
BHoM Adapter

Workflow diagrams
for the Push Adapter Action

Indicates Property or Method to be defined (implemented) in specific Adapter in a Toolkit.

Notes and Conventions

SomeMethodName (p. XX)
Input parameter 1
Input parameter 2

SomeMethodName
Input parameter 1
Input parameter 2

Indicates a Method defined in the Base Adapter.
XX is the document page where the called method is explained.

Indicates a Method defined/to be defined outside the Base Adapter
(most commonly, in the specific Adapter implementation in a Toolkit).
As such, their explanation is not included in this document.

Each page presents one method, explaining its workflow.
The method name and required parameter are included in a colored box (see Legend below) in the top left corner.

Page number is indicated in the top-right corner.

Legend of symbols

Some
statement

Depending on the text, this can be:
- Branching (if-else; switch case; etc.)
- Iteration over a set of items

SomeMethodName (p. XX)
Input parameter 1
Input parameter 2

Indicates a Method defined in the Base BHoM_Engine.
These are complex method whose understanding is not necessary for the
general learning of the workflow; however, they are included in this document.

START END Start/end of a workflow within the currently presented method.

SomeMethodName
Input parameter 1
Input parameter 2

Indicates call to a Method or the title of the method being explained.

The parameters are color coded to be identified in the workflow.



Iterate all 
groups

return

END

objectsToPush

Next
group

Finished
iterating

PUSH
Push

List<object> objects
string tag

Dictionary<string,object> config

START

ProcessObjectsForPush (p. 02)
List<object> objects
string tag

<Line>

line1 line2

Example

Check
config

config["CRUD"] ==
"UpdateOnly"

FullCRUD (p. 03)
List<IBHoMObject> objectsToPush
string tag

UpdateOnly (p.10)
List<IBHoMObject> objectsToPush
Dictionary<string,object> config
string tag

(DEFAULT PATH)
config == "CRUD" 
OR 
config == "CRD"

config["CRUD"] == "CreateOnly"

CreateOnly (p.09)
List<IBHoMObject> objectsToPush
Dictionary<string,object> config
string tag

List<T> objectsToPush

Group objectsToPush
by their actual Type <T>

(actual type available at runtime via dynamic casting)

<Point>

point 1
point 2

<etc...>

obj N

<Line>

line 1 line 2

Type
inherits

IBHoMObject
or

IObject
?

IBHoMObject

IObject

01

The base Push method, defined in the Base BHoM_Adapter.
This gets invoked by any UI, when a Push component is activated.

You can override this method completely if this doesn't suit your Toolkit needs.



Deep clone
the IBHoMObjects

inherits
IBHoMObject

?

No

Yes

START

return

END

objectsToPush

02

Some set up needed on the objects before the Push is
performed.

ProcessObjectsForPush

Apply tag
to the IBHoMObjects

--> 
Wrap

NonBHoMObjects
?

AdapterConfig

Wrap <object>
into a

CustomBHoMObject

Y
(default)

Warn that these
objects will not be
exported through

CRUD
(CreateOnly instead)

N

ProcessObjectsForPush
List<object> objects
string tag



Adapter Fields

AdapterConfig

ErrorLog

Adapter GUID

AdapterId

DependencyTypes()

FullCRUD

=
to be defined

in specific Toolkit
Adapter

NOTE 1 NOTE 2

List<T> objectsCreated

Iterate
dependencyObjects

Next
item

FullCRUD
List<T> objectsToPush
string tag

FullCRUD (p. 03)
List<T> dependencyObjects
string tag

03

Calls all CRUD method as appropriate:
Reads the external model to understand if there
are objects that already exists there that overlap
with the ones currently being pushed;
then it either Creates, Updates or Deletes the
objects, depending on what's been implemented
in the specific Toolkit.

START

GetDependencyObjects (p.05)
List<T> objectsToPush
string tag

-> handle
Dependencies

?

AdapterConfigY

N

--> process
InMemory

?

AdapterConfig Y

CUD (p.07)
string tag
List<T> objectsToPush
List<T> existingObjects

DC (p.08)
string tag
List<T> objectsToPush
List<T> existingObjects

N

END

Remove duplicate
objects

Copy the IDs of the objectsCreated
to the original objectsToPush.

Since we had done .Distinct() on objectsToPush,
this is to ensure that all objectsToPush have an ID assigned

even if they were found to be duplicates.

ReadIfRequired (p. 04)
List<T> objectsToPush
string tag

List<T>
existingObjectsDictionary <type, object>

dependencyObjects



return

List<T> existingObjects

04

Calls Read if tags and comparers are present and meaningful to the rest of the CRUD.
In order for the Read to be meaninfgul, you need to be able to compare the objects currently 
being Pushed with the ones that will be Read from the External model.

ReadIfRequired

Read

(Read the model, if existing, and
return any previously pushed

object)

List<T>
existingObjects

Does

have non-default 
IEqualityComparer

 ?

type <T> Y

List<T> existingObjects
= empty list

ReadIfRequired
List<T> objectsToPush
string tag

Is 

empty
?

tagY

N

N

START



GetDependencyObjects

List<T> dependencyTypes

Adapter Fields

AdapterConfig

ErrorLog

Adapter GUID

AdapterId

DependencyTypes()

NOTE 

to be defined
in specific Toolkit
Adapter

GetDependencyObjects
List<T> objectsToPush
string tag
Dictionary<string,object> config

START

List<Type>
DependencyTypes

(To be defined
in specific
Adapter)

Engine.DistinctProperties (p. 06)
List<T> objects
Single dependency type <D>

(Retrieve all distinct dependency
objects of type <D>)

List<P> dependencyObjects

Add

to dictionary:
Dictionary <type, object>

dependencyObjects

List<P> dependencyObjects

return
Dictionary <type, object>

dependencyObjects

05

BHoM does not define inheritance chain between objects.
The dependency between two types (Bar -> Nodes)
has to be defined in the DependencyTypes field
in the specific Toolkit; using that, the dependencies
are here collected.

