
University of California, Berkeley
Coleman Fung Institute for Engineering Leadership

Capstone Project Report - Spring 2024

Exploring Low-Code Approaches to Digital
Twins with Traffic Prediction for Smart City

Applications

Project ID: 24

Nozomu Kitamura∗

Civil and Environmental Engineering

Qingyang Hu∗

Electrical Engineering and Computer Sciences

Jhan-Shuo (Jeff) Liu∗

Electrical Engineering and Computer Sciences

Advised By

JD Margulici
Novavia Solutions

Gabriel Gomes
Mechanical Engineering

*All authors contributed equally to this work.

map filter splitter window

����������
������������

���

����������

code union dispatch join

Preface: This illustration provides a high-level view of our low-code analysis for our traffic model on I-880.

1

Contents

Executive Summary 3

1 Business Analysis 4
1.1 Traffic Analysis . 5
1.2 Cloud-Based Technologies . 5
1.3 Decision Support Systems . 6
1.4 Low-Code Solutions . 6

2 Methodology and Results 7
2.1 Methodology . 8

2.1.1 Dataset . 8
2.1.2 Traffic Modeling . 8
2.1.3 Cloud Computing . 8
2.1.4 Dashboard . 9
2.1.5 Low-code approach . 9

2.2 Results . 9
2.2.1 Traffic Modeling: Accuracy . 9
2.2.2 Cloud Computing . 10
2.2.3 Dashboard . 10
2.2.4 Reference Architecture . 10
2.2.5 Domain Specific Languages . 11

2.3 Future Work . 13
2.3.1 Low-code Framework . 13
2.3.2 Model Improvements and Data Correctness . 15
2.3.3 Continuous Training Using Streaming Data . 15

2.4 Conclusion . 15

References 16

2

Executive Summary

This project introduces a low-code framework that
enables the development of digital twins without deep
expertise in data engineering, software engineering,
and cloud infrastructure, leveraging advancements in
IoT technology. Specifically, we developed a traffic
forecasting model for a specific segment of the I-880
freeway, integrating diverse real-time data sources
such as speed sensors, weather conditions, and traffic
event information. This model can predict traffic flow
10 minutes into the future based on real-time data,
with the predictions visualized on an intuitive dash-
board. Furthermore, the project explored the po-
tential of the low-code framework by simplifying the
development process application with a reference ar-
chitecture and domain-specific language (DSL). This
low-code framework simplifies the digital twin devel-
opment process by automatically generating applica-
tion code from the DSL, utilizing the reference ar-
chitecture we explored. Future work will focus on
implementing the low-code framework’s functional-
ity, including converting DSL into executable code
and creating user-friendly management tools. In ad-
dition, efforts will be made to enhance the accuracy
of our predictive models through more detailed re-
definition of event severity, improved feature engi-
neering and selection processes, and the exploration
of suitable deep-learning architectures for time series
forecasting. The reference architecture will also need
updates to incorporate components supporting con-
tinuous improvement, locally or in the cloud. These
efforts aim to make digital twin development more ac-
cessible to a broader audience and enable the creation
of more accurate and practical predictive models.

3

Chapter 1

Business Analysis

The IoT market in the U.S. is expected to increase
from approximately $118.2 billion in 2023 to about
$553.9 billion in 2030 at a compound annual growth
rate (CAGR) of 24.7%. This forecast underscores
the rapid expansion of the IoT market [1]. As the
IoT market evolves, IoT networks facilitate digital
twins, which simulate real-world systems and pro-
cesses using virtual models. This advancement en-
hances the monitoring and forecasting of physical
operations across multiple sectors. However, creat-
ing digital twins requires a profound understanding
of complex data engineering, software engineering,
and cloud infrastructure. Furthermore, data scien-
tists currently spend about 80% of their time build-
ing data pipelines for data analysis, leaving only 20%
for analysis and other substantive tasks [2].

