
18LV52 – ADVANCED VLSI DESIGN

LABORATORY

LAB EXPERIMENT IV

Report submitted in partial fulfilment of the requirements for the

degree of

MASTER OF ENGINEERING

Branch: ELECTRONICS AND COMMUNICATION

ENGINEERING

Of Anna University

AUGUST 2021

PSG COLLEGE OF TECHNOLOGY

(Autonomous Institution)

COIMBATORE – 641004

Contents

Aim: ... 3

Design Description:... 3

Verilog Code ... 29

PDK Details ... 36

Logic Synthesis Tool Flow .. 42

Yosys flow .. 42

OpenLane automated flow ... 44

OpenLane Interactive flow .. 46

Scripts for OpenLane flow ... 53

Generation of SERV Utilization and Area Report 65

Generation of Power Report .. 84

Generation of Timing Report .. 86

Maximum Operating Frequency Calculations 98

Schematic of Synthesized Netlist ... 99

Synthesized Netlist File .. 100

Layout Generation by Magic Tool 120

Final GDSII layout .. 132

Inferences .. 136

RTL TO GDSII FLOW using OpenLane

Aim:

To design and synthesize a customized design for

• Logic Synthesis Tool Flow using Yosys

• Obtaining the synthesized netlist along with block diagram

after the flow.

• Performing Physical Design from RTL to GDS2 using

OpenLane

• Generation of Area, Power and Timing report for the whole

flow

Design Description:

SERV is a bit-serial CPU which means that the internal

datapath is one bit wide. SERV internal dataflow show the

internal dataflow. For each instruction, data is read from the

register file or the immediate fields of the instruction word

and the result of the operation is stored back into the register

file. Reading and writing memory is handled through the

memory interface module.

https://serv.readthedocs.io/en/latest/#dataflow

SERV internal dataflow

serv_rf_top

serv_rf_top is a top-level convenience wrapper that includes

SERV and the default RF implementation and just exposes the

timer IRQ and instruction/data wishbone buses.

serv_top

serv_top is the top-level of the SERV core without an RF

serv_alu

serv_alu handles alu operations. The first input operand (A)

comes from i_rs1 and the second operand (B) comes from

i_rs2 or i_imm depending on the type of operation. The data

passes through the add/sub or bool logic unit and finally ends

up in o_rd to be written to the destination register. The output

o_cmp is used for conditional branches to decide whether or

not to take the branch.

The add/sub unit can do additions A+B or subtractions A-B

by converting it to A+B̅ +1. Subtraction mode (i_sub = 1) is

also used for the comparisions in the slt* and conditional

branch instructions. The +1 used in subtraction mode is done

by preloading the carry input with 1. Less-than comparisons

are handled by converting the expression A<B to A-B<0 and

checking the MSB, which will be set when the result is less

than 0. This however requires sign-extending the operands to

33-bit inputs. For signed operands (when i_cmp_sig is set),

the extra bit is the same as the MSB. For unsigned, the extra

bit is always 0. Because the ALU is only active for 32 cycles,

the 33rd bit must be calculated in parallel to the ordinary

addition. The result from this operations is available in

result_lt. For equality checks, result_eq checks that all bits are

0 from the subtraction.

serv_bufreg

For two-stage operations, serv_bufreg holds data between

stages. This data can be the effective address for branches or

load/stores or data to be shifted for shift ops. It has a serial

output for streaming out results during stage two and a

parallel output that forms the dbus address. serv_bufreg also

keeps track of the two lsb when calculating adresses. This is

used to check for alignment errors. In order to support these

different modes, the input to the shift register can come from

rs1, the immediate (imm), rs1+imm or looped back from the

shift register output. The latter is used for shift operations. For

some operations, the LSB of the immediate is cleared before

written to the shift register. The two LSB of the shift register

are special. When the shift register is loaded, these two get

written first before the rest of the register is filled up. This

allows the memory interface to check data/address alignment

early.

serv_csr

serv_csr handles CSR accesses and all status related to (timer)

interrupts. Out of the eight CSRs supported by SERV, only

four resides in serv_csr (mstatus, mie, mcause and mip) and

for those registers, SERV only implement the bits required for

ecall, ebreak, misalignment and timer interrupts. The four

remaining CSRs are commonly stored in the RF

serv_ctrl

serv_ctrl keeps track of the current PC and contains the logic

needed to calculate the next PC. The PC is stored in shift

register with a parellel output connected to the instruction bus.

The new PC can come from three sources. For normal

instructions, it is incremented by four, which is the next 32-bit

address. Jumps can be absolute or relative to the current PC.

