in control of

topic creation. This means that you must first create the user topics in Confluent

Cloud before an application writes to or reads from them. You can create these topics

in the Confluent Cloud UI, in the Confluent Cloud CLI, or using the AdminClient

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 9

https://www.confluent.io/blog/17-ways-to-mess-up-self-managed-schema-registry/
https://docs.confluent.io/current/quickstart/cloud-quickstart/schema-registry.html
https://docs.confluent.io/current/quickstart/cloud-quickstart/schema-registry.html

functionality directly from within the application. There are also Kafka topics used

internally by ksqlDB and Kafka Streams, and these topics will be automatically

created. Although auto topic creation is disabled in Confluent Cloud, ksqlDB and Kafka

Streams leverage the AdminClient to programmatically create their internal topics.

The developer does not need to explicitly create them.

Second, the most important feature that enables durability is replication, which

ensures that messages are copied to multiple brokers. If one broker were to fail, the

data would still be available from at least one other broker. Therefore, Confluent Cloud

enforces a replication factor of 3 to ensure data durability. Durability is important not

just for user-defined topics but also for Kafka-internal topics. For example, a Kafka

Streams application creates changelog topics for state stores and repartition topics

for its internal use. Their configuration setting replication.factor is configured to 1

by default, so in your application, you should increase it to 3.

Finally, the application must be authorized to access Confluent Cloud. See the section

Security for more information.

Security

This section touches on two elements of security: access control lists (ACLs) and end-

to-end encryption. There are certainly many more aspects to security that you need to

consider, including organization best practices, delineated roles and responsibilities,

data architecture that abides by enterprise security concerns, legal protections for

personal data, etc. Confluent Cloud meets compliance standards for GDPR, ISO

27001, PCI level 2, SOC 1, 2, & 3, and HIPAA. Refer to Confluent Cloud Security

Addendum and Data Processing Addendum for Customers for the most up-to-date

information.

Authentication and Authorization

Confluent Cloud provides features for managing access to services. Typically,

credentials and access to the services are managed by an administrator or another

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 10

https://www.confluent.io/cloud-enterprise-security-addendum/
https://www.confluent.io/cloud-enterprise-security-addendum/
https://www.confluent.io/cloud-customer-dpa/
https://docs.confluent.io/current/cloud/access-management/index.html

role within the organization, so if you are a developer, work with your administrator to

get the appropriate access. The administrator can use the Confluent Cloud CLI to

manage access, credentials, and ACLs.

There are two types of accounts that can connect to Confluent Cloud:

1. User account: can access the Confluent Cloud services and can log into the

Confluent Cloud UI

2. Service account: can access only the Confluent Cloud services

Both user accounts and service accounts can access Confluent Cloud services, but the

user account is considered a "super user" while the service account is not. As a result, if

the user account has a key/secret pair, those credentials by default will work on the

cluster, for example, to produce/consume to a topic by virtue of being a "super user."

In contrast, service accounts by default do not work on the cluster until you configure

ACLs to permit specific actions.

You can use the Confluent Cloud UI or CLI to create an API key and secret for either a

user account or service account. Make sure to download and securely store these

credentials, because the secret cannot be recovered.

If your client application does not provide proper credentials or if the required ACLs are

not created for the service account, the application will fail. For example, a Java

application may throw an exception such as

org.apache.kafka.common.errors.TopicAuthorizationException. Once the

application is configured with proper credentials and an administrator creates the ACL

that permits the application to write to or read from a topic, it will work. See this

GitHub example for using ACLs with service accounts and client applications for

Confluent Cloud.

End-to-End Encryption

When an application sends data to Confluent Cloud, the data is encrypted in motion

and at rest.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 11

https://github.com/confluentinc/examples/blob/latest/ccloud/beginner-cloud/start.sh

Encryption in motion encrypts data sent from your clients over the internet/VPC to the

Kafka infrastructure. This leverages TLS 1.2 and 256 bit keys, so your clients should run

code that supports this version. Confluent Cloud makes security easy and the default,

so this mostly means just copy-pasting a few lines of configuration from the Confluent

Cloud UI to the configuration properties of a client. If you have a Java client, both Java

8 and Java 11 are supported, but you should ideally run Java 11 to leverage TLS

performance improvements that were introduced in Java 9.

Encryption at rest means that data stored in Confluent Cloud’s infrastructure is

encrypted. Even if someone gained physical access to the storage, the data would be

unreadable because it is encrypted by AES 128-bit encryption.

However, some users may need end-to-end encryption based on the nature of the

data or their own internal policies. Read the End-to-End Encryption with Confluent

Cloud white paper for the recommended approach on designing end-to-end encryption

into Kafka clients (or in other words, encryption both in motion and at rest). It is

intended for designs requiring end-to-end message payload encryption on Confluent

Cloud. The goal is for the user to maintain confidentiality of data processed and stored

by Kafka, and for the custodians accessing this data to be the only ones with access to

the encryption keys.

Networking

When deploying client applications, it is possible to both run them on prem and

connect to Confluent Cloud services as long as there is network connectivity between

the two. However, to reduce latency and improve application performance by

sidestepping potential WAN network instability, the best practice is to deploy the

application in the same cloud provider region as your Confluent Cloud cluster. This also

avoids potential cost incurred from moving data between regions.

In addition, you need to be aware of extra considerations regarding connectivity:

1. Networks are virtualized

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 12

https://www.confluent.io/resources/end-to-end-encryption-with-confluent-cloud
https://www.confluent.io/resources/end-to-end-encryption-with-confluent-cloud

2. Resources are often elastic, so IP addresses may change

If deploying your application in a cloud provider, you may need to consider virtualized

networks and how connecting a client’s network to Confluent Cloud’s network may

require specific configurations. See Confluent Cloud Networking for further details on

interconnecting these networks.

