
MAGICC Lab - Brigham Young University

Offboard Control, RC and Safety Pilot
Integration

James Jackson

June 13, 2016

1 Introduction

A very important feature for ROSflight is the tight integration of an RC safety pilot.
The safety pilot is usually a highly experienced RC operator who is capable of knowing
when the computer is doing something unsafe and taking over fast enough to land the
MAV safely where researchers can fix the bugs and try again. ROSflight can be used
independently of an onboard computer similar to more fully-developed codes such as
cleanflight and baseflight, however it is primarily designed to quickly test research code
developed in ROS on hardware. This means that we can assume that the controls coming
from the onboard computer may be suspect, and may at any time try to make the MAV do
something drastic, (such as full-throttle into the ceiling or full-power front flips). While
this may be exciting, it is often expensive and dangerous unless there is some safety pilot
intervention. The RC controls are designed to be first interpreted, then mixed with the
onboard controls in a way that the safety pilot has quick access to correct dangerous
maneuvers commanded by the onboard computer but is primarily on stand-by while the
computer does it’s thing with the hardware.

1



RC MAVlink

mux

Composite

Figure 1: Diagram of how signals from RC and MAVlink are muxed in ROSflight

2 Building The Command Structure

To accomplish this task, a command structure is created from both the incoming rc
commands and commands over the mavlink serial line. These structures are combined
in the mux, as shown in figure 1. This structure has four channels, which represent the
four actuatable degrees of freedom on the MAV. In general, the x channel refers to roll,
roll rate or aileron deflection, the y channel to pitch, pitch rate or elevator deflection, the
z to yaw rate and rudder deflection and the F channel to throttle.

Table 1: Command Structure

x channel
flag
type
value

y channel
flag
type
value

z channel
flag
type
value

F channel
flag
type
value

Each channel has three fields as shown in table 2. The flag field refers to whether or
not that particular channel is being controlled in this message. If true, then the channel
is active, and should be listened to. If false, then it should be ignored. If the message
from both the offboard control and the RC are both inactive, then the RC signal is
taken by default. The type field indicates the type of information being carried by this
channel. For the x and y channels, this could be an angular rate in mrad/s, or an angle
in mrad, the z channel can carry only an angular rate in mrad/s and the F channel can
carry a throttle from 0-1000 or an altitude command in cm. Each channel can also act

2



in “passthrough” mode which means that the received PWM signal is forwarded directly
to the mixer. The value field is simply the data being carried in the channel. This is
interpreted according to the type field.
The logic required to construct the rc command structure is shown in figure 2. The

MAVLink structure is converted to its final form upon receiving the message, but the
logic to do so is trivial, and is ommitted here for brevity.

start

Has it been 20ms? done

Fixed Wing?

Att. Ctrl. Switch x.type = PASSTHROUGH

y.type = PASSTHROUGH

z.type = PASSTHROUGH

x.type=ANGLE

y.type=ANGLE

x.type=RATE

y.type=RATE

z.type=RATE

F Ctrl. Switch

F.type=ALTITUDE F.type=THROTTLE

Convert PWM to Rad

Att. override switch

override stick lagsticks deviated?

x.flag=ACTIVE

y.flag=ACTIVE

z.flag=ACTIVE

set override

stick lag

x.flag=INACTIVE

y.flag=INACTIVE

z.flag=INACTIVE

Thr override switch

F.flag=INACTIVE F.flag=ACTIVE

done

no

yes

yesno

on off

offon

no

yes

no yes

yes

no

off on

Figure 2: Logic used to construct of the RC command structure

3



3 Combinining the MAVLink and RC Command
Structures

Once both the RC and offboard MAVlink command structures have been created from
thier respective sources, they must be combined into the composite command structure,
which is then passed to the controller to be converted into primitive torques, then mixed
into motor outputs. The three attitude channels x, y, and z are all interpreted in the
same way, as shown in Figure 3, however, to handle minimum throttle cases, the logic to
combined the F channel is a bit more complex, as shown in Figure 4. In order to mux
throttles with the MIN_THROTTLE param set true, altitude commands must be first
converted into throttles using the altitude controller. They are then compared with one
another and the lower of the two is taken.

start

Offboard Active?

Combined=RC Combined=Offboard

Combined=Active

done

no yes

Figure 3: Logic used to mux any of the three attitude channels x, y, or z. This logic
must be computed for each channel independently, as it is to have a combined
output made up of both RC and Offboard control

4



start

Offboard Active?

RC=THROTTLE?

Combined=RC RC=altCtrl(RC)

done

no

noyes

MIN_THROTTLE?

offboard=THROTTLE?

Offboard=altCtrl(Offboard)Combined=Offboard

done

yes

no

yes no
RC=THROTTLE?

RC=altCtrl(RC)

Offboard=THROTTLE?

yes

noyes

Offboard=altCtrl(Offboard)

RC > Offboard?

noyes

Combined=Offboard Combined=RC

done

noyes

Figure 4: Logic used to mux the throttle channel, F . The additional logic here is to
account for the case in which altitudes have been commanded by one control
source while throttles are commanded by the other. Both sources are first
converted to throttle commands so as to compare equivalent channels when
taking the minimum throttle

5


