

Contact Person John Torous, BIDMC Division of Digital Psychiatry

Description LAMP Platform (frontend/backend)

Reviewer 2muchcoffee team

Date 02/12/2021

Backend

Conclusions

To improve scalability of the project and enable development of new essential functionality, it
is imperative that the backend code be refactored and restructured to overcome the
fundamental issues it currently faces. For example, not all basic or advanced features of
Typescript are used effectively, and there are several cases where functionality that was re-
developed specifically for this project could benefit from switching to existing tailor-made
solutions and contemporary frameworks.

Suggestions
There are several structural errors that further complicate the already complex code, along
with usage of deprecated or no longer recommended approaches to achieve certain
functionality. It would be appropriate to refractor and adopt modern approaches and
frameworks/tools that solve these issues, such as NestJS. Further recommendations
include:

• Moving common/shared functionality into middleware functions, for example, for
centralized error processing, authentication and authorization, subscription management,
and so on.

• Migrating the codebase to fully strictly typed, by describe all interfaces instead of using
the “any” type, which resolve many serious internal errors in the codebase.

• Reducing and removing as many callbacks and nested functions as possible.
• Restructuring the codebase by separating it into modules, with names corresponding to

functionality performed by the specific module.
• This would be a much better approach instead of separating services/controllers/

models into groups, as well as the separation of each module between router/
controller/service/repository.

Project Dependencies
• There are many third-party packages present that are unused by the codebase (“fastify”,

“mssql”, “node-cron,” and so on), as well as several mutually-exclusive dependencies
(“fastify” vs. “express”).

Project Structure
• As previously stated, the code structure is not ideally organized to further scale and

advance the project given the intended user base and required functionality. It would be
logical and suitable to separate the code into catalogues with the corresponding names
reflecting the functionality represented:

(An example, which implements the activity and researcher functionality, into separate
catalogs. The whole project should be re-formatted in this way).

• The service catalogue contains files in which a controllers’ functionality are described.
“ListenerAPI” and “PushNotificationAPI,” which are located in the utility catalogue, also
contain controllers’ functionality for API subscriptions and push notifications; this logic is
also shared and located in different places across the codebase.

• In other words, the same duplicated functionality is presented in different places of
the app, and resolving a bug may become more complex as the same bug may
need to be resolved multiple times, decreasing development productivity.

• The “PushNotificationAPI” logic is best refactored into a separate microservice
module that communicates with the backend, following the a stricter pattern for the
delegation of responsibility and decreasing the potential for breakage of one
component to affect others.

• Controller functionality is overloaded with logic, which would be important to move into
separate services and reduce shared/rewritten/duplicated code.

• The code currently in the service catalogue should be migrated into classes with static
functions that are then called by the Express route callbacks.

• There is a large surface of fully commented-out (disabled) code as well as completely
unused code that complicates the codebase and will make it difficult to implement new
functionality; such code should be entirely removed.

• The possibilities enabled by Express middleware functions are not used; for instance,
authentication/authorization should be implemented as a middleware function, potentially
using a declarative role-based authentication library like “CASL” instead of the
complicated and unclear approach.

• Exceptions are currently manually thrown in the controllers, and should instead be
centralized and converted to Express middleware functions.

Typescript
• The typing across the project is quite weak; there are no interfaces to describe the data

structure, and “any” is used everywhere, which can lead to serious internal code errors.

In the examples presented above, there is no description of the incoming data for
functions, and there is no verification whether data is being processed in the functions
themselves.

• There is a serious misunderstanding of the role of the “async” keyword across the
codebase; for example, for the abstract method the return signature should be “Promise”
instead of “Promise<any>” which would allow the concrete subclasses to implement the

function by returning specific concrete types.

Frontend

Conclusions

To improve scalability of the project and enable development of new essential functionality, it
is imperative that the frontend code be refactored and restructured to overcome the
fundamental issues it currently faces. For example, not all basic or advanced features of
Typescript are used effectively, and there are several cases where functionality that was re-
developed specifically for this project could benefit from switching to existing tailor-made
solutions and contemporary frameworks. Most of the files that comprise the codebase are
massive, containing several large components and duplicated or unused code that should
be refactored to address serious problems and bugs that may arise further in development
or production usage.

Suggestions
There are several structural errors that further complicate the already complex code, along
with usage of deprecated or no longer recommended approaches to achieve certain
functionality. It would be appropriate to refractor and adopt modern approaches and
frameworks/tools that solve these issues. Further recommendations include:

• Refactoring the project structure to reduce complexity and improve clarity.
• Migrating the entire codebase to become fully strictly typed by describing all interfaces

instead of using the “any” type (as well as ignoring compiler warnings and linting errors),
which will resolve many serious internal errors and expected bugs in the codebase.

Refactoring
Code Structure

• The first and most important suggestion is to refactor the current project structure. If each
specific user interface element or page has its own folder containing the components,
styles, and helper code, it will be much easier to split the main components and files.
Below is a possible example:

• Most of the files containing multiple very large components should be split into several

smaller components, each within individual files, to avoid any code duplication and
incorrectly duplicated functionality.