You also need to anticipate that broker IP addresses may change. The client’s JVM

may cache the mapping between hostname and IP address, but if a broker in your

Confluent Cloud cluster changes IP address, your client may keep resolving the

hostname to the old IP address. To improve how the JVM resolves hostnames to IP

addresses, configure two parameters:

1. networkaddress.cache.ttl: indicates the caching policy for successful name

lookups. By default, this is -1, which means cache forever. Instead, set this to 30

seconds.

2. networkaddress.cache.negative.ttl: indicates the caching policy for

unsuccessful name lookups from the name service. By default, this is 10 seconds.

Instead, set this to 0, which indicates never cache.

They can be set either as JVM arguments or in the application code, as shown below:

java.security.Security.setProperty("networkaddress.cache.ttl" , "30");
java.security.Security.setProperty("networkaddress.cache.negative.ttl"
, "0");

Finally, configure how the client handles failures if it is configured to multiple broker IP

addresses. The domain name service (DNS) maps hostnames to IP addresses, and

when a Kafka client does a DNS lookup on a broker’s hostname, the DNS may return

multiple IP addresses. If the first IP address fails to connect, then by default the client

will fail the connection. Instead, it is desirable that the client attempts to connect to all

IP addresses before failing the connection. Configure this with

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 13

https://docs.confluent.io/current/cloud/vpc.html

client.dns.lookup=use_all_dns_ips. The prefix for the configuration parameter will

vary by the type of client application and needs to be set independently for producers

and consumers. Additionally, in a Kafka Streams application you may need to

configure:

streamsConfigs.put(StreamsConfig.producerPrefix("client.dns.lookup"),
"use_all_dns_ips");
streamsConfigs.put(StreamsConfig.consumerPrefix("client.dns.lookup"),
"use_all_dns_ips");

Multi-Cluster Deployments

Multi-cluster Kafka deployments can span cloud and on prem, multiple cloud providers,

or multiple regions within one cloud provider. There are several reasons why you may

want a multi-cluster deployment:

1. Cloud migrations normally last over a year, sometimes significantly longer. During

the migration, you’ll want to run Kafka on prem and in the cloud and stream

events between these two environments as a way to keep them in sync.

2. Some companies have a long-term strategy to run on prem and in cloud,

sometimes for regulatory reasons.

3. If your disaster plans require protection from an event where an entire region of a

cloud provider fails, you’ll want to run a cluster in each region. If you are also

concerned about an entire cloud provider experiencing failures, you’ll want to run

a cluster in each cloud provider. Confluent Cloud makes this easy by letting you

create and manage clusters in any cloud provider and any region from the same

interface and with the same tools.

4. Your developers require different cloud services from different cloud providers, in

which case, a serverless Kafka deployment in each provider gives developers

freedom of choice to use the tools they want.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 14

In all these cases, some or all data may be replicated between the Confluent Cloud

clusters. Our documentation guides you on how to replicate data between the clusters

in a multi-cluster deployment using Confluent Replicator.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 15

https://docs.confluent.io/current/cloud/cp-component/transfer-to-cloud.html

Monitoring

Before going into production, make sure a robust monitoring system is in place for all

of the producers, consumers, topics, and any other Kafka or Confluent components

you are using. Performance monitoring provides a quantitative account of how each

component is doing. This monitoring is important once you’re in production, because

production environments are dynamic: data profiles may change, you may add new

clients, and you may enable new features. Ongoing monitoring is as much about

identifying and responding to potential failures as it is about ensuring that the services

goals are consistently met even as the production environment changes.

Metrics API

The Confluent Cloud Metrics API provides programmatic access to actionable metrics

for your Confluent Cloud deployment. You can get server-side metrics for the

Confluent managed services, but you cannot get client-side metrics via the Metrics API

(see the sections Producers and Consumers for client-side metrics). These metrics are

enabled by default, and any authorized user can get self-serve access to them. They

are aggregated at the topic level and cluster level, which is very useful for monitoring

overall usage and performance, particularly since these relate to billing. We

recommend using the Metrics API to query metrics at these granularities, but other

resolutions are available if needed:

• Bytes produced per minute grouped by topic

• Bytes consumed per minute grouped by topic

• Max retained bytes per hour over two hours for a given topic

• Max retained bytes per hour over two hours for a given cluster

As an example of metrics at the topic level, here is the number of bytes produced per

minute for a topic called test-topic:

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 16

https://docs.confluent.io/current/cloud/metrics-api.html

{
 "data": [
 {
 "timestamp": "2019-12-19T16:01:00Z",
 "metric.label.topic": "test-topic",
 "value": 203.0
 },
 {
 "timestamp": "2019-12-19T16:02:00Z",
 "metric.label.topic": "test-topic",
 "value": 157.0
 },
 {
 "timestamp": "2019-12-19T16:03:00Z",
 "metric.label.topic": "test-topic",
 "value": 371.0
 },
 {
 "timestamp": "2019-12-19T16:04:00Z",
 "metric.label.topic": "test-topic",
 "value": 288.0
 }
]
}

As an example of metrics at the cluster level, here is the max retained bytes per hour

over two hours for a Confluent Cloud cluster:

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 17

{
 "data": [
 {
 "timestamp": "2019-12-19T16:00:00Z",
 "value": 507350.0
 },
 {
 "timestamp": "2019-12-19T17:00:00Z",
 "value": 507350.0
 }
]
}

You can pull these metrics easily over the public internet using HTTPS, capturing them

at regular intervals to get a time series, operational view of cluster performance. You

can integrate these into any cloud provider monitoring tools like Azure Monitor, Google

Cloud’s operations suite (formerly Stackdriver), or Amazon CloudWatch, or into

existing monitoring systems like Prometheus, Datadog, etc., and plot them in a time

series graph to see usage over time. When writing your own application to use the

Metrics API, consult the full API specification to leverage advanced features.