To explore the use of low-code frameworks in de-
veloping a digital twin of full-stack applications for
our methodology, we have conducted extensive busi-
ness studies and literature reviews. We have delved
into essential elements for a real-time traffic forecast-
ing and analysis model in section 1.1. This includes
identifying crucial inputs, selecting optimal machine
learning models, and finding effective ways to con-
vert geographic locations into a linear space. In sec-
tion 1.2, we investigated current approaches using
cloud-based technologies to understand the feasibil-
ity of a real-time prediction system and how digi-
tal twin development is currently performed. To aid
decision-making, we have examined innovative ways
to present traffic flow analysis, including predictions
up to 10 minutes into the future, via an intuitive

dashboard in section 1.3. Additionally, we explored
the potential of low-code approaches by reviewing dif-
ferent platforms and our own low-code framework,
Anaximander, in section 1.4. These analysis collec-
tively enhance the functionality and accessibility of
our digital twin system. By integrating real-time traf-
fic data, cloud-based processing, and intuitive dash-
boards through low-code platforms, we ensure a com-
prehensive and user-friendly digital twin solution that
adapts dynamically to evolving user needs and tech-
nological advancements.

4

1.1 Traffic Analysis

Traffic Congestion Factors

The Cambridge report outlines current conditions,
trends, and countermeasures for traffic congestion in
the United States, focusing on traffic flow-affecting
factors [3]. It details seven significant causes, in-
cluding physical bottlenecks, traffic accidents, con-
struction zones, weather, traffic control devices, spe-
cial events, and normal traffic volume fluctuations.
These factors have similarities and differences with
other machine learning-based traffic flow forecasting
research. Appropriately considering these key factors
affecting traffic flow when forecasting traffic flow us-
ing machine learning can provide valuable insights to
achieve more practical forecasts grounded in reality.

Traffic Flow Prediction Models

[4] illustrates a machine learning-based traffic fore-
casting package that considers weather, construction
sites, accidents, and special events. They integrate
actual traffic data with external factors and apply
decision trees and Markov models to offer a practical
tool for predicting traffic congestion. Meanwhile, [5]
discusses the accuracy of machine learning methods
such as Random Forest, KNN, XGBoost, and Gra-
dientBoost, with the highest accuracy reaching 92%,
indicating the potential for improvement. Addition-
ally, [6] presents a neural network-based speed predic-
tion algorithm that uses current traffic information.
These studies demonstrate the effectiveness of com-
bining real-time data with external factors and apply-
ing machine learning and deep learning techniques to
traffic flow forecasting, providing essential insights for
building more realistic traffic management models.

Road Segmentation

In forecasting traffic flows, it is not realistic to uni-
formly forecast the entire roadway since, in reality,
only a portion of the roadway is often very congested.
Therefore, the guidelines in the Highway Capacity
Manual provide a method for forecasting traffic flow
that does not uniformly forecast the entire roadway
but analyzes specific segments separately, such as

merging points, turnouts, lane numbers, and sections
with different speed limits [7]. This approach makes
our project more realistic and detailed traffic flow
forecasts.

1.2 Cloud-Based Technologies

Streaming Data

Creating a function to periodically collect data and
pass it as streaming data to our pipeline is straight-
forward. However, [8] highlights the challenge of
streaming data and proposes a solution. The issue is
that data or messages might not be delivered to our
system on time due to network connectivity or the it-
erative characteristics of data collection. He suggests
defining a time window to discard any out-of-order
data delayed beyond this window. This considera-
tion is crucial when replaying data for simulation,
addressing delay messages, and managing these situ-
ations in our online streaming prediction.

Event-Driven Applications

For smart city applications, updates often come in
the form of events from diverse sources. Hence, event-
driven development is a popular choice for these ap-
plications. [9] suggests that traffic monitoring, which
involves gathering information from numerous sen-
sors, could utilize this method. Although no realized
applications were provided, a publisher/subscriber
system for event communication and data mining for
traffic pattern insights was recommended.

Digital Twins for Smart Cities

Digital Twins replicate physical world signals or data
in the digital realm. For transportation, analyzing
speed data from freeway sensors allows transporta-
tion departments to make more informed and timely
decisions [10]. Thus, the digital twins concept in-
volves collecting ample real-world data, extracting
useful information, and making data-driven decisions
across various fields.

5

1.3 Decision Support Systems

Dashboard for Data-driven Decision Making

Smart city applications assist users in making data-
driven decisions. Therefore, a dashboard that visu-
alizes and summarizes data can be beneficial. Traf-
fic Analytics Dashboard (TA-Dash) is an interactive
dashboard for visualizing urban traffic patterns over
time and space [11]. The usefulness of TA-Dash is
demonstrated through showcased by illustrating how
it can analyze, predict, and visually represent the ef-
fects of special events on traffic. This insight under-
scores the need for a dashboard to visualize model
predictions on geometric maps and line plots, en-
abling even non-expert users to understand the re-
sults.

