
M A N N I N G

François Chollet

Deep Learning with Python

Deep Learning
with Python

FRANÇOIS CHOLLET

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Jerry Gaines
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project editor: Tiffany Taylor
 Copyeditor: Tiffany Taylor

Proofreader: Katie Tennant
Technical proofreaders: Alex Ott and Richard Tobias

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617294433
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

brief contents
PART 1 FUNDAMENTALS OF DEEP LEARNING1

1 ■ What is deep learning? 3
2 ■ Before we begin: the mathematical building blocks of neural

networks 25
3 ■ Getting started with neural networks 56
4 ■ Fundamentals of machine learning 93

PART 2 DEEP LEARNING IN PRACTICE 117
5 ■ Deep learning for computer vision 119
6 ■ Deep learning for text and sequences 178
7 ■ Advanced deep-learning best practices 233
8 ■ Generative deep learning 269
9 ■ Conclusions 314
v

contents
preface xiii
acknowledgments xv
about this book xvi
about the author xx
about the cover xxi

PART 1 FUNDAMENTALS OF DEEP LEARNING1

1 What is deep learning? 3
1.1 Artificial intelligence, machine learning, and deep learning

4
Artificial intelligence 4 ■ Machine learning 4 ■ Learning
representations from data 6 ■ The “deep” in deep learning 8
Understanding how deep learning works, in three figures 9
What deep learning has achieved so far 11 ■ Don’t believe
the short-term hype 12 ■ The promise of AI 13

1.2 Before deep learning: a brief history of machine
learning 14
Probabilistic modeling 14 ■ Early neural networks 14
Kernel methods 15 ■ Decision trees, random forests,
and gradient boosting machines 16 ■ Back to neural
networks 17 ■ What makes deep learning different 17
The modern machine-learning landscape 18
vii

CONTENTSviii
1.3 Why deep learning? Why now? 20
Hardware 20 ■ Data 21 ■ Algorithms 21 ■ A new
wave of investment 22 ■ The democratization of deep
learning 23 ■ Will it last? 23

2 Before we begin: the mathematical building blocks of
neural networks 25
2.1 A first look at a neural network 27
2.2 Data representations for neural networks 31

Scalars (0D tensors) 31 ■ Vectors (1D tensors) 31
Matrices (2D tensors) 31 ■ 3D tensors and higher-
dimensional tensors 32 ■ Key attributes 32
Manipulating tensors in Numpy 34 ■ The notion
of data batches 34 ■ Real-world examples of data
tensors 35 ■ Vector data 35 ■ Timeseries data or
sequence data 35 ■ Image data 36 ■ Video data 37

2.3 The gears of neural networks: tensor operations 38
Element-wise operations 38 ■ Broadcasting 39 ■ Tensor
dot 40 ■ Tensor reshaping 42 ■ Geometric interpretation
of tensor operations 43 ■ A geometric interpretation of deep
learning 44

2.4 The engine of neural networks: gradient-based
optimization 46
What’s a derivative? 47 ■ Derivative of a tensor operation:
the gradient 48 ■ Stochastic gradient descent 48
Chaining derivatives: the Backpropagation algorithm 51

2.5 Looking back at our first example 53
2.6 Chapter summary 55

3 Getting started with neural networks 56
3.1 Anatomy of a neural network 58

Layers: the building blocks of deep learning 58 ■ Models:
networks of layers 59 ■ Loss functions and optimizers: keys
to configuring the learning process 60

3.2 Introduction to Keras 61
Keras, TensorFlow, Theano, and CNTK 62 ■ Developing
with Keras: a quick overview 62

3.3 Setting up a deep-learning workstation 65
Jupyter notebooks: the preferred way to run deep-learning
experiments 65 ■ Getting Keras running: two options 66

CONTENTS ix
Running deep-learning jobs in the cloud: pros and cons 66
What is the best GPU for deep learning? 66

3.4 Classifying movie reviews: a binary classification
example 68
The IMDB dataset 68 ■ Preparing the data 69
Building your network 70 ■ Validating your approach 73
Using a trained network to generate predictions on new
data 76 ■ Further experiments 77 ■ Wrapping up 77

3.5 Classifying newswires: a multiclass classification
example 78
The Reuters dataset 78 ■ Preparing the data 79
Building your network 79 ■ Validating your approach 80
Generating predictions on new data 83 ■ A different way to
handle the labels and the loss 83 ■ The importance of
having sufficiently large intermediate layers 83 ■ Further
experiments 84 ■ Wrapping up 84

3.6 Predicting house prices: a regression example 85
The Boston Housing Price dataset 85 ■ Preparing the
data 86 ■ Building your network 86 ■ Validating
your approach using K-fold validation 87 ■ Wrapping up 91

3.7 Chapter summary 92

4 Fundamentals of machine learning 93
4.1 Four branches of machine learning 94

Supervised learning 94 ■ Unsupervised learning 94
Self-supervised learning 94 ■ Reinforcement learning 95

4.2 Evaluating machine-learning models 97
Training, validation, and test sets 97 ■ Things to
keep in mind 100

4.3 Data preprocessing, feature engineering,
and feature learning 101
Data preprocessing for neural networks 101 ■ Feature
engineering 102

4.4 Overfitting and underfitting 104
Reducing the network’s size 104 ■ Adding weight
regularization 107 ■ Adding dropout 109

4.5 The universal workflow of machine learning 111
Defining the problem and assembling a dataset 111
Choosing a measure of success 112 ■ Deciding on an

CONTENTSx
evaluation protocol 112 ■ Preparing your data 112
Developing a model that does better than a baseline 113
Scaling up: developing a model that overfits 114
Regularizing your model and tuning your hyperparameters 114

4.6 Chapter summary 116

PART 2 DEEP LEARNING IN PRACTICE117

5 Deep learning for computer vision 119
5.1 Introduction to convnets 120 The convolution operation 122

■ The max-pooling
operation 127

5.2 Training a convnet from scratch on a small dataset 130
The relevance of deep learning for small-data problems 130
Downloading the data 131 ■ Building your network 133
Data preprocessing 135 ■ Using data augmentation 138

5.3 Using a pretrained convnet 143
Feature extraction 143 ■ Fine-tuning 152 ■ Wrapping
up 159

5.4 Visualizing what convnets learn 160
Visualizing intermediate activations 160 ■ Visualizing
convnet filters 167 ■ Visualizing heatmaps of class
activation 172

5.5 Chapter summary 177

6 Deep learning for text and sequences 178
6.1 Working with text data 180

One-hot encoding of words and characters 181 ■ Using
word embeddings 184 ■ Putting it all together: from raw
text to word embeddings 188 ■ Wrapping up 195

6.2 Understanding recurrent neural networks 196
A recurrent layer in Keras 198 ■ Understanding the
LSTM and GRU layers 202 ■ A concrete LSTM example
in Keras 204 ■ Wrapping up 206

6.3 Advanced use of recurrent neural networks 207
A temperature-forecasting problem 207 ■ Preparing the
data 210 ■ A common-sense, non-machine-learning
baseline 212 ■ A basic machine-learning approach 213
A first recurrent baseline 215 ■ Using recurrent dropout

CONTENTS xi
to fight overfitting 216 ■ Stacking recurrent layers 217
Using bidirectional RNNs 219 ■ Going even further 222
Wrapping up 223

6.4 Sequence processing with convnets 225
Understanding 1D convolution for sequence data 225
1D pooling for sequence data 226 ■ Implementing a 1D
convnet 226 ■ Combining CNNs and RNNs to process long
sequences 228 ■ Wrapping up 231

6.5 Chapter summary 232

7 Advanced deep-learning best practices 233
7.1 Going beyond the Sequential model: the Keras

 functional API 234
Introduction to the functional API 236 ■ Multi-input
models 238 ■ Multi-output models 240 ■ Directed acyclic
graphs of layers 242 ■ Layer weight sharing 246 ■ Models
as layers 247 ■ Wrapping up 248

7.2 Inspecting and monitoring deep-learning models using
Keras callbacks and TensorBoard 249
Using callbacks to act on a model during training 249
Introduction to TensorBoard: the TensorFlow visualization
framework 252 ■ Wrapping up 259

7.3 Getting the most out of your models 260
Advanced architecture patterns 260 ■ Hyperparameter
optimization 263 ■ Model ensembling 264 ■ Wrapping
up 266

7.4 Chapter summary 268

8 Generative deep learning 269
8.1 Text generation with LSTM 271

A brief history of generative recurrent networks 271 ■ How
do you generate sequence data? 272 ■ The importance of
the sampling strategy 272 ■ Implementing character-level
LSTM text generation 274 ■ Wrapping up 279

8.2 DeepDream 280
Implementing DeepDream in Keras 281 ■ Wrapping up 286

8.3 Neural style transfer 287
The content loss 288 ■ The style loss 288 ■ Neural style
transfer in Keras 289 ■ Wrapping up 295

CONTENTSxii
8.4 Generating images with variational autoencoders 296
Sampling from latent spaces of images 296 ■ Concept vectors
for image editing 297 ■ Variational autoencoders 298
Wrapping up 304

8.5 Introduction to generative adversarial networks 305
A schematic GAN implementation 307 ■ A bag of tricks 307
The generator 308 ■ The discriminator 309 ■ The adversarial
network 310 ■ How to train your DCGAN 310 ■ Wrapping
up 312

8.6 Chapter summary 313

9 Conclusions 314
9.1 Key concepts in review 315

Various approaches to AI 315 ■ What makes deep learning
special within the field of machine learning 315 ■ How to
think about deep learning 316 ■ Key enabling technologies 317
The universal machine-learning workflow 318 ■ Key network
architectures 319 ■ The space of possibilities 322

9.2 The limitations of deep learning 325
The risk of anthropomorphizing machine-learning models 325
Local generalization vs. extreme generalization 327
Wrapping up 329

9.3 The future of deep learning 330
Models as programs 330 ■ Beyond backpropagation and
differentiable layers 332 ■ Automated machine learning 332
Lifelong learning and modular subroutine reuse 333
The long-term vision 335

9.4 Staying up to date in a fast-moving field 337
Practice on real-world problems using Kaggle 337
Read about the latest developments on arXiv 337
Explore the Keras ecosystem 338

9.5 Final words 339

appendix A Installing Keras and its dependencies on Ubuntu 340
appendix B Running Jupyter notebooks on an EC2 GPU instance 345

index 353

preface
If you’ve picked up this book, you’re probably aware of the extraordinary progress
that deep learning has represented for the field of artificial intelligence in the recent
past. In a mere five years, we’ve gone from near-unusable image recognition and
speech transcription, to superhuman performance on these tasks.

 The consequences of this sudden progress extend to almost every industry. But in
order to begin deploying deep-learning technology to every problem that it could
solve, we need to make it accessible to as many people as possible, including non-
experts—people who aren’t researchers or graduate students. For deep learning to
reach its full potential, we need to radically democratize it.

 When I released the first version of the Keras deep-learning framework in March
2015, the democratization of AI wasn’t what I had in mind. I had been doing research
in machine learning for several years, and had built Keras to help me with my own
experiments. But throughout 2015 and 2016, tens of thousands of new people
entered the field of deep learning; many of them picked up Keras because it was—and
still is—the easiest framework to get started with. As I watched scores of newcomers
use Keras in unexpected, powerful ways, I came to care deeply about the accessibility
and democratization of AI. I realized that the further we spread these technologies,
the more useful and valuable they become. Accessibility quickly became an explicit
goal in the development of Keras, and over a few short years, the Keras developer
community has made fantastic achievements on this front. We’ve put deep learning
into the hands of tens of thousands of people, who in turn are using it to solve import-
ant problems we didn’t even know existed until recently.

 The book you’re holding is another step on the way to making deep learning avail-
able to as many people as possible. Keras had always needed a companion course to
xiii

PREFACExiv
simultaneously cover fundamentals of deep learning, Keras usage patterns, and deep-
learning best practices. This book is my best effort to produce such a course. I wrote it
with a focus on making the concepts behind deep learning, and their implementa-
tion, as approachable as possible. Doing so didn’t require me to dumb down any-
thing—I strongly believe that there are no difficult ideas in deep learning. I hope
you’ll find this book valuable and that it will enable you to begin building intelligent
applications and solve the problems that matter to you.

acknowledgments
I’d like to thank the Keras community for making this book possible. Keras has grown
to have hundreds of open source contributors and more than 200,000 users. Your con-
tributions and feedback have turned Keras into what it is today.

 I’d also like to thank Google for backing the Keras project. It has been fantastic to
see Keras adopted as TensorFlow’s high-level API. A smooth integration between Keras
and TensorFlow greatly benefits both TensorFlow users and Keras users and makes
deep learning accessible to most.

 I want to thank the people at Manning who made this book possible: publisher
Marjan Bace and everyone on the editorial and production teams, including Christina
Taylor, Janet Vail, Tiffany Taylor, Katie Tennant, Dottie Marsico, and many others who
worked behind the scenes.

 Many thanks go to the technical peer reviewers led by Aleksandar Dragosavljević —
Diego Acuña Rozas, Geoff Barto, David Blumenthal-Barby, Abel Brown, Clark Dor-
man, Clark Gaylord, Thomas Heiman, Wilson Mar, Sumit Pal, Vladimir Pasman, Gus-
tavo Patino, Peter Rabinovitch, Alvin Raj, Claudio Rodriguez, Srdjan Santic, Richard
Tobias, Martin Verzilli, William E. Wheeler, and Daniel Williams—and the forum con-
tributors. Their contributions included catching technical mistakes, errors in termi-
nology, and typos, and making topic suggestions. Each pass through the review
process and each piece of feedback implemented through the forum topics shaped
and molded the manuscript.

 On the technical side, special thanks go to Jerry Gaines, who served as the book’s
technical editor; and Alex Ott and Richard Tobias, who served as the book’s technical
proofreaders. They’re the best technical editors I could have hoped for.

 Finally, I’d like to express my gratitude to my wife Maria for being extremely
supportive throughout the development of Keras and the writing of this book.
xv

about this book
This book was written for anyone who wishes to explore deep learning from scratch or
broaden their understanding of deep learning. Whether you’re a practicing machine-learn-
ing engineer, a software developer, or a college student, you’ll find value in these pages.

 This book offers a practical, hands-on exploration of deep learning. It avoids math-
ematical notation, preferring instead to explain quantitative concepts via code snip-
pets and to build practical intuition about the core ideas of machine learning and
deep learning.

 You’ll learn from more than 30 code examples that include detailed commentary,
practical recommendations, and simple high-level explanations of everything you
need to know to start using deep learning to solve concrete problems.

 The code examples use the Python deep-learning framework Keras, with Tensor-
Flow as a backend engine. Keras, one of the most popular and fastest-growing deep-
learning frameworks, is widely recommended as the best tool to get started with deep
learning.

 After reading this book, you’ll have a solid understand of what deep learning is,
when it’s applicable, and what its limitations are. You’ll be familiar with the standard
workflow for approaching and solving machine-learning problems, and you’ll know
how to address commonly encountered issues. You’ll be able to use Keras to tackle
real-world problems ranging from computer vision to natural-language processing:
image classification, timeseries forecasting, sentiment analysis, image and text genera-
tion, and more.
xvi

ABOUT THIS BOOK xvii
Who should read this book

This book is written for people with Python programming experience who want to get
started with machine learning and deep learning. But this book can also be valuable
to many different types of readers:

 If you’re a data scientist familiar with machine learning, this book will provide
you with a solid, practical introduction to deep learning, the fastest-growing
and most significant subfield of machine learning.

 If you’re a deep-learning expert looking to get started with the Keras frame-
work, you’ll find this book to be the best Keras crash course available.

 If you’re a graduate student studying deep learning in a formal setting, you’ll
find this book to be a practical complement to your education, helping you
build intuition around the behavior of deep neural networks and familiarizing
you with key best practices.

Even technically minded people who don’t code regularly will find this book useful as
an introduction to both basic and advanced deep-learning concepts.

 In order to use Keras, you’ll need reasonable Python proficiency. Additionally, famil-
iarity with the Numpy library will be helpful, although it isn’t required. You don’t need
previous experience with machine learning or deep learning: this book covers from
scratch all the necessary basics. You don’t need an advanced mathematics background,
either—high school–level mathematics should suffice in order to follow along.

Roadmap

This book is structured in two parts. If you have no prior experience with machine
learning, I strongly recommend that you complete part 1 before approaching part 2.
We’ll start with simple examples, and as the book goes on, we’ll get increasingly close
to state-of-the-art techniques.

 Part 1 is a high-level introduction to deep learning, providing context and defini-
tions, and explaining all the notions required to get started with machine learning
and neural networks:

 Chapter 1 presents essential context and background knowledge around AI,
machine learning, and deep learning.

 Chapter 2 introduces fundamental concepts necessary in order to approach
deep learning: tensors, tensor operations, gradient descent, and backpropaga-
tion. This chapter also features the book’s first example of a working neural
network.

 Chapter 3 includes everything you need to get started with neural networks: an
introduction to Keras, our deep-learning framework of choice; a guide for set-
ting up your workstation; and three foundational code examples with detailed
explanations. By the end of this chapter, you’ll be able to train simple neural

ABOUT THIS BOOKxviii
networks to handle classification and regression tasks, and you’ll have a solid
idea of what’s happening in the background as you train them.

 Chapter 4 explores the canonical machine-learning workflow. You’ll also learn
about common pitfalls and their solutions.

Part 2 takes an in-depth dive into practical applications of deep learning in computer
vision and natural-language processing. Many of the examples introduced in this part
can be used as templates to solve problems you’ll encounter in the real-world practice
of deep learning:

 Chapter 5 examines a range of practical computer-vision examples, with a focus
on image classification.

 Chapter 6 gives you practice with techniques for processing sequence data, such
as text and timeseries.

 Chapter 7 introduces advanced techniques for building state-of-the-art deep-
learning models.

 Chapter 8 explains generative models: deep-learning models capable of creat-
ing images and text, with sometimes surprisingly artistic results.

 Chapter 9 is dedicated to consolidating what you’ve learned throughout the
book, as well as opening perspectives on the limitations of deep learning and
exploring its probable future.

Software/hardware requirements

All of this book’s code examples use the Keras deep-learning framework (https://
keras.io), which is open source and free to download. You’ll need access to a UNIX
machine; it’s possible to use Windows, too, but I don’t recommend it. Appendix A
walks you through the complete setup.

 I also recommend that you have a recent NVIDIA GPU on your machine, such as a
TITAN X. This isn’t required, but it will make your experience better by allowing you
to run the code examples several times faster. See section 3.3 for more information
about setting up a deep-learning workstation.

 If you don’t have access to a local workstation with a recent NVIDIA GPU, you can
use a cloud environment, instead. In particular, you can use Google Cloud instances
(such as an n1-standard-8 instance with an NVIDIA Tesla K80 add-on) or Amazon Web
Services (AWS) GPU instances (such as a p2.xlarge instance). Appendix B presents in
detail one possible cloud workflow that runs an AWS instance via Jupyter notebooks,
accessible in your browser.

Source code

All code examples in this book are available for download as Jupyter notebooks from
the book’s website, www.manning.com/books/deep-learning-with-python, and on
GitHub at https://github.com/fchollet/deep-learning-with-python-notebooks.

ABOUT THIS BOOK xix
Book forum

Purchase of Deep Learning with Python includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/deep-learning-with-python. You can also
learn more about Manning’s forums and the rules of conduct at https://forums
.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking him some challenging questions lest his interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.

about the author
François Chollet works on deep learning at Google in Moun-
tain View, CA. He is the creator of the Keras deep-learning
library, as well as a contributor to the TensorFlow machine-
learning framework. He also does deep-learning research,
with a focus on computer vision and the application of
machine learning to formal reasoning. His papers have been
published at major conferences in the field, including the
Conference on Computer Vision and Pattern Recognition
(CVPR), the Conference and Workshop on Neural Informa-

tion Processing Systems (NIPS), the International Conference on Learning Represen-
tations (ICLR), and others.
xx

about the cover
The figure on the cover of Deep Learning with Python is captioned “Habit of a Persian
Lady in 1568.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate engrav-
ings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a map
maker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection. Fascination with faraway
lands and travel for pleasure were relatively new phenomena in the late eighteenth
century, and collections such as this one were popular, introducing both the tourist as
well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.
xxi

Part 1

Fundamentals
of deep learning

Chapters 1–4 of this book will give you a foundational understanding of
what deep learning is, what it can achieve, and how it works. It will also make you
familiar with the canonical workflow for solving data problems using deep learn-
ing. If you aren’t already highly knowledgeable about deep learning, you should
definitely begin by reading part 1 in full before moving on to the practical appli-
cations in part 2.

What is deep learning?
In the past few years, artificial intelligence (AI) has been a subject of intense media
hype. Machine learning, deep learning, and AI come up in countless articles, often
outside of technology-minded publications. We’re promised a future of intelligent
chatbots, self-driving cars, and virtual assistants—a future sometimes painted in a
grim light and other times as utopian, where human jobs will be scarce and most
economic activity will be handled by robots or AI agents. For a future or current
practitioner of machine learning, it’s important to be able to recognize the signal
in the noise so that you can tell world-changing developments from overhyped
press releases. Our future is at stake, and it’s a future in which you have an active
role to play: after reading this book, you’ll be one of those who develop the AI
agents. So let’s tackle these questions: What has deep learning achieved so far?
How significant is it? Where are we headed next? Should you believe the hype?

 This chapter provides essential context around artificial intelligence, machine
learning, and deep learning.

This chapter covers
 High-level definitions of fundamental concepts

 Timeline of the development of machine learning

 Key factors behind deep learning’s rising
popularity and future potential
3

4 CHAPTER 1 What is deep learning?
1.1 Artificial intelligence, machine learning,
and deep learning
First, we need to define clearly what we’re talking about when we mention AI. What
are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How
do they relate to each other?

1.1.1 Artificial intelligence

Artificial intelligence was born in the 1950s, when a handful of pioneers from the
nascent field of computer science started asking whether computers could be made to
“think”—a question whose ramifications we’re still exploring today. A concise defini-
tion of the field would be as follows: the effort to automate intellectual tasks normally per-
formed by humans. As such, AI is a general field that encompasses machine learning and
deep learning, but that also includes many more approaches that don’t involve any
learning. Early chess programs, for instance, only involved hardcoded rules crafted by
programmers, and didn’t qualify as machine learning. For a fairly long time, many
experts believed that human-level artificial intelligence could be achieved by having
programmers handcraft a sufficiently large set of explicit rules for manipulating
knowledge. This approach is known as symbolic AI, and it was the dominant paradigm
in AI from the 1950s to the late 1980s. It reached its peak popularity during the expert
systems boom of the 1980s.

 Although symbolic AI proved suitable to solve well-defined, logical problems, such as
playing chess, it turned out to be intractable to figure out explicit rules for solving more
complex, fuzzy problems, such as image classification, speech recognition, and lan-
guage translation. A new approach arose to take symbolic AI’s place: machine learning.

1.1.2 Machine learning

In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles
Babbage, the inventor of the Analytical Engine: the first-known general-purpose,
mechanical computer. Although visionary and far ahead of its time, the Analytical

Artificial
intelligence

Machine
learning

Deep
learning

Figure 1.1 Artificial intelligence,
machine learning, and deep learning

5Artificial intelligence, machine learning, and deep learning
Engine wasn’t meant as a general-purpose computer when it was designed in the
1830s and 1840s, because the concept of general-purpose computation was yet to be
invented. It was merely meant as a way to use mechanical operations to automate cer-
tain computations from the field of mathematical analysis—hence, the name Analyti-
cal Engine. In 1843, Ada Lovelace remarked on the invention, “The Analytical Engine
has no pretensions whatever to originate anything. It can do whatever we know how to
order it to perform.… Its province is to assist us in making available what we’re
already acquainted with.”