Absolute jumps are precalculated in serv_bufreg and written

directly to the PC. PC relative jumps have the offset part

precalculated in serv_bufreg which gets added to the current

PC before storing as the new PC. The third source for the new

PC comes from the CSR registers when entering or returning

traps.

Some operations (LUI, AUIPC, jumps, entering or returning

from traps) also update the destination register through o_rd.

In the case of misaligned instruction traps, the invalid PC is

written to o_bad_pc to be passed to mtval.

serv_decode

serv_decode is responsible for decoding the operation word

coming from ibus into a set of control signals that are used

internally in SERV.

serv_immdec

The main responsibility of serv_immdec is to stitch together

the pieces of immediates from the instruction word and push it

out in the correct order. When a new instruction arrives, the

relevant parts are placed into a number of shift registers, and

the connections between the registers are setup differently

depending on the type of operation.

serv_immdec also extracts the register addresses from the

operation word.

serv_mem_if

serv_mem_if prepares the data to be sent out on the dbus

during store operations and serializes the incoming data

during loads

The memory interface is centered around four byte-wide shift

registers connected in series. During store operations,

the dat_en signal is asserted long enough to shift in the data

from rs2 to the right place in the shift registers and the parallel

output of the shift registers is then presented to the data bus as

a 32-bit word together with a byte mask. The Data bus byte

mask table summarizes the logic for when the individual byte

select signals are asserted depending on the two LSB of the

data address together with the size (byte, halfword, word) of

the write operation.

During load operations, the data from the bus is latched into

the shift registers. dat_en is again asserted to shift out data

from the registers. i_lsb decides from which byte stage of the

shift register to tap the data, depending on the alignment of

the received data. The dat_valid signal makes sure to only

present valid data to o_rd and otherwise fill in with zeros or

sign extension.

When SERV is built with WITH_CSR, there is also logic to

detect misaligned accesses which asserts the o_misalign flag

to the core.

The shift register used for stores and loads are also used to

keep track of the number of steps to shift for left/right shift

operations. In this mode, the six LSB of the register is loaded

with the shift amount during the init stage and the used as a

down counter which raises o_sh_done and o_sh_done_r when

the number of shift steps have been completed.

https://serv.readthedocs.io/en/latest/#data-bus-byte-mask
https://serv.readthedocs.io/en/latest/#data-bus-byte-mask

op

type
lsb 3 2 1 0

sb 00 0 0 0 1

sb 01 0 0 1 0

sb 10 0 1 0 0

sb 11 1 0 0 0

sh 00 0 0 1 1

sh 10 1 1 0 0

sw 00 1 1 1 1

Logic

expression

(i_lsb ==

11)

| i_word

| (i_half &

i_lsb[1])

(i_lsb ==

10

|) i_word

(i_lsb ==

01) | i_word

| (i_half &

!i_lsb[1])

i_lsb

== 0

serv_rf_if

serv_rf_if is the gateway between the core and an RF

implementation. It transforms all control signals that affect

register reads or writes and exposes two read and write ports

to the RF. This allows implementors to plug in an RF

implementation that is best suited for the technology to be

used. The general purpose registers are allocated to address 0-

31. In addition, four CSR are defined at addresses 32-35.

serv_rf_ram

serv_rf_ram is the default RF implementation using an

SRAM-like interface. Suitable for FPGA implementations

serv_rf_ram_if

serv_rf_ram_if converts between the SERV RF IF and the

serv_rf_ram interface

serv_state

serv_state keeps track of the state for the core and contains all

dynamic control signals during an operations life time. Also

controls the accesses towards the RF, ibus and dbus

New instructions are fetched by asserting o_ibus_cyc until

there is a response on i_ibus_ack. Instruction fetches occur

when the reset signal is deasserted, which is what gets SERV

started, or when the PC has finished updating its value.

shift_reg

shift_reg is a shift register implementation used in various

places in SERV

serv_shift

serv_shift lives inside the ALU and contains the control logic

for shift operations

Instruction life cycle

The life cycle of an instruction starts by the core issuing a

request for a new instruction on the ibus and ends when the

PC has been updated with the address of the next instruction.

This section goes through what happens between those points

for the various types of instructions. SERV distinguishes

between two-stage and one-stage operations with the former

category being all jump (branch), shift, slt and load/store

instructions and the latter all other operations. In addition to

this, exceptions are a special case. Only two-stage operations

(jump, load/store) can cause an exception. Regardless of

instruction type, they all start out the same way.