1.4 Low-Code Solutions

Low-Code Platforms

Low-code platforms have gained popularity, enabling
individuals with minimal coding expertise to develop
applications swiftly. [12] provides a comprehensive
comparison of existing low-code platforms, such as
Google App Maker and Salesforce. They observed
that these platforms share similar design models but
lack built-in AI support, advanced business insights
reporting, and support for event-driven applications.

Anaximander Framework

The Anaximander framework is a Python library that
combines object-oriented programming with data sci-
ence tools. The framework is designed to provide
concise declarations of data, metadata, and trans-
formation pipelines. Anaximander also automates
the setup, configuration, and management of infras-
tructure, software, systems, and the resources and
services required for data access in a cloud environ-
ment. This allows developers to focus on business
logic and data science-related issues. In addition,
the Anaximander framework supports event-driven
applications through the use of low-code technolo-
gies [13]. It models data sources with Python code,

enabling developers to manage them as traditional
Python objects through its object-oriented design.
This facilitates expressive programming and allows
for quick testing of new ideas and accelerated inno-
vation, although it has not yet been applied in real-
world applications.

6

Chapter 2

Methodology and Results

Based on the business analysis, this project ex-
plores the potential of using low-code frameworks to
simplify the development of digital twins, by con-
structing a real-time traffic flow prediction on the
I-880 freeway. Utilizing data from various sources, in-
cluding speed sensors, weather conditions, and traffic
events, we’ve developed a model capable of forecast-
ing traffic conditions 10 minutes into the future, with
intuitive dashboards. From the model, we created a
cloud-based reference architecture and Domain Spe-
cific Languages to illustrate a concept for our low-
code framework.

Our methodology involves collecting and integrat-
ing data from multiple sources, as suggested in our
previous analysis, to provide a comprehensive view
of factors influencing traffic flow. We apply ad-
vanced machine learning techniques, such as Linear
Regression and Neural Networks, to predict traffic
patterns, and leverage cloud computing for efficient
data processing and model deployment. The creation
of the reference architecture and domain-specific lan-
guage (DSL), through decomposing our implementa-
tion, aims to provide a proof of concept for our low-
code framework, serving a blueprint for the future
development. This would make the development pro-
cess more accessible, allowing for the rapid creation of
digital twin applications without extensive software
engineering expertise.

The results of our project demonstrate the effec-
tiveness of our approach in forecasting traffic flow, in
both costs and time. Additionally, our exploration
into low-code development with our reference archi-

tecture and DSL showcases the potential for broader
application in general purpose IoT applications, mak-
ing complex data engineering and software develop-
ment tasks more approachable by eliminating the
need to understand complex data transformation and
cloud infrastructure.

This chapter outlines the details of our methodol-
ogy, from traffic modeling and cloud computing to
reference architecture and DSL design, and discusses
our results to understand their significance for simi-
lar developments. Through our work, we contribute
to the growing field of digital twin technology, high-
lighting the importance of integrating IoT data with
low-code frameworks in solving real-world challenges.

7

2.1 Methodology

2.1.1 Dataset

Based on our business analysis, we identified weather,
traffic events, and traffic speed as key factors for pre-
dicting traffic flow. Thus, we collected datasets from
the following sources:

• Traffic events: 511 SF Bay: 511.org

• Weather: OpenWeatherMap: openweathermap.
org

• Traffic speed: Caltrans Performance Measure-
ment System (PeMS): pems.dot.ca.gov

For weather and traffic event data, obtaining data
is straightforward because these sources provide APIs
for direct access. Consequently, we can retrieve data
at our desired frequency, which is every 5 minutes.
However, PeMS does not permit frequent data crawl-
ing without explicit permission. As a result, we opted
to download PeMS daily data instead of at 5-minute
intervals. To compensate for this, we introduced a
data replay logic at a later stage to simulate real-
time streaming by replaying past data at normal or
accelerated speeds.

