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ABSTRACT 

A . new evolutionary algorithm is proposed for solving multi-objective 
optimization problems, focusing on the issue of developing a diverse popu-
lation of non-dominated solutions. The key new approach in this algorithm is 
to use a diversity-emphasizing probabilistic approach in determining whether 
an off-spring individual is considered in the replacement selection phase, 
along with the use of a non-domination ranking scheme. This evolutionary 
multi-objective crowding algorithm (EMOCA) is evaluated using nine bench-
mark multi-objective optimization problems and shown to produce non-
dominated solutions with significant diversity, outperforming three state-of-
the-art multi-objective evolutionary algorithms on most ofthe test problems. 
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I. INTRODUCTION 

Considerable research efforts have recently been devoted to developing 
efficient algorithms for solving Multi-Objective Optimization (MOO) problems, 
for which multiple objectives must be simultaneously considered. Classical 
optimization methods suggest converting a MOO problem into a single 
objective optimization problem, e.g., by attempting to minimize a weighted 
sum of the various objective functions to yield a single solution. A vector a is 
non-dominated or Pareto-optimal if it is not dominated1 by any other solution 
vector. The set of all non-dominated solutions is called the Pareto-optimal 
front. It is preferable to obtain a collection of non-dominated or Pareto-
optimal solutions corresponding to different tradeoff points, but these cannot 
be obtained even by iterating the weighted approach with different weight 
values if the Pareto-optimal front is non-convex (Deb 2001). 

This caveat is addressed by Multi-Objective Evolutionary Algorithms 
(MOEAs), which work with a population of candidate solutions, exploring 
multiple non-dominated solutions in parallel, whereas traditional approaches 
are crippled by focusing on one solution at a time. Dominance-based 
selection is used in MOEAs, along with density estimation methods, such as 
crowding distance and squeeze factor, which are used to preserve population 
diversity (Coello & Lamont 2004). Several MOEAs have been proposed in 
the literature, with early work in (Schaffer 1985, Hajela & Lin 1994, Fonseca 
& Fleming 1993, Horn et al. 1994, Veldhuizen 1999), and with the 
emergence of three state-of-the-art algorithms in recent years, with which our 
results are compared: 

1. PAES (Knowles and Corne 1999) uses a (1+1)-ES, which is similar to a 
random mutation hill climbing strategy and performs well in problems 
having search space with non-uniformly dense solutions. 

2. SPEA-II (Zitzler et al. 2001) is a generational algorithm with an elitist 
strategy which maintains an archive of non-dominated individuals at each 
generation. 

3. NSGA -II (Deb et al. 2000) assigns a Pareto rank to each individual based 

1 If each objective function f j is to be maximized, then a solution vector a dominates b, 
written a»b. if and only if Vi e {1 Mj : f/a) > f/b), and 3 j e {1 Μ} :f/a) > f/b). 
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on a non-dominated sorting approach, and combines such attractive 
features as elitism, fast non-dominated sorting, and parameterless fitness 
sharing. 

We propose a new evolutionary multi-objective crowding algorithm 
(EMOCA), distinguished from other MOEAs in the following features: 

1. Probabilistic replacement selection: EMOCA allows some poor quality 
offspring to survive in the population if they improve population 
diversity. 

2. Mating selection: Both non-domination and diversity are considered, so 
that EMOCA's mating pool consists of better as well as substantially 
different individuals, whereas most other MOEAs use only non-
domination as the primary criterion to select the mating pool. 

On several benchmark functions suggested by (Deb 2001) and (Zitzler et 
al. 2000), we compared the performance of EMOCA with NSGA-II, SPEA-II 
and PAES using metrics that evaluate convergence and diversity of solutions. 
Simulation results show that EMOCA outperforms the other algorithms in 
most of the test problems. 

The new algorithm (EMOCA) is described in Section 2. The benchmark 
test problems used in our simulations are given in Section 3. Simulation 
results and conclusions are presented in Sections 4 and 5, respectively. 

2. EVOLUTIONARY MULTI-OBJECTIVE CROWDING ALGORITHM 

(EMOCA) 

The MOEAs have two main goals, viz., finding non-dominated solutions, 
and obtaining a uniformly spaced diverse set of solutions. Most existing 
MOEAs emphasize the first goal at the expense of the second, yielding 
populations of poor diversity in which a few regions of the Paretofront might 
be crowded whereas other regions are relatively unexplored. EMOCA 
addresses this issue by emphasizing diversity in multiple stages of the 
algorithm. 
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1. Initialize; 
2. For the number of iterations determined by computational bounds, do: 

2.1. Generate Mating Population; 
2.2. Generate offspring by crossovei followed by mutation; 
2.3. Create a new pool consisting of parents and some offspring; 
2.4. Trim new pool to generate the population for the next 

iteration; 
2.5. Update archive to contain all non-dominated solutions 

Fig. 1: EMOCA algorithm overview 

2.1 Description of EMOCA 

Figure 1 shows the general overview of EMOCA. The individual steps of 

EMOCA are then described below. 