Client JMX Metrics

Kafka applications expose some internal JMX (Java Management Extensions) metrics,

and many users run JMX exporters to feed these metrics into their monitoring

systems. You can get these JMX metrics for your client applications and the services

that you manage, though not for the Confluent-managed services, which are not

directly exposed to users. To get these JMX client metrics, start the Kafka client

applications with the JMX_PORT environment variable configured. There are many

Kafka-internal metrics that are exposed through JMX to provide insight into the

performance of your applications.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 18

https://api.telemetry.confluent.cloud/docs
https://docs.confluent.io/current/kafka/monitoring.html

Producers

Throttling

Depending on your Confluent Cloud service plan, you are limited to certain throughput

rates for produce (write). If your client applications exceed these produce rates, the

quotas on the brokers will detect it and the client application requests will be throttled

by the brokers. It’s important to ensure your producers are well behaved. If they are

being throttled, consider two options. The first option is to make modifications to the

application to optimize its throughput, if possible (read the section Optimizing for

Throughput for more details). The second option is to upgrade to a cluster

configuration with higher limits. In Confluent Cloud, you can choose from Standard

and Dedicated clusters, and Dedicated clusters are customizable for higher limits. The

Metrics API can give you some indication of throughput from the server side, but it

doesn’t provide throughput metrics on the client side. To get throttling metrics per

producer, monitor the following client JMX metrics:

Metric Description

kafka.producer:type=producer-
metrics,client-id=([-
.w]+),name=produce-throttle-time-avg

The average time in ms that a request

was throttled by a broker

kafka.producer:type=producer-
metrics,client-id=([-
.w]+),name=produce-throttle-time-max

The maximum time in ms that a request

was throttled by a broker

User Processes

To further tune the performance of your producer, monitor the producer time spent in

user processes if the producer has non-blocking code to send messages. Using the io-

ratio and io-wait-ratio metrics described below, user processing time is the fraction

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 19

of time not spent in either of these. If time in these are low, then the user processing

time may be high, which keeps the single producer I/O thread busy. For example, you

can check if the producer is using any callbacks, which are invoked when messages

have been acknowledged and run in the I/O thread:

Metric Description

kafka.producer:type=producer-
metrics,client-id=([-.w]+),name=io-
ratio

Fraction of time that the I/O thread

spent doing I/O

kafka.producer:type=producer-
metrics,client-id=([-.w]+),name=io-
wait-ratio

Fraction of time that the I/O thread

spent waiting

Consumers

Throttling

Depending on your Confluent Cloud service plan, you are limited to certain throughput

rates for consume (read). If your client applications exceed these consume rates, the

quotas on the brokers will detect it and the brokers will throttle the client application

requests. It’s important to ensure your consumers are well behaved, and if they are

being throttled, consider two options. The first option is to make modifications to the

application to optimize its throughput, if possible (read the section Optimizing for

Throughput for more details). The second option is to upgrade to a cluster

configuration with higher limits. In Confluent Cloud, you can choose from Standard

and Dedicated clusters, and Dedicated clusters are customizable for higher limits. The

Metrics API can give you some indication of throughput from the server side, but it

doesn’t provide throughput metrics on the client side. To get throttling metrics per

consumer, monitor the following client JMX metrics:

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 20

Metric Description

kafka.consumer:type=consumer-fetch-
manager-metrics,client-id=([-
.w]+),name=fetch-throttle-time-avg

The average time in ms that a broker

spent throttling a fetch request

kafka.consumer:type=consumer-fetch-
manager-metrics,client-id=([-
.w]+),name=fetch-throttle-time-max

The maximum time in ms that a broker

spent throttling a fetch request

Consumer Lag

Additionally, it is important to monitor your application’s consumer lag, which is the

number of records for any partition that the consumer is behind in the log. This metric

is particularly important for real-time consumer applications where the consumer

should be processing the newest messages with as low latency as possible. Monitoring

consumer lag can indicate whether the consumer is able to fetch records fast enough

from the brokers. Also consider how the offsets are committed. For example, exactly-

once semantics (EOS) provide stronger guarantees while potentially increasing

consumer lag. You can monitor consumer lag from the Confluent Cloud UI, as

described in the documentation. Alternatively, if you are capturing JMX metrics, you

can monitor records-lag-max:

Metric Description

kafka.consumer:type=consumer-fetch-
manager-metrics,client-id=([-
.w]+),records-lag-max

The maximum lag in terms of number of

records for any partition in this window.

An increasing value over time is your best

indication that the consumer group is

not keeping up with the producers.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 21

https://docs.confluent.io/current/cloud/using/monitor-lag.html

Optimizations and Tuning

You can do unit testing, integration testing, and schema compatibility testing of your

application in a CI/CD pipeline, all locally, or in a test environment in Confluent Cloud.

The blog post Testing Your Streaming Application describes how to leverage utilities to

simulate parts of the Kafka services, e.g., MockProducer, MockConsumer,

TopologyTestDriver, MockProcessorContext, EmbeddedKafkaCluster, and

MockSchemaRegistryClient. Once your application is up and running to Confluent

Cloud, verify all the functional pieces of the architecture work and check the dataflows

end to end.

After you have done the functional validation, you may proceed to making

optimizations to tune performance. The following sections describe guidelines for

benchmarking and how to optimize your applications depending on your service goals.