 This remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objec-
tion” in his landmark 1950 paper “Computing Machinery and Intelligence,”1 which
introduced the Turing test as well as key concepts that would come to shape AI. Turing
was quoting Ada Lovelace while pondering whether general-purpose computers could
be capable of learning and originality, and he came to the conclusion that they could.

 Machine learning arises from this question: could a computer go beyond “what we
know how to order it to perform” and learn on its own how to perform a specified task?
Could a computer surprise us? Rather than programmers crafting data-processing
rules by hand, could a computer automatically learn these rules by looking at data?

 This question opens the door to a new programming paradigm. In classical pro-
gramming, the paradigm of symbolic AI, humans input rules (a program) and data to
be processed according to these rules, and out come answers (see figure 1.2). With
machine learning, humans input data as well as the answers expected from the data,
and out come the rules. These rules can then be applied to new data to produce orig-
inal answers.

A machine-learning system is trained rather than explicitly programmed. It’s presented
with many examples relevant to a task, and it finds statistical structure in these exam-
ples that eventually allows the system to come up with rules for automating the task.
For instance, if you wished to automate the task of tagging your vacation pictures, you
could present a machine-learning system with many examples of pictures already
tagged by humans, and the system would learn statistical rules for associating specific
pictures to specific tags.

1 A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460.

Answers
Rules

Data
Classical

programming

Rules
Data

Answers
Machine
learning

Figure 1.2 Machine learning:
a new programming paradigm

6 CHAPTER 1 What is deep learning?
 Although machine learning only started to flourish in the 1990s, it has quickly
become the most popular and most successful subfield of AI, a trend driven by the
availability of faster hardware and larger datasets. Machine learning is tightly related
to mathematical statistics, but it differs from statistics in several important ways.
Unlike statistics, machine learning tends to deal with large, complex datasets (such as
a dataset of millions of images, each consisting of tens of thousands of pixels) for
which classical statistical analysis such as Bayesian analysis would be impractical. As a
result, machine learning, and especially deep learning, exhibits comparatively little
mathematical theory—maybe too little—and is engineering oriented. It’s a hands-on
discipline in which ideas are proven empirically more often than theoretically.

1.1.3 Learning representations from data

To define deep learning and understand the difference between deep learning
and other machine-learning approaches, first we need some idea of what machine-
learning algorithms do. I just stated that machine learning discovers rules to execute
a data-processing task, given examples of what’s expected. So, to do machine learn-
ing, we need three things:

 Input data points—For instance, if the task is speech recognition, these data
points could be sound files of people speaking. If the task is image tagging,
they could be pictures.

 Examples of the expected output—In a speech-recognition task, these could be
human-generated transcripts of sound files. In an image task, expected outputs
could be tags such as “dog,” “cat,” and so on.

 A way to measure whether the algorithm is doing a good job—This is necessary in
order to determine the distance between the algorithm’s current output and
its expected output. The measurement is used as a feedback signal to adjust
the way the algorithm works. This adjustment step is what we call learning.

A machine-learning model transforms its input data into meaningful outputs, a pro-
cess that is “learned” from exposure to known examples of inputs and outputs. There-
fore, the central problem in machine learning and deep learning is to meaningfully
transform data : in other words, to learn useful representations of the input data at
hand—representations that get us closer to the expected output. Before we go any
further: what’s a representation? At its core, it’s a different way to look at data—to rep-
resent or encode data. For instance, a color image can be encoded in the RGB format
(red-green-blue) or in the HSV format (hue-saturation-value): these are two different
representations of the same data. Some tasks that may be difficult with one represen-
tation can become easy with another. For example, the task “select all red pixels in the
image” is simpler in the RG format, whereas “make the image less saturated” is simpler
in the HSV format. Machine-learning models are all about finding appropriate repre-
sentations for their input data—transformations of the data that make it more amena-
ble to the task at hand, such as a classification task.

7Artificial intelligence, machine learning, and deep learning
 Let’s make this concrete. Consider an x-axis, a y-axis, and
some points represented by their coordinates in the (x, y) sys-
tem, as shown in figure 1.3.

 As you can see, we have a few white points and a few black
points. Let’s say we want to develop an algorithm that can take
the coordinates (x, y) of a point and output whether that
point is likely to be black or to be white. In this case,

 The inputs are the coordinates of our points.
 The expected outputs are the colors of our points.
 A way to measure whether our algorithm is doing a

good job could be, for instance, the percentage of
points that are being correctly classified.

What we need here is a new representation of our data that cleanly separates the white
points from the black points. One transformation we could use, among many other
possibilities, would be a coordinate change, illustrated in figure 1.4.

In this new coordinate system, the coordinates of our points can be said to be a new
representation of our data. And it’s a good one! With this representation, the
black/white classification problem can be expressed as a simple rule: “Black points
are such that x > 0,” or “White points are such that x < 0.” This new representation
basically solves the classification problem.

 In this case, we defined the coordinate change by hand. But if instead we tried sys-
tematically searching for different possible coordinate changes, and used as feedback
the percentage of points being correctly classified, then we would be doing machine
learning. Learning, in the context of machine learning, describes an automatic search
process for better representations.

 All machine-learning algorithms consist of automatically finding such transforma-
tions that turn data into more-useful representations for a given task. These opera-
tions can be coordinate changes, as you just saw, or linear projections (which may
destroy information), translations, nonlinear operations (such as “select all points
such that x > 0”), and so on. Machine-learning algorithms aren’t usually creative in

y

2: Coordinate change

x

y

1: Raw data

x

y
3: Better representation

x

Figure 1.4 Coordinate change

y

x

Figure 1.3
Some sample data

8 CHAPTER 1 What is deep learning?
finding these transformations; they’re merely searching through a predefined set of
operations, called a hypothesis space.

 So that’s what machine learning is, technically: searching for useful representa-
tions of some input data, within a predefined space of possibilities, using guidance
from a feedback signal. This simple idea allows for solving a remarkably broad range
of intellectual tasks, from speech recognition to autonomous car driving.

 Now that you understand what we mean by learning, let’s take a look at what makes
deep learning special.

1.1.4 The “deep” in deep learning

Deep learning is a specific subfield of machine learning: a new take on learning repre-
sentations from data that puts an emphasis on learning successive layers of increasingly
meaningful representations. The deep in deep learning isn’t a reference to any kind of
deeper understanding achieved by the approach; rather, it stands for this idea of suc-
cessive layers of representations. How many layers contribute to a model of the data is
called the depth of the model. Other appropriate names for the field could have been
layered representations learning and hierarchical representations learning. Modern deep
learning often involves tens or even hundreds of successive layers of representations—
and they’re all learned automatically from exposure to training data. Meanwhile,
other approaches to machine learning tend to focus on learning only one or two lay-
ers of representations of the data; hence, they’re sometimes called shallow learning.

 In deep learning, these layered representations are (almost always) learned via
models called neural networks, structured in literal layers stacked on top of each other.
The term neural network is a reference to neurobiology, but although some of the cen-
tral concepts in deep learning were developed in part by drawing inspiration from our
understanding of the brain, deep-learning models are not models of the brain.
There’s no evidence that the brain implements anything like the learning mecha-
nisms used in modern deep-learning models. You may come across pop-science arti-
cles proclaiming that deep learning works like the brain or was modeled after the
brain, but that isn’t the case. It would be confusing and counterproductive for new-
comers to the field to think of deep learning as being in any way related to neurobiol-
ogy; you don’t need that shroud of “just like our minds” mystique and mystery, and
you may as well forget anything you may have read about hypothetical links between
deep learning and biology. For our purposes, deep learning is a mathematical frame-
work for learning representations from data.

9Artificial intelligence, machine learning, and deep learning
 What do the representations learned by a deep-learning algorithm look like? Let’s
examine how a network several layers deep (see figure 1.5) transforms an image of a
digit in order to recognize what digit it is.

As you can see in figure 1.6, the network transforms the digit image into representa-
tions that are increasingly different from the original image and increasingly informa-
tive about the final result. You can think of a deep network as a multistage
information-distillation operation, where information goes through successive filters
and comes out increasingly purified (that is, useful with regard to some task).

So that’s what deep learning is, technically: a multistage way to learn data representa-
tions. It’s a simple idea—but, as it turns out, very simple mechanisms, sufficiently
scaled, can end up looking like magic.

1.1.5 Understanding how deep learning works, in three figures

At this point, you know that machine learning is about mapping inputs (such as
images) to targets (such as the label “cat”), which is done by observing many examples
of input and targets. You also know that deep neural networks do this input-to-target

Layer 1

Original
input

Final
output

Layer 2 Layer 3 Layer 4

0
1
2
3
4
5
6
7
8
9

Figure 1.5 A deep neural
network for digit classification

Layer 1
representations

Original
input

Layer 2
representations

Layer 3
representations

Layer 4
representations

(final output)

Layer 1 Layer 2 Layer 3 Layer 4

0
1
2
3
4
5
6
7
8
9

Figure 1.6 Deep representations learned by a digit-classification model

10 CHAPTER 1 What is deep learning?
mapping via a deep sequence of simple data transformations (layers) and that these
data transformations are learned by exposure to examples. Now let’s look at how this
learning happens, concretely.

 The specification of what a layer does to its input data is stored in the layer’s
weights, which in essence are a bunch of numbers. In technical terms, we’d say that the
transformation implemented by a layer is parameterized by its weights (see figure 1.7).
(Weights are also sometimes called the parameters of a layer.) In this context, learning
means finding a set of values for the weights of all layers in a network, such that the
network will correctly map example inputs to their associated targets. But here’s the
thing: a deep neural network can contain tens of millions of parameters. Finding the
correct value for all of them may seem like a daunting task, especially given that mod-
ifying the value of one parameter will affect the behavior of all the others!

To control something, first you need to be able to observe it. To control the output of
a neural network, you need to be able to measure how far this output is from what you
expected. This is the job of the loss function of the network, also called the objective
function. The loss function takes the predictions of the network and the true target
(what you wanted the network to output) and computes a distance score, capturing
how well the network has done on this specific example (see figure 1.8).

Goal: finding the
right values for

these weights

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weights

Figure 1.7 A neural network is
parameterized by its weights.

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

True targets
Y

Weights

Loss function

Loss score
Figure 1.8 A loss function measures
the quality of the network’s output.

11Artificial intelligence, machine learning, and deep learning
The fundamental trick in deep learning is to use this score as a feedback signal to
adjust the value of the weights a little, in a direction that will lower the loss score for
the current example (see figure 1.9). This adjustment is the job of the optimizer, which
implements what’s called the Backpropagation algorithm: the central algorithm in deep
learning. The next chapter explains in more detail how backpropagation works.

Initially, the weights of the network are assigned random values, so the network
merely implements a series of random transformations. Naturally, its output is far
from what it should ideally be, and the loss score is accordingly very high. But with
every example the network processes, the weights are adjusted a little in the correct
direction, and the loss score decreases. This is the training loop, which, repeated a suffi-
cient number of times (typically tens of iterations over thousands of examples), yields
weight values that minimize the loss function. A network with a minimal loss is one for
which the outputs are as close as they can be to the targets: a trained network. Once
again, it’s a simple mechanism that, once scaled, ends up looking like magic.

1.1.6 What deep learning has achieved so far

Although deep learning is a fairly old subfield of machine learning, it only rose to
prominence in the early 2010s. In the few years since, it has achieved nothing short of
a revolution in the field, with remarkable results on perceptual problems such as see-
ing and hearing—problems involving skills that seem natural and intuitive to humans
but have long been elusive for machines.

 In particular, deep learning has achieved the following breakthroughs, all in his-
torically difficult areas of machine learning:

 Near-human-level image classification
 Near-human-level speech recognition
 Near-human-level handwriting transcription
 Improved machine translation

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weight
update

True targets
Y

Weights

Loss functionOptimizer

Loss score
Figure 1.9 The loss score is used as a
feedback signal to adjust the weights.

12 CHAPTER 1 What is deep learning?
 Improved text-to-speech conversion
 Digital assistants such as Google Now and Amazon Alexa
 Near-human-level autonomous driving
 Improved ad targeting, as used by Google, Baidu, and Bing
 Improved search results on the web
 Ability to answer natural-language questions
 Superhuman Go playing

We’re still exploring the full extent of what deep learning can do. We’ve started apply-
ing it to a wide variety of problems outside of machine perception and natural-language
understanding, such as formal reasoning. If successful, this may herald an age where
deep learning assists humans in science, software development, and more.

1.1.7 Don’t believe the short-term hype

Although deep learning has led to remarkable achievements in recent years, expecta-
tions for what the field will be able to achieve in the next decade tend to run much
higher than what will likely be possible. Although some world-changing applications
like autonomous cars are already within reach, many more are likely to remain elusive
for a long time, such as believable dialogue systems, human-level machine translation
across arbitrary languages, and human-level natural-language understanding. In par-
ticular, talk of human-level general intelligence shouldn’t be taken too seriously. The risk
with high expectations for the short term is that, as technology fails to deliver,
research investment will dry up, slowing progress for a long time.

 This has happened before. Twice in the past, AI went through a cycle of intense
optimism followed by disappointment and skepticism, with a dearth of funding as a
result. It started with symbolic AI in the 1960s. In those early days, projections about AI
were flying high. One of the best-known pioneers and proponents of the symbolic AI
approach was Marvin Minsky, who claimed in 1967, “Within a generation … the prob-
lem of creating ‘artificial intelligence’ will substantially be solved.” Three years later, in
1970, he made a more precisely quantified prediction: “In from three to eight years we
will have a machine with the general intelligence of an average human being.” In 2016,
such an achievement still appears to be far in the future—so far that we have no way to
predict how long it will take—but in the 1960s and early 1970s, several experts believed
it to be right around the corner (as do many people today). A few years later, as these
high expectations failed to materialize, researchers and government funds turned
away from the field, marking the start of the first AI winter (a reference to a nuclear win-
ter, because this was shortly after the height of the Cold War).

 It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, expert systems,
started gathering steam among large companies. A few initial success stories triggered
a wave of investment, with corporations around the world starting their own in-house
AI departments to develop expert systems. Around 1985, companies were spending
over $1 billion each year on the technology; but by the early 1990s, these systems had
proven expensive to maintain, difficult to scale, and limited in scope, and interest
died down. Thus began the second AI winter.

13Artificial intelligence, machine learning, and deep learning
 We may be currently witnessing the third cycle of AI hype and disappointment—
and we’re still in the phase of intense optimism. It’s best to moderate our expectations
for the short term and make sure people less familiar with the technical side of the
field have a clear idea of what deep learning can and can’t deliver.

1.1.8 The promise of AI

Although we may have unrealistic short-term expectations for AI, the long-term pic-
ture is looking bright. We’re only getting started in applying deep learning to many
important problems for which it could prove transformative, from medical diagnoses
to digital assistants. AI research has been moving forward amazingly quickly in the past
five years, in large part due to a level of funding never before seen in the short history
of AI, but so far relatively little of this progress has made its way into the products and
processes that form our world. Most of the research findings of deep learning aren’t
yet applied, or at least not applied to the full range of problems they can solve across
all industries. Your doctor doesn’t yet use AI, and neither does your accountant. You
probably don’t use AI technologies in your day-to-day life. Of course, you can ask your
smartphone simple questions and get reasonable answers, you can get fairly useful
product recommendations on Amazon.com, and you can search for “birthday” on
Google Photos and instantly find those pictures of your daughter’s birthday party
from last month. That’s a far cry from where such technologies used to stand. But
such tools are still only accessories to our daily lives. AI has yet to transition to being
central to the way we work, think, and live.

 Right now, it may seem hard to believe that AI could have a large impact on our
world, because it isn’t yet widely deployed—much as, back in 1995, it would have been
difficult to believe in the future impact of the internet. Back then, most people didn’t
see how the internet was relevant to them and how it was going to change their lives. The
same is true for deep learning and AI today. But make no mistake: AI is coming. In a not-
so-distant future, AI will be your assistant, even your friend; it will answer your questions,
help educate your kids, and watch over your health. It will deliver your groceries to your
door and drive you from point A to point B. It will be your interface to an increasingly
complex and information-intensive world. And, even more important, AI will help
humanity as a whole move forward, by assisting human scientists in new breakthrough
discoveries across all scientific fields, from genomics to mathematics.

 On the way, we may face a few setbacks and maybe a new AI winter—in much the
same way the internet industry was overhyped in 1998–1999 and suffered from a crash
that dried up investment throughout the early 2000s. But we’ll get there eventually. AI
will end up being applied to nearly every process that makes up our society and our
daily lives, much like the internet is today.

 Don’t believe the short-term hype, but do believe in the long-term vision. It may
take a while for AI to be deployed to its true potential—a potential the full extent of
which no one has yet dared to dream—but AI is coming, and it will transform our
world in a fantastic way.

14 CHAPTER 1 What is deep learning?
1.2 Before deep learning:
a brief history of machine learning
Deep learning has reached a level of public attention and industry investment never
before seen in the history of AI, but it isn’t the first successful form of machine learn-
ing. It’s safe to say that most of the machine-learning algorithms used in the industry
today aren’t deep-learning algorithms. Deep learning isn’t always the right tool for the
job—sometimes there isn’t enough data for deep learning to be applicable, and some-
times the problem is better solved by a different algorithm. If deep learning is your
first contact with machine learning, then you may find yourself in a situation where all
you have is the deep-learning hammer, and every machine-learning problem starts to
look like a nail. The only way not to fall into this trap is to be familiar with other
approaches and practice them when appropriate.

 A detailed discussion of classical machine-learning approaches is outside of the
scope of this book, but we’ll briefly go over them and describe the historical context
in which they were developed. This will allow us to place deep learning in the broader
context of machine learning and better understand where deep learning comes from
and why it matters.

1.2.1 Probabilistic modeling

Probabilistic modeling is the application of the principles of statistics to data analysis. It
was one of the earliest forms of machine learning, and it’s still widely used to this day.
One of the best-known algorithms in this category is the Naive Bayes algorithm.

 Naive Bayes is a type of machine-learning classifier based on applying Bayes’ theo-
rem while assuming that the features in the input data are all independent (a strong,
or “naive” assumption, which is where the name comes from). This form of data analy-
sis predates computers and was applied by hand decades before its first computer
implementation (most likely dating back to the 1950s). Bayes’ theorem and the foun-
dations of statistics date back to the eighteenth century, and these are all you need to
start using Naive Bayes classifiers.

 A closely related model is the logistic regression (logreg for short), which is some-
times considered to be the “hello world” of modern machine learning. Don’t be mis-
led by its name—logreg is a classification algorithm rather than a regression
algorithm. Much like Naive Bayes, logreg predates computing by a long time, yet it’s
still useful to this day, thanks to its simple and versatile nature. It’s often the first thing
a data scientist will try on a dataset to get a feel for the classification task at hand.

1.2.2 Early neural networks

Early iterations of neural networks have been completely supplanted by the modern
variants covered in these pages, but it’s helpful to be aware of how deep learning origi-
nated. Although the core ideas of neural networks were investigated in toy forms as early
as the 1950s, the approach took decades to get started. For a long time, the missing piece
was an efficient way to train large neural networks. This changed in the mid-1980s,

15Before deep learning: a brief history of machine learning
when multiple people independently rediscovered the Backpropagation algorithm—
a way to train chains of parametric operations using gradient-descent optimization
(later in the book, we’ll precisely define these concepts)—and started applying it to
neural networks.

 The first successful practical application of neural nets came in 1989 from Bell
Labs, when Yann LeCun combined the earlier ideas of convolutional neural networks
and backpropagation, and applied them to the problem of classifying handwritten
digits. The resulting network, dubbed LeNet, was used by the United States Postal Ser-
vice in the 1990s to automate the reading of ZIP codes on mail envelopes.

1.2.3 Kernel methods

As neural networks started to gain some respect among researchers in the 1990s,
thanks to this first success, a new approach to machine learning rose to fame and
quickly sent neural nets back to oblivion: kernel methods. Kernel methods are a group of
classification algorithms, the best known of which is the support vector machine (SVM).
The modern formulation of an SVM was developed by Vladimir
Vapnik and Corinna Cortes in the early 1990s at Bell Labs and
published in 1995,2 although an older linear formulation was
published by Vapnik and Alexey Chervonenkis as early as 1963.3

SVMs aim at solving classification problems by finding good
decision boundaries (see figure 1.10) between two sets of points
belonging to two different categories. A decision boundary can
be thought of as a line or surface separating your training data
into two spaces corresponding to two categories. To classify new
data points, you just need to check which side of the decision
boundary they fall on.

SVMs proceed to find these boundaries in two steps:

1 The data is mapped to a new high-dimensional representation where the
decision boundary can be expressed as a hyperplane (if the data was two-
dimensional, as in figure 1.10, a hyperplane would be a straight line).

2 A good decision boundary (a separation hyperplane) is computed by trying to
maximize the distance between the hyperplane and the closest data points from
each class, a step called maximizing the margin. This allows the boundary to gen-
eralize well to new samples outside of the training dataset.

The technique of mapping data to a high-dimensional representation where a classifi-
cation problem becomes simpler may look good on paper, but in practice it’s
often computationally intractable. That’s where the kernel trick comes in (the key idea
that kernel methods are named after). Here’s the gist of it: to find good decision

2 Vladimir Vapnik and Corinna Cortes, “Support-Vector Networks,” Machine Learning 20, no. 3 (1995): 273–297.
3 Vladimir Vapnik and Alexey Chervonenkis, “A Note on One Class of Perceptrons,” Automation and Remote Con-

trol 25 (1964).

Figure 1.10
A decision boundary

16 CHAPTER 1 What is deep learning?
hyperplanes in the new representation space, you don’t have to explicitly compute
the coordinates of your points in the new space; you just need to compute the dis-
tance between pairs of points in that space, which can be done efficiently using a ker-
nel function. A kernel function is a computationally tractable operation that maps any
two points in your initial space to the distance between these points in your target
representation space, completely bypassing the explicit computation of the new rep-
resentation. Kernel functions are typically crafted by hand rather than learned from
data—in the case of an SVM, only the separation hyperplane is learned.

 At the time they were developed, SVMs exhibited state-of-the-art performance on
simple classification problems and were one of the few machine-learning methods
backed by extensive theory and amenable to serious mathematical analysis, making
them well understood and easily interpretable. Because of these useful properties,
SVMs became extremely popular in the field for a long time.

 But SVMs proved hard to scale to large datasets and didn’t provide good results for
perceptual problems such as image classification. Because an SVM is a shallow
method, applying an SVM to perceptual problems requires first extracting useful rep-
resentations manually (a step called feature engineering), which is difficult and brittle.

1.2.4 Decision trees, random forests, and gradient boosting machines

Decision trees are flowchart-like structures that let you classify input data points or pre-
dict output values given inputs (see figure 1.11). They’re easy to visualize and inter-
pret. Decisions trees learned from data began to receive significant research interest
in the 2000s, and by 2010 they were often preferred to kernel methods.