2.1.1 Mating population generation. EMOCA employs binary tourna-

ment selection to fill the mating population. Each solution is assigned a 

fitness value equal to the sum of its non-domination rank and diversity rank, 

defined below. 

Non-domination rank: As in (Deb et al. 2000), rank(x)=y in a population X 

i f f x e Fj, where fronts FuF2...Fi+l are inductively defined as follows: 

Diversity rank: The crowding distance of a solution x, of front F (Deb et al. 

2000), is defined as 

Μ 
Φ , ) = Σ Τ „ ( χ , ) (2) 

m=1 

oo if V x j . f J x ^ K f J X j ) or M x k , f j x k ) < f m ( x i ) 

Fl = e X\Vy e X : -,(y » 

0 ) 

where 

Φί) = ί g 

J 
(3) 

otherwise 
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g = min (fm(xj)-fm(xk) ) where x, * Xj ±xke F a n d f j p c j ) > f j x , ) > fm{xk) 

J Λ 

and 

h = max (fm(xj)-fm(xk)) where χ, * xk e X and f j x j ) > fm(xk) 

j,k 

The solutions are sorted and ranked based on the crowding distance. The 

solution with the highest crowding distance is assigned the best (lowest) 

diversity rank. 

2.2.2 New pool generation. A "New Pool" is generated consisting of all 

the parents and some of the offspring, following a comparison of each 

offspring Ο with a randomly chosen parent P. The result of the comparison 

governs the probability with which Ο is inserted into the new pool as 

summarized in Table 1. 

TABLE 1 

Acceptance probabilities of offspring for different scenarios. . P » 0 indicates 

Ρ dominates Ο. Ρ « Ο indicates that Ρ and Ο are mutually non-dominating 

Non-domination Crowding distance Prob(0 is accepted) 
comparison comparison 

p»o ψ{0) > ψ(Ρ) j _ βψ(.Ρ)-ψ(ΰ) 

p»o ψ(Ρ) ä ψ(0>) 0 
o»p 1 
p*o ψ(0) > ψ(Ρ) 1 

ψ{Ρ) > ψ(0) 0 

2.2.3 Trimming new pool. The new pool is sorted based on the primary 

criterion of non-domination rank and the secondary criterion of diversity 

rank. In other words, solutions with the same non-domination rank are 

compared based on diversity rank. The new population will consist of the first 

μ elements of the sorted list containing solutions grouped into different fronts: 

F l , F2 Fn as defined in (1) . 

2.2.4 Archiving strategy. EMOCA maintains an archive (with fixed size) 

of non-dominated solutions at every generation. When the archive is full, a a 

new non-dominated solution can replace an existing archive element with 

lower crowding distance. 
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TABLE 2 
Summary of test problems and the associated Pareto optimal fronts: 1-convex, ϊ - non-
convex, 2- connected, 2-disconnected, 3-numerous Pareto-optimal solution 

n, range Objective functions and their parameters PO Front 

KUR 3, [-5,5] Λ(χ) = Σ'\0βχρ(-0.2^χ,2+χΜ
2 ) , 

/=1 

h<x)=httt+**»*?) 
i=l 

1,2 

FON 3, [-4,4] fi(x)=1 - exp(- i(Xj+r-i/'xi/V3;2; 
7=1 , Ma 

1,2 

SCH 1,[10\103] f l ( x ) = x2. f2(x) = (x-2)2 1,2 

POL 2,[-π, π] 
f\(x) = [\+(g\-h)2+(g2-h2)2] 

f2(x) = {(xi+y2+(x2+V2] 
Aj = 0.5 sin χι -2cosxi + sinx2-\.5cosx2,t 

h2 = 1.5sinxi - c o s x j +2sinx2 -0.5cosx2,} 

1,2 

ZDT1 

ZDT2 

ZDT3 

30, [0,1] 

30, [0,1] 

30, [0,1] 

Α (χ)=x\.f2 (χ)=g(*m - Jx\ / g(x) J 

fi(x)=x\.f2(x) = g(x)[ W * l / g(x))2] 

A (*) = X\. 

f i (x) = £(*)[! - V* ' «(*) - ( * l ' *(*)) * si> 
η 

g(x) = 1 + 9( Yxj)/(n - 1 ) for ZDT1, ZDT2 
i=2 

and ZDT3. 