Fetch

The bus requests begin by SERV raising o_ibus_cyc until the

memory responds with an i_ibus_ack and presents the

instruction on i_ibus_rdt. Upon seeing the ack, SERV will

lower cyc to indicate the end of the bus cycle.

Decode

When the ack appears, two things happen in SERV. The

relevant portions of the instruction such as opcode, funct3 and

immediate value are saved in serv_decode and serv_immdec.

The saved bits of the instruction is then decoded to create the

internal control signals that corresponds to the current

instruction. The decoded control signals remain static

throughout the instruction life cycle.

The other thing to happen is that a request to start accessing

the register file is sent by strobing rf_rreq which prepares the

register file for both read and write access.

The interface between the core and the register file is

described in a protocol where the core strobes rreq and present

the registers to read on the following cycle. The register file

will prepare to stream out data bit from the two requested

registers. The cycle before it sends out the first bit (LSB) it

will strobe rf_ready. Writes work in a similar way in that the

registers to write has to be presented the cycle after rf_wreq is

strobed and that the register file will start accepting data the

cycle after it has strobed rf_ready. Note that the delay

between rf_wreq and rf_ready does not have to be the same as

from rf_rreq to rf_ready. Also note that register data will only

be written to a register if the corresponding write enable

signal is asserted. In the diagram below, only register r0 will

be written to.

Execute

After the instruction has been decoded and the register file

prepared for reads (and possibly writes) the core knows

whether it is a one-stage or two-stage instruction. These are

handled differently and we will begin by looking at one-stage

instructions. A stage in SERV is 32 consecutive cycles during

which the core is active and processes inputs and creates

results one bit at a time, starting with the LSB.

One-stage instructions

Most operations are one-stage operations which finish in 32

cycles + fetch overhead. During a one-stage operation, the RF

is read and written simultaneously as well as the PC which is

increased by four to point to the next instruction. trap and init

signals are low to distinguish from other stages.

Interrupts and ecall/ebreak

External timer interrupts and ecall/ebreak are also one-stage

operations with some notable differences. The new PC is

fetched from the MTVEC CSR and instead of writing to rd,

the MEPC and MTVAL CSR registers are written. All this is

handled by serv_state raising the trap signal during the

instruction’s execution.

Two-stage operations

Some operations need to be executed in two stages. In the first

stage the operands are read out from the immediate and the

rs1/rs2 registers and potential results are written to PC and rd

in the second stage. Various things happen between the stages

depending on the type of operation. SERV has types of four

two-stage operations; memory, shift, slt and branch

operations. In all cases the first stage is distinguished by

having the init signal raised and only performing reads from

the RF.

memory

Loads and stores are memory operations. In the init stage, the

data address to access is calculated, checked for alignment

and stored in serv_bufreg. For stores, the data to write is also

shifted into the data register in serv_mem_if.

If the address has correct alignment, the o_dbus_cyc signal is

raised to signal an access on the data bus after the init stage

has finished and waits for an incoming i_dbus_ack, and

incoming data in case of loads. After an incoming ack,

o_dbus_cyc is lowered and stage 2 begins. For stores, the only

remaining work in stage 2 is to update the PC. For loads, the

incoming data is shifted into rd.

If the calculated address in the init stage was misaligned,

SERV will raise a exception. Instead of performing an

external bus access it will set mcause and raise the trap signal,

which causes SERV to store the current PC to mepc, store

misaligned address to mtval and set the new PC from mtvec

which will enter the exception handler.

Verilog Code

Top module

serv_rf_top

`default_nettype none

module serv_rf_top

#(parameter RESET_PC = 32'd0,

/* Register signals before or after the decoder

0 : Register after the decoder. Faster but uses more

resources

1 : (default) Register before the decoder. Slower but

uses less resources

*/

parameter PRE_REGISTER = 1,

/* Amount of reset applied to design

"NONE" : No reset at all. Relies on a POR to set

correct initialization

values and that core isn't reset during runtime

"MINI" : Standard setting. Resets the minimal
amount of FFs needed to

restart execution from the instruction at

RESET_PC

*/

parameter RESET_STRATEGY = "MINI",

parameter WITH_CSR = 1,

parameter RF_WIDTH = 2,

parameter RF_L2D =

$clog2((32+(WITH_CSR*4))*32/RF_WIDTH))

