
FOR REVIEW 1

Supplementary Materials: Attention Spiking
Neural Networks

Man Yao Student Member, IEEE , Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng Member, IEEE ,
Yonghong Tian Fellow, IEEE , Bo Xu, and Guoqi Li Member, IEEE

✦

S1 ANALYSIS OF ENERGY CONSUMPTION

The measure of energy cost in CNNs and SNNs are shown
in Table S1. Almost all FLOPs in CNNs are MAC. By
contrast, in the vanilla SNN, FLOPs of the first encoder layer
are MAC while all other Conv or FC layers are AC.

TABLE S1: FLOPs for CNN and SNN models. im and
om are the input and output dimensions of the FC layer,
respectively. When the inputs are static images, Φ0

Conv = 1.
When the inputs are event frames, Φ0

Conv is the ratio of non-
zero pixels. Moreover, Φ0

FC = ΦN
Conv .

Model
FLOPs of a CONV or FC layer

Variable Value FLOP Type

CNN [1]
FLn

Conv (kn)2 · hn · wn · cn−1 · cn MAC
FLm

FC im · om MAC

SNN [2]
FLn

SNNConv T · FLn
Conv · Φn−1

Conv

MAC (n = 1)
or AC (n > 1)

FLm
SNNFC T · FLm

FC · Φm−1
FC AC

Energy Cost of Vanilla SNNs. Similar to [2], [3], we
define the layer average spiking activity rate (LASAR) to
analyze the energy cost related to the spiking activity: at
time step t, a layer’s spiking activity rate (LSAR) is the
ratio of spikes produced over all the neurons to the total
number of neurons in that layer; then we define the LASAR
which averages LSAR across all time steps T . The LASAR
of the vanilla SNN at n-th Conv layer and m-th FC layer
are Φn

Conv and Φm
FC , respectively. As shown in Table S1, the

number of FLOPs needed for n-th Conv and m-th FC layer
of CNNs, which can be separated as FLn

Conv and FLm
FC ,

• M. Yao is with the School of Automation Science and Engeneering, Xi’an
Jiaotong University, Xi’an, Shaanxi, China, and also with Peng Cheng
Laboratory, China.

• G. Zhao is with the School of Automation Science and Engeneering, Xi’an
Jiaotong University, Xi’an, Shaanxi, China.

• H. Zhang is with Tsinghua Shenzhen International Graduate School,
Tsinghua University, Shenzhen, China.

• Y. Hu, and L. Deng are with Center for Brain-Inspired Computing
Research, Department of Precision Instrument, Tsinghua University,
Beijing, China.

• Y. Tian is with Institute for Artificial Intelligence, Peking University,
Beijing, China, and also with Peng Cheng Laboratory, China

• B. Xu and G. Li are with Institute of Automation, Chinese Academy of
Sciences, Beijing, China.
The corresponding author: Guoqi Li (E-mail:guoqi.li@ia.ac.cn).

are easy to compute [2]. The formula of CNN FLOPs can be
easily adjusted for an SNN. Considering the simulation step
T and LASARs, we obtain FLOPs of SNNs in n-th Conv
and m-th FC layer, denoted as FLn

SNNConv and FLm
SNNFC

respectively, in row 5 and 6 of Table S1. Then, we can
calculate the energy cost of vanilla SNN by Table S1.

In the encoder layer of SNNs (n = 1), FLOPs are MAC
operations that are the same as CNNs, because the work
of this layer is to transform analog inputs into spikes. In
addition, all other Conv and FC layers transfer spikes and
execute AC operations to accumulate weights of postsynap-
tic neurons. Thus the inference energy cost of a vanilla SNN
EBase can be quantified as

EBase = EMAC · FL1
SNNConv

+ EAC · (
N∑

n=2

FLn
SNNConv +

M∑
m=1

FLm
SNNFC),

(S1)

where N and M are the total numbers of layers of Conv
and FC, EMAC and EAC represent the energy cost of MAC
and AC operation, respectively. Refer to previous SNN
works [2], [3], [4], [5], [6], we assume the data for various
operations are 32-bit floating-point implementation in 45nm
technology [7], in which EMAC = 4.6pJ and EAC = 0.9pJ .