1,2 

1,2 

1,2 

ZDT4 
XiefO.l] 

Xi e [-5,5 
A(χ) = x\.f2(x) = g(x)[ι - V*i's(x)] 

g(x) = 1 + I0(n -1) + Σ f x 2 - 1 0 cos(Am, 
i=2 

1,2,3 

ZDT6 10,[0,1] 
f\(x) = 1 - exp( - 4 j t | )sin 6(4itx\ ) 

h ( x ) = g(x)[ 1 - ( f l ( x ) / g ( x ) ) 2 ] . 

g(x) = \ + 9[(ixi)/(n-\)]025 

i=2 

1,2 

112 
Brought to you by | University of Glasgow Library

Authenticated
Download Date | 6/29/15 1:37 PM



Vol. 17, No. 1-3, 2008 EMOCA: An Evolutionary Multi-
Objective Crowding Algorithm 

3. TEST PROBLEMS 

We evaluated the performance of EMOCA on four widely used 
benchmark multi-objective problems (FON, POL, KUR and SCH) from 
(Veldhuizen 1999), and six test problems (ZDT1, ZDT2, ZDT3, ZDT4, 
ZDT5 and ZDT6) from (Zitzler et al. 2000). These bi-objective problems are 
summarized in Table 2. 

We have used a real coded representation for individuals. In the 
implementation of NSGA-II (Deb et al. 2000), simulated binary crossover 
(SBX) and parameter based mutation have been used. The studies in (Deb & 
Agarwal 1995) showed that SBX outperforms binary coded genetic algorithms 
for continuous search space problems. Since the test problems in this study 
have continuous search space, we have employed SBX and parameter based 
mutation for EMOCA, NSGA-II, SPEA-II and PAES. 

4. SIMULATION RESULTS 

In this section, we present the simulation results of EMOCA, NSGA-II, 
SPEA-II, and PAES for various test problems2. For fairness of comparison 
with the work in (Deb et al. 2000), we have used a population size of 100. 
The algorithms were simulated for 250 generations over 30 trials. No further 
improvements in the performance of the algorithms were observed after 250 
generations. The crossover probability was 0.9 and mutation probability was 
chosen to be 1 In where η is the number of decision variables. The algorithms 
exhibited similar performances for small variations in population size, cross-
over, and mutation probabilities. We have used distribution indices of 20 for 
the simulated binary crossover and mutation (Deb et al. 2000). For PAES, we 
have used a depth value of 4. We have used an archive size of 100 for all 
approaches. We performed experiments on an Intel Pentium 4 processor (3.2 
GHz, 2 GB RAM). All approaches required an average computational time of 
1 second per trial. Similar to NSGA-II, the computational complexity of 

2 For our simulations, we used the code for PAES, SPEA-II and NSGA-II from the 
following websites respectively: http://www.rdg.ac.uk/~ssr97jdk/multi/PAES.html, 
http://www.tik.ee.ethz.ch/pisa/, http://www.iitk.ac.in/kangal/soft.htm. 
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Fig. 2: Performance comparison of EMOCA, NSGE-II, AND PAES ON ZDTB 

0 NSGA-II + EMOCA 

Fig. 3: Performance comparison of EMOCA and NSGA=II on ZDT4 
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Fig. 4: Performance comparison of EMOCA and SPEA-II on POL 

EMOCA in the worst case is 0(MN2) per iteration where Μ is the number of 

objectives and Ν is the population size. 

To compare the nature of solutions obtained by EMOCA, we plot the 

Pareto surfaces obtained by different algorithms for a few selective examples. 

Figure 2 shows the Pareto plots obtained by EMOCA, NSGA-II, SPEA-II, 

and PAES on ZDT6. ZDT6 has a non-convex Pareto-optimal front with non-

uniform spacing between the solutions. The plot shows that EMOCA obtains 

a better spread and convergence compared to the other algorithms. Figure 3 

shows the non-dominated solutions obtained by EMOCA and NSGA-II on 

ZDT4. The problem ZDT4 has 219 different local Pareto-optimal fronts (Deb 

2001). This is a challenging problem for MOEAs. The plots clearly show that 

EMOCA has a better convergence and diversity compared to NSGA-II. 