2.1.2 Traffic Modeling

At the start of the project, we gathered data from
various sources, merged it, and assigned a section
ID to each segment of I-880 for which predictions
were to be made. This consolidated dataset was then
subjected to exploratory data analysis (EDA) to as-
sess its structure, identify missing values, and detect
outliers. We performed data cleaning by eliminat-
ing irrelevant columns and data points through this
process. The analysis used data on current traffic
speeds, weather conditions, incidents, calendar dates,
and times. We applied one-hot encoding to the cat-
egorical variables, such as weather conditions, traf-
fic incidents, calendar dates, and times, and stan-
dardized the numerical data, such as current traffic
speeds. In our feature engineering phase, we identi-
fied the most critical severity for events that occurred
within a 60-minute window before the forecast time

and within a 10-mile radius of the midpoint of the
predicted section. We then introduced a new feature
called the event severity score, which was calculated
using the following formula:

score = severity×
(
e−time + e−distance

)
(2.1)

For weather and traffic event data, where there
were many types, and the individual impact was un-
clear, related categories were consolidated. Addition-
ally, Principal Component Analysis (PCA) was ap-
plied to the entire dataset to reduce the dimension-
ality of the features. These preprocessing techniques
aimed to enhance the efficiency of model training and
the accuracy of forecasts. In constructing the traf-
fic flow forecasting model, linear regression, random
forest, LightGBM, and a neural network MLP (Mul-
tilayer Perceptron) were compared. The model with
the lowest MSE was chosen as the final model.

2.1.3 Cloud Computing

Our pipeline utilizes the Google Cloud Platforms. We
aimed to

1. Establish a production-grade data pipeline, in-
corporating data collection, processing, infer-
ence, and visualization.

2. Introduce data replay capabilities for a faster re-
view of historical changes.

3. Support streaming data to observe real-time
changes.

Our focus lies on utilizing FaaS (Function as a
Service) for project implementation and deployment
to scale down running and maintenance costs. We
exchange real-time data via Pub/Sub, a publisher-
subscriber system, while data storage is handled by
BigQuery, a data warehouse. Our implementation
consists of the following components:

1. Data Ingestors/Replayer: We will employ Cloud
Function to ingest data from the datasets or to
replay data from BigQuery. These processes are
triggered using Cloud Scheduler based on speci-
fied inputs.

8

511.org
openweathermap.org
openweathermap.org
pems.dot.ca.gov

2. Preprocessor: We will preprocess the data using
the feature engineering techniques detailed in the
previous section, facilitated by Dataflow.

3. Inference: Depending on the scale of our model,
the inference will run on either Dataflow or
Cloud Function.

4. Dashboard: Dashboards will be deployed via
Cloud Run which we will discuss in a subsequent
section.

2.1.4 Dashboard

To enhance the visualization of predictive traffic flow
and streamline development efforts, we have chosen
Grafana, a robust visualization tool, to present our
model predictions. Grafana offers a wide range of plot
types, including time series, bar charts, heatmaps,
and geomaps, making it a versatile choice. Addition-
ally, its support for various plugins allows seamless
integration with different databases. In our imple-
mentation, we incorporated the BigQuery plugin to
facilitate connection with our dataset, empowering
Grafana to generate insightful visualizations.

The first section of our dashboard focuses on time
series data for individual segments. This includes
the actual observed speeds sourced from PeMS data
alongside our predictive values. To enrich the analy-
sis, we’ve integrated event scores onto these graphs.
These visualizations enable us not only to compare
predicted and actual speeds but also to examine any
correlation between event scores and actual speed
fluctuations.

The second segment of the dashboard is dedicated
to showcasing traffic congestion levels on a geograph-
ical map. This provides users with a comprehensive
view of congestion across different segments at spe-
cific timestamps. Each segment is represented by an
arrow on the map, with colors indicating the sever-
ity of congestion. As congestion escalates, the color
of the arrow transitions from green to orange, red,
and eventually purple, providing a clear indication of
worsening traffic conditions.

2.1.5 Low-code approach

In order to illustrate the concept of our low-code
framework, we simplified our implementation. This
transformed our product into a reference architecture
and a domain-specific language (DSL). Our low-code
framework design is supported by the reference ar-
chitecture, which functions as the fundamental back-
bone. In this proposed design, the low-code frame-
work will be responsible for generating the applica-
tion code using our reference architecture.

Our DSL has been formulated to combat the is-
sues associated with traditional approaches such as
SQL, which grapple with stateful transformations,
late or out-of-order data, and trade-offs between cost,
correctness, and latency. The DSL will be specified
in pseudocode, using Python as the designated lan-
guage.

Our core objectives in this methodology were to
incorporate the separation of the data model and
control flow, ensure the proficient use of decorators,
and define stateful and stateless transformations in a
more straightforward and efficient manner.