Additional Model and Computational Complexity. Ta-
ble S2 shows the additional parameters and computational
burden induced by three dimensions of attention modules.
We individually consider the additional parameters and
computational burden induced by three dimensions of at-
tention module. We assume the attention module is used in
each Conv layer. Since the inputs of the attention module
are analog values generated by pooling, the additional com-
putation is MAC operation. We first consider the additional
parameters, which are solely from the two FC layers or one
Conv layer, and therefore constitute a small fraction of the
total network capacity. The results are shown in column 2
of Table S2. Then we consider the additional computation
burden ∆MAC1 and ∆MAC2, where the former comes from
generating attention weights and the latter derives from
refinement membrane potential. For TA, each layer executes
the attention module only once, and ∆MAC1 has nothing to
do with time step; for CA and SA, modules are repeatedly
performed at each time step when executing the inference.
Results of the number of additional MAC operations are
shown in column 3 and 4 of Table S2.



FOR REVIEW 2

TABLE S2: Additional Model and Computational Complexity. Additional parameters induced by attention modules are
very small compared with baseline parameters, which can be ignored. ∆MAC1 is caused by the computation of attention
weights. ∆MAC2 is induced by the refinement of membrane potential, where NConv−neuron means the number of Conv
neurons. ∆AC derives from the drop of network spiking activity, where ∆Φn

TA−Conv = Φn
Conv−Φn

TA−Conv and ∆m
TA−FC =

Φm
FC − Φm

TA−FC indicate the shift of LASAR between baseline SNN and TA-SNN in n-th Conv layer and m-th FC layer,
respectively. And so on, we can get ∆Φn

CA−Conv , ∆Φm
CA−FC , ∆Φn

SA−Conv , and ∆Φm
SA−FC .

Attention Additional Para.(↑)
Additional Computational Complexity

∆MAC1 (MAC ↑) ∆MAC2 (MAC ↑) ∆AC (AC ↓)

TA N ·
(
2 · T · ⌊ T

rt
⌋
)

N ·
(
2 · T · ⌊ T

rt
⌋
)

T ·NConv−neuron T · (
N−1∑
n=1

FLn
Conv ·∆Φn−1

TA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
TA−FC)

CA
N∑

n=1

(
2 · cn · ⌊ cn

rc
⌋
)

T ·
N∑

n=1

(
2 · cn · ⌊ cn

rc
⌋
)

T ·NConv−neuron T · (
N−1∑
n=1

FLn
Conv ·∆Φn−1

CA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
CA−FC)

SA N · (2 · 7 · 7) T ·
N∑

n=1
2 · 7 · 7 · hn · wn T ·NConv−neuron T · (

N−1∑
n=1

FLn
Conv ·∆Φn−1

SA−Conv +
M∑

m=1
FLm

FC ·∆Φm−1
SA−FC)

Energy Shift of Attention SNNs. By optimizing the
membrane potential, the attention mechanism drops the
spiking activity of SNNs in both Conv and FC layers. We
can easily get how much the AC operation in the network
has changed by counting the LASAR of the attention SNNs,
and the computation formula is shown in column 5 of
Table S2. Then, we can estimate the shift of the energy
cost versus the additional computational burden ∆MAC =
∆MAC1+∆MAC2 and the decreased AC operations ∆AC to
demonstrate the energy efficiency of the attention SNN. The
absolute energy shift between vanilla and attention SNNs
can be computed as

∆E = EMAC ·∆MAC − EAC ·∆AC . (S2)

We term the attention SNN energy consumption as EAtt.
With the vanilla SNN as the anchor, the energy efficiency of
an attention SNN is defined as

rEE =
EBase

EAtt
=

EBase

EBase +∆E
. (S3)

The higher the rEE , the greater the energy efficiency of
attention SNNs. Generally, we represent the rEE of baseline
model as 1×.

S2 EXPERIMENTAL DETAILS

S2.1 Learning on Event-based Action Recognition

Table S3 lists details for experiments on event-based recog-
nition datasets like learning algorithm, loss function, etc. We
use the Adam optimizer for accelerating the training process
and employ some standard training techniques of deep
learning, such as batch normalization, dropout, etc. The
hyper-parameters and specific baseline network structures
of vanilla and attention SNNs are also shown in Table S3.