In particular, the Random Forest algorithm introduced a robust, practical take on
decision-tree learning that involves building a large number of specialized decision
trees and then ensembling their outputs. Random forests are applicable to a wide
range of problems—you could say that they’re almost always the second-best algorithm
for any shallow machine-learning task. When the popular machine-learning competi-
tion website Kaggle (http://kaggle.com) got started in 2010, random forests quickly
became a favorite on the platform—until 2014, when gradient boosting machines took
over. A gradient boosting machine, much like a random forest, is a machine-learning
technique based on ensembling weak prediction models, generally decision trees. It

Question

Category Category

Question

Input data

Question

Category Category

Figure 1.11 A decision tree: the parameters
that are learned are the questions about the
data. A question could be, for instance, “Is
coefficient 2 in the data greater than 3.5?”

17Before deep learning: a brief history of machine learning
uses gradient boosting, a way to improve any machine-learning model by iteratively train-
ing new models that specialize in addressing the weak points of the previous models.
Applied to decision trees, the use of the gradient boosting technique results in models
that strictly outperform random forests most of the time, while having similar proper-
ties. It may be one of the best, if not the best, algorithm for dealing with nonperceptual
data today. Alongside deep learning, it’s one of the most commonly used techniques in
Kaggle competitions.

1.2.5 Back to neural networks

Around 2010, although neural networks were almost completely shunned by the sci-
entific community at large, a number of people still working on neural networks
started to make important breakthroughs: the groups of Geoffrey Hinton at the Uni-
versity of Toronto, Yoshua Bengio at the University of Montreal, Yann LeCun at New
York University, and IDSIA in Switzerland.

 In 2011, Dan Ciresan from IDSIA began to win academic image-classification com-
petitions with GPU-trained deep neural networks—the first practical success of mod-
ern deep learning. But the watershed moment came in 2012, with the entry of
Hinton’s group in the yearly large-scale image-classification challenge ImageNet. The
ImageNet challenge was notoriously difficult at the time, consisting of classifying high-
resolution color images into 1,000 different categories after training on 1.4 million
images. In 2011, the top-five accuracy of the winning model, based on classical
approaches to computer vision, was only 74.3%. Then, in 2012, a team led by Alex
Krizhevsky and advised by Geoffrey Hinton was able to achieve a top-five accuracy of
83.6%—a significant breakthrough. The competition has been dominated by deep
convolutional neural networks every year since. By 2015, the winner reached an accu-
racy of 96.4%, and the classification task on ImageNet was considered to be a com-
pletely solved problem.

 Since 2012, deep convolutional neural networks (convnets) have become the go-to
algorithm for all computer vision tasks; more generally, they work on all perceptual
tasks. At major computer vision conferences in 2015 and 2016, it was nearly impossi-
ble to find presentations that didn’t involve convnets in some form. At the same time,
deep learning has also found applications in many other types of problems, such as
natural-language processing. It has completely replaced SVMs and decision trees in a
wide range of applications. For instance, for several years, the European Organization
for Nuclear Research, CERN, used decision tree–based methods for analysis of particle
data from the ATLAS detector at the Large Hadron Collider (LHC); but CERN eventu-
ally switched to Keras-based deep neural networks due to their higher performance
and ease of training on large datasets.

1.2.6 What makes deep learning different

The primary reason deep learning took off so quickly is that it offered better perfor-
mance on many problems. But that’s not the only reason. Deep learning also makes

18 CHAPTER 1 What is deep learning?
problem-solving much easier, because it completely automates what used to be the
most crucial step in a machine-learning workflow: feature engineering.

 Previous machine-learning techniques—shallow learning—only involved trans-
forming the input data into one or two successive representation spaces, usually via
simple transformations such as high-dimensional non-linear projections (SVMs) or
decision trees. But the refined representations required by complex problems gener-
ally can’t be attained by such techniques. As such, humans had to go to great lengths
to make the initial input data more amenable to processing by these methods: they
had to manually engineer good layers of representations for their data. This is called
feature engineering. Deep learning, on the other hand, completely automates this step:
with deep learning, you learn all features in one pass rather than having to engineer
them yourself. This has greatly simplified machine-learning workflows, often replac-
ing sophisticated multistage pipelines with a single, simple, end-to-end deep-learning
model.

 You may ask, if the crux of the issue is to have multiple successive layers of repre-
sentations, could shallow methods be applied repeatedly to emulate the effects of
deep learning? In practice, there are fast-diminishing returns to successive applica-
tions of shallow-learning methods, because the optimal first representation layer in a three-
layer model isn’t the optimal first layer in a one-layer or two-layer model. What is transforma-
tive about deep learning is that it allows a model to learn all layers of representation
jointly, at the same time, rather than in succession (greedily, as it’s called). With joint
feature learning, whenever the model adjusts one of its internal features, all other fea-
tures that depend on it automatically adapt to the change, without requiring human
intervention. Everything is supervised by a single feedback signal: every change in the
model serves the end goal. This is much more powerful than greedily stacking shallow
models, because it allows for complex, abstract representations to be learned by
breaking them down into long series of intermediate spaces (layers); each space is
only a simple transformation away from the previous one.

 These are the two essential characteristics of how deep learning learns from data:
the incremental, layer-by-layer way in which increasingly complex representations are developed,
and the fact that these intermediate incremental representations are learned jointly, each layer
being updated to follow both the representational needs of the layer above and the
needs of the layer below. Together, these two properties have made deep learning
vastly more successful than previous approaches to machine learning.

1.2.7 The modern machine-learning landscape

A great way to get a sense of the current landscape of machine-learning algorithms
and tools is to look at machine-learning competitions on Kaggle. Due to its highly
competitive environment (some contests have thousands of entrants and million-
dollar prizes) and to the wide variety of machine-learning problems covered, Kaggle
offers a realistic way to assess what works and what doesn’t. So, what kind of algorithm
is reliably winning competitions? What tools do top entrants use?

19Before deep learning: a brief history of machine learning
 In 2016 and 2017, Kaggle was dominated by two approaches: gradient boosting
machines and deep learning. Specifically, gradient boosting is used for problems
where structured data is available, whereas deep learning is used for perceptual prob-
lems such as image classification. Practitioners of the former almost always use the
excellent XGBoost library, which offers support for the two most popular languages of
data science: Python and R. Meanwhile, most of the Kaggle entrants using deep learn-
ing use the Keras library, due to its ease of use, flexibility, and support of Python.

 These are the two techniques you should be the most familiar with in order to be
successful in applied machine learning today: gradient boosting machines, for shallow-
learning problems; and deep learning, for perceptual problems. In technical terms,
this means you’ll need to be familiar with XGBoost and Keras—the two libraries that
currently dominate Kaggle competitions. With this book in hand, you’re already one
big step closer.

20 CHAPTER 1 What is deep learning?
1.3 Why deep learning? Why now?
The two key ideas of deep learning for computer vision—convolutional neural net-
works and backpropagation—were already well understood in 1989. The Long Short-
Term Memory (LSTM) algorithm, which is fundamental to deep learning for
timeseries, was developed in 1997 and has barely changed since. So why did deep
learning only take off after 2012? What changed in these two decades?

 In general, three technical forces are driving advances in machine learning:

 Hardware
 Datasets and benchmarks
 Algorithmic advances

Because the field is guided by experimental findings rather than by theory, algorith-
mic advances only become possible when appropriate data and hardware are available
to try new ideas (or scale up old ideas, as is often the case). Machine learning isn’t
mathematics or physics, where major advances can be done with a pen and a piece of
paper. It’s an engineering science.

 The real bottlenecks throughout the 1990s and 2000s were data and hardware. But
here’s what happened during that time: the internet took off, and high-performance
graphics chips were developed for the needs of the gaming market.

1.3.1 Hardware

Between 1990 and 2010, off-the-shelf CPUs became faster by a factor of approximately
5,000. As a result, nowadays it’s possible to run small deep-learning models on your
laptop, whereas this would have been intractable 25 years ago.

 But typical deep-learning models used in computer vision or speech recognition
require orders of magnitude more computational power than what your laptop can
deliver. Throughout the 2000s, companies like NVIDIA and AMD have been investing
billions of dollars in developing fast, massively parallel chips (graphical processing
units [GPUs]) to power the graphics of increasingly photorealistic video games—
cheap, single-purpose supercomputers designed to render complex 3D scenes on your
screen in real time. This investment came to benefit the scientific community when,
in 2007, NVIDIA launched CUDA (https://developer.nvidia.com/about-cuda), a pro-
gramming interface for its line of GPUs. A small number of GPUs started replacing
massive clusters of CPUs in various highly parallelizable applications, beginning with
physics modeling. Deep neural networks, consisting mostly of many small matrix mul-
tiplications, are also highly parallelizable; and around 2011, some researchers began
to write CUDA implementations of neural nets—Dan Ciresan4 and Alex Krizhevsky5

were among the first.

4 See “Flexible, High Performance Convolutional Neural Networks for Image Classification,” Proceedings of the
22nd International Joint Conference on Artificial Intelligence (2011), www.ijcai.org/Proceedings/11/Papers/
210.pdf.

5 See “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Pro-
cessing Systems 25 (2012), http://mng.bz/2286.

21Why deep learning? Why now?
 What happened is that the gaming market subsidized supercomputing for the next
generation of artificial intelligence applications. Sometimes, big things begin as
games. Today, the NVIDIA TITAN X, a gaming GPU that cost $1,000 at the end of 2015,
can deliver a peak of 6.6 TFLOPS in single precision: 6.6 trillion float32 operations
per second. That’s about 350 times more than what you can get out of a modern lap-
top. On a TITAN X, it takes only a couple of days to train an ImageNet model of the
sort that would have won the ILSVRC competition a few years ago. Meanwhile, large
companies train deep-learning models on clusters of hundreds of GPUs of a type
developed specifically for the needs of deep learning, such as the NVIDIA Tesla K80.
The sheer computational power of such clusters is something that would never have
been possible without modern GPUs.

 What’s more, the deep-learning industry is starting to go beyond GPUs and is
investing in increasingly specialized, efficient chips for deep learning. In 2016, at its
annual I/O convention, Google revealed its tensor processing unit (TPU) project: a
new chip design developed from the ground up to run deep neural networks, which is
reportedly 10 times faster and far more energy efficient than top-of-the-line GPUs.

1.3.2 Data

AI is sometimes heralded as the new industrial revolution. If deep learning is the steam
engine of this revolution, then data is its coal: the raw material that powers our intelli-
gent machines, without which nothing would be possible. When it comes to data, in
addition to the exponential progress in storage hardware over the past 20 years (fol-
lowing Moore’s law), the game changer has been the rise of the internet, making it fea-
sible to collect and distribute very large datasets for machine learning. Today, large
companies work with image datasets, video datasets, and natural-language datasets that
couldn’t have been collected without the internet. User-generated image tags on
Flickr, for instance, have been a treasure trove of data for computer vision. So are You-
Tube videos. And Wikipedia is a key dataset for natural-language processing.

 If there’s one dataset that has been a catalyst for the rise of deep learning, it’s the
ImageNet dataset, consisting of 1.4 million images that have been hand annotated
with 1,000 image categories (1 category per image). But what makes ImageNet special
isn’t just its large size, but also the yearly competition associated with it.6

 As Kaggle has been demonstrating since 2010, public competitions are an excel-
lent way to motivate researchers and engineers to push the envelope. Having common
benchmarks that researchers compete to beat has greatly helped the recent rise of
deep learning.

1.3.3 Algorithms

In addition to hardware and data, until the late 2000s, we were missing a reliable way to
train very deep neural networks. As a result, neural networks were still fairly shallow,

6 The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), www.image-net.org/challenges/LSVRC.

22 CHAPTER 1 What is deep learning?
using only one or two layers of representations; thus, they weren’t able to shine against
more-refined shallow methods such as SVMs and random forests. The key issue was that
of gradient propagation through deep stacks of layers. The feedback signal used to train
neural networks would fade away as the number of layers increased.

 This changed around 2009–2010 with the advent of several simple but important
algorithmic improvements that allowed for better gradient propagation:

 Better activation functions for neural layers
 Better weight-initialization schemes, starting with layer-wise pretraining, which was

quickly abandoned
 Better optimization schemes, such as RMSProp and Adam

Only when these improvements began to allow for training models with 10 or more
layers did deep learning start to shine.

 Finally, in 2014, 2015, and 2016, even more advanced ways to help gradient propa-
gation were discovered, such as batch normalization, residual connections, and depth-
wise separable convolutions. Today we can train from scratch models that are
thousands of layers deep.

1.3.4 A new wave of investment

As deep learning became the new state of the art for computer vision in 2012–2013,
and eventually for all perceptual tasks, industry leaders took note. What followed was
a gradual wave of industry investment far beyond anything previously seen in the his-
tory of AI.

 In 2011, right before deep learning took the spotlight, the total venture capital
investment in AI was around $19 million, which went almost entirely to practical appli-
cations of shallow machine-learning approaches. By 2014, it had risen to a staggering
$394 million. Dozens of startups launched in these three years, trying to capitalize on
the deep-learning hype. Meanwhile, large tech companies such as Google, Facebook,
Baidu, and Microsoft have invested in internal research departments in amounts that
would most likely dwarf the flow of venture-capital money. Only a few numbers have
surfaced: In 2013, Google acquired the deep-learning startup DeepMind for a
reported $500 million—the largest acquisition of an AI company in history. In 2014,
Baidu started a deep-learning research center in Silicon Valley, investing $300 million
in the project. The deep-learning hardware startup Nervana Systems was acquired by
Intel in 2016 for over $400 million.

 Machine learning—in particular, deep learning—has become central to the prod-
uct strategy of these tech giants. In late 2015, Google CEO Sundar Pichai stated,
“Machine learning is a core, transformative way by which we’re rethinking how we’re
doing everything. We’re thoughtfully applying it across all our products, be it search,
ads, YouTube, or Play. And we’re in early days, but you’ll see us—in a systematic way—
apply machine learning in all these areas.”7

7 Sundar Pichai, Alphabet earnings call, Oct. 22, 2015.

23Why deep learning? Why now?
 As a result of this wave of investment, the number of people working on deep
learning went in just five years from a few hundred to tens of thousands, and research
progress has reached a frenetic pace. There are currently no signs that this trend will
slow any time soon.

1.3.5 The democratization of deep learning

One of the key factors driving this inflow of new faces in deep learning has been the
democratization of the toolsets used in the field. In the early days, doing deep learning
required significant C++ and CUDA expertise, which few people possessed. Nowadays,
basic Python scripting skills suffice to do advanced deep-learning research. This has been
driven most notably by the development of Theano and then TensorFlow—two symbolic
tensor-manipulation frameworks for Python that support autodifferentiation, greatly sim-
plifying the implementation of new models—and by the rise of user-friendly libraries
such as Keras, which makes deep learning as easy as manipulating LEGO bricks. After its
release in early 2015, Keras quickly became the go-to deep-learning solution for large
numbers of new startups, graduate students, and researchers pivoting into the field.

1.3.6 Will it last?

Is there anything special about deep neural networks that makes them the “right”
approach for companies to be investing in and for researchers to flock to? Or is deep
learning just a fad that may not last? Will we still be using deep neural networks in
20 years?

 Deep learning has several properties that justify its status as an AI revolution, and
it’s here to stay. We may not be using neural networks two decades from now, but what-
ever we use will directly inherit from modern deep learning and its core concepts.
These important properties can be broadly sorted into three categories:

 Simplicity—Deep learning removes the need for feature engineering, replacing
complex, brittle, engineering-heavy pipelines with simple, end-to-end trainable
models that are typically built using only five or six different tensor operations.

 Scalability—Deep learning is highly amenable to parallelization on GPUs or
TPUs, so it can take full advantage of Moore’s law. In addition, deep-learning
models are trained by iterating over small batches of data, allowing them to be
trained on datasets of arbitrary size. (The only bottleneck is the amount of
parallel computational power available, which, thanks to Moore’s law, is a fast-
moving barrier.)

 Versatility and reusability—Unlike many prior machine-learning approaches,
deep-learning models can be trained on additional data without restarting from
scratch, making them viable for continuous online learning—an important
property for very large production models. Furthermore, trained deep-learning
models are repurposable and thus reusable: for instance, it’s possible to take a
deep-learning model trained for image classification and drop it into a video-
processing pipeline. This allows us to reinvest previous work into increasingly

24 CHAPTER 1 What is deep learning?
complex and powerful models. This also makes deep learning applicable to
fairly small datasets.

Deep learning has only been in the spotlight for a few years, and we haven’t yet estab-
lished the full scope of what it can do. With every passing month, we learn about new
use cases and engineering improvements that lift previous limitations. Following a sci-
entific revolution, progress generally follows a sigmoid curve: it starts with a period of
fast progress, which gradually stabilizes as researchers hit hard limitations, and then
further improvements become incremental. Deep learning in 2017 seems to be in the
first half of that sigmoid, with much more progress to come in the next few years.

Before we begin: the
mathematical building

blocks of neural networks
Understanding deep learning requires familiarity with many simple mathematical
concepts: tensors, tensor operations, differentiation, gradient descent, and so on.
Our goal in this chapter will be to build your intuition about these notions without
getting overly technical. In particular, we’ll steer away from mathematical notation,
which can be off-putting for those without any mathematics background and isn’t
strictly necessary to explain things well.

 To add some context for tensors and gradient descent, we’ll begin the chapter
with a practical example of a neural network. Then we’ll go over every new concept

This chapter covers
 A first example of a neural network

 Tensors and tensor operations

 How neural networks learn via backpropagation
and gradient descent
25

26 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
that’s been introduced, point by point. Keep in mind that these concepts will be essen-
tial for you to understand the practical examples that will come in the following
chapters!

 After reading this chapter, you’ll have an intuitive understanding of how neural
networks work, and you’ll be able to move on to practical applications—which will
start with chapter 3.

27A first look at a neural network
2.1 A first look at a neural network
Let’s look at a concrete example of a neural network that uses the Python library Keras
to learn to classify handwritten digits. Unless you already have experience with Keras
or similar libraries, you won’t understand everything about this first example right
away. You probably haven’t even installed Keras yet; that’s fine. In the next chapter,
we’ll review each element in the example and explain them in detail. So don’t worry if
some steps seem arbitrary or look like magic to you! We’ve got to start somewhere.

 The problem we’re trying to solve here is to classify grayscale images of handwrit-
ten digits (28 × 28 pixels) into their 10 categories (0 through 9). We’ll use the MNIST
dataset, a classic in the machine-learning community, which has been around almost
as long as the field itself and has been intensively studied. It’s a set of 60,000 training
images, plus 10,000 test images, assembled by the National Institute of Standards and
Technology (the NIST in MNIST) in the 1980s. You can think of “solving” MNIST as the
“Hello World” of deep learning—it’s what you do to verify that your algorithms are
working as expected. As you become a machine-learning practitioner, you’ll see
MNIST come up over and over again, in scientific papers, blog posts, and so on. You
can see some MNIST samples in figure 2.1.

You don’t need to try to reproduce this example on your machine just now. If you wish
to, you’ll first need to set up Keras, which is covered in section 3.3.

 The MNIST dataset comes preloaded in Keras, in the form of a set of four Numpy
arrays.

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images and train_labels form the training set, the data that the model will
learn from. The model will then be tested on the test set, test_images and test_labels.

Listing 2.1 Loading the MNIST dataset in Keras

Note on classes and labels
In machine learning, a category in a classification problem is called a class. Data
points are called samples. The class associated with a specific sample is called a
label.

Figure 2.1 MNIST sample digits

28 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
The images are encoded as Numpy arrays, and the labels are an array of digits, ranging
from 0 to 9. The images and labels have a one-to-one correspondence.

 Let’s look at the training data:

>>> train_images.shape
(60000, 28, 28)
>>> len(train_labels)
60000
>>> train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

And here’s the test data:

>>> test_images.shape
(10000, 28, 28)
>>> len(test_labels)
10000
>>> test_labels
array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

The workflow will be as follows: First, we’ll feed the neural network the training data,
train_images and train_labels. The network will then learn to associate images and
labels. Finally, we’ll ask the network to produce predictions for test_images, and we’ll
verify whether these predictions match the labels from test_labels.

 Let’s build the network—again, remember that you aren’t expected to understand
everything about this example yet.

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

The core building block of neural networks is the layer, a data-processing module that
you can think of as a filter for data. Some data goes in, and it comes out in a more use-
ful form. Specifically, layers extract representations out of the data fed into them—hope-
fully, representations that are more meaningful for the problem at hand. Most of
deep learning consists of chaining together simple layers that will implement a form
of progressive data distillation. A deep-learning model is like a sieve for data process-
ing, made of a succession of increasingly refined data filters—the layers.

 Here, our network consists of a sequence of two Dense layers, which are densely
connected (also called fully connected) neural layers. The second (and last) layer is a
10-way softmax layer, which means it will return an array of 10 probability scores (sum-
ming to 1). Each score will be the probability that the current digit image belongs to
one of our 10 digit classes.

Listing 2.2 The network architecture

29A first look at a neural network
 To make the network ready for training, we need to pick three more things, as part
of the compilation step:

 A loss function—How the network will be able to measure its performance on
the training data, and thus how it will be able to steer itself in the right direc-
tion.

 An optimizer—The mechanism through which the network will update itself
based on the data it sees and its loss function.

 Metrics to monitor during training and testing—Here, we’ll only care about accu-
racy (the fraction of the images that were correctly classified).

The exact purpose of the loss function and the optimizer will be made clear through-
out the next two chapters.

network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

Before training, we’ll preprocess the data by reshaping it into the shape the network
expects and scaling it so that all values are in the [0, 1] interval. Previously, our train-
ing images, for instance, were stored in an array of shape (60000, 28, 28) of type
uint8 with values in the [0, 255] interval. We transform it into a float32 array of
shape (60000, 28 * 28) with values between 0 and 1.

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

We also need to categorically encode the labels, a step that’s explained in chapter 3.

from keras.utils import to_categorical

train_labels = to_categorical(train_labels) test_labels =
to_categorical(test_labels)

We’re now ready to train the network, which in Keras is done via a call to the
network’s fit method—we fit the model to its training data:

>>> network.fit(train_images, train_labels, epochs=5, batch_size=128)
Epoch 1/5
60000/60000 [==============================] - 9s - loss: 0.2524 - acc: 0.9273
Epoch 2/5
51328/60000 [========================>. ...] - ETA: 1s - loss: 0.1035 - acc: 0.9692

Listing 2.3 The compilation step

Listing 2.4 Preparing the image data

Listing 2.5 Preparing the labels

30 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
Two quantities are displayed during training: the loss of the network over the training
data, and the accuracy of the network over the training data.

 We quickly reach an accuracy of 0.989 (98.9%) on the training data. Now let’s
check that the model performs well on the test set, too:

>>> test_loss, test_acc = network.evaluate(test_images, test_labels)
>>> print('test_acc:', test_acc)
test_acc: 0.9785

The test-set accuracy turns out to be 97.8%—that’s quite a bit lower than the training
set accuracy. This gap between training accuracy and test accuracy is an example of
overfitting: the fact that machine-learning models tend to perform worse on new data
than on their training data. Overfitting is a central topic in chapter 3.

 This concludes our first example—you just saw how you can build and train a neu-
ral network to classify handwritten digits in less than 20 lines of Python code. In the
next chapter, I’ll go into detail about every moving piece we just previewed and clarify
what’s going on behind the scenes. You’ll learn about tensors, the data-storing objects
going into the network; tensor operations, which layers are made of; and gradient
descent, which allows your network to learn from its training examples.

31Data representations for neural networks
2.2 Data representations for neural networks
In the previous example, we started from data stored in multidimensional Numpy
arrays, also called tensors. In general, all current machine-learning systems use tensors
as their basic data structure. Tensors are fundamental to the field—so fundamental
that Google’s TensorFlow was named after them. So what’s a tensor?