• Reusable components, functions, interfaces, etc. should be moved to shared folders.
• After restructuring, it is both important and critical to correctly use Storybook and create

examples and definitions for isolation component testing and unit testing.

Typescript

• All props that are received by function components should be completely described; an
example is provided below:

• Replace the “any” type one-by-one across each component, and if some props come, for

example, from the “@material-ui/core” package, use the appropriate type definitions from
this package.

Project Structure
• The code structure has not ideally organized and does not have any kind of code-

splitting, as all the logic is placed inside of components, and the whole project is a single
flat folder.

• Due to the fact that components are overloaded with logic, styles, and functions, many of

them are quite massive, which decreases code readability, developer productivity, and
further dramatically increases the risk of bugs.

• Optimal size is no more than 200 lines, all files that are more than that should be

refactored and split; large components with many state variables, effect functions, or
rendered elements should also be split into smaller pieces as needed.

• Due to the fact that functions or variables are not placed in separate files for reusability,
the “DRY principle" is not satisfied across this codebase. (The same logic is often
duplicated even in a single component.)

In order to better organize the structure, it is necessary to transfer each component to a
separate folder where its linked styles and components should also stored. If a single file is
larger than ~250 lines, then it either needs to be split into multiple components or files, or
both. All functions and variables that are reused in different places can be moved, for
example, to a separate common folder, and re-used styles and interfaces should also be
placed here as well.

React-specific Issues
• It is not the most correct approach to use array methods in a cascade one after another,

as this makes the code difficult to understand and maintain; it is clearer to return the
result to variables or refactor the code entirely using the “strategy pattern” (in the below
example).

• Almost all components have variables that are declared but not used anywhere, and the

list of ignored warnings is quite long; as a rule of thumb there should not be any warnings

or errors when testing OR building the codebase.

• If a variable or a function is used only inside this component, it does not need to be

exported; similarly if a variable or function is used in multiple places, it should be
exported as part of a separate common file.

• If-else logic and conditions should not be using “==“ and instead should use “===“ and

related operators for strict equality, as this is a significant source of data validation and
conditional logic bugs. (This further applies to the use of “||” instead of “??” which is the
correct operator for ternary conditional assignment.)

• It is bad practice to declare global variables that do not need to be global, and these

should instead use “let" (if being modified) and “const” (if immutable) instead of “var”
(deprecated/outdated Javascript).

• There are many cases of confusing and unclear code that uses several ternary operators
that should instead be replaced by several statements or a function for readability.

• It is not ideal coding practice to leave commented code, console logs, and testing code in

the codebase.

• For the z-index property, it is advisable to try to use the smallest possible and declare

them as constants in a shared file (if modifying z-index is required at all), otherwise, over
time it will not be easily possible to track which elements can overlap others.

• If a React element has an empty body, it should be a self-closed tag (i.e. “<Grid />”

instead of “<Grid></Grid>”).

• In the following cases, there is no need for the ternary operator, because the ===

operator returns true or false; similarly there are many cases across the codebase where

basic if-else logic and strict assertions are not ideally defined or not defined at all.

• The value “undefined” should not be used as it is bad practice and leads to data faults,

and instead, “null” should be used, although sparingly.

• Many (if not all) linting errors are ignored instead of being resolved appropriately.

• The “<div></div>“ element should not be used as a divider.

• There are several places across the codebase where many redundant conditions are

improperly declared, and they should instead be using “switch-case” syntax or a lookup
dictionary.

• Many variables and functions across the codebase are improperly named (i.e. “x” or “p”

instead of “participant”), which could lead to significant bugs and coding errors and

decrease developer productivity as well.

Typescript
The strict typing of data structure and interfaces in the codebase is practically absent, only
sometimes present for primitive data types; there are only six total declared interfaces for the
whole codebase, and in many other cases, either there is no typing or significant (incorrect)
usage of the “any” / “as any” type.

	Backend
	Conclusions
	To improve scalability of the project and enable development of new essential functionality, it is imperative that the backend code be refactored and restructured to overcome the fundamental issues it currently faces. For example, not all basic or advanced features of Typescript are used effectively, and there are several cases where functionality that was re-developed specifically for this project could benefit from switching to existing tailor-made solutions and contemporary frameworks.
	Suggestions
	Project Dependencies
	Project Structure
	Typescript

	Frontend
	Conclusions
	To improve scalability of the project and enable development of new essential functionality, it is imperative that the frontend code be refactored and restructured to overcome the fundamental issues it currently faces. For example, not all basic or advanced features of Typescript are used effectively, and there are several cases where functionality that was re-developed specifically for this project could benefit from switching to existing tailor-made solutions and contemporary frameworks. Most of the files that comprise the codebase are massive, containing several large components and duplicated or unused code that should be refactored to address serious problems and bugs that may arise further in development or production usage.
	Suggestions
	Refactoring
	Project Structure
	React-specific Issues
	Typescript