Moreover, in the Gait dataset, there may be some time-
dependent blank areas at the beginning and end of the event
stream. We remove these two parts in the process of data
preprocessing by setting an event number threshold xth.
Specifically, we start from t′ = 0, check the event number
of each Et′ , discard the pattern St′ until the event number
of the Et′ is greater than xth. Similarly, we also make the
discard process at the end of the data. We set xth = 25 in
this paper.

TABLE S3: Learning and hyper-parameter setting. MP4-max
pooling is 4×4, nC3-Conv is 3×3 and has n output feature
maps, AP2-average pooling is 2× 2, nFC-Linear layer has n
output feature maps.

DVS128 Gesture & DVS128 Gait

Learning

Representation Frame-based
output Latency tlat = dt× T

Learning Algorithm STBP [8]
Data Augmentation RCS [9]

Loss Function Rate Coding [8]

Network Structure

[10]:Input-128C3-AP2
-128C3 -AP2-128C3-AP2
-128C3-AP2-128C3-AP2

-512FC-Output
[9]:Input-MP4-64C3
-128C3-AP2-128C3

-AP2-256FC-Output

Max Epoch 100
Batch Size 36

Learning Rate 1e−4

Hyper Threshold uth 0.3
parameter Reset potential Vreset 0

Decay factor β 0.3
Reduction factor rc, rt 16

S2.2 Learning on ImageNet-1K
For the experiments on ImageNet-1K, we mainly follow the
network architectures of MS-ResNet [3] as in Table S5, and
our training setup is detailed in Table S4. We use the SGD
optimizer for training and use the cosine annealing method
for learning rate scheduler. For the ImageNet-1K dataset, we
use a 224×224 RandomCrop and AutoAugment as the data
augmentation method. And for testing, we resize the image
to size 256 × 256 and use 224 × 224 CenterCrop to obtain
the input data.

S2.3 Training Efficiency on Single-time Step Res-SNNs
To evaluate the training time of single/6-time step, we
use card · h/epoch as the normalized time unit of the
measurement. Here we only compared the training cost on
ImageNet-1K, results are shown in Table S6. We see that



FOR REVIEW 3

TABLE S4: Learning and hyper-parameter setting on
ImageNet-1K.

ImageNet

Learning

Learning Algorithm STBP [8]
Learning Rate Scheduler CosineAnnealingLR

Loss Function CrossEntropy
Data Augmentation AutoAugment [11]

Optimizer SGD

Hyper
Parameter

Max Epoch 1000
Batch Size 600

Learning Rate 0.1
Momentum of SGD 0.9

Weight Decay 1e-5
Label Smoothness [12] 0.001

Dropout Rate [13] 0.2
Threshold uth 0.5

Reset potential Vreset 0
Decay factor β 0.25

Reduction factor rc, rt 16

TABLE S5: Network Structures for ImageNet-1K. Note, the
first block in each stage contains a convolutional layer with
stride size 2.

Stage Output Size ResNet-18 ResNet-34 ResNet-104

0 112x112 7x7, 64, stride=2

1 56x56
[

3x3, 64
3x3, 64

]
∗ 2

[
3x3, 64
3x3, 64

]
∗ 3

[
3x3, 64
3x3, 64

]
∗ 3

2 28x28
[

3x3, 128
3x3, 128

]
∗ 2

[
3x3, 512
3x3, 128

]
∗ 4

[
3x3, 128
3x3, 128

]
∗ 8

3 14x14
[

3x3, 256
3x3, 256

]
∗ 2

[
3x3, 256
3x3, 256

]
∗ 6

[
3x3, 256
3x3, 256

]
∗ 32

4 7x7
[

3x3, 512
3x3, 512

]
∗ 2

[
3x3, 512
3x3, 512

]
∗ 3

[
3x3, 512
3x3, 512

]
∗ 8

FC 1x1 AveragePool, FC-1000

TABLE S6: Training cost on various experiments. The unit is
card · h/epoch, which indicates the time required to use the
maximum memory of one NVIDIA Tesla A100 (40G) GPU.