 At its core, a tensor is a container for data—almost always numerical data. So, it’s a
container for numbers. You may be already familiar with matrices, which are 2D ten-
sors: tensors are a generalization of matrices to an arbitrary number of dimensions
(note that in the context of tensors, a dimension is often called an axis).

2.2.1 Scalars (0D tensors)

A tensor that contains only one number is called a scalar (or scalar tensor, or 0-dimensional
tensor, or 0D tensor). In Numpy, a float32 or float64 number is a scalar tensor (or scalar
array). You can display the number of axes of a Numpy tensor via the ndim attribute; a sca-
lar tensor has 0 axes (ndim == 0). The number of axes of a tensor is also called its rank.
Here’s a Numpy scalar:

>>> import numpy as np
>>> x = np.array(12)
>>> x
array(12)
>>> x.ndim
0

2.2.2 Vectors (1D tensors)

An array of numbers is called a vector, or 1D tensor. A 1D tensor is said to have exactly
one axis. Following is a Numpy vector:

>>> x = np.array([12, 3, 6, 14])
>>> x
array([12, 3, 6, 14])
>>> x.ndim
1

This vector has five entries and so is called a 5-dimensional vector. Don’t confuse a 5D
vector with a 5D tensor! A 5D vector has only one axis and has five dimensions along its
axis, whereas a 5D tensor has five axes (and may have any number of dimensions
along each axis). Dimensionality can denote either the number of entries along a spe-
cific axis (as in the case of our 5D vector) or the number of axes in a tensor (such as a
5D tensor), which can be confusing at times. In the latter case, it’s technically more
correct to talk about a tensor of rank 5 (the rank of a tensor being the number of axes),
but the ambiguous notation 5D tensor is common regardless.

2.2.3 Matrices (2D tensors)

An array of vectors is a matrix, or 2D tensor. A matrix has two axes (often referred to
rows and columns). You can visually interpret a matrix as a rectangular grid of numbers.
This is a Numpy matrix:

32 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
>>> x = np.array([[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]])

>>> x.ndim
2

The entries from the first axis are called the rows, and the entries from the second axis
are called the columns. In the previous example, [5, 78, 2, 34, 0] is the first row of x,
and [5, 6, 7] is the first column.

2.2.4 3D tensors and higher-dimensional tensors

If you pack such matrices in a new array, you obtain a 3D tensor, which you can visually
interpret as a cube of numbers. Following is a Numpy 3D tensor:

>>> x = np.array([[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]],

[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]],

[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]]])

>>> x.ndim
3

By packing 3D tensors in an array, you can create a 4D tensor, and so on. In deep learn-
ing, you’ll generally manipulate tensors that are 0D to 4D, although you may go up to
5D if you process video data.

2.2.5 Key attributes

A tensor is defined by three key attributes:

 Number of axes (rank)—For instance, a 3D tensor has three axes, and a matrix has
two axes. This is also called the tensor’s ndim in Python libraries such as Numpy.

 Shape—This is a tuple of integers that describes how many dimensions the ten-
sor has along each axis. For instance, the previous matrix example has shape
(3, 5), and the 3D tensor example has shape (3, 3, 5). A vector has a shape
with a single element, such as (5,), whereas a scalar has an empty shape, ().

 Data type (usually called dtype in Python libraries)—This is the type of the data
contained in the tensor; for instance, a tensor’s type could be float32, uint8,
float64, and so on. On rare occasions, you may see a char tensor. Note that
string tensors don’t exist in Numpy (or in most other libraries), because tensors
live in preallocated, contiguous memory segments: and strings, being variable
length, would preclude the use of this implementation.

33Data representations for neural networks
To make this more concrete, let’s look back at the data we processed in the MNIST
example. First, we load the MNIST dataset:

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Next, we display the number of axes of the tensor train_images, the ndim attribute:

>>> print(train_images.ndim)
3

Here’s its shape:

>>> print(train_images.shape)
(60000, 28, 28)

And this is its data type, the dtype attribute:

>>> print(train_images.dtype)
uint8

So what we have here is a 3D tensor of 8-bit integers. More precisely, it’s an array of
60,000 matrices of 28 × 8 integers. Each such matrix is a grayscale image, with coeffi-
cients between 0 and 255.

 Let’s display the fourth digit in this 3D tensor, using the library Matplotlib (part of
the standard scientific Python suite); see figure 2.2.

digit = train_images[4]

import matplotlib.pyplot as plt
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()

Listing 2.6 Displaying the fourth digit

Figure 2.2 The fourth sample in our dataset

34 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
2.2.6 Manipulating tensors in Numpy

In the previous example, we selected a specific digit alongside the first axis using the
syntax train_images[i]. Selecting specific elements in a tensor is called tensor slicing.
Let’s look at the tensor-slicing operations you can do on Numpy arrays.

 The following example selects digits #10 to #100 (#100 isn’t included) and puts
them in an array of shape (90, 28, 28):

>>> my_slice = train_images[10:100]
>>> print(my_slice.shape)
(90, 28, 28)

It’s equivalent to this more detailed notation, which specifies a start index and stop
index for the slice along each tensor axis. Note that : is equivalent to selecting the
entire axis:

>>> my_slice = train_images[10:100, :, :]
>>> my_slice.shape
(90, 28, 28)
>>> my_slice = train_images[10:100, 0:28, 0:28]
>>> my_slice.shape
(90, 28, 28)

In general, you may select between any two indices along each tensor axis. For
instance, in order to select 14 × 14 pixels in the bottom-right corner of all images, you
do this:

my_slice = train_images[:, 14:, 14:]

It’s also possible to use negative indices. Much like negative indices in Python lists,
they indicate a position relative to the end of the current axis. In order to crop the
images to patches of 14 × 14 pixels centered in the middle, you do this:

my_slice = train_images[:, 7:-7, 7:-7]

2.2.7 The notion of data batches

In general, the first axis (axis 0, because indexing starts at 0) in all data tensors you’ll
come across in deep learning will be the samples axis (sometimes called the samples
dimension). In the MNIST example, samples are images of digits.

 In addition, deep-learning models don’t process an entire dataset at once; rather,
they break the data into small batches. Concretely, here’s one batch of our MNIST dig-
its, with batch size of 128:

batch = train_images[:128]

And here’s the next batch:

batch = train_images[128:256]

And the n th batch:

batch = train_images[128 * n:128 * (n + 1)]

Equivalent to the
previous example

Also equivalent to the
previous example

35Data representations for neural networks
When considering such a batch tensor, the first axis (axis 0) is called the batch axis or
batch dimension. This is a term you’ll frequently encounter when using Keras and other
deep-learning libraries.

2.2.8 Real-world examples of data tensors

Let’s make data tensors more concrete with a few examples similar to what you’ll
encounter later. The data you’ll manipulate will almost always fall into one of the fol-
lowing categories:

 Vector data—2D tensors of shape (samples, features)
 Timeseries data or sequence data—3D tensors of shape (samples, timesteps,

features)

 Images—4D tensors of shape (samples, height, width, channels) or (samples,
channels, height, width)

 Video—5D tensors of shape (samples, frames, height, width, channels) or
(samples, frames, channels, height, width)

2.2.9 Vector data

This is the most common case. In such a dataset, each single data point can be encoded
as a vector, and thus a batch of data will be encoded as a 2D tensor (that is, an array of
vectors), where the first axis is the samples axis and the second axis is the features axis.

 Let’s take a look at two examples:

 An actuarial dataset of people, where we consider each person’s age, ZIP code,
and income. Each person can be characterized as a vector of 3 values, and thus
an entire dataset of 100,000 people can be stored in a 2D tensor of shape
(100000, 3).

 A dataset of text documents, where we represent each document by the counts
of how many times each word appears in it (out of a dictionary of 20,000 com-
mon words). Each document can be encoded as a vector of 20,000 values (one
count per word in the dictionary), and thus an entire dataset of 500 documents
can be stored in a tensor of shape (500, 20000).

2.2.10 Timeseries data or sequence data

Whenever time matters in your data (or the notion of sequence order), it makes sense
to store it in a 3D tensor with an explicit time axis. Each sample can be encoded as a
sequence of vectors (a 2D tensor), and thus a batch of data will be encoded as a 3D
tensor (see figure 2.3).

Features

Timesteps

Samples

Figure 2.3 A 3D timeseries data tensor

36 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
The time axis is always the second axis (axis of index 1), by convention. Let’s look at a
few examples:

 A dataset of stock prices. Every minute, we store the current price of the stock,
the highest price in the past minute, and the lowest price in the past minute.
Thus every minute is encoded as a 3D vector, an entire day of trading is
encoded as a 2D tensor of shape (390, 3) (there are 390 minutes in a trading
day), and 250 days’ worth of data can be stored in a 3D tensor of shape (250,
390, 3). Here, each sample would be one day’s worth of data.

 A dataset of tweets, where we encode each tweet as a sequence of 280 characters
out of an alphabet of 128 unique characters. In this setting, each character can
be encoded as a binary vector of size 128 (an all-zeros vector except for a 1 entry
at the index corresponding to the character). Then each tweet can be encoded
as a 2D tensor of shape (280, 128), and a dataset of 1 million tweets can be
stored in a tensor of shape (1000000, 280, 128).

2.2.11 Image data

Images typically have three dimensions: height, width, and color depth. Although
grayscale images (like our MNIST digits) have only a single color channel and could
thus be stored in 2D tensors, by convention image tensors are always 3D, with a one-
dimensional color channel for grayscale images. A batch of 128 grayscale images of
size 256 × 256 could thus be stored in a tensor of shape (128, 256, 256, 1), and a
batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3)
(see figure 2.4).

There are two conventions for shapes of images tensors: the channels-last convention
(used by TensorFlow) and the channels-first convention (used by Theano). The Tensor-
Flow machine-learning framework, from Google, places the color-depth axis at the
end: (samples, height, width, color_depth). Meanwhile, Theano places the color
depth axis right after the batch axis: (samples, color_depth, height, width). With

Color channels

Height

Width

Samples

Figure 2.4 A 4D image data
tensor (channels-first convention)

37Data representations for neural networks
the Theano convention, the previous examples would become (128, 1, 256, 256)
and (128, 3, 256, 256). The Keras framework provides support for both formats.

2.2.12 Video data

Video data is one of the few types of real-world data for which you’ll need 5D tensors.
A video can be understood as a sequence of frames, each frame being a color image.
Because each frame can be stored in a 3D tensor (height, width, color_depth), a
sequence of frames can be stored in a 4D tensor (frames, height, width, color_
depth), and thus a batch of different videos can be stored in a 5D tensor of shape
(samples, frames, height, width, color_depth).

 For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per
second would have 240 frames. A batch of four such video clips would be stored in a
tensor of shape (4, 240, 144, 256, 3). That’s a total of 106,168,320 values! If the
dtype of the tensor was float32, then each value would be stored in 32 bits, so the
tensor would represent 405 MB. Heavy! Videos you encounter in real life are much
lighter, because they aren’t stored in float32, and they’re typically compressed by a
large factor (such as in the MPEG format).

38 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
2.3 The gears of neural networks: tensor operations
Much as any computer program can be ultimately reduced to a small set of binary
operations on binary inputs (AND, OR, NOR, and so on), all transformations learned
by deep neural networks can be reduced to a handful of tensor operations applied to
tensors of numeric data. For instance, it’s possible to add tensors, multiply tensors,
and so on.

 In our initial example, we were building our network by stacking Dense layers on
top of each other. A Keras layer instance looks like this:

keras.layers.Dense(512, activation='relu')

This layer can be interpreted as a function, which takes as input a 2D tensor and
returns another 2D tensor—a new representation for the input tensor. Specifically, the
function is as follows (where W is a 2D tensor and b is a vector, both attributes of the
layer):

output = relu(dot(W, input) + b)

Let’s unpack this. We have three tensor operations here: a dot product (dot) between
the input tensor and a tensor named W; an addition (+) between the resulting 2D ten-
sor and a vector b; and, finally, a relu operation. relu(x) is max(x, 0).

NOTE Although this section deals entirely with linear algebra expressions,
you won’t find any mathematical notation here. I’ve found that mathematical
concepts can be more readily mastered by programmers with no mathemati-
cal background if they’re expressed as short Python snippets instead of math-
ematical equations. So we’ll use Numpy code throughout.

2.3.1 Element-wise operations

The relu operation and addition are element-wise operations: operations that are
applied independently to each entry in the tensors being considered. This means
these operations are highly amenable to massively parallel implementations (vectorized
implementations, a term that comes from the vector processor supercomputer archi-
tecture from the 1970–1990 period). If you want to write a naive Python imple-
mentation of an element-wise operation, you use a for loop, as in this naive
implementation of an element-wise relu operation:

def naive_relu(x):
assert len(x.shape) == 2

x = x.copy()
for i in range(x.shape[0]):

for j in range(x.shape[1]):
x[i, j] = max(x[i, j], 0)

return x

x is a 2D Numpy tensor.

Avoid overwriting the input tensor.

39The gears of neural networks: tensor operations
You do the same for addition:

def naive_add(x, y):
assert len(x.shape) == 2
assert x.shape == y.shape

x = x.copy()
for i in range(x.shape[0]):

for j in range(x.shape[1]):
x[i, j] += y[i, j]

return x

On the same principle, you can do element-wise multiplication, subtraction, and so on.
 In practice, when dealing with Numpy arrays, these operations are available as well-

optimized built-in Numpy functions, which themselves delegate the heavy lifting to a
Basic Linear Algebra Subprograms (BLAS) implementation if you have one installed
(which you should). BLAS are low-level, highly parallel, efficient tensor-manipulation
routines that are typically implemented in Fortran or C.

 So, in Numpy, you can do the following element-wise operation, and it will be blaz-
ing fast:

import numpy as np

z = x + y

z = np.maximum(z, 0.)

2.3.2 Broadcasting

Our earlier naive implementation of naive_add only supports the addition of 2D ten-
sors with identical shapes. But in the Dense layer introduced earlier, we added a 2D
tensor with a vector. What happens with addition when the shapes of the two tensors
being added differ?

 When possible, and if there’s no ambiguity, the smaller tensor will be broadcasted to
match the shape of the larger tensor. Broadcasting consists of two steps:

1 Axes (called broadcast axes) are added to the smaller tensor to match the ndim of
the larger tensor.

2 The smaller tensor is repeated alongside these new axes to match the full shape
of the larger tensor.

Let’s look at a concrete example. Consider X with shape (32, 10) and y with shape
(10,). First, we add an empty first axis to y, whose shape becomes (1, 10). Then, we
repeat y 32 times alongside this new axis, so that we end up with a tensor Y with shape
(32, 10), where Y[i, :] == y for i in range(0, 32). At this point, we can proceed to
add X and Y, because they have the same shape.

 In terms of implementation, no new 2D tensor is created, because that would be
terribly inefficient. The repetition operation is entirely virtual: it happens at the algo-
rithmic level rather than at the memory level. But thinking of the vector being

x and y are 2D
Numpy tensors.

Avoid overwriting
the input tensor.

Element-wise addition

Element-wise relu

40 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
repeated 10 times alongside a new axis is a helpful mental model. Here’s what a naive
implementation would look like:

def naive_add_matrix_and_vector(x, y):
assert len(x.shape) == 2
assert len(y.shape) == 1
assert x.shape[1] == y.shape[0]

x = x.copy()
for i in range(x.shape[0]):

for j in range(x.shape[1]):
x[i, j] += y[j]

return x

With broadcasting, you can generally apply two-tensor element-wise operations if one
tensor has shape (a, b, … n, n + 1, … m) and the other has shape (n, n + 1, … m). The
broadcasting will then automatically happen for axes a through n - 1.

 The following example applies the element-wise maximum operation to two tensors
of different shapes via broadcasting:

import numpy as np

x = np.random.random((64, 3, 32, 10))
y = np.random.random((32, 10))

z = np.maximum(x, y)

2.3.3 Tensor dot

The dot operation, also called a tensor product (not to be confused with an element-
wise product) is the most common, most useful tensor operation. Contrary to
element-wise operations, it combines entries in the input tensors.

 An element-wise product is done with the * operator in Numpy, Keras, Theano,
and TensorFlow. dot uses a different syntax in TensorFlow, but in both Numpy and
Keras it’s done using the standard dot operator:

import numpy as np

z = np.dot(x, y)

In mathematical notation, you’d note the operation with a dot (.):

z = x . y

Mathematically, what does the dot operation do? Let’s start with the dot product of
two vectors x and y. It’s computed as follows:

def naive_vector_dot(x, y):
assert len(x.shape) == 1
assert len(y.shape) == 1
assert x.shape[0] == y.shape[0]

x is a 2D Numpy tensor.

y is a Numpy vector.

Avoid overwriting
the input tensor.

x is a random tensor with
shape (64, 3, 32, 10).

y is a random tensor
with shape (32, 10).

The output z has shape
(64, 3, 32, 10) like x.

x and y are Numpy vectors.

41The gears of neural networks: tensor operations
z = 0.
for i in range(x.shape[0]):

z += x[i] * y[i]
return z

You’ll have noticed that the dot product between two vectors is a scalar and that only
vectors with the same number of elements are compatible for a dot product.

 You can also take the dot product between a matrix x and a vector y, which returns
a vector where the coefficients are the dot products between y and the rows of x. You
implement it as follows:

import numpy as np

def naive_matrix_vector_dot(x, y):
assert len(x.shape) == 2
assert len(y.shape) == 1
assert x.shape[1] == y.shape[0]

z = np.zeros(x.shape[0])
for i in range(x.shape[0]):

for j in range(x.shape[1]):
z[i] += x[i, j] * y[j]

return z

You could also reuse the code we wrote previously, which highlights the relationship
between a matrix-vector product and a vector product:

def naive_matrix_vector_dot(x, y):
z = np.zeros(x.shape[0])
for i in range(x.shape[0]):

z[i] = naive_vector_dot(x[i, :], y)
return z

Note that as soon as one of the two tensors has an ndim greater than 1, dot is no lon-
ger symmetric, which is to say that dot(x, y) isn’t the same as dot(y, x).

 Of course, a dot product generalizes to tensors with an arbitrary number of axes.
The most common applications may be the dot product between two matrices. You
can take the dot product of two matrices x and y (dot(x, y)) if and only if
x.shape[1] == y.shape[0]. The result is a matrix with shape (x.shape[0],
y.shape[1]), where the coefficients are the vector products between the rows of x
and the columns of y. Here’s the naive implementation:

def naive_matrix_dot(x, y):
assert len(x.shape) == 2
assert len(y.shape) == 2
assert x.shape[1] == y.shape[0]

z = np.zeros((x.shape[0], y.shape[1]))
for i in range(x.shape[0]):

for j in range(y.shape[1]):
row_x = x[i, :]
column_y = y[:, j]
z[i, j] = naive_vector_dot(row_x, column_y)

return z

x is a Numpy matrix.

y is a Numpy vector.

The first dimension of x must be the
same as the 0th dimension of y!

This operation returns a vector of
0s with the same shape as y.

x and y
are

Numpy
matrices.

The first dimension of x must be the
same as the 0th dimension of y!

This operation returns a matrix
of 0s with a specific shape.

Iterates over the rows of x …
… and over the columns of y.

42 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
To understand dot-product shape compatibility, it helps to visualize the input and out-
put tensors by aligning them as shown in figure 2.5.

x, y, and z are pictured as rectangles (literal boxes of coefficients). Because the rows
and x and the columns of y must have the same size, it follows that the width of x must
match the height of y. If you go on to develop new machine-learning algorithms,
you’ll likely be drawing such diagrams often.

 More generally, you can take the dot product between higher-dimensional tensors,
following the same rules for shape compatibility as outlined earlier for the 2D case:

(a, b, c, d) . (d,) -> (a, b, c)

(a, b, c, d) . (d, e) -> (a, b, c, e)

And so on.

2.3.4 Tensor reshaping

A third type of tensor operation that’s essential to understand is tensor reshaping.
Although it wasn’t used in the Dense layers in our first neural network example, we
used it when we preprocessed the digits data before feeding it into our network:

train_images = train_images.reshape((60000, 28 * 28))

Reshaping a tensor means rearranging its rows and columns to match a target shape.
Naturally, the reshaped tensor has the same total number of coefficients as the initial
tensor. Reshaping is best understood via simple examples:

>>> x = np.array([[0., 1.],
[2., 3.],
[4., 5.]])

>>> print(x.shape)
(3, 2)

a

b

x . y = z

b

x.shape:
(a, b)

y.shape:
(b, c)

z.shape:
(a, c)

Row of x

Column of y

z [i, j]

c

Figure 2.5 Matrix dot-product
box diagram

43The gears of neural networks: tensor operations
>>> x = x.reshape((6, 1))
>>> x
array([[0.],

[1.],
[2.],
[3.],
[4.],
[5.]])

>>> x = x.reshape((2, 3))
>>> x
array([[0., 1., 2.],

[3., 4., 5.]])

A special case of reshaping that’s commonly encountered is transposition. Transposing a
matrix means exchanging its rows and its columns, so that x[i, :] becomes x[:, i]:

>>> x = np.zeros((300, 20))
>>> x = np.transpose(x)
>>> print(x.shape)
(20, 300)

2.3.5 Geometric interpretation of tensor operations

Because the contents of the tensors manipulated by tensor operations can be inter-
preted as coordinates of points in some geometric space, all tensor operations have a
geometric interpretation. For instance, let’s consider addition. We’ll start with the fol-
lowing vector:

A = [0.5, 1]

It’s a point in a 2D space (see figure 2.6). It’s common to picture a vector as an arrow
linking the origin to the point, as shown in figure 2.7.

Creates an all-zeros matrix
of shape (300, 20)

1

1

A [0.5, 1]

Figure 2.6 A point in a 2D space

1

1

A [0.5, 1]

Figure 2.7 A point in a 2D space
pictured as an arrow

44 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
Let’s consider a new point, B = [1, 0.25], which we’ll add to the previous one. This is
done geometrically by chaining together the vector arrows, with the resulting location
being the vector representing the sum of the previous two vectors (see figure 2.8).

In general, elementary geometric operations such as affine transformations, rotations,
scaling, and so on can be expressed as tensor operations. For instance, a rotation of a
2D vector by an angle theta can be achieved via a dot product with a 2 × 2 matrix
R = [u, v], where u and v are both vectors of the plane: u = [cos(theta),
sin(theta)] and v = [-sin(theta), cos(theta)].

2.3.6 A geometric interpretation of deep learning

You just learned that neural networks consist entirely of chains of tensor operations and
that all of these tensor operations are just geometric transformations of the input data.
It follows that you can interpret a neural network as a very complex geometric transfor-
mation in a high-dimensional space, implemented via a long series of simple steps.

 In 3D, the following mental image may prove useful. Imagine two sheets of colored
paper: one red and one blue. Put one on top of the other. Now crumple them
together into a small ball. That crumpled paper ball is your input data, and each sheet
of paper is a class of data in a classification problem. What a neural network (or any
other machine-learning model) is meant to do is figure out a transformation of the
paper ball that would uncrumple it, so as to make the two classes cleanly separable
again. With deep learning, this would be implemented as a series of simple transfor-
mations of the 3D space, such as those you could apply on the paper ball with your fin-
gers, one movement at a time.

1

1

A

B

A + B

Figure 2.8 Geometric interpretation of
the sum of two vectors

Figure 2.9 Uncrumpling a
complicated manifold of data

45The gears of neural networks: tensor operations
Uncrumpling paper balls is what machine learning is about: finding neat representa-
tions for complex, highly folded data manifolds. At this point, you should have a
pretty good intuition as to why deep learning excels at this: it takes the approach of
incrementally decomposing a complicated geometric transformation into a long
chain of elementary ones, which is pretty much the strategy a human would follow to
uncrumple a paper ball. Each layer in a deep network applies a transformation that
disentangles the data a little—and a deep stack of layers makes tractable an extremely
complicated disentanglement process.