(

input wire clk,

input wire i_rst,

input wire i_timer_irq,

`ifdef RISCV_FORMAL

output wire rvfi_valid,

output wire [63:0] rvfi_order,

output wire [31:0] rvfi_insn,

output wire rvfi_trap,
output wire rvfi_halt,

output wire rvfi_intr,

output wire [1:0] rvfi_mode,

output wire [1:0] rvfi_ixl,

output wire [4:0] rvfi_rs1_addr,

output wire [4:0] rvfi_rs2_addr,

output wire [31:0] rvfi_rs1_rdata,

output wire [31:0] rvfi_rs2_rdata,

output wire [4:0] rvfi_rd_addr,

output wire [31:0] rvfi_rd_wdata,

output wire [31:0] rvfi_pc_rdata,

output wire [31:0] rvfi_pc_wdata,

output wire [31:0] rvfi_mem_addr,

output wire [3:0] rvfi_mem_rmask,

output wire [3:0] rvfi_mem_wmask,

output wire [31:0] rvfi_mem_rdata,

output wire [31:0] rvfi_mem_wdata,
`endif

output wire [31:0] o_ibus_adr,

output wire o_ibus_cyc,

input wire [31:0] i_ibus_rdt,

input wire i_ibus_ack,

output wire [31:0] o_dbus_adr,

output wire [31:0] o_dbus_dat,

output wire [3:0] o_dbus_sel,

output wire o_dbus_we ,

output wire o_dbus_cyc,

input wire [31:0] i_dbus_rdt,

input wire i_dbus_ack);

localparam CSR_REGS = WITH_CSR*4;

wire rf_wreq;

wire rf_rreq;

wire [4+WITH_CSR:0] wreg0;

wire [4+WITH_CSR:0] wreg1;

wire wen0;
wire wen1;

wire wdata0;

wire wdata1;

wire [4+WITH_CSR:0] rreg0;

wire [4+WITH_CSR:0] rreg1;

wire rf_ready;

wire rdata0;

wire rdata1;

wire [RF_L2D-1:0] waddr;

wire [RF_WIDTH-1:0] wdata;

wire wen;

wire [RF_L2D-1:0] raddr;

wire [RF_WIDTH-1:0] rdata;

serv_rf_ram_if

#(.width (RF_WIDTH),

.reset_strategy (RESET_STRATEGY),

.csr_regs (CSR_REGS))

rf_ram_if

(.i_clk (clk),

.i_rst (i_rst),

.i_wreq (rf_wreq),

.i_rreq (rf_rreq),

.o_ready (rf_ready),

.i_wreg0 (wreg0),

.i_wreg1 (wreg1),

.i_wen0 (wen0),

.i_wen1 (wen1),

.i_wdata0 (wdata0),

.i_wdata1 (wdata1),

.i_rreg0 (rreg0),

.i_rreg1 (rreg1),

.o_rdata0 (rdata0),

.o_rdata1 (rdata1),

.o_waddr (waddr),

.o_wdata (wdata),

.o_wen (wen),

.o_raddr (raddr),

.i_rdata (rdata));

serv_rf_ram
#(.width (RF_WIDTH),

.csr_regs (CSR_REGS))

rf_ram

(.i_clk (clk),
.i_waddr (waddr),

.i_wdata (wdata),

.i_wen (wen),

.i_raddr (raddr),

.o_rdata (rdata));

serv_top

#(.RESET_PC (RESET_PC),

.PRE_REGISTER (PRE_REGISTER),

.RESET_STRATEGY (RESET_STRATEGY),

.WITH_CSR (WITH_CSR))