2.2 Results

2.2.1 Traffic Modeling: Accuracy

The initial analysis used the current speed as the fore-
casted speed for 10 minutes later, serving as a base-
line. This method computed the Root Mean Squared
Error (RMSE), with a lower RMSE indicating bet-
ter performance. Subsequently, the results of the
comparative analysis using linear regression, random
forest, LightGBM, and MLP neural networks, which
are utilized in other studies mentioned in the liter-
ature review, revealed that the MLP model exhib-
ited superior performance, as indicated in the table
2.1. Model training and accuracy evaluation were
conducted using five-fold cross-validation and RMSE,
and hyperparameter optimization was carried out us-
ing random search. The MLP model achieved an
11.8% reduction in RMSE compared to the baseline.
Furthermore, the MLP model reduced the RMSE by
7.8 % compared to a fundamental linear regression

9

benchmark, offering more realistic forecasts than the
other evaluated models1.

Model Type RMSE
Baseline 2.80
Linear Regression 2.68
Random Forest 2.62
LightGBM 2.51
MLP 2.47

Table 2.1: Comparison of RMSE using 5-Fold Vali-
dation Across Various Models

2.2.2 Cloud Computing

Through the use of serverless compute technologies,
our implementation on the Google Cloud Platform
supports streaming data processing, facilitated by
the use of PubSub and Dataflow. This functional-
ity means that our pipeline can be evaluated against
real-time data, enabling users to conduct analyses
based on real-time inputs rather than relying solely
on downloaded data. Specifically, our pipeline can
generate real-time predictions of traffic speeds for the
next 10 minutes based on current data.

Additionally, due to the adoption of FaaS, our im-
plementation requires minimal maintenance once de-
ployed and hence, incurs minimal costs. As Google
manages the fundamental environment for our im-
plementation, we eliminate the need to handle the
complex setup of operating systems and environment.
Furthermore, Google will only bill us for the time re-
sources are in use, thereby reducing wastage of funds
on idle resources. On average, our implementation
incurs approximately $0.50 in costs per day 2, com-
paring to hundreds of dollars per day with traditional
server-based approaches.

1Code to train our models is available at https://github.
com/BayAreaCloudCity/trainning.

2Code of our GCP implementation, along with instruc-
tions on how to deploy it, is available at https://github.com/
BayAreaCloudCity/gcp.

2.2.3 Dashboard

Our dashboard is shown below in Figure 2.1, which
provides a time-series view on specific data for each
segment, and a map-view on overall congestion level
for all segments given a specific time.

In examining the time series panel, two notewor-
thy observations emerge. Firstly, our predictions con-
sistently lag behind the actual speed, for about 10
minutes. This discrepancy arises because our model
forecasts the speed 10 minutes ahead based mostly
on the current speed, essentially employing a base-
line approach. This allows us to assess the accuracy
of our model in comparison to this baseline. Sec-
ondly, the event score appears disconnected from in-
stances of speed drops. Potential explanations for
this misalignment include inaccuracies in the formula
used to calculate the event score or discrepancies in
the event data itself. Upon investigation, we discov-
ered instances where event data from 511.org may be
sourced from alternative channels, resulting in mul-
tiple events sharing identical creation times. This
suggests a potential need for refining the event data
collection process to ensure accuracy. Moreover, even
when creation times are intended to be accurate, de-
lays between the occurrence of an event and its re-
porting may still impact the data reliability.

Turning to the map panel, a notable disparity in
congestion levels between peak traffic hours and mid-
night is evident. Users have the flexibility to adjust
the time settings to observe distinct patterns 3.

2.2.4 Reference Architecture

By simplifying our implementation, we have created
a reference architecture, as shown below, for general-
purpose digital-twin applications. Based on our busi-
ness analysis, our reference architecture reflects our
implementation by dividing the product into several
components: data ingestors, data replayers, feature
pipeline, training pipeline, inference pipeline, and
business insights. We distinguished between func-
tionality and technology by representing the required

3Our dashboard can be accessed at https:

//grafana-et73rt2k6a-uw.a.run.app/.

10

https://github.com/BayAreaCloudCity/trainning
https://github.com/BayAreaCloudCity/trainning
https://github.com/BayAreaCloudCity/gcp
https://github.com/BayAreaCloudCity/gcp
https://grafana-et73rt2k6a-uw.a.run.app/
https://grafana-et73rt2k6a-uw.a.run.app/

Figure 2.1: Our dashboards for I-880. The left side shows overall speed at the current time, and the right
side shows historical data with their predictions over the past 24 hours.

technology within the boxes. Our low-code frame-
work will mirror this design when generating the ap-
plication code.