Models T = 1 T = 6

Att-Res-SNN-18 0.327 2.126
Att-Res-SNN-34 0.538 3.500
Att-Res-SNN-104 1.758 11.313

TABLE S7: Effect of Different residual attention locations in
Res-SNNs with T = 1 on ImageNet-1K

Model Acc. (%) NASAR

Res-SNN-18 [3] 61.70 0.224
CSA-Res-SNN-18-1 63.97(+2.3) 0.148
CSA-Res-SNN-18-2 63.49(+1.8) 0.137

single-time step large-scale SNNs can significantly speed up
training.

S3 ADDITIONAL EXPERIMENTAL RESULTS

S3.1 Evaluation of Att-Res-SNN-1 and Att-Res-SNN-2
In Section 6.4 of the main text, we give two schemes of
attention residual learning, where Att-Res-SNN-1 (our rec-
ommended method) performs attention between the resid-
ual block and shortcut. Another variant, Att-Res-SNN-2,

TABLE S8: Comparison with VGG-SNN baselines on
CIFAR-10 (the above table) and CIFAR-100 (the below table).

Model Top-1 Acc. (%) NASAR
Spike Counts

(×106)

VGG-SNN-7 (T = 1) 80.70 0.110 2.535
+ CSA (This work) 83.66(+2.9) 0.108 2.478

VGG-SNN-7 (T = 6) 84.55 0.082 11.289
+ CSA (This work) 87.29(+2.7) 0.104 14.389

VGG-SNN-11 (T = 1) 81.80 0.068 8.516
+ CSA (This work) 89.13(+7.3) 0.075 9.346

VGG-SNN-11 (T = 6) 84.62 0.047 35.476
+ CSA (This work) 91.91(+7.3) 0.057 42.871

VGG-SNN-11 (T = 1) 48.84 0.083 10.389
+ CSA (This work) 60.49(+11.7) 0.075 9.357

VGG-SNN-13 (T = 1) 49.51 0.098 14.139
+ CSA (This work) 58.12(+8.6) 0.083 11.964

TABLE S9: Effect of attention module in VGG-SNN-13 on
CIFAR-100 with T = 1. The order of the spike counts is 106.
Note, compared with the standard VGG-13 in CNN, VGG-
SNN-13 has one less FC layer on CIFAR-100.

Layer NASAR
NASAR

Spike Counts
Spike Counts

(+CSA) (+CSA)

Conv-1 0.176 0.242 1.153 1.585 (+0.423)
Conv-2 0.169 0.189 1.107 1.237 (+0.130)
Conv-3 0.140 0.123 1.837 1.606 (-0.231)
Conv-4 0.134 0.098 1.760 1.291 (-0.469)
Conv-5 0.120 0.103 3.158 2.706 (-0.452)
Conv-6 0.064 0.034 1.679 0.915 (-0.764)
Conv-7 0.078 0.065 1.028 0.857 (-0.171)
Conv-8 0.080 0.059 1.045 0.775 (-0.270)
Conv-9 0.064 0.062 0.844 0.821 (-0.080)
Conv-10 0.039 0.012 0.513 0.153 (-0.360)
LIF-FC-1 0.157 0.183 0.016 0.019 (+0.003)

in which the attention is moved after the shortcut. These
variants are illustrated in Fig.3 and Fig.5 of the main text.
The performance of each variant is reported in Table S7.
We observe that both Att-Res-SNN-1 and Att-Res-SNN-
2 perform well on effectiveness and efficiency concretely,
where Att-Res-SNN-1 is better in the accuracy and Att-
Res-SNN-2 has sparser firing. We chose Att-Res-SNN-1 as
the recommended model because of its higher accuracy.
Moreover, although it is beyond the scope of this work, we
anticipate that further effectiveness and efficiency gains will
be achievable simultaneously by tailoring backbone SNNs
and attention module usage for specific tasks.

