diff --git a/app/api/v1/endpoints/aichat.py b/app/api/v1/endpoints/aichat.py index 468e014..6d3770d 100644 --- a/app/api/v1/endpoints/aichat.py +++ b/app/api/v1/endpoints/aichat.py @@ -92,35 +92,59 @@ async def generate_graph( text += f"标题: {note.title}\n" if note.title else "" text += note.content if note.content else "" text += """ - 我需要你对于上面的内容生成思维导图,请仅给我返回mermaid代码,不要有其他内容,下面是生成样例, - graph TD - A[Natural Language Navigation for Service Robots] --> B[Task Definition] - A --> C[Challenges] - A --> D[Proposed Solution] - A --> E[Experimental Results] - - B --> B1["- Predict action sequence from NL instructions"] - B --> B2["- Example: 'Walk out of bathroom to right stairs'"] - - C --> C1["- Environment exploration"] - C --> C2["- Accurate path following"] - C --> C3["- Language-vision relationship modeling"] - - D --> D1[CrossMap Transformer Network] - D --> D2[Transformer-based Speaker] - D --> D3[Double Back-Translation Model] - - D1 --> D11["- Encodes linguistic/visual features"] - D1 --> D12["- Sequentially generates paths"] - - D2 --> D21["- Generates navigation instructions"] - - D3 --> D31["- Paths → Instructions"] - D3 --> D32["- Instructions → Paths"] - D3 --> D33["- Shared latent features"] - - E --> E1["- Improved instruction understanding"] - E --> E2["- Enhanced instruction generation" + 我需要你对于上面的内容生成思维导图,请仅给我返回mermaid代码,不要有其他内容,请保证每个连通子图竖向排列,下面是生成样例, +graph TD + A[机器学习项目] --> B[数据收集] + A --> C[数据预处理] + A --> D[特征工程] + A --> E[模型选择] + A --> F[模型训练] + A --> G[模型评估] + A --> H[模型部署] + + subgraph 数据预处理 + C1[处理缺失值] --> C2[处理异常值] + C2 --> C3[数据标准化] + C3 --> C4[数据编码] + end + + subgraph 特征工程 + D1[特征选择] --> D2[特征提取] + D2 --> D3[特征构造] + D3 --> D4[特征缩放] + end + + subgraph 模型选择 + E1[线性回归] --> E2[决策树] + E2 --> E3[支持向量机] + E3 --> E4[神经网络] + end + + subgraph 模型训练 + F1[划分训练集和验证集] --> F2[选择损失函数] + F2 --> F3[选择优化算法] + F3 --> F4[训练模型] + end + + subgraph 模型评估 + G1[计算准确率] --> G2[计算召回率] + G2 --> G3[计算F1分数] + G3 --> G4[绘制混淆矩阵] + end + + subgraph 模型部署 + H1[模型保存] --> H2[选择部署平台] + H2 --> H3[模型集成] + H3 --> H4[模型监控] + H4 --> H5[模型更新] + end + + B --> 数据预处理 + C --> 特征工程 + D --> 模型选择 + E --> 模型训练 + F --> 模型评估 + G --> 模型部署 """ try: ans = await kimi_chat([{"role": "user", "content": text}], model="moonshot-v1-32k")