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Recap: Gradient descent optimization
Gradient descent variants 

Gradient Descent Optimization Algorithms
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Gradient descent variants 

• Batch Gradient Descent(BGD)

• Stochastic Gradient Descent(SGD)

• Mini-Batch Gradient Descent(MBGD)
• Which is called SGD in Deep learning

• About batch size:
• Batch size = 1  (SGD)  

• Maybe reach best testing accuracy

• Sometimes can’t converge

• Training speed: slow

• Batch size = ∞ (BGD) 
• Can get best training accuracy, bad testing accuracy

• Training speed: fast

• Batch size = a reasonable number ?
• can get good performance

• Training speed: depend on batch size
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About batch size (LeNet on CIFAR-10)
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About batch size (LeNet on MNIST)
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Gradient Descent Optimization Algorithms

• SGD

• SGD with Momentum(SGDM, default use in many projects)

• SGD with Nesterov Accelerated Gradient (NAG)

• Adaptive optimization algorithms:

• AdaGrad

• AdaDelta / RMSProp

• Adam

• Nadam

• etc.
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Gradient Descent Optimization Algorithms
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SGD

• SGD
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𝜽 = 𝜽 − 𝜶 ∙ 𝑮 𝑱(𝜽)

𝜃:weights
𝛼: learnig rate 𝛽:momentum term
𝐺 ∙ : gradient 𝐽 ∙ : loss function



SGD(cont.)

• SGD

• SGDM
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SGD(cont.)

• SGD

• SGDM

• NAG
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Adaptive optimization

• Adagrad 𝜃:weights
𝛼: learnig rate
𝛽:momentum term
𝐺 ∙ : gradient
𝐽 ∙ : loss function

𝑔𝑡,𝑖 = 𝐺 𝐽(𝜃𝑡,𝑖)

𝒔 =
𝜶

σ𝒌=𝟏
𝒕 𝒈𝒌,𝒊

𝟐 + 𝝐

∙ 𝒈𝒕,𝒊

𝜃 = 𝜃 − 𝑠
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Adaptive optimization(cont.)

• Adagrad

• Adadelta

𝜃:weights
𝛼: learnig rate
𝛽:momentum term
𝐺 ∙ : gradient
𝐽 ∙ : loss function

𝑔𝑡,𝑖 = 𝐺 𝐽(𝜃𝑡,𝑖)

𝒔 =
𝜶

σ𝒌=𝟏
𝒕 𝒈𝒌,𝒊

𝟐 + 𝝐

∙ 𝒈𝒕,𝒊

𝜃 = 𝜃 − 𝑠

𝒔 =
𝜶

𝐄 𝒈𝟐
𝒕,𝒊 + 𝝐

∙ 𝒈𝒕,𝒊

𝜽 = 𝜽 − 𝒔
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Adaptive optimization(cont.)

• Adam

• Adam use estimates of first and second moments of the gradients.
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𝒗 = 𝜷𝟐𝒗 + (𝟏 − 𝜷𝟐)𝑮
𝟐 𝑱(𝜽)

𝜽 = 𝜽 − 𝒔

𝜃:weights
𝛼: learnig rate
𝛽1,2: momentum term

𝐺 ∙ : gradient
𝐽 ∙ : loss function

𝒎 = 𝜷𝟏𝒗 + (𝟏 − 𝜷𝟏)𝑮
𝟏 𝑱(𝜽)

𝒔 =
𝜶

𝒗 + 𝝐
∙ 𝒎



SGD vs. Adam
Pros and Cons of Adam 

SWATS: Adam+SGD
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Pros and Cons of Adam 

• Advantages:

• Fast convergence

• Good Performance than other adaptive optimization algorithms

• Needn't to change learning rate by yourself

• Disadvantages:

• More memory usage

• Generalize worse (often significantly worse) than SGD, even when these 
solutions have better training performance

• The Marginal Value of Adaptive Gradient Methods in Machine Learning
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Pros and Cons of Adam 

• Advantages:
• Fast convergence
• Good Performance than other adaptive optimization algorithms
• Needn't to change learning rate by yourself

• Disadvantages:
• More memory usage
• Generalize worse (often significantly worse) than SGD, even when these solutions 

have better training performance
• The Marginal Value of Adaptive Gradient Methods in Machine Learning

• Another Problem:
• May not converge to the optimal solution

• ICLR2018: On the Convergence of Adam and Beyond
• Many proofs in appendix
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VGG+BN+Dropout network for CIFAR-10
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Learning Rate Clip 
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The function 𝒄𝒍𝒊𝒑(𝒙, 𝒂, 𝒃) clips the vector x element-wise such that 

the output is constrained to be in [𝑎, 𝑏].



Learning Rate Clip (cont.)
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Training the DenseNet architecture on the 

CIFAR-10 data set with four optimizers

1. Adam’s testing error decrease faster than SGD

2. SGD converges to the expected testing error of 

≈ 5% while Adam stagnates in performance at 

around ≈ 7% error.

3. Adam(with clip)’s performance are better than 

Adam(default) 



Learning Rate Clip (cont.)
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CIFAR-10 data set with four optimizers
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around ≈ 7% error.
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SWATS: Adam+SGD

• Why not combine Adam and SGD?

• Use Adam first

• Then switch to SGD

• Questions:

• When to switch Adam to SGD?

• What learning rate to choose for SGD after the switch? 

• Answer:

• SWATS
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SWATS: Adam+SGD
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SWATS: Adam+SGD

• What learning rate to choose for SGD
after the switch? 
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SWATS: Adam+SGD

• When to switch Adam to SGD?
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SWATS: Adam+SGD
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Choice of optimizer
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Choice of optimizer

• The two recommended updates to use are either 
SGD+Nesterov Momentum or Adam

• Use Adam to check algorithm’s correctness.

• Use SGD to training

• Determine a good learning rate schedule

• Adam may have lowest training error/loss, but not val.

• Use Adam first, then switch to SGD.(such as SWATS)

• Consider when to switch and learning rate after switch
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