cpu

(

.clk (clk),

.i_rst (i_rst),

.i_timer_irq (i_timer_irq),

`ifdef RISCV_FORMAL

.rvfi_valid (rvfi_valid),

.rvfi_order (rvfi_order),

.rvfi_insn (rvfi_insn),

.rvfi_trap (rvfi_trap),

.rvfi_halt (rvfi_halt),

.rvfi_intr (rvfi_intr),

.rvfi_mode (rvfi_mode),

.rvfi_ixl (rvfi_ixl),

.rvfi_rs1_addr (rvfi_rs1_addr),

.rvfi_rs2_addr (rvfi_rs2_addr),

.rvfi_rs1_rdata (rvfi_rs1_rdata),

.rvfi_rs2_rdata (rvfi_rs2_rdata),

.rvfi_rd_addr (rvfi_rd_addr),

.rvfi_rd_wdata (rvfi_rd_wdata),

.rvfi_pc_rdata (rvfi_pc_rdata),

.rvfi_pc_wdata (rvfi_pc_wdata),

.rvfi_mem_addr (rvfi_mem_addr),

.rvfi_mem_rmask (rvfi_mem_rmask),

.rvfi_mem_wmask (rvfi_mem_wmask),

.rvfi_mem_rdata (rvfi_mem_rdata),

.rvfi_mem_wdata (rvfi_mem_wdata),

`endif

.o_rf_rreq (rf_rreq),

.o_rf_wreq (rf_wreq),

.i_rf_ready (rf_ready),

.o_wreg0 (wreg0),

.o_wreg1 (wreg1),

.o_wen0 (wen0),

.o_wen1 (wen1),

.o_wdata0 (wdata0),

.o_wdata1 (wdata1),

.o_rreg0 (rreg0),

.o_rreg1 (rreg1),

.i_rdata0 (rdata0),

.i_rdata1 (rdata1),

.o_ibus_adr (o_ibus_adr),

.o_ibus_cyc (o_ibus_cyc),

.i_ibus_rdt (i_ibus_rdt),

.i_ibus_ack (i_ibus_ack),

.o_dbus_adr (o_dbus_adr),

.o_dbus_dat (o_dbus_dat),

.o_dbus_sel (o_dbus_sel),

.o_dbus_we (o_dbus_we),

.o_dbus_cyc (o_dbus_cyc),

.i_dbus_rdt (i_dbus_rdt),

.i_dbus_ack (i_dbus_ack));

endmodule

`default_nettype wire

PDK Details

There are seven standard cell libraries provided directly

by the SkyWater Technology foundry available for use on

SKY130 designs, which differ in intended applications

and come in three separate cell heights.

Libraries:

sky130_fd_sc_hs (high speed)

sky130_fd_sc_ms (medium speed)

sky130_fd_sc_ls (low speed)

sky130_fd_sc_lp (low power)

These are compatible in size, with a 0.48 x 3.33um site,

equivalent to about 11 met1 tracks.

Libraries sky130_fd_sc_hd (high density)

and sky130_fd_sc_hdll (high density, low leakage)

contain standard cells that are smaller, utilizing a 0.46 x

2.72um site, equivalent to 9 met1 tracks.

The sky130_fd_sc_hvl (high voltage) library contains 5V

devices and utilizes a 0.48 x 4.07um site, or

14 met1 tracks.

sky130_fd_sc_hd - High Density Standard Cell

Library

The sky130_fd_sc_hd library is designed for high density.

Compared to sky130_fd_sc_ls, this library enables higher

routed gated density, lower dynamic power consumption,

and comparable timing and leakage power. As a trade-off

it has lower drive strength and does not support any drop

in replacement medium or high speed library.

sky130_fd_sc_hdll - High Density, Low Leakage

Standard Cell Library

sky130_fd_sc_hd includes clock-gating cells to

reduce active power during non-sleep modes.

Latches and flip-flops have scan equivalents to

enable scan chain creation.

Multi-voltage domain library cells are provided.

Routed Gate Density is 160 kGates/mm^2 or better.

leakage @ttleak_1.80v_25C (no body bias) is 0.86

nA / kGate

sky130_fd_sc_XX buf_16 max cap (ss_1.60v_-

40C, in/out tran=1.5ns) is 0.746 pF

Body Bias-able

The sky130_fd_sc_hdll library is a low leakage high

density standard cell library.

Compared to sky130_fd_sc_hd, this library enables 5-

10X lower leakage power, but the same X, Y pin grids,

routing layer pitches, and cell height.

Blocks should be DRC clean when intermingled

with sky130_fd_sc_hd cells.

Raw gate density (number

of sky130_fd_sc_hdll nand2_1 gates able to fit in

1mm2) for sky130_fd_sc_hd is 266kGates/mm2 and

200kGates/mm2 for sky130_fd_sc_hdll.

sky130_fd_sc_ms - Low Voltage (<2.0V), Medium

Speed, Standard Cell Library

Includes integrating clock-gating cells to reduce

active power during non-sleep modes

Latches and flip-flops in the library have a scan

equivalent implementation to enable scan chain

creation and testing supported by the synthesis tools

Multi-voltage domain library cells are provided

Routed Gate Density is 120 kGates/mm^2

leakage @ttleak_1.80v_25C (no body bias) is 0.08

nA / kGate

sky130_fd_sc_XX buf_16 max cap (ss_1.60v_-

40C, in/out tran=1.5ns) < 1 pF

Multi-Voltage Design Support

Body Bias-able

sky130_fd_sc_ms is drop-in compatible
with sky130_fd_sc_ls or sky130_fd_sc_hs libraries for

cells of the same function and drive

strength. sky130_fd_sc_ms cells have medium speed and

leakage.

sky130_fd_sc_ms is implemented with low voltage

transistors; timing and power models are valid from

1.60V up to 1.95V. All cells are functional at 1.2V.