46 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
2.4 The engine of neural networks:
gradient-based optimization
As you saw in the previous section, each neural layer from our first network example
transforms its input data as follows:

output = relu(dot(W, input) + b)

In this expression, W and b are tensors that are attributes of the layer. They’re called
the weights or trainable parameters of the layer (the kernel and bias attributes, respec-
tively). These weights contain the information learned by the network from exposure
to training data.

 Initially, these weight matrices are filled with small random values (a step called ran-
dom initialization). Of course, there’s no reason to expect that relu(dot(W, input) + b),
when W and b are random, will yield any useful representations. The resulting represen-
tations are meaningless—but they’re a starting point. What comes next is to gradually
adjust these weights, based on a feedback signal. This gradual adjustment, also called
training, is basically the learning that machine learning is all about.

 This happens within what’s called a training loop, which works as follows. Repeat
these steps in a loop, as long as necessary:

1 Draw a batch of training samples x and corresponding targets y.
2 Run the network on x (a step called the forward pass) to obtain predictions y_pred.
3 Compute the loss of the network on the batch, a measure of the mismatch

between y_pred and y.
4 Update all weights of the network in a way that slightly reduces the loss on this

batch.

You’ll eventually end up with a network that has a very low loss on its training data: a
low mismatch between predictions y_pred and expected targets y. The network has
“learned” to map its inputs to correct targets. From afar, it may look like magic, but
when you reduce it to elementary steps, it turns out to be simple.

 Step 1 sounds easy enough—just I/O code. Steps 2 and 3 are merely the applica-
tion of a handful of tensor operations, so you could implement these steps purely
from what you learned in the previous section. The difficult part is step 4: updating
the network’s weights. Given an individual weight coefficient in the network, how can
you compute whether the coefficient should be increased or decreased, and by how
much?

 One naive solution would be to freeze all weights in the network except the one
scalar coefficient being considered, and try different values for this coefficient. Let’s
say the initial value of the coefficient is 0.3. After the forward pass on a batch of data,
the loss of the network on the batch is 0.5. If you change the coefficient’s value to 0.35
and rerun the forward pass, the loss increases to 0.6. But if you lower the coefficient to
0.25, the loss falls to 0.4. In this case, it seems that updating the coefficient by -0.05

47The engine of neural networks: gradient-based optimization
would contribute to minimizing the loss. This would have to be repeated for all coeffi-
cients in the network.

 But such an approach would be horribly inefficient, because you’d need to com-
pute two forward passes (which are expensive) for every individual coefficient (of
which there are many, usually thousands and sometimes up to millions). A much bet-
ter approach is to take advantage of the fact that all operations used in the network
are differentiable, and compute the gradient of the loss with regard to the network’s
coefficients. You can then move the coefficients in the opposite direction from the
gradient, thus decreasing the loss.

 If you already know what differentiable means and what a gradient is, you can skip to
section 2.4.3. Otherwise, the following two sections will help you understand these
concepts.

2.4.1 What’s a derivative?

Consider a continuous, smooth function f(x) = y, mapping a real number x to a new
real number y. Because the function is continuous, a small change in x can only result
in a small change in y—that’s the intuition behind continuity. Let’s say you increase x
by a small factor epsilon_x: this results in a small epsilon_y change to y:

f(x + epsilon_x) = y + epsilon_y

In addition, because the function is smooth (its curve doesn’t have any abrupt angles),
when epsilon_x is small enough, around a certain point p, it’s possible to approxi-
mate f as a linear function of slope a, so that epsilon_y becomes a * epsilon_x:

f(x + epsilon_x) = y + a * epsilon_x

Obviously, this linear approximation is valid only when x is close enough to p.
 The slope a is called the derivative of f in p. If a is negative, it means a small change

of x around p will result in a decrease of f(x) (as shown in figure 2.10); and if a is pos-
itive, a small change in x will result in an increase of f(x). Further, the absolute value
of a (the magnitude of the derivative) tells you how quickly this increase or decrease
will happen.

For every differentiable function f(x) (differentiable means “can be derived”: for exam-
ple, smooth, continuous functions can be derived), there exists a derivative function
f'(x) that maps values of x to the slope of the local linear approximation of f in those

Local linear
approximation of f,

with slope a

f Figure 2.10 Derivative of f in p

48 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
points. For instance, the derivative of cos(x) is -sin(x), the derivative of f(x) = a * x
is f'(x) = a, and so on.

 If you’re trying to update x by a factor epsilon_x in order to minimize f(x), and
you know the derivative of f, then your job is done: the derivative completely
describes how f(x) evolves as you change x. If you want to reduce the value of f(x),
you just need to move x a little in the opposite direction from the derivative.

2.4.2 Derivative of a tensor operation: the gradient

A gradient is the derivative of a tensor operation. It’s the generalization of the concept
of derivatives to functions of multidimensional inputs: that is, to functions that take
tensors as inputs.

 Consider an input vector x, a matrix W, a target y, and a loss function loss. You can
use W to compute a target candidate y_pred, and compute the loss, or mismatch,
between the target candidate y_pred and the target y:

y_pred = dot(W, x)
loss_value = loss(y_pred, y)

If the data inputs x and y are frozen, then this can be interpreted as a function map-
ping values of W to loss values:

loss_value = f(W)

Let’s say the current value of W is W0. Then the derivative of f in the point W0 is a tensor
gradient(f)(W0) with the same shape as W, where each coefficient gradient(f)
(W0)[i, j] indicates the direction and magnitude of the change in loss_value you
observe when modifying W0[i, j]. That tensor gradient(f)(W0) is the gradient of
the function f(W) = loss_value in W0.

 You saw earlier that the derivative of a function f(x) of a single coefficient can be
interpreted as the slope of the curve of f. Likewise, gradient(f)(W0) can be inter-
preted as the tensor describing the curvature of f(W) around W0.

 For this reason, in much the same way that, for a function f(x), you can reduce
the value of f(x) by moving x a little in the opposite direction from the derivative,
with a function f(W) of a tensor, you can reduce f(W) by moving W in the opposite
direction from the gradient: for example, W1 = W0 - step * gradient(f)(W0) (where
step is a small scaling factor). That means going against the curvature, which intui-
tively should put you lower on the curve. Note that the scaling factor step is needed
because gradient(f)(W0) only approximates the curvature when you’re close to W0,
so you don’t want to get too far from W0.

2.4.3 Stochastic gradient descent

Given a differentiable function, it’s theoretically possible to find its minimum analyti-
cally: it’s known that a function’s minimum is a point where the derivative is 0, so all
you have to do is find all the points where the derivative goes to 0 and check for which
of these points the function has the lowest value.

49The engine of neural networks: gradient-based optimization
 Applied to a neural network, that means finding analytically the combination of
weight values that yields the smallest possible loss function. This can be done by solv-
ing the equation gradient(f)(W) = 0 for W. This is a polynomial equation of N vari-
ables, where N is the number of coefficients in the network. Although it would be
possible to solve such an equation for N = 2 or N = 3, doing so is intractable for real
neural networks, where the number of parameters is never less than a few thousand
and can often be several tens of millions.

 Instead, you can use the four-step algorithm outlined at the beginning of this sec-
tion: modify the parameters little by little based on the current loss value on a ran-
dom batch of data. Because you’re dealing with a differentiable function, you can
compute its gradient, which gives you an efficient way to implement step 4. If you
update the weights in the opposite direction from the gradient, the loss will be a little
less every time:

1 Draw a batch of training samples x and corresponding targets y.
2 Run the network on x to obtain predictions y_pred.
3 Compute the loss of the network on the batch, a measure of the mismatch

between y_pred and y.
4 Compute the gradient of the loss with regard to the network’s parameters (a

backward pass).
5 Move the parameters a little in the opposite direction from the gradient—for

example W -= step * gradient—thus reducing the loss on the batch a bit.

Easy enough! What I just described is called mini-batch stochastic gradient descent (mini-
batch SGD). The term stochastic refers to the fact that each batch of data is drawn at
random (stochastic is a scientific synonym of random). Figure 2.11 illustrates what hap-
pens in 1D, when the network has only one parameter and you have only one training
sample.

Loss
value

Starting
point (t=0)

Step, also called learning rate

t=1

t=2
t=3

Parameter
value

Figure 2.11 SGD down a 1D loss
curve (one learnable parameter)

50 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
As you can see, intuitively it’s important to pick a reasonable value for the step factor.
If it’s too small, the descent down the curve will take many iterations, and it could get
stuck in a local minimum. If step is too large, your updates may end up taking you to
completely random locations on the curve.

 Note that a variant of the mini-batch SGD algorithm would be to draw a single sam-
ple and target at each iteration, rather than drawing a batch of data. This would be
true SGD (as opposed to mini-batch SGD). Alternatively, going to the opposite extreme,
you could run every step on all data available, which is called batch SGD. Each update
would then be more accurate, but far more expensive. The efficient compromise
between these two extremes is to use mini-batches of reasonable size.

 Although figure 2.11 illustrates gradient descent in a 1D parameter space, in prac-
tice you’ll use gradient descent in highly dimensional spaces: every weight coefficient
in a neural network is a free dimension in the space, and there may be tens of thou-
sands or even millions of them. To help you build intuition about loss surfaces, you
can also visualize gradient descent along a 2D loss surface, as shown in figure 2.12. But
you can’t possibly visualize what the actual process of training a neural network looks
like—you can’t represent a 1,000,000-dimensional space in a way that makes sense to
humans. As such, it’s good to keep in mind that the intuitions you develop through
these low-dimensional representations may not always be accurate in practice. This
has historically been a source of issues in the world of deep-learning research.

Additionally, there exist multiple variants of SGD that differ by taking into account
previous weight updates when computing the next weight update, rather than just
looking at the current value of the gradients. There is, for instance, SGD with momen-
tum, as well as Adagrad, RMSProp, and several others. Such variants are known as opti-
mization methods or optimizers. In particular, the concept of momentum, which is used in
many of these variants, deserves your attention. Momentum addresses two issues with
SGD: convergence speed and local minima. Consider figure 2.13, which shows the
curve of a loss as a function of a network parameter.

Starting point

Final point

45
40
35
30
25
20
15
10
5

Figure 2.12 Gradient descent
down a 2D loss surface (two
learnable parameters)

51The engine of neural networks: gradient-based optimization
As you can see, around a certain parameter value, there is a local minimum: around
that point, moving left would result in the loss increasing, but so would moving right.
If the parameter under consideration were being optimized via SGD with a small
learning rate, then the optimization process would get stuck at the local minimum
instead of making its way to the global minimum.

 You can avoid such issues by using momentum, which draws inspiration from phys-
ics. A useful mental image here is to think of the optimization process as a small ball
rolling down the loss curve. If it has enough momentum, the ball won’t get stuck in a
ravine and will end up at the global minimum. Momentum is implemented by moving
the ball at each step based not only on the current slope value (current acceleration)
but also on the current velocity (resulting from past acceleration). In practice, this
means updating the parameter w based not only on the current gradient value but also
on the previous parameter update, such as in this naive implementation:

past_velocity = 0.
momentum = 0.1
while loss > 0.01:

w, loss, gradient = get_current_parameters()
velocity = past_velocity * momentum + learning_rate * gradient
w = w + momentum * velocity - learning_rate * gradient
past_velocity = velocity
update_parameter(w)

2.4.4 Chaining derivatives: the Backpropagation algorithm

In the previous algorithm, we casually assumed that because a function is differentia-
ble, we can explicitly compute its derivative. In practice, a neural network function
consists of many tensor operations chained together, each of which has a simple,
known derivative. For instance, this is a network f composed of three tensor opera-
tions, a, b, and c, with weight matrices W1, W2, and W3:

f(W1, W2, W3) = a(W1, b(W2, c(W3)))

Calculus tells us that such a chain of functions can be derived using the following iden-
tity, called the chain rule : f(g(x)) = f'(g(x)) * g'(x). Applying the chain rule to the
computation of the gradient values of a neural network gives rise to an algorithm

Loss
value

Parameter
value

Local
minimum

Global
minimum

Figure 2.13 A local minimum
and a global minimum

Constant momentum factor
Optimization loop

52 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
called Backpropagation (also sometimes called reverse-mode differentiation). Backpropaga-
tion starts with the final loss value and works backward from the top layers to the bot-
tom layers, applying the chain rule to compute the contribution that each parameter
had in the loss value.

 Nowadays, and for years to come, people will implement networks in modern
frameworks that are capable of symbolic differentiation, such as TensorFlow. This means
that, given a chain of operations with a known derivative, they can compute a gradient
function for the chain (by applying the chain rule) that maps network parameter values
to gradient values. When you have access to such a function, the backward pass is
reduced to a call to this gradient function. Thanks to symbolic differentiation, you’ll
never have to implement the Backpropagation algorithm by hand. For this reason, we
won’t waste your time and your focus on deriving the exact formulation of the Back-
propagation algorithm in these pages. All you need is a good understanding of how
gradient-based optimization works.

53Looking back at our first example
2.5 Looking back at our first example
You’ve reached the end of this chapter, and you should now have a general under-
standing of what’s going on behind the scenes in a neural network. Let’s go back to
the first example and review each piece of it in the light of what you’ve learned in the
previous three sections.

 This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

Now you understand that the input images are stored in Numpy tensors, which are
here formatted as float32 tensors of shape (60000, 784) (training data) and (10000,
784) (test data), respectively.

 This was our network:

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))

Now you understand that this network consists of a chain of two Dense layers, that
each layer applies a few simple tensor operations to the input data, and that these
operations involve weight tensors. Weight tensors, which are attributes of the layers,
are where the knowledge of the network persists.

 This was the network-compilation step:

network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

Now you understand that categorical_crossentropy is the loss function that’s used
as a feedback signal for learning the weight tensors, and which the training phase will
attempt to minimize. You also know that this reduction of the loss happens via mini-
batch stochastic gradient descent. The exact rules governing a specific use of gradient
descent are defined by the rmsprop optimizer passed as the first argument.

 Finally, this was the training loop:

network.fit(train_images, train_labels, epochs=5, batch_size=128)

Now you understand what happens when you call fit: the network will start to iterate
on the training data in mini-batches of 128 samples, 5 times over (each iteration over
all the training data is called an epoch). At each iteration, the network will compute the
gradients of the weights with regard to the loss on the batch, and update the weights

54 CHAPTER 2 Before we begin: the mathematical building blocks of neural networks
accordingly. After these 5 epochs, the network will have performed 2,345 gradient
updates (469 per epoch), and the loss of the network will be sufficiently low that the
network will be capable of classifying handwritten digits with high accuracy.

 At this point, you already know most of what there is to know about neural networks.

55Looking back at our first example
Chapter summary
 Learning means finding a combination of model parameters that mini-

mizes a loss function for a given set of training data samples and their cor-
responding targets.

 Learning happens by drawing random batches of data samples and their
targets, and computing the gradient of the network parameters with
respect to the loss on the batch. The network parameters are then moved
a bit (the magnitude of the move is defined by the learning rate) in the
opposite direction from the gradient.

 The entire learning process is made possible by the fact that neural net-
works are chains of differentiable tensor operations, and thus it’s possible
to apply the chain rule of derivation to find the gradient function map-
ping the current parameters and current batch of data to a gradient value.

 Two key concepts you’ll see frequently in future chapters are loss and opti-
mizers. These are the two things you need to define before you begin feed-
ing data into a network.

 The loss is the quantity you’ll attempt to minimize during training, so it
should represent a measure of success for the task you’re trying to solve.

 The optimizer specifies the exact way in which the gradient of the loss will
be used to update parameters: for instance, it could be the RMSProp opti-
mizer, SGD with momentum, and so on.

Getting started
with neural networks
This chapter is designed to get you started with using neural networks to solve real
problems. You’ll consolidate the knowledge you gained from our first practical
example in chapter 2, and you’ll apply what you’ve learned to three new problems
covering the three most common use cases of neural networks: binary classifica-
tion, multiclass classification, and scalar regression.

 In this chapter, we’ll take a closer look at the core components of neural networks
that we introduced in chapter 2: layers, networks, objective functions, and optimiz-
ers. We’ll give you a quick introduction to Keras, the Python deep-learning library
that we’ll use throughout the book. You’ll set up a deep-learning workstation, with

This chapter covers
 Core components of neural networks

 An introduction to Keras

 Setting up a deep-learning workstation

 Using neural networks to solve basic
classification and regression problems
56

57
TensorFlow, Keras, and GPU support. We’ll dive into three introductory examples of
how to use neural networks to address real problems:

 Classifying movie reviews as positive or negative (binary classification)
 Classifying news wires by topic (multiclass classification)
 Estimating the price of a house, given real-estate data (regression)

By the end of this chapter, you’ll be able to use neural networks to solve simple
machine problems such as classification and regression over vector data. You’ll then
be ready to start building a more principled, theory-driven understanding of machine
learning in chapter 4.

58 CHAPTER 3 Getting started with neural networks
3.1 Anatomy of a neural network
As you saw in the previous chapters, training a neural network revolves around the fol-
lowing objects:

 Layers, which are combined into a network (or model)
 The input data and corresponding targets
 The loss function, which defines the feedback signal used for learning
 The optimizer, which determines how learning proceeds

You can visualize their interaction as illustrated in figure 3.1: the network, composed
of layers that are chained together, maps the input data to predictions. The loss func-
tion then compares these predictions to the targets, producing a loss value: a measure
of how well the network’s predictions match what was expected. The optimizer uses
this loss value to update the network’s weights.

Let’s take a closer look at layers, networks, loss functions, and optimizers.

3.1.1 Layers: the building blocks of deep learning

The fundamental data structure in neural networks is the layer, to which you were
introduced in chapter 2. A layer is a data-processing module that takes as input one or
more tensors and that outputs one or more tensors. Some layers are stateless, but
more frequently layers have a state: the layer’s weights, one or several tensors learned
with stochastic gradient descent, which together contain the network’s knowledge.

 Different layers are appropriate for different tensor formats and different types of data
processing. For instance, simple vector data, stored in 2D tensors of shape (samples,
features), is often processed by densely connected layers, also called fully connected or dense
layers (the Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples,
timesteps, features), is typically processed by recurrent layers such as an LSTM layer.
Image data, stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D).

Layer
(data transformation)

Input X

Weights

Layer
(data transformation)

Predictions
Y'

Weight
update

True targets
Y

Weights

Loss functionOptimizer

Loss score
Figure 3.1 Relationship between the
network, layers, loss function, and optimizer

59Anatomy of a neural network
 You can think of layers as the LEGO bricks of deep learning, a metaphor that is
made explicit by frameworks like Keras. Building deep-learning models in Keras is
done by clipping together compatible layers to form useful data-transformation pipe-
lines. The notion of layer compatibility here refers specifically to the fact that every layer
will only accept input tensors of a certain shape and will return output tensors of a cer-
tain shape. Consider the following example:

from keras import layers

layer = layers.Dense(32, input_shape=(784,))

We’re creating a layer that will only accept as input 2D tensors where the first dimen-
sion is 784 (axis 0, the batch dimension, is unspecified, and thus any value would be
accepted). This layer will return a tensor where the first dimension has been trans-
formed to be 32.

 Thus this layer can only be connected to a downstream layer that expects 32-
dimensional vectors as its input. When using Keras, you don’t have to worry about
compatibility, because the layers you add to your models are dynamically built to
match the shape of the incoming layer. For instance, suppose you write the following:

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, input_shape=(784,)))
model.add(layers.Dense(32))

The second layer didn’t receive an input shape argument—instead, it automatically
inferred its input shape as being the output shape of the layer that came before.

3.1.2 Models: networks of layers

A deep-learning model is a directed, acyclic graph of layers. The most common
instance is a linear stack of layers, mapping a single input to a single output.

 But as you move forward, you’ll be exposed to a much broader variety of network
topologies. Some common ones include the following:

 Two-branch networks
 Multihead networks
 Inception blocks

The topology of a network defines a hypothesis space. You may remember that in chap-
ter 1, we defined machine learning as “searching for useful representations of some
input data, within a predefined space of possibilities, using guidance from a feedback
signal.” By choosing a network topology, you constrain your space of possibilities
(hypothesis space) to a specific series of tensor operations, mapping input data to out-
put data. What you’ll then be searching for is a good set of values for the weight ten-
sors involved in these tensor operations.

A dense layer with 32
output units

60 CHAPTER 3 Getting started with neural networks
 Picking the right network architecture is more an art than a science; and although
there are some best practices and principles you can rely on, only practice can help
you become a proper neural-network architect. The next few chapters will both teach
you explicit principles for building neural networks and help you develop intuition as
to what works or doesn’t work for specific problems.

3.1.3 Loss functions and optimizers:
keys to configuring the learning process

Once the network architecture is defined, you still have to choose two more things:

 Loss function (objective function)—The quantity that will be minimized during
training. It represents a measure of success for the task at hand.

 Optimizer—Determines how the network will be updated based on the loss func-
tion. It implements a specific variant of stochastic gradient descent (SGD).

A neural network that has multiple outputs may have multiple loss functions (one per
output). But the gradient-descent process must be based on a single scalar loss value;
so, for multiloss networks, all losses are combined (via averaging) into a single scalar
quantity.

 Choosing the right objective function for the right problem is extremely import-
ant: your network will take any shortcut it can, to minimize the loss; so if the objective
doesn’t fully correlate with success for the task at hand, your network will end up
doing things you may not have wanted. Imagine a stupid, omnipotent AI trained via
SGD, with this poorly chosen objective function: “maximizing the average well-being
of all humans alive.” To make its job easier, this AI might choose to kill all humans
except a few and focus on the well-being of the remaining ones—because average
well-being isn’t affected by how many humans are left. That might not be what you
intended! Just remember that all neural networks you build will be just as ruthless in
lowering their loss function—so choose the objective wisely, or you’ll have to face
unintended side effects.

 Fortunately, when it comes to common problems such as classification, regression,
and sequence prediction, there are simple guidelines you can follow to choose the
correct loss. For instance, you’ll use binary crossentropy for a two-class classification
problem, categorical crossentropy for a many-class classification problem, mean-
squared error for a regression problem, connectionist temporal classification (CTC)
for a sequence-learning problem, and so on. Only when you’re working on truly new
research problems will you have to develop your own objective functions. In the next
few chapters, we’ll detail explicitly which loss functions to choose for a wide range of
common tasks.

61Introduction to Keras
3.2 Introduction to Keras
Throughout this book, the code examples use Keras (https://keras.io). Keras is a
deep-learning framework for Python that provides a convenient way to define and
train almost any kind of deep-learning model. Keras was initially developed for
researchers, with the aim of enabling fast experimentation.

 Keras has the following key features:

 It allows the same code to run seamlessly on CPU or GPU.
 It has a user-friendly API that makes it easy to quickly prototype deep-learning

models.
 It has built-in support for convolutional networks (for computer vision), recur-

rent networks (for sequence processing), and any combination of both.
 It supports arbitrary network architectures: multi-input or multi-output models,

layer sharing, model sharing, and so on. This means Keras is appropriate for
building essentially any deep-learning model, from a generative adversarial net-
work to a neural Turing machine.

Keras is distributed under the permissive MIT license, which means it can be freely
used in commercial projects. It’s compatible with any version of Python from 2.7 to 3.6
(as of mid-2017).

