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1 Introduction[1]

Convex.jl is a package for Disciplined Convex Programming. Convex.jl makes
it easy to describe optimization problems in a natural, mathematical syntax,
and to solve those problems using a variety of different (commercial and open-
source) solvers, through the MathProgBase interface. This project would add
support for solving complex semidefinite programs (SDP) to Convex.jl.

Many problems in applied mathematics, engineering, and physics are most
naturally posed as convex optimization problems over complex valued variables
and with complex valued data. These include:

1. Phase retrieval from sparse measurements

2. Optimization problems in AC power systems

3. Frequency domain analysis in signal processing and control theory

While optimization over complex numbers can always be encoded as opti-
mization over real variables through transformations, this often results in signif-
icant overhead (both in user effort and computation time) in many applications.
Support for complex convex optimization in Convex.jl would boost the usage of
Julia as a language of choice for users working on these and other applications.

This work entails writing functions to transform complex SDPs into equiva-
lent real valued SDPs, and to transform the solutions back from real to complex
variables.

Students with further background and motivation could continue to improve
the SDP solver itself. In particular, the transformations used by Convex.jl to
write a problem as an SDP often introduce many extra variables and constraints
than are necessary, and may result in poor conditioning. A presolve routine,
eliminating redundant variables and constraints and improving conditioning
before passing the problem to a solver, would be a welcome addition to the
Convex.jl library. While many tricks for presolving LPs are well known, there
is significant room for imagination in writing a presolve for SDP; the project
might well lead to a publication were the student so inclined.

2 Discussion

As was suggested in the Convex.jl issue tracker [2] one could write constraints
and goal function via real and imaginary parts of complex variables. An example
of such approach is given in [3]. The disadvantage - it is too verbose:
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f unc t i on dnorm(L)
J = i n v o l u t i o n (L)

dx = s i z e (J , 1 ) |> s q r t |> x −> round ( Int , x )
dy = dx

i f prev dx != dx
M = E (dy , dx )
prev dx = dx

end

Jr = r e a l ( J )
J i = imag ( J )

Xr = Var iab le ( dy∗dx , dy∗dx )
Xi = Var iab le ( dy∗dx , dy∗dx )
ρ0 r = Var iab le (dx , dx )
ρ0 i = Var iab le (dx , dx )
ρ1 r = Var iab le (dx , dx )
ρ1 i = Var iab le (dx , dx )

prob = maximize ( r e t rφ( φ( Jr , J i ) ’∗φ(Xr , Xi ) ) )

prob . c o n s t r a i n t s += t rac e (ρ0 r ) == 1
prob . c o n s t r a i n t s += t rac e (ρ0 i ) == 0
prob . c o n s t r a i n t s += t rac e (ρ1 r ) == 1
prob . c o n s t r a i n t s += t rac e (ρ1 i ) == 0

Mρ0 r = reshape (M ∗ vec (ρ0 r ) , dy∗dx , dy∗dx )
Mρ0 i = reshape (M ∗ vec (ρ0 i ) , dy∗dx , dy∗dx )
Mρ1 r = reshape (M ∗ vec (ρ1 r ) , dy∗dx , dy∗dx )
Mρ1 i = reshape (M ∗ vec (ρ1 i ) , dy∗dx , dy∗dx )

prob . c o n s t r a i n t s += i s p o s d e f ( φ(ρ0r , ρ0 i ) )

prob . c o n s t r a i n t s += i s p o s d e f ( φ(ρ1r , ρ1 i ) )

prob . c o n s t r a i n t s += i s p o s d e f ( φ( [ Mρ0 r Xr ; Xr ’ Mρ1 r ] , [ Mρ0 i Xi ; −Xi ’ Mρ1 i ] ) )

s o l v e ! ( prob )

i f prob . s t a t u s != : Optimal
p r i n t l n (”DNORM e r r o r . ” )
p r i n t l n (” Input : $ (L)” )
p r i n t l n (” Input ’ s Choi spectrum : $ ( e i g v a l s ( l i o u 2 c h o i (L ) ) ) ” )
e r r o r (” Could not compute the diamond norm . ” )

end

return prob . optva l
end
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end

All variables with a subindex r and i are excessive an should be removed in
favor of simple definition via complex variables. Functions φ and retrφ should
also be removed in this case.

The same problem expressed via complex variables is given below:

func t i on dnorm(L)
J = i n v o l u t i o n (L)

dx = s i z e (J , 1 ) |> s q r t |> x −> round ( Int , x )
dy = dx

i f prev dx != dx
M = E (dy , dx )
prev dx = dx

end

X = Var iab le ( dy∗dx , dy∗dx )
ρ0 = Var iab le (dx , dx )
ρ1 = Var iab le (dx , dx )

prob = maximize ( t r a c e (J ’∗X) )

prob . c o n s t r a i n t s += t rac e (ρ0) == 1
prob . c o n s t r a i n t s += t rac e (ρ1) == 1

Mρ0 = reshape (M ∗ vec (ρ 0) , dy∗dx , dy∗dx )
Mρ1 = reshape (M ∗ vec (ρ 1) , dy∗dx , dy∗dx )

prob . c o n s t r a i n t s += i s p o s d e f ( ρ0 )

prob . c o n s t r a i n t s += i s p o s d e f ( ρ1 )

prob . c o n s t r a i n t s += i s p o s d e f ( [ Mρ0 X ; X’ Mρ 1 ] )

s o l v e ! ( prob )

i f prob . s t a t u s != : Optimal
p r i n t l n (”DNORM e r r o r . ” )
p r i n t l n (” Input : $ (L)” )
p r i n t l n (” Input ’ s Choi spectrum : $ ( e i g v a l s ( l i o u 2 c h o i (L ) ) ) ” )
e r r o r (” Could not compute the diamond norm . ” )

end

return prob . optva l
end

end

It is more than 30% shorter than the original and much more concise. One
could also check that new representation works for real domain without any
changes whatsoever!
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3 Practical approaches

Explanation of transformation from a complex SDP to an SDP over RN is given
in [4, Section 3].

As is specified in [5, Section 5.3]:

One or both sides of an equality constraint may be complex; inequal-
ity constraints, on the other hand, must be real. A complex equality
constraint is equivalent to two real equality constraints, one for the
real part and one for the imaginary part. An equality constraint
with a real side and a complex side has the effect of constraining the
imaginary part of the complex side to be zero.

4 Proposed solution

Write a macro for equality and inequality constraints.
Provide a custom form for trace (Q ∗X) optimization problem.
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