GNN-LF/HF
WWW2021 : Interpreting and Unifying Graph Neural Networks with An Optimization Framework. [Best Paper Awards Nomination!]
Resources
[Paper] & [PPT] & [Video(in Chinese)] & [Video(in English)]
Environment Settings
- python == 3.8.5
- torch == 1.7.1
- numpy == 1.19.4
- scipy == 1.6.0
- networkx == 2.5
- scikit-learn == 0.24.0
- pandas == 1.2.0
Data
- Cora/Citeseer/Pubmed: Semi-Supervised Classifcation with Graph Convolutional Networks.
- ACM: Heterogeneous Graph Attention Network.
- Wiki-CS: Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural Networks.
- MS-Academic: Predict then Propagate: Graph Neural Networks meet Personalized PageRank.
For wiki-cs dataset, please copy data files Here to path "/data/wiki/"
Usage
Input Parameters
- (required) -d/--dataset: name for datasets, i.e., cora/citeseer/pubmed/acm/wiki/ms.
- (required) -t: model type, PPNP = 0; GNN-LF = 1; GNN-HF = 2.
- (required) -f: propagation form, closed-form = 0; iterative-form = 1.
- -l/-labelrate: training rate, i.e., 20 nodes per class for training, default = 20.
- --niter: times for iteration, default = 10.
- --device: GPU number.
- --reg_lambda: weight for regularization, default = 5e-3.
- --lr: learning rate, default = 0.01
Command
- Closed-form GNN-LF:
python main.py --dataset=cora -t=1 -f=0 --device=0
- Iter-form GNN-LF:
python main.py --dataset=cora -t=1 -f=1 --device=0
Cite
Please cite our paper if you use this code in your own work:
@inproceedings{zhu2021interpreting,
title={Interpreting and Unifying Graph Neural Networks with An Optimization Framework},
author={Zhu, Meiqi and Wang, Xiao and Shi, Chuan and Ji, Houye and Cui, Peng},
booktitle={Proceedings of the Web Conference 2021},
pages={1215--1226},
year={2021}
}
Contact
If you have any questions, please feel free to contact me with zhumeiqi@bupt.edu.cn