• The library supports low leakage sleep mode via

state retention flops

• Includes integrating clock-gating cells to reduce

active power during non-sleep modes

• Latches and flip-flops in the library have a scan

equivalent implementation to enable scan chain

creation and testing supported by the synthesis tools

• Library details:

o Inverters and buffers: 48

o AND, OR, NAND, NOR gates: 86

o Exclusive-OR and Exclusive-NOR: 12

o Inverted And-Or and Inverted Or-And: 71

o And-Or and Or-And: 68

o Adders, Comparators and Multiplexers: 33

o Latches and filp-flops: 68

o Low Power Flow Cells: 42

o UDB custom cells: 17

sky130_fd_sc_lp - Low Voltage (<2.0V), Low Power,

Standard Cell Library

The low to high level shifter cells are capable of shifting

from 1.2V to 1.95V.

sky130_fd_sc_lp is the largest of the SKY130 standard

cell libraries at nearly 750 cells. All logic cells are

implemented with low voltage transistors and should be

powered within the limits of those transistors.

Specifically, the timing and power models are valid from

1.55V up to 2.0V.

• sky130_fd_sc_lp supports low leakage sleep mode

via sleep transistors

Inverters, Buffers: 108
AND, OR, NAND, NOR gates: 159

Exclusive-OR, Exclusive-NOR: 16

AND-OR-Inverted, OR-AND-Inverted: 138

AND-OR, OR-AND: 132

Adders, Comparators, Multiplexors: 59

Custom Power gating, bus cells: 43

Latches and flip-flops: 92

sky130_fd_sc_hvl - High Voltage (5V), Standard Cell

Library

Includes integrating clock-gating cells to reduce

active power during non-sleep modes

Latches and flip-flops have scan equivalents to

enable scan chain creation

Larger Library size:

The sky130_fd_sc_hvl library has the smallest cell count

of the SKY130 standard cell libraries, but is the only one

that enables 5V tolerant logic blocks. All logic cells are

implemented with 5V tolerant transistors; timing and

power models are valid from 1.65V to 5.5V. The low

voltage to high voltage level shifter is functional shifting

from 1.2V to 5.5V.

Raw gate density (number

of sky130_fd_sc_hvl nand2_1 gates able to fit in

1mm2) should be 170kGates/mm2.

Routed should be >= 100k Gates/mm2. Due to the gate

length for these high voltage transistors, the actual gate

density is lower than 170kGates/mm2. The size of a 2-

input NAND gate in this library is actually 5 grids wide,

OpenLane Flow

The above command is for exporting Process Design Kit (PDK)

ie sky130 in OpenLane.

This command is for mounting OpenLane directory on

Docker.

This what we see after successfully mounting OpenLane on

Docker.

whereas the 170k calculation is based on a gate that is 3

grids wide. With a 5 grid wide gate, the raw gate density

is 102kGates/mm2.

Logic Synthesis Tool Flow

The above image shows the flow of Yosys. Yosys takes RTL

code and .lib files as input and netlist as output. Netlist is the

standard cell representation of the design.

Yosys flow

read design

read_verilog serv_rf_top.v

elaborate design hierarchy

hierarchy -check -top serv_rf_top

the high-level stuff

proc;

opt;

fsm;

opt;

memory;

opt

mapping to internal cell library

techmap;

op

mapping flip-flops to mycells.lib

dfflibmap -liberty

home/badboy07/Desktop/vsdflow/work/tools/openlane_w

orking_dir/pdks/open_pdks/sky130/sky130A/libs.ref/sky1

30_fd_sc_hs/lib/sky130_fd_sc_hs ff_100C_1v95.lib

mapping logic to mycells.lib

abc -liberty

home/badboy07/Desktop/vsdflow/work/tools/openlane_w

orking_dir/pdks/open_pdks/sky130/sky130A/libs.ref/sky1

30_fd_sc_hs/lib/ sky130_fd_sc_hs ff_100C_1v95.lib

cleanup

clean

write synthesized design

write_verilog serv_rf_top.synthesis

OpenLane automated flow

./flow.tcl -design serv_rf_top -init_design_config

The above command flow.tcl has commands for running

OpenLane flow so here we run the configuration flow

Then we need to edit required variable in config.tcl

Then we are giving the below commands to run the design
automatically
through ./flow.tcl command

./flow.tcl -design serv_rf_top -init_design_config -src /

serv_rf_top.v

In the above command we are passing source file as our

input which is in Verilog.

./flow.tcl -design serv_rf_top

This command runs the entire OpenLane flow from

preparation of design to generating GDSII.