Figure 4 shows the Pareto plots obtained by EMOCA and SPEA-II on 

POL. The function POL has a non-convex and disconnected Pareto-optimal 

front. We observe that EMOCA obtains solutions with better convergence 

and spacing compared to the solutions obtained by SPEA-II. 
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Fig. 5: Performance comparison of EMOCA and PAES on SCH 

Figure 5 shows the Pareto plots obtained by EMOCA and PAES on SCH. 
The plot shows that EMOCA obtains a better convergence toward the Pareto-
optimal front than PAES. 

We now present the performance comparison between different 
algorithms in terms of different performance metrics. While evaluating the 
performance of MOEAs, we consider both convergence to the Pareto optimal 
front and diversity, using four metrics: generational distance, set coverage 
metric, domination metric and spread metric. 

4.1 Generational Distance 

The generational distance 

CD = ( ' f ; ^ 2 )05 (Valdhuizen 1999) 
/-ι 

evaluates the convergence of the non-dominated solutions obtained by the 
algorithm to the true Pareto-optimal front where Q indicates the set of non-
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dominated solutions obtained by the algorithm and d, is the Euclidean 
distance between the solution / € Q and the nearest solution of the Pareto-
optimal front3 P. 

4.2 Set Coverage Metric (C - metric) 

The set coverage metric (Zitzler 1999) calculates the fraction of solutions 
in one non-dominated set (obtained by one algorithm) that are dominated by 
those obtained by the other algorithm, and is defined as 

C ( A , B ^ { b e B l 3 a e A : a > > b } l (4) 
I Β I 

C(A,B)= 1 indicates that every solution in Β is dominated by solutions in A 
and C(A,B)=0 means that none of the solutions in Β is dominated by any 
element in A. Since the C metric is asymmetric, it is necessary to examine 
both C(A,B) and C(BJ) . 

4.3 Domination Metric 

The domination metric (Dom metric) (Rajagopalan et al. 2004) is based 
on the number of solutions (obtained by one algorithm) dominated by each 
solution obtained by the other algorithm. The Dom metric is defined as: 

Dom(A,B) = d(A,B)/(d(A,B)+d(B,A)) (5) 

w h e r e 4 * 7 ) = Σ Ι ( y * Y \ x » y }l 
X 

Mutually non-dominating solutions are ignored while evaluating the 
dominance factor d(A,B) so that Dom (B,A)=\-Dom (A,B). If each solution of 
algorithm A dominates every solution of algorithm B, then Dom (A,B)=\ and 
Dom(B.A) =0. 

3 Since the Pareto-optimal solutions for the test functions are known, we obtain a set 
of 500 uniformly spaced solutions from the true Pareto-optimal front in the objective 
space, as in (Deb et al. 2000). 
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4.4 Spread Metric 

The spread metric (Deb et al. 2001) evaluates the diversity of the 

solutions obtained and is defined as: 

f Μ \Q\ _ϊ 
Σ 4 + Σ ΐ 4 - < Ί 
m=l ί=1 

A = r * λ ( 6 ) 

Hde
m+\Q\d 

Vm=l 

where di is the Euclidean distance between neighboring solutions and d is the 

mean value of the distances. The parameter de
m is the distance between 

extreme solutions of the Pareto-optimal front and the nearest solution of Q 

corresponding to the m'h objective function. Δ approaches zero when the non-

dominated solutions obtained by the algorithm are near uniformly spaced. 

4.5 Performance Comparison of Different Algorithms Using the Metrics 

Tables 3, 4 and 5 show the mean and variance of the generational distance, 

C metric and Dom metric values obtained over 30 trials. The results clearly 

indicate that EMOCA outperforms NSGA-II in all test problems except in FON. 

EMOCA outperforms SPEA-II and PAES in all test problems except ZDT3. 

The performance of EMOCA is identical to SPEA-II and PAES in ZDT3. 

These results confirm that EMOCA performs the best in a majority of the test 

problems. In particular, for problems ZDT4 and ZDT6, EMOCA obtains much 

lower generational distance values as compared to the other algorithms. Table 6 

shows the mean and variance of the spread metric obtained over 30 trials. The 

results indicate that EMOCA outperforms NSGA-II and PAES in all test 

problems in terms of the spread. In problem ZDT4, SPEA-II performs the best 

in terms of spread. On all other test problems EMOCA outperforms SPEA-II. 