2.2.5 Domain Specific Languages

The DSL design comprises two main components.
Firstly, we conceptualize data as assets organized
into typed streams, allowing for easier transforma-
tion through framework built-in functions. Secondly,
our DSL incorporates default stream operations to
enhance operational efficiency.
For typed streams, we categorize streams into sam-

ple, event, session, transition, and journal, as detailed
in Table 2.2.
We have also define many types of stream op-

erations, including operations within a stream and
among multiple streams. Our design assumes that
all data types can be accommodated within typed
streams, and data transformation can be executed
seamlessly using our operation design. Operations
within a single stream include

• map: This function applies a transformation
to each record individually, ensuring a one-to-
one correspondence between input and output
records.

• filter: This function selects records based on
specific criteria, effectively filtering out records
that do not meet these criteria.

• splitter: This function divides each record into
multiple parts, facilitating the processing of each
part separately.

• window: This function selects records that fall
within a specified time frame, often used for an-
alyzing trends over time.

• groupby: This function groups records based on
a common key and applies aggregate functions
(like sum, average, etc.) to each group, summa-
rizing or combining data in meaningful ways.

Operations among multiple streams include

• union: This function combines multiple data
streams into a single stream without merging
their content based on keys or conditions, simply
appending one stream to another.

• dispatch: This function routes records from a
single input stream to multiple output streams,
distributing the data based on specified criteria
or conditions.

• join: This function merges two or more streams
into a single stream, aligning records based on
shared keys and/or timestamps, which allows for
correlating data across different sources.

Figure 2.3 is an illustration of our PeMS data trans-
formation process. Using our DSL design, we ini-

11

Figure 2.2: Our reference architecture to be used for future IoT projects.

tially define the data models for both input and out-
put data. Subsequently, we specify how the input
data model is transformed into the output model,
utilizing a combination of predefined functions and
custom aggregation functions. This process shares
similarities with Dataflow in terms of overall struc-
ture. The transformation involves mapping station
observation data to segments, followed by grouping
by segment id to calculate aggregated speeds using
the get pems features function. Additionally, we
incorporate windowing functions into this transfor-
mation.
Unlike the original Dataflow (Apache Beam) im-

plementation shown in Figure 2.4, which unions mul-
tiple streams first and then applies transformations,
our DSL takes a different approach. We transform

multiple streams separately first and then combine
them. However, the key advantage of our DSL lies
in its utilization of data models, eliminating the
need for users to manually extract data from stor-
age. Our framework handles this task seamlessly,
simplifying the process of building data pipelines for
users. By merely defining the data models and model
transformations, users can effortlessly construct data
pipelines, underscoring the usability and practicality
of our system.

Overall, our implementation serves as evidence of
the practicality of a low-code framework. If users
can easily write code of this nature, the framework
could seamlessly translate it into a reference architec-
ture and generate corresponding components within a
cloud environment. We envision this level of abstrac-

12

Feature Type Characteristics Examples
Sample Near-periodic Timestamps Teamperature Measurements
Event Non-periodic Timestamps

Typed or untyped events
Alerts from monitoring systems

Session Start and end times
Non-overlapping intervals

Machine production runs

Transition Time-partitioning Parking space availability
Journal Strictly periodic timestamps

sliding or tumbling window
Daily sales reports

Table 2.2: Feature types with their characteristics and examples.

1 class SegmentPeMsJournal(nx.Journal):

2 segment_id: int = nx.key()

3 timestamp: datetime = nx.timestamp()

4 aggregated_speed: Speed = nx.data(ge=0)

5

6 @nx.source

7 def from_sample(cls):

8 PeMSSample.map(aggregated_speed, field="station_id", new_field="segment_ids") \

9 .splitter(field="segment_ids", new_field="segment_id") \

10 .group_by_key(key="segment_id") \

11 .agg(get_pems_feature) \

12 .sliding_windows(window_size, window_period)

Figure 2.3: DSL Pseudocode in Python to process aggregated data for each segment

tion as accessible for individuals with a basic coding
proficiency but lacking extensive software and data
engineering backgrounds, enabling them to develop
data-intensive applications 4.