Benchmarking

Benchmark testing is important because there is no one-size-fits-all recommendation

for the configuration parameters discussed above. Proper configuration always

depends on the use case, other features you have enabled, the data profile, etc. If you

are tuning Kafka clients beyond the defaults, we generally recommend running

benchmark tests. Regardless of your service goals, you should understand what the

performance profile of your application is—it is especially important when you want to

optimize for throughput or latency. Your benchmark tests can also feed into the

calculations for determining the correct number of partitions and the number of

producer and consumer processes.

Start by measuring your bandwidth using the Kafka utilities kafka-producer-perf-

test and kafka-consumer-perf-test. This provides a baseline performance to your

Confluent Cloud instance, taking application logic out of the equation.

Then benchmark your client application, starting with the default Kafka configuration

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 22

https://www.confluent.io/blog/stream-processing-part-2-testing-your-streaming-application/

parameters, and familiarize yourself with the default values. Determine the baseline

input performance profile for a given producer by removing dependencies on anything

upstream from the producer. Rather than receiving data from upstream sources,

modify your producer to generate its own mock data at very high output rates, such

that the data generation is not a bottleneck.

If you are testing with compression, be aware of how the mock data is generated.

Sometimes mock data is unrealistic, containing repeated substrings or being padded

with zeros, which may result in a better compression performance than what would be

seen in production. Ensure that the mock data reflects the type of data used in

production in order to get results that more accurately reflect performance in

production. Or, instead of using mock data, consider using copies of production data or

cleansed production data in your benchmarking.

Run a single producer client on a single server. Measure the resulting throughput using

the available JMX metrics for the Kafka producer. Repeat the producer benchmarking

test, increasing the number of producer processes on the server in each iteration to

determine the number of producer processes per server to achieve the highest

throughput. You can determine the baseline output performance profile for a given

consumer in a similar way. Run a single consumer client on a single server. Repeat this

test, increasing the number of consumer processes on the server in each iteration to

determine the number of consumer processes per server to achieve the highest

throughput.

Then you can run a benchmark test for different permutations of configuration

parameters that reflect your service goals. The following sections describe how

different configuration parameters impact your application performance and how you

can tune them accordingly. Focus on those configuration parameters, and avoid the

temptation to discover and change other parameters from their default values

without understanding exactly how they impact the entire system. Tune the settings

on each iteration, run a test, observe the results, tune again, and so on, until you

identify settings that work for your throughput and latency requirements. Refer to this

blog post when considering partition count in your benchmark tests.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 23

https://www.confluent.io/blog/easy-ways-generate-test-data-kafka/
https://www.confluent.io/blog/apache-kafka-supports-200k-partitions-per-cluster
https://www.confluent.io/blog/apache-kafka-supports-200k-partitions-per-cluster

Service Goals

Even you though you can get your Kafka client application up and running to Confluent

Cloud within seconds, you’ll still want to do some tuning before you go into production.

Different use cases will have different sets of requirements that will drive different

service goals. To optimize for those service goals, there are Kafka configuration

parameters that you should change in your application. In fact, Kafka’s design

inherently provides configuration flexibility to users. To make sure your Kafka

deployment is optimized for your service goals, you absolutely should tune the settings

of some of your Kafka client configuration parameters and benchmark in your own

environment. We strongly recommend benchmarking your application before you go to

production.

This more advanced section is about how to identify your service goals, configure your

Kafka deployment to optimize for them, and ensure that you are achieving them

through monitoring.

The first step is to decide which service goals you want to optimize. We’ll consider four

goals that often involve trade-offs with one another: throughput, latency, durability,

and availability. To figure out which goals you want to optimize, recall the use cases

your Kafka applications are going to serve. Think about the applications, the business

requirements—the things that absolutely cannot fail for that use case to be satisfied.

Think about how Kafka as an event streaming technology fits into the pipeline of your

business.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 24

Sometimes the question of which service goal to optimize is hard to answer, but it is

still extremely critical to discuss the original business use cases and what the main

goals are with your team.

The main reason is that you can’t maximize all goals at the same time. There are

occasionally trade-offs between throughput, latency, durability, and availability, which

this white paper will cover in detail. You may be familiar with the common trade-off in

performance between throughput and latency and perhaps between durability and

availability as well. As you consider the whole system, you will find that you cannot

think about any of them in isolation, which is why this paper looks at all four service

goals together. This does not mean that optimizing one of these goals results in

completely losing out on the others. It just means that they are all interconnected, and

thus you can’t maximize all of them at the same time.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 25

Another reason it is important to identify which service goal you want to optimize is so

you can tune your Kafka configuration parameters to achieve it. You need to

understand what your users expect from the system to ensure you are optimizing

Kafka to meet their needs.

• Do you want to optimize for high throughput, which is the rate that data is

moved from producers to brokers or brokers to consumers? Some use cases have

millions of writes per second. Because of Kafka’s design, writing large volumes of

data into it is not a hard thing to do. It’s faster than trying to push volumes of

data through a traditional database or key-value store, and it can be done with

modest hardware.

• Do you want to optimize for low latency, which is the time elapsed moving

messages end to end (from producers to brokers to consumers)? One example of

a low-latency use case is a chat application, where the recipient of a message

needs to get the message with as little latency as possible. Other examples

include interactive websites where users follow posts from friends in their

network, or real-time stream processing for the Internet of Things (IoT).

• Do you want to optimize for high durability, which guarantees that committed

messages will not be lost? One example use case for high durability is an event

streaming microservices pipeline using Kafka as the event store. Another is for

integration between an event streaming source and some permanent storage

(e.g., Amazon S3) for mission-critical business content.

