

Outline

- Team Members
- Target Problem
- Brief descriptions on the datasets
- Work plan & Methods Used
- Experimental results
- Future work

Team members

李韡 Wei Li

勾小川 Xiao-Chuan Gou

周靄柔 Ai-Jou Chou

張敬 Ching Chang

邱子翔 Zi-Xiang Qiu

Target Problem

- CIKM AnalytiCup 2017
 - CIKM is called Conference on Information and Knowledge Management.
 - Since its inception in 1992, CIKM has successfully brought together a wide range of R & D personnel in the field of knowledge management, information retrieval and database.
 - CIKM 2017 will be a unique perspective, strategic penetration of knowledge, information and data management of the cross-type research, highlighting the realization of many urban areas and their countries to share the "smart city, smart country" vision of the technology and insights.

Target Problem

- CIKM AnalytiCup 2017
 - It is an open, notarized big data open competition. For the academic community, it is an exciting data challenge.
 - The short-term precipitation forecast jointly conducted by Shenzhen Meteorological Bureau and Alibaba, aims to significantly improve the accuracy of short-term precipitation forecasts based on radar echo extrapolation data.

Brief descriptions of datasets

Brief descriptions of datasets(cont.)

Brief descriptions of datasets(cont.)

- Train Data: **15.8GB** (two years)
 - Training sets: 10,000
 - each data about 2MB [id, label, 60 radar map] (15*4*101*101)
- Test Data: **3.09GB** (one year)

Plot the radar image

- 15 time span ²⁰
- height 1
- Y = 71.6

• No wind

Plot the radar image(cont.)

- 15 time span
- height 1
- Y = 29.9

• No wind

Plot the radar image(cont.)

- 15 time span
- height 1
- Y = 4.5

• Windy

Plot the radar image(cont.)

- 15 time span ²⁰
- height 1
- Y = 2.3

• Windy

Plot the label y

Summary Statistics

count	10000.000000
mean	15.545400
std	15.855781
min	0.000000
25%	2.400000
50%	8.000000
75%	25.700000
max	138.400000
dtype:	float64

Work plan & Methods Used

- Platform and Tools
 - Hadoop & **Spark** & Mongodb (Pig, **MLlib** etc.)
 - **Python** (scikit-learn pandas numpy etc.)
 - TensorFlow & keras (training CNN/RNN)
 - etc.

- Workflow
 - Basic methods
 - Linear Regression
 - SVM
 - Preprocess Clustering methods
 - Deep Learning
 - Classification
 - Regression

- Basic methods(baseline)
 - Linear Regression
 - Only using the target point(50,50) to train the model
 - Only using the mid 3x3 map to train the model
 - Ensemble Linear Regression
 - According different changing rate of images, train the models by different situation.
 - SVM
 - Only using the target point(50,50) to train the model
 - Only using the mid 3x3 map to train the model

Preprocess Clustering Method

- Generate Clusters
 - Find Peak point the potential center of cluster
 - Aggression: Flood Fill. Find out the real center of clusters.

Preprocess Clustering Method

- Calculate Immigration Direction
 - Do statistics of the direction of 14 images. Select the most possible one.
 - Speed: calculate the speed of both latitude and longitude.

- The Influence of cluster works on center point
 - We only consider the last image
 - Predict cluster position: in the next image, the cluster center will move, so we should take speed in our formula.
 - The bound of cluster: we should consider not only the radar value of the cluster center, but also the point around center.

$$y = w_1 \sum_{i=1}^{k} \frac{v_i}{D^2} + w_2 \sum_{i=1}^{k} \frac{\sum_{j=1}^{9} v_{ij}}{9D^2} w_2 \sum_{i=1}^{k} \frac{\sum_{j=1}^{25} v_{ij}}{25D^2}$$

- Deep Learning(Classification)
 - Assume 100 classes
 - Training acc is good, but test acc is bad(overfitting)
 - 100 classes is too small? Maybe 1000?
 - Training data is not enough.(the more, the better)

- Deep Learning(Regression)
 - Modify CNN model to regression (detail in report)
 - Add fully connected layer to instead of softmax layer
 - Using Adam(RMSprop) optimizer
 - Need a lot of time to train
 - 12 GB memory & GTX 1060(Can't load data in one time)
 - about 30 hours / 100 epochs

```
model.add(Flatten())
model.add(Dense(1))

# optimizers should be tested
# sgd + momentum
# others
adam = optimizers.Adam(lr=0.0035, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=1e-6)
# sgd = optimizers.SGD(lr=0.005, momentum=0.9, decay=1e-6, nesterov=True)
# rms = optimizers.RMSprop(lr=0.0035, rho=0.9, epsilon=1e-08, decay=1e-6)
model.compile(optimizer=adam, loss='mse')
return model
```


Experimental results

- Using RMSE to judge
- Rank: 118/1307
- Basic methods
 - Linear Regression(baseline): 14.90
 - SVM: about 16.8
 - Decision Tree: 17.5(worst)
- Preprocess Clustering methods:
 - Less than 14.44(still improving)
- Deep Learning(CNN)
 - Classification: no result
 - Regression: less than 14.50 (still improving)
 - Tring to combine RNN

Future work

- Generate more data
 - Rotate or Flip
 - Data augmentation

Future work(cont.)

- Generate more data
- RNN(LSTM or other)
 - There are some correlations between the radar map

Future work(cont.)

- Generate more data
- RNN(LSTM or other)
- Ensemble learning
- Consider better clustering methods
- etc.

Future work(cont.)

- Generate more data
- RNN(LSTM or other)
- Ensemble learning
- Consider better clustering methods
- etc.

We are still improving