2.3 Future Work

2.3.1 Low-code Framework

While our project has proposed a viable method
for implementing a low-code framework through
our Domain-Specific Language (DSL) and refer-
ence architecture, the actual development within
Anaximander–the low-code framework we are
developing–remains a work in progress. To fully

4Our complete design of DSL can be accessed at https:

//github.com/BayAreaCloudCity/low-code.

realize the potential of our work for Anaximander,
we will need to establish a transformation process
from our DSL to executable Python code. Addi-
tionally, it will be necessary to interconnect different
components using Python code and develop tools
that enable users to easily manage them. Ultimately,
the outcome will be a comprehensive library in
Python. Users can incorporate this library into their
projects and write DSL code in Python as usual.
Our framework will then automatically generate
executable Python code and deploy it to a cloud
environment following our reference architecture.

13

https://github.com/BayAreaCloudCity/low-code
https://github.com/BayAreaCloudCity/low-code

1 pems: PCollection = (

2 pipeline

3 | "PeMS: Read" >> io.ReadFromBigQuery(

4 query=get_table_query(pems_table, start, end, window_size),

use_standard_sql=True)↪→

5 | "PeMS: Map to Segments" >> ParDo(PeMSTransformDoFn(segments))

6 | 'PeMS: Window' >> WindowInto(SlidingWindow(window_size, window_period)

7)

8 ...

9 result: PCollection = (({

10 'bay_area_511_event': bay_area_511_event, 'weather': weather, 'pems': pems})

11 | 'Merge by Segment' >> CoGroupByKey()

12 | 'Feature Transform' >> ParDo(SegmentFeatureTransformDoFn(segments,

metadata_version))↪→

13 | 'Discard Buffer' >> Filter(lambda row: start.timestamp() <= row['timestamp'] <

end.timestamp()))↪→

14

15 class SegmentFeatureTransformDoFn(DoFn):

16 def process(self, element, window=DoFn.WindowParam):

17 segment_id, data = element

18 t = window.end

19 features = \

20 self.get_event_features(data['bay_area_511_event'], segment_id, t) + \

21 self.get_pems_feature(data['pems'], segment_id) + \

22 self.get_weather_features(data['weather']) + \

23 self.get_time_features(t)

24 # Use get_pems_feature to aggregate station observed speeds into the segment

speed↪→

Figure 2.4: Dataflow code in Python to process aggregated data for each segment

14

2.3.2 Model Improvements and Data
Correctness

The accuracy is crucial to the usefulness of this ap-
plication. In order to improve the accuracy, future
efforts will focus on getting more high-quality data
or enhancing the model. Model enhancements will
require a more detailed redefinition of event severity,
improved feature engineering and selection, and the
exploration of deep learning architectures designed
explicitly for time-series forecasting. The most sig-
nificant events are identified within a 60-minute win-
dow preceding the forecast time and within a 10-mile
radius of the forecast interval’s midpoint. However,
a finer temporal and spatial refinement of the event
severity definition could provide a more nuanced un-
derstanding of the relationship between events and
velocity. Furthermore, the accuracy can be improved
by adding and examining the correlation between
different speeds (fast, medium, and slow) and fore-
casts. Moreover, the model can reduce complexity
and prevent overfitting by eliminating less relevant
ones. Additionally, it will investigate deep learning
architectures and techniques, including RNNs suit-
able for time-series analysis, enhanced versions like
LSTM and GRU, and the statistical time series model
SARIMA. These improvements will be implemented
incrementally in stages to enhance the accuracy and
reliability of our forecasting models.

2.3.3 Continuous Training Using
Streaming Data

Continuous improvement of models is another cru-
cial aspect to consider for many business purposes,
due to the constantly changing trends in users’ be-
haviors and needs. To incorporate this concept, our
reference architecture will need updates to include
components that allow for such continuous improve-
ments, whether locally or in the cloud. This could
involve, for example, the addition of a model evalua-
tion component and a model store. Additional logic
may also be required, such as the continuous evalu-
ation of model performance, complemented by dash-
boards that visualize relevant error metrics. More-
over, our Domain-Specific Language (DSL) would

need updates to simplify processes for users. For in-
stance, within our DSL, users could specify the fre-
quency and dataset size necessary for model training,
eliminating the need for writing complex scheduler
logics.

2.4 Conclusion

Our project has comprehensively explored the chal-
lenge of digital-twin development involving IoT de-
vices, specifically predicting traffic flow. We have
gathered, analyzed, and modeled data from diverse
sources, applying state-of-the-art machine learning
techniques and leveraging cloud computing technolo-
gies to achieve our objectives. Through our efforts,
we have not only developed a robust model for traf-
fic flow prediction but also created a scalable, cost-
effective infrastructure on the Google Cloud Plat-
form, which stands as a reference implementation to
the potential of low-code frameworks in handling big
data and real-time analytics.