• Do you want to optimize for high availability, which minimizes downtime in case

of unexpected failures? Kafka is a distributed system, and it is designed to

tolerate failures. In use cases demanding high availability, it’s important to

configure Kafka such that it will recover from failures as quickly as possible.

One caution before we jump into how to optimize Kafka for different service goals: the

values for some of the configuration parameters discussed in this paper depend on

other factors, such as average message size, number of partitions, etc. These can

greatly vary from environment to environment. For some configuration parameters,

we provide a range of reasonable values, but recall that benchmarking is always crucial

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 26

to validate the settings for your specific deployment.

Optimizing for Throughput

To optimize for throughput, the producers and consumers need to move as much data

as they can within a given amount of time. For high throughput, you are trying to

maximize the rate at which this data moves. This data rate should be as fast as

possible. A topic partition is the unit of parallelism in Kafka, and messages to different

partitions can be sent in parallel by producers, written in parallel by different brokers,

and read in parallel by different consumers. In general, a higher number of topic

partitions results in higher throughput, and to maximize throughput, you want enough

partitions to distribute them across the brokers in your Confluent Cloud cluster.

Although it might seem tempting just to create topics with a very large number of

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 27

partitions, there are trade-offs to increasing the number of partitions. Review our

guidelines for how to choose the number of partitions. Be sure to choose the partition

count carefully based on producer throughput and consumer throughput, and

benchmark performance in your environment. Also take into consideration the design

of your data patterns and key assignments so that messages are distributed as evenly

as possible across topic partitions. This will prevent overloading certain topic partitions

relative to others.

Next, let’s discuss the batching strategy of Kafka producers. Producers can batch

messages going to the same partition, which means they collect multiple messages to

send together in a single request. The most important step you can take to optimize

throughput is to tune the producer batching to increase the batch size and the time

spent waiting for the batch to fill up with messages. Larger batch sizes result in fewer

requests to Confluent Cloud, which reduces load on producers as well as the broker

CPU overhead to process each request. With the Java client, you can configure the

batch.size parameter to increase the maximum size in bytes of each message batch.

To give more time for batches to fill, you can configure the linger.ms parameter to

have the producer wait longer before sending. The delay allows the producer to wait

for the batch to reach the configured batch.size. The trade-off is tolerating higher

latency, since messages are not sent as soon as they are ready to send.

You can also easily enable compression, which means a lot of bits can be sent as fewer

bits. Enable compression by configuring the compression.type parameter, which can

be set to one of the following standard compression codecs: lz4, snappy, zstd, and

gzip. For performance, we generally recommend using lz4. We strongly recommend

not using gzip because it’s much more compute intensive relative to the other codecs,

so your application may not perform as well. Compression is applied on full batches of

data, so better batching results in better compression ratios. When Confluent Cloud

receives a compressed batch of messages from a producer, it always decompresses

the data in order to validate it. Afterwards, it considers the compression codec of the

destination topic.

• If the compression codec of the destination topic are left at the default setting of

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 28

https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster

producer, or if the codecs of the batch and destination topic are the same,

Confluent Cloud takes the compressed batch from the client and writes it directly

to the topic’s log file without taking cycles to recompress the data

• Otherwise, Confluent Cloud needs to recompress the data to match the codec of

the destination topic, and this can result in a performance impact; therefore, keep

the compression codecs the same if possible

When a producer sends a message to Confluent Cloud, the message is sent to the

leader broker for the target partition. Then the producer awaits a response from the

leader broker (assuming acks is not set to 0, in which case the producer will not wait

for any acknowledgment from the broker at all) to know that its message has been

committed before proceeding to send the next messages. There are automatic checks

in place to make sure consumers cannot read messages that haven’t been committed

yet. When leader brokers send those responses, it may impact the producer

throughput: the sooner a producer receives a response, the sooner the producer can

send the next message, which generally results in higher throughput. So producers can

set the configuration parameter acks to specify the number of acknowledgments the

leader broker must have received before responding to the producer with an

acknowledgment. Setting acks=1 makes the leader broker write the record to its local

log and then acknowledge the request without awaiting acknowledgment from all

followers. The trade-off is you have to tolerate lower durability, because the producer

does not have to wait until the message is replicated to other brokers.

Kafka producers automatically allocate memory for the Java client to store unsent

messages. If that memory limit is reached, then the producer will block on additional

sends until memory frees up or until max.block.ms time passes. You can adjust how

much memory is allocated with the configuration parameter buffer.memory. If you

don’t have a lot of partitions, you may not need to adjust this at all. However, if you

have a lot of partitions, you can tune buffer.memory—while also taking into account

the message size, linger time, and partition count—to maintain pipelines across more

partitions. This in turn enables better utilization of the bandwidth across more brokers.

Likewise, you can tune consumers for higher throughput by adjusting how much data

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 29

they get from each fetch from the leader broker in Confluent Cloud. You can increase

how much data the consumers get from the leader for each fetch request by

increasing the configuration parameter fetch.min.bytes. This parameter sets the

minimum number of bytes expected for a fetch response from a consumer. Increasing

this will also reduce the number of fetch requests made to Confluent Cloud, reducing

the broker CPU overhead to process each fetch, thereby also improving throughput.

Similar to the consequence of increasing batching on the producer, there may be a

resulting trade-off to higher latency when increasing this parameter on the consumer.

This is because the broker won’t send the consumer new messages until the fetch

request has enough messages to fulfill the size of the fetch request, i.e.,

fetch.min.bytes, or until the expiration of the wait time, i.e., configuration parameter

fetch.max.wait.ms.

Assuming the application allows it, use consumer groups with multiple consumers to

parallelize consumption. Parallelizing consumption may improve throughput because

multiple consumers can balance the load, processing multiple partitions

simultaneously. The upper limit on this parallelization is the number of partitions in the

topic.