 Keras has well over 200,000 users, ranging from academic researchers and engi-
neers at both startups and large companies to graduate students and hobbyists. Keras
is used at Google, Netflix, Uber, CERN, Yelp, Square, and hundreds of startups work-
ing on a wide range of problems. Keras is also a popular framework on Kaggle, the
machine-learning competition website, where almost every recent deep-learning com-
petition has been won using Keras models.

Figure 3.2 Google web search interest for different deep-learning frameworks over time

62 CHAPTER 3 Getting started with neural networks
3.2.1 Keras, TensorFlow, Theano, and CNTK

Keras is a model-level library, providing high-level building blocks for developing
deep-learning models. It doesn’t handle low-level operations such as tensor manipula-
tion and differentiation. Instead, it relies on a specialized, well-optimized tensor
library to do so, serving as the backend engine of Keras. Rather than choosing a single
tensor library and tying the implementation of Keras to that library, Keras handles the
problem in a modular way (see figure 3.3); thus several different backend engines can
be plugged seamlessly into Keras. Currently, the three existing backend implementa-
tions are the TensorFlow backend, the Theano backend, and the Microsoft Cognitive
Toolkit (CNTK) backend. In the future, it’s likely that Keras will be extended to work
with even more deep-learning execution engines.

TensorFlow, CNTK, and Theano are some of the primary platforms for deep learning
today. Theano (http://deeplearning.net/software/theano) is developed by the MILA
lab at Université de Montréal , TensorFlow (www.tensorflow.org) is developed by Google,
and CNTK (https://github.com/Microsoft/CNTK) is developed by Microsoft. Any
piece of code that you write with Keras can be run with any of these backends without
having to change anything in the code: you can seamlessly switch between the two
during development, which often proves useful—for instance, if one of these backends
proves to be faster for a specific task. We recommend using the TensorFlow backend as
the default for most of your deep-learning needs, because it’s the most widely adopted,
scalable, and production ready.

 Via TensorFlow (or Theano, or CNTK), Keras is able to run seamlessly on both
CPUs and GPUs. When running on CPU, TensorFlow is itself wrapping a low-level
library for tensor operations called Eigen (http://eigen.tuxfamily.org). On GPU,
TensorFlow wraps a library of well-optimized deep-learning operations called the
NVIDIA CUDA Deep Neural Network library (cuDNN).

3.2.2 Developing with Keras: a quick overview

You’ve already seen one example of a Keras model: the MNIST example. The typical
Keras workflow looks just like that example:

1 Define your training data: input tensors and target tensors.
2 Define a network of layers (or model) that maps your inputs to your targets.

Figure 3.3 The deep-learning
software and hardware stack

63Introduction to Keras
3 Configure the learning process by choosing a loss function, an optimizer, and
some metrics to monitor.

4 Iterate on your training data by calling the fit() method of your model.

There are two ways to define a model: using the Sequential class (only for linear
stacks of layers, which is the most common network architecture by far) or the func-
tional API (for directed acyclic graphs of layers, which lets you build completely arbi-
trary architectures).

 As a refresher, here’s a two-layer model defined using the Sequential class (note
that we’re passing the expected shape of the input data to the first layer):

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(784,)))
model.add(layers.Dense(10, activation='softmax'))

And here’s the same model defined using the functional API:

input_tensor = layers.Input(shape=(784,))
x = layers.Dense(32, activation='relu')(input_tensor)
output_tensor = layers.Dense(10, activation='softmax')(x)

model = models.Model(inputs=input_tensor, outputs=output_tensor)

With the functional API, you’re manipulating the data tensors that the model pro-
cesses and applying layers to this tensor as if they were functions.

NOTE A detailed guide to what you can do with the functional API can be
found in chapter 7. Until chapter 7, we’ll only be using the Sequential class
in our code examples.

Once your model architecture is defined, it doesn’t matter whether you used a
Sequential model or the functional API. All of the following steps are the same.

 The learning process is configured in the compilation step, where you specify the
optimizer and loss function(s) that the model should use, as well as the metrics you
want to monitor during training. Here’s an example with a single loss function, which
is by far the most common case:

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss='mse',
metrics=['accuracy'])

Finally, the learning process consists of passing Numpy arrays of input data (and the
corresponding target data) to the model via the fit() method, similar to what you
would do in Scikit-Learn and several other machine-learning libraries:

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

64 CHAPTER 3 Getting started with neural networks
Over the next few chapters, you’ll build a solid intuition about what type of network
architectures work for different kinds of problems, how to pick the right learning con-
figuration, and how to tweak a model until it gives the results you want to see. We’ll
look at three basic examples in sections 3.4, 3.5, and 3.6: a two-class classification
example, a many-class classification example, and a regression example.

65Setting up a deep-learning workstation
3.3 Setting up a deep-learning workstation
Before you can get started developing deep-learning applications, you need to set up
your workstation. It’s highly recommended, although not strictly necessary, that you
run deep-learning code on a modern NVIDIA GPU. Some applications—in particular,
image processing with convolutional networks and sequence processing with recur-
rent neural networks—will be excruciatingly slow on CPU, even a fast multicore CPU.
And even for applications that can realistically be run on CPU, you’ll generally see
speed increase by a factor or 5 or 10 by using a modern GPU. If you don’t want to
install a GPU on your machine, you can alternatively consider running your experi-
ments on an AWS EC2 GPU instance or on Google Cloud Platform. But note that cloud
GPU instances can become expensive over time.

 Whether you’re running locally or in the cloud, it’s better to be using a Unix work-
station. Although it’s technically possible to use Keras on Windows (all three Keras
backends support Windows), We don’t recommend it. In the installation instructions
in appendix A, we’ll consider an Ubuntu machine. If you’re a Windows user, the sim-
plest solution to get everything running is to set up an Ubuntu dual boot on your
machine. It may seem like a hassle, but using Ubuntu will save you a lot of time and
trouble in the long run.

 Note that in order to use Keras, you need to install TensorFlow or CNTK or Theano
(or all of them, if you want to be able to switch back and forth among the three back-
ends). In this book, we’ll focus on TensorFlow, with some light instructions relative to
Theano. We won’t cover CNTK.

3.3.1 Jupyter notebooks: the preferred way
to run deep-learning experiments

Jupyter notebooks are a great way to run deep-learning experiments—in particular,
the many code examples in this book. They’re widely used in the data-science and
machine-learning communities. A notebook is a file generated by the Jupyter Notebook
app (https://jupyter.org), which you can edit in your browser. It mixes the ability to
execute Python code with rich text-editing capabilities for annotating what you’re
doing. A notebook also allows you to break up long experiments into smaller pieces
that can be executed independently, which makes development interactive and means
you don’t have to rerun all of your previous code if something goes wrong late in an
experiment.

 We recommend using Jupyter notebooks to get started with Keras, although that
isn’t a requirement: you can also run standalone Python scripts or run code from within
an IDE such as PyCharm. All the code examples in this book are available as open source
notebooks; you can download them from the book’s website at www.manning
.com/books/deep-learning-with-python.

66 CHAPTER 3 Getting started with neural networks
3.3.2 Getting Keras running: two options

To get started in practice, we recommend one of the following two options:

 Use the official EC2 Deep Learning AMI (https://aws.amazon.com/amazon-
ai/amis), and run Keras experiments as Jupyter notebooks on EC2. Do this if
you don’t already have a GPU on your local machine. Appendix B provides a
step-by-step guide.

 Install everything from scratch on a local Unix workstation. You can then run
either local Jupyter notebooks or a regular Python codebase. Do this if you
already have a high-end NVIDIA GPU. Appendix A provides an Ubuntu-specific,
step-by-step guide.

Let’s take a closer look at some of the compromises involved in picking one option
over the other.

3.3.3 Running deep-learning jobs in the cloud: pros and cons

If you don’t already have a GPU that you can use for deep learning (a recent, high-end
NVIDIA GPU), then running deep-learning experiments in the cloud is a simple, low-
cost way for you to get started without having to buy any additional hardware. If you’re
using Jupyter notebooks, the experience of running in the cloud is no different from
running locally. As of mid-2017, the cloud offering that makes it easiest to get started
with deep learning is definitely AWS EC2. Appendix B provides a step-by-step guide to
running Jupyter notebooks on a EC2 GPU instance.

 But if you’re a heavy user of deep learning, this setup isn’t sustainable in the long
term—or even for more than a few weeks. EC2 instances are expensive: the instance
type recommended in appendix B (the p2.xlarge instance, which won’t provide you
with much power) costs $0.90 per hour as of mid-2017. Meanwhile, a solid consumer-
class GPU will cost you somewhere between $1,000 and $1,500—a price that has been
fairly stable over time, even as the specs of these GPUs keep improving. If you’re serious
about deep learning, you should set up a local workstation with one or more GPUs.

 In short, EC2 is a great way to get started. You could follow the code examples in
this book entirely on an EC2 GPU instance. But if you’re going to be a power user of
deep learning, get your own GPUs.

3.3.4 What is the best GPU for deep learning?

If you’re going to buy a GPU, which one should you choose? The first thing to note is
that it must be an NVIDIA GPU. NVIDIA is the only graphics computing company that
has invested heavily in deep learning so far, and modern deep-learning frameworks
can only run on NVIDIA cards.

 As of mid-2017, we recommend the NVIDIA TITAN Xp as the best card on the mar-
ket for deep learning. For lower budgets, you may want to consider the GTX 1060. If
you’re reading these pages in 2018 or later, take the time to look online for fresher
recommendations, because new models come out every year.

67Setting up a deep-learning workstation
 From this section onward, we’ll assume that you have access to a machine with
Keras and its dependencies installed—preferably with GPU support. Make sure you
finish this step before you proceed. Go through the step-by-step guides in the appen-
dixes, and look online if you need further help. There is no shortage of tutorials on
how to install Keras and common deep-learning dependencies.

 We can now dive into practical Keras examples.

68 CHAPTER 3 Getting started with neural networks
3.4 Classifying movie reviews:
a binary classification example
Two-class classification, or binary classification, may be the most widely applied kind
of machine-learning problem. In this example, you’ll learn to classify movie reviews as
positive or negative, based on the text content of the reviews.

3.4.1 The IMDB dataset

You’ll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the
Internet Movie Database. They’re split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting of 50% negative and 50% positive reviews.

 Why use separate training and test sets? Because you should never test a machine-
learning model on the same data that you used to train it! Just because a model per-
forms well on its training data doesn’t mean it will perform well on data it has never
seen; and what you care about is your model’s performance on new data (because you
already know the labels of your training data—obviously you don’t need your model
to predict those). For instance, it’s possible that your model could end up merely mem-
orizing a mapping between your training samples and their targets, which would be
useless for the task of predicting targets for data the model has never seen before.
We’ll go over this point in much more detail in the next chapter.

 Just like the MNIST dataset, the IMDB dataset comes packaged with Keras. It has
already been preprocessed: the reviews (sequences of words) have been turned into
sequences of integers, where each integer stands for a specific word in a dictionary.

 The following code will load the dataset (when you run it the first time, about
80 MB of data will be downloaded to your machine).

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
num_words=10000)

The argument num_words=10000 means you’ll only keep the top 10,000 most fre-
quently occurring words in the training data. Rare words will be discarded. This allows
you to work with vector data of manageable size.

 The variables train_data and test_data are lists of reviews; each review is a list of
word indices (encoding a sequence of words). train_labels and test_labels are
lists of 0s and 1s, where 0 stands for negative and 1 stands for positive :

>>> train_data[0]
[1, 14, 22, 16, ... 178, 32]

>>> train_labels[0]
1

Listing 3.1 Loading the IMDB dataset

69Classifying movie reviews: a binary classification example
Because you’re restricting yourself to the top 10,000 most frequent words, no word
index will exceed 10,000:

>>> max([max(sequence) for sequence in train_data])
9999

For kicks, here’s how you can quickly decode one of these reviews back to English
words:

word_index = imdb.get_word_index()
reverse_word_index = dict(

[(value, key) for (key, value) in word_index.items()])
decoded_review = ' '.join(

[reverse_word_index.get(i - 3, '?') for i in train_data[0]])

3.4.2 Preparing the data

You can’t feed lists of integers into a neural network. You have to turn your lists into
tensors. There are two ways to do that:

 Pad your lists so that they all have the same length, turn them into an integer
tensor of shape (samples, word_indices), and then use as the first layer in
your network a layer capable of handling such integer tensors (the Embedding
layer, which we’ll cover in detail later in the book).

 One-hot encode your lists to turn them into vectors of 0s and 1s. This would
mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vec-
tor that would be all 0s except for indices 3 and 5, which would be 1s. Then you
could use as the first layer in your network a Dense layer, capable of handling
floating-point vector data.

Let’s go with the latter solution to vectorize the data, which you’ll do manually for
maximum clarity.

import numpy as np

def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):

results[i, sequence] = 1.
return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

Listing 3.2 Encoding the integer sequences into a binary matrix

word_index is a dictionary mapping
words to an integer index.

Reverses it, mapping
integer indices to words

Decodes the review. Note that the indices
are offset by 3 because 0, 1, and 2 are

reserved indices for “padding,” “start of
sequence,” and “unknown.”

Creates an all-zero matrix
of shape (len(sequences),
dimension)

Sets specific indices
of results[i] to 1s

Vectorized training data
Vectorized test data

70 CHAPTER 3 Getting started with neural networks
Here’s what the samples look like now:

>>> x_train[0]
array([0., 1., 1., ..., 0., 0., 0.])

You should also vectorize your labels, which is straightforward:

y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

Now the data is ready to be fed into a neural network.

3.4.3 Building your network

The input data is vectors, and the labels are scalars (1s and 0s): this is the easiest setup
you’ll ever encounter. A type of network that performs well on such a problem is
a simple stack of fully connected (Dense) layers with relu activations: Dense(16,
activation='relu').

 The argument being passed to each Dense layer (16) is the number of hidden
units of the layer. A hidden unit is a dimension in the representation space of the layer.
You may remember from chapter 2 that each such Dense layer with a relu activation
implements the following chain of tensor operations:

output = relu(dot(W, input) + b)

Having 16 hidden units means the weight matrix W will have shape (input_dimension,
16): the dot product with W will project the input data onto a 16-dimensional represen-
tation space (and then you’ll add the bias vector b and apply the relu operation). You
can intuitively understand the dimensionality of your representation space as “how
much freedom you’re allowing the network to have when learning internal represen-
tations.” Having more hidden units (a higher-dimensional representation space)
allows your network to learn more-complex representations, but it makes the network
more computationally expensive and may lead to learning unwanted patterns (pat-
terns that will improve performance on the training data but not on the test data).

 There are two key architecture decisions to be made about such a stack of Dense layers:

 How many layers to use
 How many hidden units to choose for each layer

In chapter 4, you’ll learn formal principles to guide you in making these choices. For
the time being, you’ll have to trust me with the following architecture choice:

 Two intermediate layers with 16 hidden units each
 A third layer that will output the scalar prediction regarding the sentiment of

the current review

The intermediate layers will use relu as their activation function, and the final layer
will use a sigmoid activation so as to output a probability (a score between 0 and 1,

71Classifying movie reviews: a binary classification example
indicating how likely the sample is to have the target “1”: how likely the review is to be
positive). A relu (rectified linear unit) is a function meant to zero out negative values
(see figure 3.4), whereas a sigmoid “squashes” arbitrary values into the [0, 1] interval
(see figure 3.5), outputting something that can be interpreted as a probability.

Figure 3.4 The rectified linear unit function

Figure 3.5 The sigmoid function

72 CHAPTER 3 Getting started with neural networks
Figure 3.6 shows what the network looks like. And here’s the Keras implementation,
similar to the MNIST example you saw previously.

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Finally, you need to choose a loss function and an optimizer. Because you’re facing a
binary classification problem and the output of your network is a probability (you end
your network with a single-unit layer with a sigmoid activation), it’s best to use the

Listing 3.3 The model definition

Dense (units=1)

Output
(probability)

Input
(vectorized text)

Sequential

Dense (units=16)

Dense (units=16)

Figure 3.6 The three-layer network

What are activation functions, and why are they necessary?
Without an activation function like relu (also called a non-linearity), the Dense layer
would consist of two linear operations—a dot product and an addition:

output = dot(W, input) + b

So the layer could only learn linear transformations (affine transformations) of the
input data: the hypothesis space of the layer would be the set of all possible linear
transformations of the input data into a 16-dimensional space. Such a hypothesis
space is too restricted and wouldn’t benefit from multiple layers of representations,
because a deep stack of linear layers would still implement a linear operation: adding
more layers wouldn’t extend the hypothesis space.

In order to get access to a much richer hypothesis space that would benefit from
deep representations, you need a non-linearity, or activation function. relu is the
most popular activation function in deep learning, but there are many other candi-
dates, which all come with similarly strange names: prelu, elu, and so on.

73Classifying movie reviews: a binary classification example
binary_crossentropy loss. It isn’t the only viable choice: you could use, for instance,
mean_squared_error. But crossentropy is usually the best choice when you’re dealing
with models that output probabilities. Crossentropy is a quantity from the field of Infor-
mation Theory that measures the distance between probability distributions or, in this
case, between the ground-truth distribution and your predictions.

 Here’s the step where you configure the model with the rmsprop optimizer and
the binary_crossentropy loss function. Note that you’ll also monitor accuracy
during training.

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])

You’re passing your optimizer, loss function, and metrics as strings, which is possible
because rmsprop, binary_crossentropy, and accuracy are packaged as part of Keras.
Sometimes you may want to configure the parameters of your optimizer or pass a cus-
tom loss function or metric function. The former can be done by passing an optimizer
class instance as the optimizer argument, as shown in listing 3.5; the latter can be
done by passing function objects as the loss and/or metrics arguments, as shown in
listing 3.6.

from keras import optimizers

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss='binary_crossentropy',
metrics=['accuracy'])

from keras import losses
from keras import metrics

model.compile(optimizer=optimizers.RMSprop(lr=0.001),
loss=losses.binary_crossentropy,
metrics=[metrics.binary_accuracy])

3.4.4 Validating your approach

In order to monitor during training the accuracy of the model on data it has never
seen before, you’ll create a validation set by setting apart 10,000 samples from the
original training data.

x_val = x_train[:10000]
partial_x_train = x_train[10000:]

Listing 3.4 Compiling the model

Listing 3.5 Configuring the optimizer

Listing 3.6 Using custom losses and metrics

Listing 3.7 Setting aside a validation set

74 CHAPTER 3 Getting started with neural networks
y_val = y_train[:10000]
partial_y_train = y_train[10000:]

You’ll now train the model for 20 epochs (20 iterations over all samples in the
x_train and y_train tensors), in mini-batches of 512 samples. At the same time,
you’ll monitor loss and accuracy on the 10,000 samples that you set apart. You do so by
passing the validation data as the validation_data argument.

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))

On CPU, this will take less than 2 seconds per epoch—training is over in 20 seconds.
At the end of every epoch, there is a slight pause as the model computes its loss and
accuracy on the 10,000 samples of the validation data.

 Note that the call to model.fit() returns a History object. This object has a mem-
ber history, which is a dictionary containing data about everything that happened
during training. Let’s look at it:

>>> history_dict = history.history
>>> history_dict.keys()
[u'acc', u'loss', u'val_acc', u'val_loss']

The dictionary contains four entries: one per metric that was being monitored during
training and during validation. In the following two listing, let’s use Matplotlib to plot
the training and validation loss side by side (see figure 3.7), as well as the training and
validation accuracy (see figure 3.8). Note that your own results may vary slightly due to
a different random initialization of your network.

import matplotlib.pyplot as plt

history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

Listing 3.8 Training your model

Listing 3.9 Plotting the training and validation loss

“bo” is for
“blue dot.”

“b” is for “solid
blue line.”

75Classifying movie reviews: a binary classification example
plt.clf()
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

Listing 3.10 Plotting the training and validation accuracy

Figure 3.7 Training and validation loss

Clears the figure

Figure 3.8 Training and validation accuracy

76 CHAPTER 3 Getting started with neural networks
As you can see, the training loss decreases with every epoch, and the training accuracy
increases with every epoch. That’s what you would expect when running gradient-
descent optimization—the quantity you’re trying to minimize should be less with
every iteration. But that isn’t the case for the validation loss and accuracy: they seem to
peak at the fourth epoch. This is an example of what we warned against earlier: a
model that performs better on the training data isn’t necessarily a model that will do
better on data it has never seen before. In precise terms, what you’re seeing is overfit-
ting : after the second epoch, you’re overoptimizing on the training data, and you end
up learning representations that are specific to the training data and don’t generalize
to data outside of the training set.

 In this case, to prevent overfitting, you could stop training after three epochs. In
general, you can use a range of techniques to mitigate overfitting, which we’ll cover in
chapter 4.

 Let’s train a new network from scratch for four epochs and then evaluate it on the
test data.

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=4, batch_size=512)
results = model.evaluate(x_test, y_test)

The final results are as follows:

>>> results
[0.2929924130630493, 0.88327999999999995]

This fairly naive approach achieves an accuracy of 88%. With state-of-the-art
approaches, you should be able to get close to 95%.

3.4.5 Using a trained network to generate predictions on new data

After having trained a network, you’ll want to use it in a practical setting. You can gen-
erate the likelihood of reviews being positive by using the predict method:

>>> model.predict(x_test)
array([[0.98006207]

[0.99758697]
[0.99975556]
...,
[0.82167041]
[0.02885115]
[0.65371346]], dtype=float32)

Listing 3.11 Retraining a model from scratch

77Classifying movie reviews: a binary classification example
As you can see, the network is confident for some samples (0.99 or more, or 0.01 or
less) but less confident for others (0.6, 0.4).

3.4.6 Further experiments

The following experiments will help convince you that the architecture choices you’ve
made are all fairly reasonable, although there’s still room for improvement:

 You used two hidden layers. Try using one or three hidden layers, and see how
doing so affects validation and test accuracy.

 Try using layers with more hidden units or fewer hidden units: 32 units, 64 units,
and so on.

 Try using the mse loss function instead of binary_crossentropy.
 Try using the tanh activation (an activation that was popular in the early days of

neural networks) instead of relu.

3.4.7 Wrapping up

Here’s what you should take away from this example:

 You usually need to do quite a bit of preprocessing on your raw data in order to
be able to feed it—as tensors—into a neural network. Sequences of words can
be encoded as binary vectors, but there are other encoding options, too.

 Stacks of Dense layers with relu activations can solve a wide range of problems
(including sentiment classification), and you’ll likely use them frequently.

 In a binary classification problem (two output classes), your network should
end with a Dense layer with one unit and a sigmoid activation: the output of
your network should be a scalar between 0 and 1, encoding a probability.

 With such a scalar sigmoid output on a binary classification problem, the loss
function you should use is binary_crossentropy.

 The rmsprop optimizer is generally a good enough choice, whatever your prob-
lem. That’s one less thing for you to worry about.

 As they get better on their training data, neural networks eventually start over-
fitting and end up obtaining increasingly worse results on data they’ve never
seen before. Be sure to always monitor performance on data that is outside of
the training set.

78 CHAPTER 3 Getting started with neural networks
3.5 Classifying newswires:
a multiclass classification example
In the previous section, you saw how to classify vector inputs into two mutually exclu-
sive classes using a densely connected neural network. But what happens when you
have more than two classes?

 In this section, you’ll build a network to classify Reuters newswires into 46 mutually
exclusive topics. Because you have many classes, this problem is an instance of multi-
class classification; and because each data point should be classified into only one cate-
gory, the problem is more specifically an instance of single-label, multiclass classification.
If each data point could belong to multiple categories (in this case, topics), you’d be
facing a multilabel, multiclass classification problem.