S3.2 Results in Att-VGG-SNNs

We also assess the effect of CSA modules when operating
on non-residual deep networks by conducting experiments
with the VGG-SNN architecture. Specifically, we use VGG-
7/11 (T=1, 6) and VGG-11/13 (T=1) in the open source
framework SpikingJelly1 as the benchmark model to test
on CIFAR-10 and CIFAR-100. To facilitate the training of

1. https://github.com/fangwei123456/spikingjelly



FOR REVIEW 4

Failure case with Vanilla SNN

Successful case with TCA-SNN

Failure case with Vanilla SNN

Successful case with TCA-SNN

Gesture

Gait Failure case with Vanilla SNN

Successful case with TCA-SNN

Failure case with Vanilla SNN

Successful case with TCA-SNN

Fig. S1: Case study on event-based action recognition tasks. We can observe that attention drives SNNs to focus on the
target while the vanilla model shows more decentralized spiking activations. In successful cases, the edge information in
the spiking features is clearer. We see that different event streams result in distinct spiking response.

VGG-SNN from scratch, we add Batch Normalization layers
for all VGG-SNN models. We plug an attention module
behind each layer of VGG and exploit identical training
schemes for both VGG-SNN and CSA-VGG-SNN (code is
available2). The results of the comparison are shown in
Table S8. Similarly to the results reported for the residual
baseline architectures, we observe that CSA modules bring
significant accuracy improvements in all experiments on the
VGG-SNN settings.

As shown in Table S8, in terms of spiking firing, we
see that the attention module reduces the number of spikes
of vanilla SNNs in three groups of experiments, while it
increasing spikes in the other three sets. We scrutinized
the spiking firings of all models and found that the spike
counts are strongly correlated with the dataset and model
structure, which is consistent with what we observed in
shallow plain SNNs and deep residual SNNs. We observe
that attention modules generally increase spikes in the first
encoding layers and decrease spikes in deeper layers. As an
example, we show the number of spikes in VGG-SNN-13
and Att-VGG-SNN-13 in Table S9. We see that among all
the convolutional layers, only Conv-1 and Conv-2 increase
spikes after inserting the attention module. From Conv-3
to Conv-10, the number of spikes decreases for each layer,
which makes Att-VGG-SNN-13 end up with 2.175 × 106

fewer spikes than VGG-SNN-13. Therefore, if we can choose
the structure of the baseline model reasonably, the attention
module is able to improve the performance of VGG-SNN
while reducing spikes.

S3.3 More Case Studies

Here we add more case studies for Section 7.2 of the main
text. For a single event-based sample, we averaged all the

2. https://github.com/ridgerchu/SNN Attention VGG

4D ([T,C,H,W ]) spiking maps of SNN into a 2D map
([H,W ]) over the temporal and channel dimension at each
layer. Then we plot the 2D feature, which represents the
average spiking response of every layer for this sample. To
visualize the effectiveness and efficiency of attention SNNs,
we select an example with regard to the case of the vanilla
SNN failing in recognition but the attention SNN succeeds.
The visualization results are given in Fig. S1.

S4 GRADIENT EVOLVEMENT IN ATT-RES-SNNS

Lemma S1 (Multiplication). (Theorem 4.1 in [14]) Given J :=∏1
j=L J j , where {J j ∈ Rmj×mj−1} is a series of independent

random matrices. If (
∏1

j=L J j)(
∏1

j=L J j)
T is at least the 1st

moment unitarily invariant, we have

ϕ

(
1∏

j=L

J j)(
1∏

j=L

J j)
T

 =
1∏

j=L

ϕ(J jJ
T
j ). (S4)

Lemma S2 (Addition). (Theorem 4.2 in [14]) Given J :=∏1
j=L J j , where {J j ∈ Rmj×mj−1} is a series of independent

random matrices. If at most one matrix in J j is not a central
matrix, we have

ϕ(JJT ) =
∑
j

ϕ(J jJ
T
j ). (S5)

Lemma S3 (ReLU, Conv, Orthogonal). (Table 2 in [14]) First,
ReLU activation function is denoted as ReLU(x)(P (x > 0) =
p) and its Jacobian matrix is expressed as JReLU . Secondly, Conv
linear transformation is defined as y := K ∗ x, where ∗ is the
Conv operation and K ∈ Rcincoutkhkw ∼ i.i.d.N(0, ϵ2)) is the
convolution kernel. The Jacobian matrix of Conv is written as
JConv . Finally, the orthogonal linear transformation is defined



FOR REVIEW 5

as y := Kx where KKT = γ2I , and its Jacobian matrix is
denoted as JOrth.