5. CONCLUSIONS 

We have proposed a new MOEA called EMOCA that employs a 

stochastic replacement selection strategy that considers both non-domination 
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TABLE 3 

Problem EMOCA NSGA-II SPEA-II 

Mean variance Mean variance Mean variance 
KUR 0.59 0.05 0.97 0.008 0.99 0.0003 

FON 0.40 0.021 0.98 0.0001 0.73 0.046 

SCH 0.63 0.06 1 0 0.75 0.026 

POL 0.65 0.061 0.91 0.009 0.73 0.037 

ZDT1 0.78 0.035 1 0 0.82 0.03 

ZDT2 0.8 0.037 0.99 0 0.76 0.041 

ZDT3 0.83 0.009 0.42 0.0003 0.46 0.054 

ZDT4 0.80 0.082 0.99 0.002 0.70 0.008 

ZDT6 0.96 0.0332 0.99 0.0001 0.85 0.049 

TABLE 4 

Mean and variance o f C metric values for various algorithms over 30 trials 

Problem C(NSGA-I ,EMOCA) C(SPEA-II EMOCA) C(PAES,EMOCA) 

C(EMOCA,NSGA-ll) C(EMOCA, SPEA-II) C(EMOCA,PAES) 

mean variance mean variance mean variance 
K U R 0.12 0.0017 0.09 0.0001 0.13 0.18 

0.40 0.0004 0.72 0.016 0.69 0.0012 

F O N 0.63 0.0012 0.01 0.0002 0.12 0.001 
0.104 0.0003 0.68 0.008 0.89 0.001 

S C H 0.01 0.0052 0.02 0 0.017 0.005 
0.521 0.003 0.9 0.02 0.83 0.00003 

P O L 0.07 0.0017 0.06 0.02 0.08 0.014 
0.627 0.0002 0.6 0.004 0.85 0 

Z D T 1 0.03 0.0091 0.00 0 0.058 0.0031 
0.619 0.0006 0.64 0.01 0.72 0.0017 

Z D T 2 0.02 0.0005 0.001 0 0.05 0.003 
0.41 0.001 0.6 0.01 0.75 0.001 

Z D T 3 0.05 0.0026 0.003 0 0.053 0.01 
0.85 0.0006 0.12 0.01 0.16 0.003 

Z D T 4 0.04 0.032 0.003 0 0.043 0.003 
0.91 0.001 0.66 0.02 0.79 0.014 

Z D T 6 0.01 0.0073 0.01 0.009 0.1 0.005 
0.93 0.0211 0.65 0.12 0.83 0.0003 

119 
Brought to you by | University of Glasgow Library

Authenticated
Download Date | 6/29/15 1:37 PM



R. Rajagopalan, C.K. Mohan, and 
K.G. Mehrotra, P.K. Varshney 

Journal of Intelligent Systems 

TABLE 5 

Mean and variance of Dom metric values over 30 trials. The values in bold 
indicate Dom(A,Bp 0.5 

Problem Dom (EMOCA,NSGA-II) 
Mean variance 

Dom( EMOCA.SPEA-II) 
mean variance 

Dom (EMOCA.PAES) 
Mean variance 

KUR 0.59 0.05 0.97 0.008 0.99 0.0003 

FON 0.40 0.021 0.98 0.0001 0.73 0.046 

SCH 0.63 0.06 1 0 0.75 0.026 

POL 0.65 0.061 0.91 0.009 0.73 0.037 

ZDT1 0.78 0.035 1 0 0.82 0.03 

ZDT2 0.8 0.037 0.99 0 0.76 0.041 

ZDT3 0.83 0.009 0.42 0.0003 0.46 0.054 

ZDT4 0.80 0.082 0.99 0.002 0.70 0.008 

ZDT6 0.96 0.0332 0.99 0.0001 0.85 0.049 

and diversity. We have compared the performance of EMOCA with NSGA-
II, SPEA-II and PAES on nine difficult test problems with distinct features. 
Several performance measures were used to compare the algorithms. The 
simulation results show that EMOCA outperforms the other algorithms in 
eight out of the nine test problems in terms of convergence and diversity, 
consistently discovering a widely spread set of non-dominated solutions. 
We have also employed EMOCA for several real world applications such as 
path planning, sensor placement and mobile agent routing in wireless sensor 
networks (Rajagopalan et al. 2004, Rajagopalan et al. 2005). For example, in 
path planning, simulations with three objectives (path length, risk and reward) 
on a graph with 10,000 nodes showed that EMOCA outperformed NSGA-II 
and PAES. The successful performance of EMOCA in the real world 
applications and test problems show that EMOCA is an efficient multi-
objective optimization algorithm that should find extensive applications in 
optimization problems spanning a wide variety of areas from path planning to 
wireless networks. 
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