Summary of Configurations for Optimizing Throughput

Producer:

• batch.size: increase to 100000–200000 (default 16384)

• linger.ms: increase to 10–100 (default 0)

• compression.type=lz4 (default none, i.e., no compression)

• acks=1 (default 1)

• buffer.memory: increase if there are a lot of partitions (default 33554432)

Consumer:

• fetch.min.bytes: increase to ~100000 (default 1)

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 30

Optimizing for Latency

Many of the Kafka configuration parameters discussed in the section on throughput

have default settings that optimize for latency. Thus, those configuration parameters

generally don’t need to be adjusted, but we will review the key parameters to

understand how they work.

Confluent has guidelines on how to choose the number of partitions. Because a

partition is a unit of parallelism in Kafka, an increased number of partitions may

increase throughput. However, there is a trade-off in that an increased number of

partitions may also increase latency. It may take longer to replicate a lot of partitions

shared between each pair of brokers and consequently take longer for messages to be

considered committed. No message can be consumed until it is committed, so this can

ultimately increase end-to-end latency.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 31

https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster

Producers automatically batch messages, which means they collect messages to send

together. The less time that is given waiting for those batches to fill, then generally

there is less latency producing data to Confluent Cloud. By default, the producer is

tuned for low latency and the configuration parameter linger.ms is set to 0, which

means the producer will send as soon as it has data to send. In this case, it is not true

that batching is disabled—messages are always sent in batches—but sometimes a

batch may have only one message (unless messages are passed to the producer faster

than it can send them).

Consider whether you need to enable compression. Enabling compression typically

requires more CPU cycles to do the compression, but it reduces network bandwidth

utilization. So disabling compression typically spares the CPU cycles but increases

network bandwidth utilization. Depending on the compression performance, you may

consider leaving compression disabled with compression.type=none to spare the CPU

cycles, although a good compression codec may potentially reduce latency as well.

You can tune the number of acknowledgments the producer requires the leader broker

in the Confluent Cloud cluster to have received before considering a request complete.

(Note that this acknowledgment to the producer differs from when a message is

considered committed—more on that in the next section.) The sooner the leader broker

responds, the sooner the producer can continue sending the next batch of messages,

thereby generally reducing producer latency. Set the number of required

acknowledgments with the producer acks configuration parameter. By default, acks=1,

which means the leader broker will respond sooner to the producer before all replicas

have received the message. Depending on your application requirements, you can even

set acks=0 so that the producer will not wait for a response for a producer request

from the broker, but then messages can potentially be lost without the producer even

knowing.

Similar to the batching concept on the producers, you can tune consumers for lower

latency by adjusting how much data it gets from each fetch from the leader broker in

Confluent Cloud. By default, the consumer configuration parameter fetch.min.bytes

is set to 1, which means that fetch requests are answered as soon as a single byte of

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 32

data is available or the fetch request times out waiting for data to arrive, i.e., the

configuration parameter fetch.max.wait.ms. Looking at these two configuration

parameters together lets you reason through the size of the fetch request, i.e.,

fetch.min.bytes, or the age of a fetch request, i.e., fetch.max.wait.ms.

If you have a Kafka event streaming application or are using ksqlDB, there are also

some performance enhancements you can make within the application. For scenarios

where you need to perform table lookups at very large scale and with a low processing

latency, you can use local stream processing. A popular pattern is to use Kafka

Connect to make remote databases available local to Kafka. Then you can leverage

the Kafka Streams API or ksqlDB to perform very fast and efficient local joins of such

tables and streams, rather than requiring the application to make a query to a remote

database over the network for each record. You can track the latest state of each

table in a local state store, thus greatly reducing the processing latency as well as

reducing the load of the remote databases when doing such streaming joins.

Kafka Streams applications are founded on processor topologies, a graph of stream

processor nodes that can act on partitioned data for parallel processing. Depending on

the application, there may be conservative but unnecessary data shuffling based on

repartition topics, which would not result in any correctness issues but can introduce

performance penalties. To avoid performance penalties, you may enable topology

optimizations for your event streaming applications by setting the configuration

parameter topology.optimization. Enabling topology optimizations may reduce the

amount of reshuffled streams that are stored and piped via repartition topics.

Summary of Configurations for Optimizing Latency

Producer:

• linger.ms=0 (default 0)

• compression.type=none (default none, i.e., no compression)

• acks=1 (default 1)

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 33

https://docs.confluent.io/current/streams/index.html
https://ksqldb.io
https://www.confluent.io/blog/distributed-real-time-joins-and-aggregations-on-user-activity-events-using-kafka-streams/
https://www.confluent.io/blog/distributed-real-time-joins-and-aggregations-on-user-activity-events-using-kafka-streams/
https://www.confluent.io/blog/optimizing-kafka-streams-applications
https://www.confluent.io/blog/optimizing-kafka-streams-applications

Consumer:

• fetch.min.bytes=1 (default 1)

Streams:

• StreamsConfig.TOPOLOGY_OPTIMIZATION: StreamsConfig.OPTIMIZE (default

StreamsConfig.NO_OPTIMIZATION)

• Streams applications have embedded producers and consumers, so also check

those configuration recommendations

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 34

Optimizing for Durability

Durability is all about reducing the chance for a message to get lost. Confluent Cloud

enforces a replication factor of 3 to ensure data durability.