OpenLane Interactive flow

./flow.tcl -interactive

This command runs OpenLane in interactive flow

Running the commands in interactive flow

package require openlane 0.9

This command checks the version of OpenLane required for

the flow

prep -design serv_rf_top -tag serv_interactive

Preparing a design called serv_rf_top with tag for naming the

current run.

run_synthesis

This command runs the synthesis right from Yosys till

OpenSTA.

Conversion of RTL design to a circuit out of components from

Standard cell library (SCL).

run_floorplan

This command performs the Floor planning and Power

Distribution network(PDN) of the design.

Chip Floorplanning - Patitioning the chip die between different

system blocks and placing the I/O pads

The above image describes the Chip Floorplanning

Macro Floorplanning - We define the macro dimensions, pin

locations and row definitions.

Power Planning - Power network is constructed typically by

multiple VDD and GND pins. the Power pins are all connected

https://user-images.githubusercontent.com/60011091/123965874-830da080-d9d2-11eb-8801-bf2c87292754.png
https://user-images.githubusercontent.com/60011091/123966387-03340600-d9d3-11eb-8a03-494b72f72228.png

through power rings, vertical and horizontal metal straps.

Power rings- Power ring is designed around the core. Power

rings contains both VDD and VSS rings. After the ring is

placed a power is designed such that power reaches all the cells

easily.

This diagram shows the power planning components.

These parallel structures reduce resistance. To address

electromagnetism the power distribution network uses upper

metal layers as they are thicker than lower metal layers

run_placement

This command perform global placement and detailed

placement of cells of the design.

Placing the cell on the floorplan rows aligned with sites.

Connected cells should be placed close to each other to reduce

the interconnect delay. It is done in two steps ie Global and

Detailed Placement. In global placement , the approximate

locations for cells is decided by placing cells in global bins. In

detailed placement, cells are Placed without over lapping.

https://user-images.githubusercontent.com/60011091/123967363-ddf3c780-d9d3-11eb-8b41-6f8f8ce56882.png

run_cts

Creating a clock distribution network :

➢ Delivering clock to all sequential elements.

• With Minimum skew

• In Good shape

• A tree (H,X etc)

https://user-images.githubusercontent.com/60011091/123968734-22339780-d9d5-11eb-89eb-0ab9dfc5aca2.png
https://user-images.githubusercontent.com/60011091/123969507-eb11b600-d9d5-11eb-9a0d-affcbfc897e5.png

run_routing

Implements interconnects using available metal layers. Metal

tracks form a routing grid. Routing uses Divide and Conquer

method.

There are two types of Routing ie -Global routing: Generates

routing guides -Detailed routing: Uses routing guides to

implement actual wiring.

write_powered_verilog

set_netlist $::env(lvs_result_file.tag).powered.v

These commands write Verilog code from the netlist after we

have set it in the file after routing.

run_magic

This command generates Layout

https://user-images.githubusercontent.com/60011091/123969880-40e65e00-d9d6-11eb-82aa-b60741c7a9af.png

run_magic_drc

This command performs DRC check on the layout.

run_klayout

This command creates backup layout

scrot_klayout

This command is for generating layout in PNG format.

run_klayout_drc

Running DRC on layout generated from Klayout

run_klayout_gds_xor

This command is for generating GDS2 of our design with

XOR design

run_lvs

This command checks for layout vs schematic violations

Layout Versus Schematic (LVS) checking compares the

extracted netlist from the layout to the original schematic

netlist to determine if they match. The comparison check is

considered clean if all the devices and nets of the schematic

match the devices and the nets of the layout.

run_lef_cvc

This command is used for Circuit Validity Checker on the

output spice. Voltage aware ERC checker for CDL netlists.

run_antenna_check

This command is used for checking Antenna violations. Long

metal lines and Vias introduce antenna violations. The

antenna rule specifies the maximum tolerance for the ratio of

a metal line area to the area of connected gates. VLSI process

starts from the substrate, device layer and then metal layers.

Scripts for OpenLane flow

OpenLane flow scripts are mostly consisting of Python,

Shell scripting, TCL scripting and some parts in Perl

and web design tools like CSS and JavaScript. Some of

the scripts are as shown below:

Report Generation Wrapper Python file

This report generator consists of all the wrappers to wrap

around report.py script and config.py script and make it

usable for flow.tcl script.

synthesis.tcl (Configuration of design for Synthesis)

This configuration .tcl file consists of Yosys and all

other synthesis configuration settings to be set for

proper functioning of synthesis.

general.tcl (General configurations of a design)

This configuration .tcl file consists of all the general

configuration settings to be set for proper functioning of

Openlane flow.