3.5.1 The Reuters dataset

You’ll work with the Reuters dataset, a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy dataset for text classification. There
are 46 different topics; some topics are more represented than others, but each topic
has at least 10 examples in the training set.

 Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_data(
num_words=10000)

As with the IMDB dataset, the argument num_words=10000 restricts the data to the
10,000 most frequently occurring words found in the data.

 You have 8,982 training examples and 2,246 test examples:

>>> len(train_data)
8982
>>> len(test_data)
2246

As with the IMDB reviews, each example is a list of integers (word indices):

>>> train_data[10]
[1, 245, 273, 207, 156, 53, 74, 160, 26, 14, 46, 296, 26, 39, 74, 2979,
3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]

Here’s how you can decode it back to words, in case you’re curious.

word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in

train_data[0]])

Listing 3.12 Loading the Reuters dataset

Listing 3.13 Decoding newswires back to text

Note that the indices are offset by 3 because 0, 1, and 2 are reserved

indices for “padding,” “start of sequence,” and “unknown.”

79Classifying newswires: a multiclass classification example
The label associated with an example is an integer between 0 and 45—a topic index:

>>> train_labels[10]
3

3.5.2 Preparing the data

You can vectorize the data with the exact same code as in the previous example.

import numpy as np

def vectorize_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):

results[i, sequence] = 1.
return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

To vectorize the labels, there are two possibilities: you can cast the label list as an inte-
ger tensor, or you can use one-hot encoding. One-hot encoding is a widely used for-
mat for categorical data, also called categorical encoding. For a more detailed
explanation of one-hot encoding, see section 6.1. In this case, one-hot encoding of
the labels consists of embedding each label as an all-zero vector with a 1 in the place of
the label index. Here’s an example:

def to_one_hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):

results[i, label] = 1.
return results

one_hot_train_labels = to_one_hot(train_labels)
one_hot_test_labels = to_one_hot(test_labels)

Note that there is a built-in way to do this in Keras, which you’ve already seen in action
in the MNIST example:

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3.5.3 Building your network

This topic-classification problem looks similar to the previous movie-review classifica-
tion problem: in both cases, you’re trying to classify short snippets of text. But there is
a new constraint here: the number of output classes has gone from 2 to 46. The
dimensionality of the output space is much larger.

 In a stack of Dense layers like that you’ve been using, each layer can only access infor-
mation present in the output of the previous layer. If one layer drops some information

Listing 3.14 Encoding the data

Vectorized training data

Vectorized test data

Vectorized training labels

Vectorized test labels

80 CHAPTER 3 Getting started with neural networks
relevant to the classification problem, this information can never be recovered by later
layers: each layer can potentially become an information bottleneck. In the previous
example, you used 16-dimensional intermediate layers, but a 16-dimensional space may
be too limited to learn to separate 46 different classes: such small layers may act as infor-
mation bottlenecks, permanently dropping relevant information.

 For this reason you’ll use larger layers. Let’s go with 64 units.

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

There are two other things you should note about this architecture:

 You end the network with a Dense layer of size 46. This means for each input
sample, the network will output a 46-dimensional vector. Each entry in this vec-
tor (each dimension) will encode a different output class.

 The last layer uses a softmax activation. You saw this pattern in the MNIST
example. It means the network will output a probability distribution over the 46
different output classes—for every input sample, the network will produce a 46-
dimensional output vector, where output[i] is the probability that the sample
belongs to class i. The 46 scores will sum to 1.

The best loss function to use in this case is categorical_crossentropy. It measures
the distance between two probability distributions: here, between the probability dis-
tribution output by the network and the true distribution of the labels. By minimizing
the distance between these two distributions, you train the network to output some-
thing as close as possible to the true labels.

model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

3.5.4 Validating your approach

Let’s set apart 1,000 samples in the training data to use as a validation set.

x_val = x_train[:1000]
partial_x_train = x_train[1000:]

y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

Listing 3.15 Model definition

Listing 3.16 Compiling the model

Listing 3.17 Setting aside a validation set

81Classifying newswires: a multiclass classification example
Now, let’s train the network for 20 epochs.

history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))

And finally, let’s display its loss and accuracy curves (see figures 3.9 and 3.10).

import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

plt.clf()

acc = history.history['acc']
val_acc = history.history['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

Listing 3.18 Training the model

Listing 3.19 Plotting the training and validation loss

Listing 3.20 Plotting the training and validation accuracy

Clears the figure

Figure 3.9 Training and validation loss

82 CHAPTER 3 Getting started with neural networks
The network begins to overfit after nine epochs. Let’s train a new network from
scratch for nine epochs and then evaluate it on the test set.

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

model.fit(partial_x_train,
partial_y_train,
epochs=9,
batch_size=512,
validation_data=(x_val, y_val))

results = model.evaluate(x_test, one_hot_test_labels)

Here are the final results:

>>> results
[0.9565213431445807, 0.79697239536954589]

This approach reaches an accuracy of ~80%. With a balanced binary classification
problem, the accuracy reached by a purely random classifier would be 50%. But in
this case it’s closer to 19%, so the results seem pretty good, at least when compared to
a random baseline:

>>> import copy
>>> test_labels_copy = copy.copy(test_labels)
>>> np.random.shuffle(test_labels_copy)
>>> hits_array = np.array(test_labels) == np.array(test_labels_copy)
>>> float(np.sum(hits_array)) / len(test_labels)
0.18655387355298308

Listing 3.21 Retraining a model from scratch

Figure 3.10 Training and
validation accuracy

83Classifying newswires: a multiclass classification example
3.5.5 Generating predictions on new data

You can verify that the predict method of the model instance returns a probability
distribution over all 46 topics. Let’s generate topic predictions for all of the test data.

predictions = model.predict(x_test)

Each entry in predictions is a vector of length 46:

>>> predictions[0].shape
(46,)

The coefficients in this vector sum to 1:

>>> np.sum(predictions[0])
1.0

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax(predictions[0])
4

3.5.6 A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as
an integer tensor, like this:

y_train = np.array(train_labels)
y_test = np.array(test_labels)

The only thing this approach would change is the choice of the loss function. The loss
function used in listing 3.21, categorical_crossentropy, expects the labels to follow
a categorical encoding. With integer labels, you should use sparse_categorical_
crossentropy:

model.compile(optimizer='rmsprop',
loss='sparse_categorical_crossentropy',
metrics=['acc'])

This new loss function is still mathematically the same as categorical_crossentropy;
it just has a different interface.

3.5.7 The importance of having sufficiently large intermediate layers

We mentioned earlier that because the final outputs are 46-dimensional, you should
avoid intermediate layers with many fewer than 46 hidden units. Now let’s see what
happens when you introduce an information bottleneck by having intermediate layers
that are significantly less than 46-dimensional: for example, 4-dimensional.

Listing 3.22 Generating predictions for new data

84 CHAPTER 3 Getting started with neural networks
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=128,
validation_data=(x_val, y_val))

The network now peaks at ~71% validation accuracy, an 8% absolute drop. This drop
is mostly due to the fact that you’re trying to compress a lot of information (enough
information to recover the separation hyperplanes of 46 classes) into an intermediate
space that is too low-dimensional. The network is able to cram most of the necessary
information into these eight-dimensional representations, but not all of it.

3.5.8 Further experiments

 Try using larger or smaller layers: 32 units, 128 units, and so on.
 You used two hidden layers. Now try using a single hidden layer, or three hid-

den layers.

3.5.9 Wrapping up

Here’s what you should take away from this example:

 If you’re trying to classify data points among N classes, your network should end
with a Dense layer of size N.

 In a single-label, multiclass classification problem, your network should end
with a softmax activation so that it will output a probability distribution over the
N output classes.

 Categorical crossentropy is almost always the loss function you should use for
such problems. It minimizes the distance between the probability distributions
output by the network and the true distribution of the targets.

 There are two ways to handle labels in multiclass classification:
– Encoding the labels via categorical encoding (also known as one-hot encod-

ing) and using categorical_crossentropy as a loss function
– Encoding the labels as integers and using the sparse_categorical_crossentropy

loss function
 If you need to classify data into a large number of categories, you should avoid

creating information bottlenecks in your network due to intermediate layers
that are too small.

Listing 3.23 A model with an information bottleneck

85Predicting house prices: a regression example
3.6 Predicting house prices: a regression example
The two previous examples were considered classification problems, where the goal
was to predict a single discrete label of an input data point. Another common type of
machine-learning problem is regression, which consists of predicting a continuous
value instead of a discrete label: for instance, predicting the temperature tomorrow,
given meteorological data; or predicting the time that a software project will take to
complete, given its specifications.

NOTE Don’t confuse regression and the algorithm logistic regression. Con-
fusingly, logistic regression isn’t a regression algorithm—it’s a classification
algorithm.

3.6.1 The Boston Housing Price dataset

You’ll attempt to predict the median price of homes in a given Boston suburb in the
mid-1970s, given data points about the suburb at the time, such as the crime rate, the
local property tax rate, and so on. The dataset you’ll use has an interesting difference
from the two previous examples. It has relatively few data points: only 506, split
between 404 training samples and 102 test samples. And each feature in the input data
(for example, the crime rate) has a different scale. For instance, some values are pro-
portions, which take values between 0 and 1; others take values between 1 and 12, oth-
ers between 0 and 100, and so on.

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =

➥boston_housing.load_data()

Let’s look at the data:

>>> train_data.shape
(404, 13)
>>> test_data.shape
(102, 13)

As you can see, you have 404 training samples and 102 test samples, each with 13
numerical features, such as per capita crime rate, average number of rooms per dwell-
ing, accessibility to highways, and so on.

 The targets are the median values of owner-occupied homes, in thousands of
dollars:

>>> train_targets
[15.2, 42.3, 50. ... 19.4, 19.4, 29.1]

The prices are typically between $10,000 and $50,000. If that sounds cheap, remem-
ber that this was the mid-1970s, and these prices aren’t adjusted for inflation.

Listing 3.24 Loading the Boston housing dataset

86 CHAPTER 3 Getting started with neural networks
3.6.2 Preparing the data

It would be problematic to feed into a neural network values that all take wildly differ-
ent ranges. The network might be able to automatically adapt to such heterogeneous
data, but it would definitely make learning more difficult. A widespread best practice
to deal with such data is to do feature-wise normalization: for each feature in the input
data (a column in the input data matrix), you subtract the mean of the feature and
divide by the standard deviation, so that the feature is centered around 0 and has a
unit standard deviation. This is easily done in Numpy.

mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std

test_data -= mean
test_data /= std

Note that the quantities used for normalizing the test data are computed using the
training data. You should never use in your workflow any quantity computed on the
test data, even for something as simple as data normalization.

3.6.3 Building your network

Because so few samples are available, you’ll use a very small network with two hidden
layers, each with 64 units. In general, the less training data you have, the worse overfit-
ting will be, and using a small network is one way to mitigate overfitting.

from keras import models
from keras import layers

def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',

input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model

The network ends with a single unit and no activation (it will be a linear layer). This is
a typical setup for scalar regression (a regression where you’re trying to predict a single
continuous value). Applying an activation function would constrain the range the out-
put can take; for instance, if you applied a sigmoid activation function to the last layer,
the network could only learn to predict values between 0 and 1. Here, because the last
layer is purely linear, the network is free to learn to predict values in any range.

Listing 3.25 Normalizing the data

Listing 3.26 Model definition

Because you’ll need to instantiate
the same model multiple times, you
use a function to construct it.

87Predicting house prices: a regression example
 Note that you compile the network with the mse loss function—mean squared error,
the square of the difference between the predictions and the targets. This is a widely
used loss function for regression problems.

 You’re also monitoring a new metric during training: mean absolute error (MAE). It’s
the absolute value of the difference between the predictions and the targets. For
instance, an MAE of 0.5 on this problem would mean your predictions are off by $500
on average.

3.6.4 Validating your approach using K-fold validation

To evaluate your network while you keep adjusting its parameters (such as the number
of epochs used for training), you could split the data into a training set and a valida-
tion set, as you did in the previous examples. But because you have so few data points,
the validation set would end up being very small (for instance, about 100 examples).
As a consequence, the validation scores might change a lot depending on which data
points you chose to use for validation and which you chose for training: the validation
scores might have a high variance with regard to the validation split. This would pre-
vent you from reliably evaluating your model.

 The best practice in such situations is to use K-fold cross-validation (see figure 3.11).
It consists of splitting the available data into K partitions (typically K = 4 or 5), instanti-
ating K identical models, and training each one on K – 1 partitions while evaluating on
the remaining partition. The validation score for the model used is then the average of
the K validation scores obtained. In terms of code, this is straightforward.

import numpy as np

k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []

Listing 3.27 K-fold validation

Data split into 3 partitions

Validation Training Training Validation
score #1Fold 1

Validation Validation Training Validation
score #2

Final score:
averageFold 2

Validation Training Validation Validation
score #3Fold 3

Figure 3.11 3-fold cross-validation

88 CHAPTER 3 Getting started with neural networks
for i in range(k):
print('processing fold #', i)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)

partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)

model = build_model()
model.fit(partial_train_data, partial_train_targets,

epochs=num_epochs, batch_size=1, verbose=0)
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
all_scores.append(val_mae)

Running this with num_epochs = 100 yields the following results:

>>> all_scores
[2.588258957792037, 3.1289568449719116, 3.1856116051248984, 3.0763342615401386]
>>> np.mean(all_scores)
2.9947904173572462

The different runs do indeed show rather different validation scores, from 2.6 to 3.2.
The average (3.0) is a much more reliable metric than any single score—that’s the
entire point of K-fold cross-validation. In this case, you’re off by $3,000 on average,
which is significant considering that the prices range from $10,000 to $50,000.

 Let’s try training the network a bit longer: 500 epochs. To keep a record of how
well the model does at each epoch, you’ll modify the training loop to save the per-
epoch validation score log.

num_epochs = 500
all_mae_histories = []
for i in range(k):

print('processing fold #', i)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)

Listing 3.28 Saving the validation logs at each fold

Prepares the validation data:
data from partition #k

Prepares the training data:
data from all other partitions

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

Evaluates the model
on the validation data

Prepares the validation data:
data from partition #k

Prepares the training
data: data from all
other partitions

89Predicting house prices: a regression example
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)

model = build_model()
history = model.fit(partial_train_data, partial_train_targets,

validation_data=(val_data, val_targets),
epochs=num_epochs, batch_size=1, verbose=0)

mae_history = history.history['val_mean_absolute_error']
all_mae_histories.append(mae_history)

You can then compute the average of the per-epoch MAE scores for all folds.

average_mae_history = [
np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

Let’s plot this; see figure 3.12.

import matplotlib.pyplot as plt

plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

It may be a little difficult to see the plot, due to scaling issues and relatively high vari-
ance. Let’s do the following:

 Omit the first 10 data points, which are on a different scale than the rest of the curve.
 Replace each point with an exponential moving average of the previous points,

to obtain a smooth curve.

Listing 3.29 Building the history of successive mean K-fold validation scores

Listing 3.30 Plotting validation scores

Builds the Keras model
(already compiled)

Trains the model
(in silent mode, verbose=0)

Figure 3.12 Validation
MAE by epoch

90 CHAPTER 3 Getting started with neural networks
The result is shown in figure 3.13.

def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:

if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))

else:
smoothed_points.append(point)

return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

According to this plot, validation MAE stops improving significantly after 80 epochs.
Past that point, you start overfitting.

 Once you’re finished tuning other parameters of the model (in addition to the
number of epochs, you could also adjust the size of the hidden layers), you can train a
final production model on all of the training data, with the best parameters, and then
look at its performance on the test data.

model = build_model()
model.fit(train_data, train_targets,

epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

Listing 3.31 Plotting validation scores, excluding the first 10 data points

Listing 3.32 Training the final model

Figure 3.13 Validation MAE
by epoch, excluding the first
10 data points

Gets a fresh, compiled model

Trains it on the entirety of the data

91Predicting house prices: a regression example
Here’s the final result:

>>> test_mae_score
2.5532484335057877

You’re still off by about $2,550.

3.6.5 Wrapping up

Here’s what you should take away from this example:

 Regression is done using different loss functions than what we used for classifi-
cation. Mean squared error (MSE) is a loss function commonly used for regres-
sion.

 Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression. A
common regression metric is mean absolute error (MAE).

 When features in the input data have values in different ranges, each feature
should be scaled independently as a preprocessing step.

 When there is little data available, using K-fold validation is a great way to reli-
ably evaluate a model.

 When little training data is available, it’s preferable to use a small network with
few hidden layers (typically only one or two), in order to avoid severe overfitting.

92 CHAPTER 3 Getting started with neural networks
Chapter summary
 You’re now able to handle the most common kinds of machine-learning

tasks on vector data: binary classification, multiclass classification, and sca-
lar regression. The “Wrapping up” sections earlier in the chapter summa-
rize the important points you’ve learned regarding these types of tasks.

 You’ll usually need to preprocess raw data before feeding it into a neural
network.

 When your data has features with different ranges, scale each feature
independently as part of preprocessing.

 As training progresses, neural networks eventually begin to overfit and
obtain worse results on never-before-seen data.

 If you don’t have much training data, use a small network with only one or
two hidden layers, to avoid severe overfitting.

 If your data is divided into many categories, you may cause information
bottlenecks if you make the intermediate layers too small.

 Regression uses different loss functions and different evaluation metrics
than classification.

 When you’re working with little data, K-fold validation can help reliably
evaluate your model.

Fundamentals of
machine learning
After the three practical examples in chapter 3, you should be starting to feel famil-
iar with how to approach classification and regression problems using neural net-
works, and you’ve witnessed the central problem of machine learning: overfitting.
This chapter will formalize some of your new intuition into a solid conceptual
framework for attacking and solving deep-learning problems. We’ll consolidate all
of these concepts—model evaluation, data preprocessing and feature engineering,
and tackling overfitting—into a detailed seven-step workflow for tackling any
machine-learning task.

This chapter covers
 Forms of machine learning beyond classification

and regression

 Formal evaluation procedures for machine-
learning models

 Preparing data for deep learning

 Feature engineering

 Tackling overfitting

 The universal workflow for approaching machine-
learning problems
93

94 CHAPTER 4 Fundamentals of machine learning
4.1 Four branches of machine learning
In our previous examples, you’ve become familiar with three specific types of
machine-learning problems: binary classification, multiclass classification, and scalar
regression. All three are instances of supervised learning, where the goal is to learn the
relationship between training inputs and training targets.

 Supervised learning is just the tip of the iceberg—machine learning is a vast field
with a complex subfield taxonomy. Machine-learning algorithms generally fall into
four broad categories, described in the following sections.

4.1.1 Supervised learning

This is by far the most common case. It consists of learning to map input data to
known targets (also called annotations), given a set of examples (often annotated by
humans). All four examples you’ve encountered in this book so far were canonical
examples of supervised learning. Generally, almost all applications of deep learning
that are in the spotlight these days belong in this category, such as optical character
recognition, speech recognition, image classification, and language translation.

 Although supervised learning mostly consists of classification and regression, there
are more exotic variants as well, including the following (with examples):

 Sequence generation—Given a picture, predict a caption describing it. Sequence
generation can sometimes be reformulated as a series of classification problems
(such as repeatedly predicting a word or token in a sequence).

 Syntax tree prediction—Given a sentence, predict its decomposition into a syntax
tree.

 Object detection—Given a picture, draw a bounding box around certain objects
inside the picture. This can also be expressed as a classification problem (given
many candidate bounding boxes, classify the contents of each one) or as a joint
classification and regression problem, where the bounding-box coordinates are
predicted via vector regression.

 Image segmentation—Given a picture, draw a pixel-level mask on a specific object.

4.1.2 Unsupervised learning

This branch of machine learning consists of finding interesting transformations of the
input data without the help of any targets, for the purposes of data visualization, data
compression, or data denoising, or to better understand the correlations present in
the data at hand. Unsupervised learning is the bread and butter of data analytics, and
it’s often a necessary step in better understanding a dataset before attempting to solve
a supervised-learning problem. Dimensionality reduction and clustering are well-known
categories of unsupervised learning.

4.1.3 Self-supervised learning

This is a specific instance of supervised learning, but it’s different enough that it
deserves its own category. Self-supervised learning is supervised learning without

95Four branches of machine learning
human-annotated labels—you can think of it as supervised learning without any
humans in the loop. There are still labels involved (because the learning has to be
supervised by something), but they’re generated from the input data, typically using a
heuristic algorithm.

 For instance, autoencoders are a well-known instance of self-supervised learning,
where the generated targets are the input, unmodified. In the same way, trying to pre-
dict the next frame in a video, given past frames, or the next word in a text, given previ-
ous words, are instances of self-supervised learning (temporally supervised learning, in this
case: supervision comes from future input data). Note that the distinction between
supervised, self-supervised, and unsupervised learning can be blurry sometimes—these
categories are more of a continuum without solid borders. Self-supervised learning can
be reinterpreted as either supervised or unsupervised learning, depending on whether
you pay attention to the learning mechanism or to the context of its application.

NOTE In this book, we’ll focus specifically on supervised learning, because
it’s by far the dominant form of deep learning today, with a wide range of
industry applications. We’ll also take a briefer look at self-supervised learning
in later chapters.

4.1.4 Reinforcement learning

Long overlooked, this branch of machine learning recently started to get a lot of
attention after Google DeepMind successfully applied it to learning to play Atari
games (and, later, learning to play Go at the highest level). In reinforcement learning,
an agent receives information about its environment and learns to choose actions that
will maximize some reward. For instance, a neural network that “looks” at a video-
game screen and outputs game actions in order to maximize its score can be trained
via reinforcement learning.

 Currently, reinforcement learning is mostly a research area and hasn’t yet had sig-
nificant practical successes beyond games. In time, however, we expect to see rein-
forcement learning take over an increasingly large range of real-world applications:
self-driving cars, robotics, resource management, education, and so on. It’s an idea
whose time has come, or will come soon.

Classification and regression glossary
Classification and regression involve many specialized terms. You’ve come across
some of them in earlier examples, and you’ll see more of them in future chapters.
They have precise, machine-learning-specific definitions, and you should be familiar
with them:

 Sample or input—One data point that goes into your model.
 Prediction or output—What comes out of your model.
 Target—The truth. What your model should ideally have predicted, according

to an external source of data.

96 CHAPTER 4 Fundamentals of machine learning
(continued)
 Prediction error or loss value—A measure of the distance between your

model’s prediction and the target.
 Classes—A set of possible labels to choose from in a classification problem.

For example, when classifying cat and dog pictures, “dog” and “cat” are the
two classes.

 Label—A specific instance of a class annotation in a classification problem.
For instance, if picture #1234 is annotated as containing the class “dog,”
then “dog” is a label of picture #1234.

 Ground-truth or annotations—All targets for a dataset, typically collected by
humans.

 Binary classification—A classification task where each input sample should
be categorized into two exclusive categories.

 Multiclass classification—A classification task where each input sample
should be categorized into more than two categories: for instance, classifying
handwritten digits.

 Multilabel classification—A classification task where each input sample can
be assigned multiple labels. For instance, a given image may contain both a
cat and a dog and should be annotated both with the “cat” label and the
“dog” label. The number of labels per image is usually variable.

 Scalar regression—A task where the target is a continuous scalar value. Pre-
dicting house prices is a good example: the different target prices form a con-
tinuous space.

 Vector regression—A task where the target is a set of continuous values: for
example, a continuous vector. If you’re doing regression against multiple val-
ues (such as the coordinates of a bounding box in an image), then you’re
doing vector regression.