Our innovative approach in integrating a low-code
framework and a Domain-Specific Language (DSL)
creates an innovative strategy to democratize tech-
nology, making it accessible to people without soft-
ware engineering expertise, such as domain experts
and data scientists. Our project aligns with our vi-
sion to allow users to perform advanced analytics and
machine learning without the need for deep technical
knowledge.

15

References

[1] F. B. Insights, “U.s. internet of things (iot) mar-
ket size, growth, forecast, 2030,” Market Re-
search Report, p. 110, 2023.

[2] G. Trotino, “Building data pipelines: Capabil-
ities, benefits, and challenges,” https://www.
k2view.com/blog/what-is-a-data-pipeline/
#Clean-Data-Wanted, 2021.

[3] C. Systematics, “Traffic congestion and reliabil-
ity: Trends and advanced strategies for conges-
tion mitigation,” United States. Federal High-
way Administration, Tech. Rep., 2005.

[4] J. K. Garrett, J. Ma, H. Mahmassani, M. Ne-
uner, R. Sanchez et al., “Integrated modeling
for road condition prediction phase 3 project re-
port,” United States. Federal Highway Adminis-
tration. Office of Operations, Tech. Rep., 2020.

[5] N. Zafar and I. Ul Haq, “Traffic congestion pre-
diction based on estimated time of arrival,” PloS
one, vol. 15, no. 12, p. e0238200, 2020.

[6] J. Park, D. Li, Y. L. Murphey, J. Kristinsson,
R. McGee, M. Kuang, and T. Phillips, “Real
time vehicle speed prediction using a neural net-
work traffic model,” in The 2011 International
Joint Conference on Neural Networks. IEEE,
2011, pp. 2991–2996.

[7] B. Aghdashi. Freeway facilities – hcm segmen-
tation process. University of Florida, Trans-
portation Institute. [Online]. Available: https:
//www.youtube.com/watch?v=3A9SPRCnUHs

[8] J. S. Damji, B. Wenig, T. Das, and D. Lee,
”Learning Spark”. O’Reilly Media, Inc., 2020.

[9] A. Hinze, K. Sachs, and A. Buchmann, “Event-
based applications and enabling technologies,”
in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems,
2009, pp. 1–15.

[10] C. Hu, W. Fan, E. Zeng, Z. Hang, F. Wang,
L. Qi, and M. Z. A. Bhuiyan, “Digital twin-
assisted real-time traffic data prediction method
for 5g-enabled internet of vehicles,” IEEE Trans-
actions on Industrial Informatics, vol. 18, no. 4,
pp. 2811–2819, 2021.

[11] N. Tempelmeier, A. Sander, U. Feuerhake,
M. Löhdefink, and E. Demidova, “Ta-dash: an
interactive dashboard for spatial-temporal traf-
fic analytics,” in Proceedings of the 28th Inter-
national Conference on Advances in Geographic
Information Systems, 2020, pp. 409–412.

[12] A. Sahay, A. Indamutsa, D. Di Ruscio, and
A. Pierantonio, “Supporting the understand-
ing and comparison of low-code development
platforms,” in 2020 46th Euromicro Conference
on Software Engineering and Advanced Applica-
tions (SEAA). IEEE, 2020, pp. 171–178.

[13] J. Margulici, “Anaximander: The rapid applica-
tion development framework for data-intensive
python.” 2022.

16

https://www.k2view.com/blog/what-is-a-data-pipeline/#Clean-Data-Wanted
https://www.k2view.com/blog/what-is-a-data-pipeline/#Clean-Data-Wanted
https://www.k2view.com/blog/what-is-a-data-pipeline/#Clean-Data-Wanted
https://www.youtube.com/watch?v=3A9SPRCnUHs
https://www.youtube.com/watch?v=3A9SPRCnUHs

	Executive Summary
	Business Analysis
	Traffic Analysis
	Cloud-Based Technologies
	Decision Support Systems
	Low-Code Solutions

	Methodology and Results
	Methodology
	Dataset
	Traffic Modeling
	Cloud Computing
	Dashboard
	Low-code approach

	Results
	Traffic Modeling: Accuracy
	Cloud Computing
	Dashboard
	Reference Architecture
	Domain Specific Languages

	Future Work
	Low-code Framework
	Model Improvements and Data Correctness
	Continuous Training Using Streaming Data

	Conclusion

	References