Analyse.pl (Synthesis Analysis Perl file)

This Perl file is used as analysing file by declaring

parameters like min area, min delay, best area and best

delay etc.

sta.tcl:

This is the main tcl file where we set timing parameters,

report total negative slack, worst negative slack,

checks and power parameters.

config.py

This python extension config has all the configurations

required for smooth running of OpenLane.

flow.tcl

This tcl file is the main script upon which OpenLane flow

runs based on user’s preference ie automatic flow or

interactive flow.

Generation of SERV Utilization and Area Report

This report generates SERV utilization statistics ie

number of basic gates, wires, memories, cells and

processes and flip flops needed for SERV design. This

Report was generated for default clock period of 10ns and

Frequency of design as 100MHz. This was based on

Maximum Operating Frequency Calculations section.

Synthesis

• Using Automated Flow of OpenLane/ Interactive

Flow of OpenLane

This report generates SERV utilization statistics ie

number of basic gates, wires, memories, cells and

processes and flip flops needed for SERV design. This

Report was generated for clock period of 20ns and

Frequency of design as 50MHz. This was based on

Maximum Operating Frequency Calculations section.

Floorplanning

The below report generated by OPENROAD

tool.

The below report generated by ioPlacer Tool

The below report was generated by tapcell

tool.

The below report was generated by pdn tool.

Placement

This report is generated by Replace tool which

performs global placement.

This report was generated by resizer tool

which performs optional optimizations of the

design.

This report was generated by opendp tool

which performs detailed placement

CTS

Routing

This report was generated by fastroute tool

which performs global routing to generate a

guide file for the detailed router.

This report was generated by tritonroute tool

Antenna report

DFF Ratio

DFF Ratio = No of DFF/ No of Cells

Generation of Power Report

This report consists of power parameters like Internal

power, Switching Power, Leakage Power and Total

power consumed by Sequential, Combinational, macro

and pads.

This Report was generated for default clock period of

20ns and Frequency of design as 50MHz. This was based

on

Maximum Operating Frequency Calculations section.

Synthesis

• Using Automated Flow of OpenLane/ Interactive

Flow of OpenLane

Here we see the Generation of Power Report

Power of the Design = α.C.V2.F = C.V2.F

C= Load Capacitance, V= Supply Voltage,

α=Switching activity. So, from here F which is frequency

of design is F α 1/T.

Generation of Timing Report

STA (Static Timing Analysis)

This report consists of timing analysis which shows the

maximum and minimum slack time which is calculated

by:

Slack time = Data arrival time-Data required time

This Report was generated for default clock period of

20ns and Frequency of design as 50MHz. This was based

on

Maximum Operating Frequency Calculations section.

Synthesis

Min-max slack

tns – refers to total negative slack

wns -refers to worst negative slack

Placement

Min-max slack

CTS

Min-max slack

Routing

Maximum Operating Frequency Calculations

The SERV CPU core requires a reasonably precise

50MHZ on iCE40. This is our clock’s frequency

approximately for the mentioned boards in previous

statement.

Here we are taking 50MHZ as our operating frequency

based on SERV specifications

Time period (T) = 1/ Frequency(F)

= 1/ 50 MHZ

=20 ns

Sky130 PDK’s Operating Frequency

Schematic of Synthesized Netlist

Synthesized Netlist File

This netlist file shows the inputs, outputs, wires and gates

from sky130_fd_sc_hd libraries with different flavours

according to user’s designs.

Post Synthesis

Post CTS

Post Optimization

Post Initial Routing

Layout Generation by Magic Tool

Post Floorplanning

The below command is for generating layout after

Floorplanning. All the images after the below command

are from what was generated during Floorplanning.

Post Placement

The below command is for viewing layout after

placement. All the images after the below command are

from what was generated during Placement.

Post CTS

The below command is for viewing layout after CTS. All

the images after the below command are from what was

generated during CTS.

Post Routing

The below command is for viewing layout after routing.

All the images after the below command are from what

was generated during Routing.

Final GDSII layout

The below command is for opening the GDS file created.

The below layout was generated by Klayout tool

The below command is for opening the GDS file created.

This is a layout with XOR design using Klayout tool

Inferences

Thus we have designed and synthesized and perform physical

design on SERV core design using Yosys and OpenLane flow.

We have generated reports for area, power, delay and timing

analysis and utilization statistics after each stage and we have

also viewed each stage layout by Magic tool and GDSII layout

by Klayout tool.