Lemma S4 (Sigmoid Function). Sigmoid is defined as: σ(x) =
1

1+e−x , and its derivative is σ′(x) = σ(x)(1 − σ(x)). Analysis
of Sigmoid is more challenging due to its complex non-linearity.
Since sigmoid is point symmetric about (0, 0.5), we assume the in-
puts of sigmoid are around 0. Then we can simplify the σ(x) with
Taylor series around 0: σ(x) ≈ σ(0)+σ′(0)x = 1

2+
1
4x.Therefore

σ′(x) ≈ 1
4 and its Jaccobi matrix JSig is approximately 1

4I , for
whom we have ϕ(JJT ) = 1

16 and φ(JJT ) = 0.

S5 SPIKING RESPONSE OF ATTENTION SNNS

Fig.S2 shows the spiking response of vanilla SNN and
TCA-SNN on Gait. The NASR of vanilla SNN is almost
unchanged at each time step, which means SNN responds
similarly to various inputs. With the help of data-dependent
attention, the NSAR of TCA-SNN is uneven and small at the
temporal axis, which induces a much lower NASAR than
vanilla SNN.

1 6 11 16 21 26 31 36
Time step

0.0

0.1

0.2

0.3

NS
AR

NASAR(Vanlia SNN)
NASAR(TCA-SNN)

NSAR(Vanlia SNN)
NSAR(TCA-SNN)

Fig. S2: Study of NSAR and NASAR on vanilla and attention
SNN with Gait dataset. We set dt = 15, T = 36.

REFERENCES

[1] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,”
International Conference on Learning Representations, 2017.

[2] S. Kundu, M. Pedram, and P. A. Beerel, “Hire-snn: Harnessing
the inherent robustness of energy-efficient deep spiking neural
networks by training with crafted input noise,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
5209–5218.

[3] Y. Hu, Y. Wu, L. Deng, and G. Li, “Advancing residual learning
towards powerful deep spiking neural networks,” arXiv preprint
arXiv:2112.08954, 2021.

[4] S. Kundu, G. Datta, M. Pedram, and P. A. Beerel, “Spike-thrift: To-
wards energy-efficient deep spiking neural networks by limiting
spiking activity via attention-guided compression,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2021, pp. 3953–3962.

[5] B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-
domain classification with adaptive spiking recurrent neural net-
works,” Nature Machine Intelligence, vol. 3, no. 10, pp. 905–913,
2021.

[6] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual
connections, stochastic softmax, and hybridization,” Frontiers in
Neuroscience, vol. 14, p. 653, 2020.

[7] M. Horowitz, “1.1 computing’s energy problem (and what we
can do about it),” in 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–
14.

[8] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking neural
networks,” Frontiers in Neuroscience, vol. 12, p. 331, 2018.

[9] M. Yao, H. Gao, G. Zhao, D. Wang, Y. Lin, Z. Yang, and
G. Li, “Temporal-wise attention spiking neural networks for event
streams classification,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 10 221–
10 230.

[10] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian, “In-
corporating learnable membrane time constant to enhance learn-
ing of spiking neural networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021,
pp. 2661–2671.

[11] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“Autoaugment: Learning augmentation strategies from data,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 113–123.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2818–2826.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, 2012.

[14] Z. Chen, L. Deng, B. Wang, G. Li, and Y. Xie, “A comprehensive
and modularized statistical framework for gradient norm equality
in deep neural networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 1, pp. 13–31, 2022.


	Analysis of Energy Consumption
	Experimental Details
	Learning on Event-based Action Recognition
	Learning on ImageNet-1K
	Training Efficiency on Single-time Step Res-SNNs

	black Additional experimental results
	black Evaluation of Att-Res-SNN-1 and Att-Res-SNN-2
	black Results in Att-VGG-SNNs
	black More Case Studies

	Gradient Evolvement in Att-Res-SNNs
	Spiking Response of Attention SNNs
	References