Producers can control the durability of messages written to Kafka through the acks

configuration parameter. This parameter was discussed in the context of throughput

and latency optimization, but it is primarily used in the context of durability. To

optimize for high durability, we recommend setting it to acks=all (equivalent to

acks=-1), which means the leader will wait for the full set of in-sync replicas (ISRs) to

acknowledge the message and to consider it committed. This provides the strongest

available guarantees that the record will not be lost as long as at least one in-sync

replica remains alive. The trade-off is tolerating a higher latency because the leader

broker waits for acknowledgments from replicas before responding to the producer.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 35

Producers can also increase durability by trying to resend messages if any sends fail to

ensure that data is not lost. The producer automatically tries to resend messages up to

the number of times specified by the configuration parameter retries (default

MAX_INT) and up to the time duration specified by the configuration parameter

delivery.timeout.ms (default 120000), the latter of which was introduced in KIP-91.

You can tune delivery.timeout.ms to the desired upper bound for the total time

between sending a message and receiving an acknowledgment from the broker, which

should reflect business requirements of how long a message is valid for.

There are two things to take into consideration with these automatic producer retries:

duplication and message ordering.

1. Duplication: if there are transient failures in Confluent Cloud that cause a

producer retry, the producer may send duplicate messages to Confluent Cloud

2. Ordering: multiple send attempts may be “in flight” at the same time, and a retry

of a previously failed message send may occur after a newer message send

succeeded

To address both of these, we generally recommend that you configure the producer for

idempotency, i.e., enable.idempotence=true, for which the brokers in Confluent Cloud

track messages using incrementing sequence numbers, similar to TCP. Idempotent

producers can handle duplicate messages and preserve message order even with

request pipelining—there is no message duplication because the broker ignores

duplicate sequence numbers, and message ordering is preserved because when there

are failures, the producer temporarily constrains to a single message in flight until

sequencing is restored. In case the idempotence guarantees can’t be satisfied, the

producer will raise a fatal error and reject any further sends, so when configuring the

producer for idempotency, the application developer needs to catch the fatal error and

handle it appropriately.

However, if you do not configure the producer for idempotency but the business

requirements call for it, you need to address the potential for message duplication and

ordering issues in other ways. To handle possible message duplication if there are

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 36

https://cwiki.apache.org/confluence/display/KAFKA/KIP-91+Provide+Intuitive+User+Timeouts+in+The+Producer

transient failures in Confluent Cloud, be sure to build your consumer application logic

to process duplicate messages. To preserve message order while also allowing

resending failed messages, set the configuration parameter

max.in.flight.requests.per.connection=1 to ensure that only one request can be

sent to the broker at a time. To preserve message order while allowing request

pipelining, set the configuration parameter retries=0 if the application is able to

tolerate some message loss.

Instead of letting the producer automatically retry sending failed messages, you may

prefer to manually code the actions for exceptions returned to the producer client, e.g.,

the onCompletion() method in the Callback interface in the Java client. If you want

manual retry handling, disable automatic retries by setting retries=0. Note that

producer idempotency tracks message sequence numbers, which makes sense only

when automatic retries are enabled. Otherwise, if you set retries=0 and the

application manually tries to resend a failed message, then it just generates a new

sequence number so the duplication detection won’t work. Disabling automatic retries

can result in message gaps due to individual send failures, but the broker will preserve

the order of writes it receives.

Confluent Cloud provides durability by replicating data across multiple brokers. Each

partition will have a list of assigned replicas (i.e., brokers) that should have copies the

data. The list of replicas that are caught up to the leader are called in-sync replicas

(ISRs). For each partition, leader brokers will automatically replicate messages to other

brokers that are in their ISR list. When a producer sets acks=all (or acks=-1), then the

configuration parameter min.insync.replicas specifies the minimum threshold for

the replica count in the ISR list. If this minimum count cannot be met, then the

producer will raise an exception. When used together, min.insync.replicas and acks

allow you to enforce greater durability guarantees. A typical scenario would be to

create a topic with replication.factor=3, topic configuration override

min.insync.replicas=2, and producer acks=all, thereby ensuring that the producer

raises an exception if a majority of replicas do not receive a write.

You also need to consider what happens to messages if there is an unexpected

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 37

consumer failure to ensure that no messages are lost as they are being processed.

Consumer offsets track which messages have already been consumed, so how and

when consumers commit message offsets are crucial for durability. You want to avoid

a situation where a consumer commits the offset of a message, starts processing that

message, and then unexpectedly fails. This is because the subsequent consumer that

starts reading from the same partition will not reprocess messages with offsets that

have already been committed.

By default, offsets are configured to be automatically committed during the

consumer’s poll() call at a periodic interval, and this is typically good enough for most

use cases. But if the consumer is part of a transactional chain and you need strong

message delivery guarantees, you may want the offsets to be committed only after

the consumer finishes completely processing the messages. You can configure whether

these consumer commits happen automatically or manually with the configuration

parameter enable.auto.commit. For extra durability, you may disable the automatic

commit by setting enable.auto.commit=false and explicitly call one of the commit

methods in the consumer code (e.g., commitSync() or commitAsync()).

For even stronger guarantees, you may configure your applications for EOS

transactions, which enable atomic writes to multiple Kafka topics and partitions. Since

some messages in the log may be in various states of a transaction, consumers can set

the configuration parameter isolation.level to define the types of messages they

should receive. By setting isolation.level=read_committed, consumers will receive

only non-transactional messages or committed transactional messages, and they will

not receive messages from open or aborted transactions. To use transactional

semantics in a consume-process-produce pattern and ensure each message is

processed exactly once, a client application should set enable.auto.commit=false and

should not commit offsets manually, instead using the sendOffsetsToTransaction()

method in the KafkaProducer interface. You may also enable exactly once for your

event streaming applications by setting the configuration parameter

processing.guarantee.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 38

https://www.confluent.io/blog/enabling-exactly-once-kafka-streams/

Summary of Configurations for Optimizing Durability

Producer:

• replication.factor=3

• acks=all (default 1)

• enable.idempotence=true (default false), to prevent duplicate messages and

out-of-order messages

• max.in.flight.requests.per.connection=1 (default 5), to prevent out of order

messages when not using an idempotent producer

Consumer:

• enable.auto.commit=false (default true)

• isolation.level=read_committed (when using EOS transactions)

Streams:

• StreamsConfig.REPLICATION_FACTOR_CONFIG: 3 (default 1)

• StreamsConfig.PROCESSING_GUARANTEE_CONFIG: StreamsConfig.EXACTLY_ONCE

(default StreamsConfig.AT_LEAST_ONCE)

• Streams applications have embedded producers and consumers, so also check

those configuration recommendations

Optimizing for Availability

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 39

To optimize for high availability, you should tune your Kafka application to recover as

quickly as possible from failure scenarios.

When a producer sets acks=all (or acks=-1), the configuration parameter

min.insync.replicas specifies the minimum number of replicas that must

acknowledge a write for the write to be considered successful. If this minimum cannot

be met, then the producer will raise an exception. In the case of a shrinking ISR, the

higher this minimum value is, the more likely there is to be a failure on producer send,

which decreases availability for the partition. On the other hand, by setting this value

low (e.g., min.insync.replicas=1), the system will tolerate more replica failures. As

long as the minimum number of replicas is met, the producer requests will continue to

succeed, which increases availability for the partition.

On the consumer side, consumers can share processing load by being a part of a

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 40

consumer group. If a consumer unexpectedly fails, Kafka can detect the failure and

rebalance the partitions amongst the remaining consumers in the consumer group.

The consumer failures can be hard failures (e.g., SIGKILL) or soft failures (e.g., expired

session timeouts), and they can be detected either when consumers fail to send

heartbeats or when they fail to send poll() calls. The consumer liveness is maintained

with a heartbeat, now in a background thread since KIP-62, and the configuration

parameter session.timeout.ms dictates the timeout used to detect failed heartbeats.

Increase the session timeout to take into account potential network delays and to

avoid soft failures. Soft failures occur most commonly in two scenarios: when a batch

of messages returned by poll() takes too long to process or when a JVM GC pause

takes too long. If you have a poll() loop that spends too much time processing

messages, you can address this either by increasing the upper bound on the amount of

time that a consumer can be idle before fetching more records with

max.poll.interval.ms or by reducing the maximum size of batches returned with the

configuration parameter max.poll.records. Although higher session timeouts increase

the time to detect and recover from a consumer failure, relatively speaking, incidents

of failed clients are less likely than network issues.

Finally, when rebalancing workloads by moving tasks between event streaming

application instances, you can reduce the time it takes to restore task processing state

before the application instance resumes processing. In Kafka Streams, state

restoration is usually done by replaying the corresponding changelog topic to

reconstruct the state store. The application can replicate local state stores to minimize

changelog-based restoration time by setting the configuration parameter

num.standby.replicas. Thus, when a stream task is initialized or reinitialized on the

application instance, its state store is restored to the most recent snapshot

accordingly:

• If a local state store does not exist, i.e., num.standby.replicas=0, then the

changelog is replayed from the earliest offset.

• If a local state store does exist, i.e., num.standby.replicas is greater than 0, then

the changelog is replayed from the previously checkpointed offset. This method

takes less time because it is applying a smaller portion of the changelog.

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 41

https://cwiki.apache.org/confluence/display/KAFKA/KIP-62%3A+Allow+consumer+to+send+heartbeats+from+a+background+thread
https://docs.confluent.io/current/streams/developer-guide/running-app.html#state-restoration-during-workload-rebalance
https://docs.confluent.io/current/streams/developer-guide/running-app.html#state-restoration-during-workload-rebalance

Summary of Configurations for Optimizing Availability

Consumer:

• session.timeout.ms: increase (default 10000)

Streams:

• StreamsConfig.NUM_STANDBY_REPLICAS_CONFIG: 1 or more (default 0)

• Streams applications have embedded producers and consumers, so also check

those configuration recommendations

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 42

Next Steps

With serverless Kafka in Confluent Cloud, everything you know about Kafka still

applies, but you can skip the maintenance and instead focus on the strategic parts of

your event streaming applications. Using this paper, you can implement the

fundamentals for developing a Kafka client application to Confluent Cloud, monitor

and measure performance, and tune your application for throughput, latency,

durability, and availability. You may also refer to GitHub examples with demos for

building event streaming applications with Confluent Cloud.

Additional Resources

• Documentation

• GitHub examples

• Confluent Professional Services

• Confluent Training

Best Practices for Developing Apache Kafka® Applications on Confluent Cloud

© 2014-2020 Confluent, Inc. 43

https://confluent.cloud/
https://github.com/confluentinc/examples
https://docs.confluent.io/current/cloud/index.html
https://github.com/confluentinc/examples
https://www.confluent.io/services/
https://www.confluent.io/training/

	Best Practices for Developing Apache Kafka® Applications on Confluent Cloud
	Table of Contents
	Introduction
	What is Confluent Cloud?
	Architectural Considerations
	Scope of Paper

	Fundamentals for Developing Client Applications
	Connecting to a Cluster
	Kafka-Compatible Programming Languages
	Data Governance with Schema Registry
	Topic Management
	Security
	Networking
	Multi-Cluster Deployments

	Monitoring
	Metrics API
	Client JMX Metrics
	Producers
	Consumers

	Optimizations and Tuning
	Benchmarking
	Service Goals
	Optimizing for Throughput
	Optimizing for Latency
	Optimizing for Durability
	Optimizing for Availability

	Next Steps
	Additional Resources