END

Iterate

Next
item

single dependency
type <D>

Finished
iterationdependency

Types



Engine.DistinctProperties (should be renamed to Engine.GetDependencyObjects)
Engine.DistinctProperties

List<T> objects
List<type> dependencyTypes

<P> dependency properties
&

List<P> dependency properties

dependency objects

return

dependency objects

START

From List<T> objects

extract all dependency properties

that are type of either:
- <D>

- List <D>

From dependency properties
extract (get) all the objects 

(these are the "sub objects" or "dependency
objects" that are properties of the

original List<T>objects)

END

Iterate

Next
item

single dependency
type <D>

Finished
iterationdependency

Types

06

Dictionary <type, object>
dependencyObjects

Add dependency objects 
to Dictionary



ReplaceThroughAPI
List<T> objectsToBePushed
string tag

Objects
ToPush

Y

Has it got 
the same tag

currently pushed
?

START

N

Has 
other tags

left
?

Delete
We delete these objects 
as we know that they do

not exist anymore.

Existing objects 
with the pushed tag

and only that tag

excluding 
all those equal to 
"ObjectsToPush"

Y

MapSpecialProperties

(Transfer appropriate properties
from existing to new objects)

UpdateObjects
(Entirely update
these objects)

Remove 
pushed tag

from objects' tags

Existing Objects
with 

multiple tags

excluding 
all those equal to 
"ObjectsToPush"

UpdateProperty
Update only the tag of the objects
 = the tag currently pushed will get

removed from the list of tags.

(This is because we know that the
"neighbouring" objects with only that

tag will be deleted.)

Objects
ToPush

excluding
all those equal to
existing objects

Y

Objects
Existing
In Model

Existing Objects

excluding 
all those equal to 
"ObjectsToPush"

Perform "Venn diagram" comparison

ObjectsToPush
that are equal to
ExistingObjects

return

objectsToCreate

= objectsToCreate

END

07
CUD (ReplaceThroughAPI)

All actions
completed

NDon't do anything

(This means that
these objects will be
left unchanged in the

existing model)

Create
objectsToCreate



List<T> multi
TaggedObjects

Objects
ToPush

Y

Has it got 
the same tag

currently pushed
?

Has 
other tags

left
?

Y

Y

Multi Tagged
Existing
Objects

+
nonTagged

N

List<T> 
nonTagged

Objects
ToPush

excluding
all those equal to 

multiTagged or nonTagged

= "newObjects"

DC (ReplaceInMemory)

N

Do nothing
(this means that objects with only
the same tag currently pushed 

will get deleted, 
since they will not get re-created)

List<T> objectsToBePushed

Perform "Venn diagram" comparison

MapSpecialProperties
<T> objectsToBePushed

<T> existingItem

(Transfer appropriate properties
from existing to new objects)

MultiTagged
+ nonTagged

excluding
all those equal to
objectsToPush

Intersection

Create
List<T> objectsToCreate

Remove 
pushed tag

from objects' tags

Delete
typeOf(T)

List<T> objectsToCreate

List<T> 
nonTagged

List<T> multi
TaggedObjects

CUDInMemory
List<T> objectsToBePushed
List<T> existingObjects
string tag

START

List<T> existingObjects

return

objectsToCreate END

08



Iterate
dependencyObjects

Next
item

CreateOnly (p. 09)
List<T> dependencyObjects
string tag

GetDependencyObjects (p. 05)
List<T> objectsToPush
string tag

Dictionary <type, object>
dependencyObjects

Adapter wrapper of the toolkit method Create.
Assumes that these objects are BHoMObjects (they must have
CustomData and IDs stored) and if their ID has been set up

09
CreateOnly

CreateOnly
List<T> objects
string tag
Dictionary<string,object> config

Apply tag
to the objects

Create
List<T> objects

START

-> handle
Dependencies

?

AdapterConfig Y

N

END

return

List<T> objects



UpdateOnly
UpdateOnly

List<T> objects
string tag
Dictionary<string,object> config

Apply tag
to the objects

UpdateObjects
List<T> objects

END

Adapter wrapper of the toolkit method UpdateObjects.
Assumes that these objects are IBHoMObjects (they must have
CustomData and IDs stored) and if their ID has been set up

START

-> Handle
Dependencies

?

AdapterConfig Y

N

return

List<T> objects

return

UpdateObjects (Default implementation)
Default implementation works as a "re-create". 
This method is meant to be implemented
(overridden) by adapters.

Delete()
List<T> objects

Create()
List<T> objects

List<T> objects

Iterate
dependencyObjects

Next
item

UpdateOnly (p. 10)
List<T> dependencyObjects
string tag

GetDependencyObjects (p. 05)
List<T> objectsToPush
string tag

Dictionary <type, object>
dependencyObjects

10



UpdateProperty
Default implementation of the method commonly used to update a single
property of specified objects (e.g. only the tag).

This method can be overridden by adapters. 
Not to be confused with the toolkit method UpdateProperty.

START

UpdateProperty
IRequest
 string propertyName
 object newValue
Dictionary<string,object> config

return

END

UpdateInMemory

Create
List<T> objects

UpdateThroughAPI

Pull
IRequest

UpdateProperty

(Set the specified property 
using API call implemented 
in adapter)

pulled objects

Y N

Read

(Retrieve objects to
be updated)

Engine -> Reflection -> SetPropertyValue

(Set the specified property 
using reflection)

Check

-> process
InMemory

?

AdapterConfig

11