 Mini-batch or batch—A small set of samples (typically between 8 and 128)
that are processed simultaneously by the model. The number of samples is
often a power of 2, to facilitate memory allocation on GPU. When training, a
mini-batch is used to compute a single gradient-descent update applied to
the weights of the model.

97Evaluating machine-learning models
4.2 Evaluating machine-learning models
In the three examples presented in chapter 3, we split the data into a training set, a
validation set, and a test set. The reason not to evaluate the models on the same data
they were trained on quickly became evident: after just a few epochs, all three models
began to overfit. That is, their performance on never-before-seen data started stalling
(or worsening) compared to their performance on the training data—which always
improves as training progresses.

 In machine learning, the goal is to achieve models that generalize—that perform
well on never-before-seen data—and overfitting is the central obstacle. You can only
control that which you can observe, so it’s crucial to be able to reliably measure the
generalization power of your model. The following sections look at strategies for miti-
gating overfitting and maximizing generalization. In this section, we’ll focus on how
to measure generalization: how to evaluate machine-learning models.

4.2.1 Training, validation, and test sets

Evaluating a model always boils down to splitting the available data into three sets:
training, validation, and test. You train on the training data and evaluate your model
on the validation data. Once your model is ready for prime time, you test it one final
time on the test data.

 You may ask, why not have two sets: a training set and a test set? You’d train on the
training data and evaluate on the test data. Much simpler!

 The reason is that developing a model always involves tuning its configuration: for
example, choosing the number of layers or the size of the layers (called the hyper-
parameters of the model, to distinguish them from the parameters, which are the net-
work’s weights). You do this tuning by using as a feedback signal the performance of
the model on the validation data. In essence, this tuning is a form of learning : a search
for a good configuration in some parameter space. As a result, tuning the configura-
tion of the model based on its performance on the validation set can quickly result in
overfitting to the validation set, even though your model is never directly trained on it.

 Central to this phenomenon is the notion of information leaks. Every time you tune
a hyperparameter of your model based on the model’s performance on the validation
set, some information about the validation data leaks into the model. If you do this
only once, for one parameter, then very few bits of information will leak, and your val-
idation set will remain reliable to evaluate the model. But if you repeat this many
times—running one experiment, evaluating on the validation set, and modifying your
model as a result—then you’ll leak an increasingly significant amount of information
about the validation set into the model.

 At the end of the day, you’ll end up with a model that performs artificially well on
the validation data, because that’s what you optimized it for. You care about perfor-
mance on completely new data, not the validation data, so you need to use a com-
pletely different, never-before-seen dataset to evaluate the model: the test dataset. Your
model shouldn’t have had access to any information about the test set, even indirectly.

98 CHAPTER 4 Fundamentals of machine learning
If anything about the model has been tuned based on test set performance, then your
measure of generalization will be flawed.

 Splitting your data into training, validation, and test sets may seem straightforward,
but there are a few advanced ways to do it that can come in handy when little data is
available. Let’s review three classic evaluation recipes: simple hold-out validation, K-
fold validation, and iterated K-fold validation with shuffling.

SIMPLE HOLD-OUT VALIDATION

Set apart some fraction of your data as your test set. Train on the remaining data, and
evaluate on the test set. As you saw in the previous sections, in order to prevent infor-
mation leaks, you shouldn’t tune your model based on the test set, and therefore you
should also reserve a validation set.

 Schematically, hold-out validation looks like figure 4.1. The following listing shows
a simple implementation.

num_validation_samples = 10000

np.random.shuffle(data)

validation_data = data[:num_validation_samples]
data = data[num_validation_samples:]

training_data = data[:]

model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)

At this point you can tune your model,
retrain it, evaluate it, tune it again...

model = get_model()
model.train(np.concatenate([training_data,

validation_data]))
test_score = model.evaluate(test_data)

Listing 4.1 Hold-out validation

Training set

Total available labeled data

Train on this Evaluate
on this

Held-out
validation

set
Figure 4.1 Simple hold-
out validation split

Shuffling the data is
usually appropriate.

Defines the
validation set

Defines the training set

Trains a model on the training
data, and evaluates it on the
validation data

Once you’ve tuned your
hyperparameters, it’s common to
train your final model from scratch
on all non-test data available.

99Evaluating machine-learning models

n,
This is the simplest evaluation protocol, and it suffers from one flaw: if little data is
available, then your validation and test sets may contain too few samples to be statisti-
cally representative of the data at hand. This is easy to recognize: if different random
shuffling rounds of the data before splitting end up yielding very different measures
of model performance, then you’re having this issue. K-fold validation and iterated
K-fold validation are two ways to address this, as discussed next.

K-FOLD VALIDATION

With this approach, you split your data into K partitions of equal size. For each parti-
tion i, train a model on the remaining K – 1 partitions, and evaluate it on partition i.
Your final score is then the averages of the K scores obtained. This method is helpful
when the performance of your model shows significant variance based on your train-
test split. Like hold-out validation, this method doesn’t exempt you from using a dis-
tinct validation set for model calibration.

 Schematically, K-fold cross-validation looks like figure 4.2. Listing 4.2 shows a simple
implementation.

k = 4
num_validation_samples = len(data) // k

np.random.shuffle(data)

validation_scores = []
for fold in range(k):

validation_data = data[num_validation_samples * fold:
num_validation_samples * (fold + 1)]

training_data = data[:num_validation_samples * fold] +
data[num_validation_samples * (fold + 1):]

model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)
validation_scores.append(validation_score)

Listing 4.2 K-fold cross-validation

Data split into 3 partitions

Validation Training Training Validation
score #1Fold 1

Validation Validation Training Validation
score #2

Final score:
averageFold 2

Validation Training Validation Validation
score #3Fold 3

Figure 4.2 Three-fold validation

Selects the validation-
data partition

Uses the remainder of the data
as training data. Note that the
+ operator is list concatenatio
not summation.

Creates a brand-new instance
of the model (untrained)

100 CHAPTER 4 Fundamentals of machine learning
validation_score = np.average(validation_scores)

model = get_model()
model.train(data)
test_score = model.evaluate(test_data)

ITERATED K-FOLD VALIDATION WITH SHUFFLING

This one is for situations in which you have relatively little data available and you need
to evaluate your model as precisely as possible. I’ve found it to be extremely helpful in
Kaggle competitions. It consists of applying K-fold validation multiple times, shuffling
the data every time before splitting it K ways. The final score is the average of the
scores obtained at each run of K-fold validation. Note that you end up training and
evaluating P × K models (where P is the number of iterations you use), which can very
expensive.

4.2.2 Things to keep in mind

Keep an eye out for the following when you’re choosing an evaluation protocol:

 Data representativeness—You want both your training set and test set to be repre-
sentative of the data at hand. For instance, if you’re trying to classify images of
digits, and you’re starting from an array of samples where the samples are
ordered by their class, taking the first 80% of the array as your training set and
the remaining 20% as your test set will result in your training set containing
only classes 0–7, whereas your test set contains only classes 8–9. This seems like
a ridiculous mistake, but it’s surprisingly common. For this reason, you usually
should randomly shuffle your data before splitting it into training and test sets.

 The arrow of time—If you’re trying to predict the future given the past (for exam-
ple, tomorrow’s weather, stock movements, and so on), you should not ran-
domly shuffle your data before splitting it, because doing so will create a
temporal leak: your model will effectively be trained on data from the future. In
such situations, you should always make sure all data in your test set is posterior
to the data in the training set.

 Redundancy in your data—If some data points in your data appear twice (fairly
common with real-world data), then shuffling the data and splitting it into a
training set and a validation set will result in redundancy between the training
and validation sets. In effect, you’ll be testing on part of your training data,
which is the worst thing you can do! Make sure your training set and validation
set are disjoint.

Validation score:
average of the
validation scores
of the k folds

Trains the final
model on all non-
test data available

101Data preprocessing, feature engineering, and feature learning
4.3 Data preprocessing, feature engineering,
and feature learning
In addition to model evaluation, an important question we must tackle before we dive
deeper into model development is the following: how do you prepare the input data
and targets before feeding them into a neural network? Many data-preprocessing and
feature-engineering techniques are domain specific (for example, specific to text data
or image data); we’ll cover those in the following chapters as we encounter them in
practical examples. For now, we’ll review the basics that are common to all data
domains.

4.3.1 Data preprocessing for neural networks

Data preprocessing aims at making the raw data at hand more amenable to neural
networks. This includes vectorization, normalization, handling missing values, and
feature extraction.

VECTORIZATION

All inputs and targets in a neural network must be tensors of floating-point data (or, in
specific cases, tensors of integers). Whatever data you need to process—sound,
images, text—you must first turn into tensors, a step called data vectorization. For
instance, in the two previous text-classification examples, we started from text repre-
sented as lists of integers (standing for sequences of words), and we used one-hot
encoding to turn them into a tensor of float32 data. In the examples of classifying
digits and predicting house prices, the data already came in vectorized form, so you
were able to skip this step.

VALUE NORMALIZATION

In the digit-classification example, you started from image data encoded as integers in
the 0–255 range, encoding grayscale values. Before you fed this data into your net-
work, you had to cast it to float32 and divide by 255 so you’d end up with floating-
point values in the 0–1 range. Similarly, when predicting house prices, you started
from features that took a variety of ranges—some features had small floating-point val-
ues, others had fairly large integer values. Before you fed this data into your network,
you had to normalize each feature independently so that it had a standard deviation
of 1 and a mean of 0.

 In general, it isn’t safe to feed into a neural network data that takes relatively large val-
ues (for example, multidigit integers, which are much larger than the initial values taken
by the weights of a network) or data that is heterogeneous (for example, data where one
feature is in the range 0–1 and another is in the range 100–200). Doing so can trigger
large gradient updates that will prevent the network from converging. To make learning
easier for your network, your data should have the following characteristics:

 Take small values—Typically, most values should be in the 0–1 range.
 Be homogenous—That is, all features should take values in roughly the same

range.

102 CHAPTER 4 Fundamentals of machine learning
Additionally, the following stricter normalization practice is common and can help,
although it isn’t always necessary (for example, you didn’t do this in the digit-classification
example):

 Normalize each feature independently to have a mean of 0.
 Normalize each feature independently to have a standard deviation of 1.

This is easy to do with Numpy arrays:

x -= x.mean(axis=0)
x /= x.std(axis=0)

HANDLING MISSING VALUES

You may sometimes have missing values in your data. For instance, in the house-price
example, the first feature (the column of index 0 in the data) was the per capita crime
rate. What if this feature wasn’t available for all samples? You’d then have missing val-
ues in the training or test data.

 In general, with neural networks, it’s safe to input missing values as 0, with the con-
dition that 0 isn’t already a meaningful value. The network will learn from exposure to
the data that the value 0 means missing data and will start ignoring the value.

 Note that if you’re expecting missing values in the test data, but the network was
trained on data without any missing values, the network won’t have learned to ignore
missing values! In this situation, you should artificially generate training samples with
missing entries: copy some training samples several times, and drop some of the fea-
tures that you expect are likely to be missing in the test data.

4.3.2 Feature engineering

Feature engineering is the process of using your own knowledge about the data and about
the machine-learning algorithm at hand (in this case, a neural network) to make the
algorithm work better by applying
hardcoded (nonlearned) transfor-
mations to the data before it goes
into the model. In many cases, it isn’t
reasonable to expect a machine-
learning model to be able to learn
from completely arbitrary data. The
data needs to be presented to the
model in a way that will make the
model’s job easier.

 Let’s look at an intuitive example.
Suppose you’re trying to develop a
model that can take as input an
image of a clock and can output the
time of day (see figure 4.3).

Assuming x is a 2D data matrix
of shape (samples, features)

Raw data:
pixel grid

Better
features:
clock hands’
coordinates

{x1: 0.7,
y1: 0.7}
{x2: 0.5,
y2: 0.0}

{x1: 0.0,
y2: 1.0}

{x2: -0.38,
2: 0.32}

Even better
features:
angles of
clock hands

theta1: 45
theta2: 0

theta1: 90
theta2: 140

Figure 4.3 Feature engineering for reading the time on
a clock

103Data preprocessing, feature engineering, and feature learning
If you choose to use the raw pixels of the image as input data, then you have a difficult
machine-learning problem on your hands. You’ll need a convolutional neural net-
work to solve it, and you’ll have to expend quite a bit of computational resources to
train the network.

 But if you already understand the problem at a high level (you understand how
humans read time on a clock face), then you can come up with much better input fea-
tures for a machine-learning algorithm: for instance, it’s easy to write a five-line
Python script to follow the black pixels of the clock hands and output the (x, y) coor-
dinates of the tip of each hand. Then a simple machine-learning algorithm can learn
to associate these coordinates with the appropriate time of day.

 You can go even further: do a coordinate change, and express the (x, y) coordi-
nates as polar coordinates with regard to the center of the image. Your input will
become the angle theta of each clock hand. At this point, your features are making
the problem so easy that no machine learning is required; a simple rounding opera-
tion and dictionary lookup are enough to recover the approximate time of day.

 That’s the essence of feature engineering: making a problem easier by expressing
it in a simpler way. It usually requires understanding the problem in depth.

 Before deep learning, feature engineering used to be critical, because classical
shallow algorithms didn’t have hypothesis spaces rich enough to learn useful features
by themselves. The way you presented the data to the algorithm was essential to its suc-
cess. For instance, before convolutional neural networks became successful on the
MNIST digit-classification problem, solutions were typically based on hardcoded fea-
tures such as the number of loops in a digit image, the height of each digit in an
image, a histogram of pixel values, and so on.

 Fortunately, modern deep learning removes the need for most feature engineer-
ing, because neural networks are capable of automatically extracting useful features
from raw data. Does this mean you don’t have to worry about feature engineering as
long as you’re using deep neural networks? No, for two reasons:

 Good features still allow you to solve problems more elegantly while using fewer
resources. For instance, it would be ridiculous to solve the problem of reading a
clock face using a convolutional neural network.

 Good features let you solve a problem with far less data. The ability of deep-
learning models to learn features on their own relies on having lots of training
data available; if you have only a few samples, then the information value in
their features becomes critical.

104 CHAPTER 4 Fundamentals of machine learning
4.4 Overfitting and underfitting
In all three examples in the previous chapter—predicting movie reviews, topic classifi-
cation, and house-price regression—the performance of the model on the held-out
validation data always peaked after a few epochs and then began to degrade: the
model quickly started to overfit to the training data. Overfitting happens in every
machine-learning problem. Learning how to deal with overfitting is essential to mas-
tering machine learning.

 The fundamental issue in machine learning is the tension between optimization
and generalization. Optimization refers to the process of adjusting a model to get the
best performance possible on the training data (the learning in machine learning),
whereas generalization refers to how well the trained model performs on data it has
never seen before. The goal of the game is to get good generalization, of course, but
you don’t control generalization; you can only adjust the model based on its training
data.

 At the beginning of training, optimization and generalization are correlated: the
lower the loss on training data, the lower the loss on test data. While this is happening,
your model is said to be underfit: there is still progress to be made; the network hasn’t
yet modeled all relevant patterns in the training data. But after a certain number of
iterations on the training data, generalization stops improving, and validation metrics
stall and then begin to degrade: the model is starting to overfit. That is, it’s beginning
to learn patterns that are specific to the training data but that are misleading or irrele-
vant when it comes to new data.

 To prevent a model from learning misleading or irrelevant patterns found in the
training data, the best solution is to get more training data. A model trained on more data
will naturally generalize better. When that isn’t possible, the next-best solution is to
modulate the quantity of information that your model is allowed to store or to add
constraints on what information it’s allowed to store. If a network can only afford to
memorize a small number of patterns, the optimization process will force it to focus
on the most prominent patterns, which have a better chance of generalizing well.

 The processing of fighting overfitting this way is called regularization. Let’s review
some of the most common regularization techniques and apply them in practice to
improve the movie-classification model from section 3.4.

4.4.1 Reducing the network’s size

The simplest way to prevent overfitting is to reduce the size of the model: the number
of learnable parameters in the model (which is determined by the number of layers
and the number of units per layer). In deep learning, the number of learnable param-
eters in a model is often referred to as the model’s capacity. Intuitively, a model with
more parameters has more memorization capacity and therefore can easily learn a per-
fect dictionary-like mapping between training samples and their targets—a mapping
without any generalization power. For instance, a model with 500,000 binary parame-
ters could easily be made to learn the class of every digit in the MNIST training set:

105Overfitting and underfitting
we’d need only 10 binary parameters for each of the 50,000 digits. But such a model
would be useless for classifying new digit samples. Always keep this in mind: deep-
learning models tend to be good at fitting to the training data, but the real challenge
is generalization, not fitting.

 On the other hand, if the network has limited memorization resources, it won’t be
able to learn this mapping as easily; thus, in order to minimize its loss, it will have to
resort to learning compressed representations that have predictive power regarding
the targets—precisely the type of representations we’re interested in. At the same
time, keep in mind that you should use models that have enough parameters that they
don’t underfit: your model shouldn’t be starved for memorization resources. There is
a compromise to be found between too much capacity and not enough capacity.

 Unfortunately, there is no magical formula to determine the right number of lay-
ers or the right size for each layer. You must evaluate an array of different architec-
tures (on your validation set, not on your test set, of course) in order to find the
correct model size for your data. The general workflow to find an appropriate model
size is to start with relatively few layers and parameters, and increase the size of the lay-
ers or add new layers until you see diminishing returns with regard to validation loss.

 Let’s try this on the movie-review classification network. The original network is
shown next.

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Now let’s try to replace it with this smaller network.

model = models.Sequential()
model.add(layers.Dense(4, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.4 shows a comparison of the validation losses of the original network and the
smaller network. The dots are the validation loss values of the smaller network, and
the crosses are the initial network (remember, a lower validation loss signals a better
model).

Listing 4.3 Original model

Listing 4.4 Version of the model with lower capacity

106 CHAPTER 4 Fundamentals of machine learning
As you can see, the smaller network starts overfitting later than the reference network
(after six epochs rather than four), and its performance degrades more slowly once it
starts overfitting.

 Now, for kicks, let’s add to this benchmark a network that has much more capac-
ity—far more than the problem warrants.

model = models.Sequential()
model.add(layers.Dense(512, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.5 shows how the bigger network fares compared to the reference network.
The dots are the validation loss values of the bigger network, and the crosses are the
initial network.

Listing 4.5 Version of the model with higher capacity

Figure 4.4 Effect of model
capacity on validation loss: trying
a smaller model

Figure 4.5 Effect of model
capacity on validation loss:
trying a bigger model

107Overfitting and underfitting
The bigger network starts overfitting almost immediately, after just one epoch, and it
overfits much more severely. Its validation loss is also noisier.

 Meanwhile, figure 4.6 shows the training losses for the two networks. As you can
see, the bigger network gets its training loss near zero very quickly. The more capacity
the network has, the more quickly it can model the training data (resulting in a low
training loss), but the more susceptible it is to overfitting (resulting in a large differ-
ence between the training and validation loss).

4.4.2 Adding weight regularization

You may be familiar with the principle of Occam’s razor : given two explanations for
something, the explanation most likely to be correct is the simplest one—the one that
makes fewer assumptions. This idea also applies to the models learned by neural net-
works: given some training data and a network architecture, multiple sets of weight
values (multiple models) could explain the data. Simpler models are less likely to over-
fit than complex ones.

 A simple model in this context is a model where the distribution of parameter values
has less entropy (or a model with fewer parameters, as you saw in the previous sec-
tion). Thus a common way to mitigate overfitting is to put constraints on the complex-
ity of a network by forcing its weights to take only small values, which makes the
distribution of weight values more regular. This is called weight regularization, and it’s
done by adding to the loss function of the network a cost associated with having large
weights. This cost comes in two flavors:

 L1 regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

 L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as L2 regularization.

Figure 4.6 Effect of model
capacity on training loss:
trying a bigger model

108 CHAPTER 4 Fundamentals of machine learning
In Keras, weight regularization is added by passing weight regularizer instances to layers
as keyword arguments. Let’s add L2 weight regularization to the movie-review classifi-
cation network.

from keras import regularizers

model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),

activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),

activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

l2(0.001) means every coefficient in the weight matrix of the layer will add 0.001 *
weight_coefficient_value to the total loss of the network. Note that because this
penalty is only added at training time, the loss for this network will be much higher at
training than at test time.

 Figure 4.7 shows the impact of the L2 regularization penalty. As you can see, the
model with L2 regularization (dots) has become much more resistant to overfitting
than the reference model (crosses), even though both models have the same number
of parameters.

As an alternative to L2 regularization, you can use one of the following Keras weight
regularizers.

from keras import regularizers

regularizers.l1(0.001)

regularizers.l1_l2(l1=0.001, l2=0.001)

Listing 4.6 Adding L2 weight regularization to the model

Listing 4.7 Different weight regularizers available in Keras

Figure 4.7 Effect of L2 weight
regularization on validation loss

L1 regularization Simultaneous L1 and
L2 regularization

109Overfitting and underfitting
4.4.3 Adding dropout

Dropout is one of the most effective and most commonly used regularization tech-
niques for neural networks, developed by Geoff Hinton and his students at the Uni-
versity of Toronto. Dropout, applied to a layer, consists of randomly dropping out
(setting to zero) a number of output features of the layer during training. Let’s say a
given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given input
sample during training. After applying dropout, this vector will have a few zero entries
distributed at random: for example, [0, 0.5, 1.3, 0, 1.1]. The dropout rate is the fraction
of the features that are zeroed out; it’s usually set between 0.2 and 0.5. At test time, no
units are dropped out; instead, the layer’s output values are scaled down by a factor
equal to the dropout rate, to balance for the fact that more units are active than at
training time.

 Consider a Numpy matrix containing the output of a layer, layer_output, of
shape (batch_size, features). At training time, we zero out at random a fraction of
the values in the matrix:

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)

At test time, we scale down the output by the dropout rate. Here, we scale by 0.5
(because we previously dropped half the units):

layer_output *= 0.5

Note that this process can be implemented by doing both operations at training time
and leaving the output unchanged at test time, which is often the way it’s imple-
mented in practice (see figure 4.8):

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)
layer_output /= 0.5

This technique may seem strange and arbitrary. Why would this help reduce overfit-
ting? Hinton says he was inspired by, among other things, a fraud-prevention mecha-
nism used by banks. In his own words, “I went to my bank. The tellers kept changing
and I asked one of them why. He said he didn’t know but they got moved around a lot.

At training time, drops out 50%
of the units in the output

At test time

At training timeNote that we’re scaling up rather
scaling down in this case.

0.3

* 2
0.6

0.2

0.7

0.2

0.1

1.9

0.5

1.5

0.0

0.3

1.0

0.0

0.3

1.2

0.0

0.0
50%

dropout 0.6

0.0

0.7

0.2

0.1

1.9

0.0

1.5

0.0

0.3

0.0

0.0

0.3

0.0

0.0

Figure 4.8 Dropout applied to an
activation matrix at training time,
with rescaling happening during
training. At test time, the activation
matrix is unchanged.

110 CHAPTER 4 Fundamentals of machine learning
I figured it must be because it would require cooperation between employees to suc-
cessfully defraud the bank. This made me realize that randomly removing a different
subset of neurons on each example would prevent conspiracies and thus reduce over-
fitting.”1 The core idea is that introducing noise in the output values of a layer can
break up happenstance patterns that aren’t significant (what Hinton refers to as con-
spiracies), which the network will start memorizing if no noise is present.

 In Keras, you can introduce dropout in a network via the Dropout layer, which is
applied to the output of the layer right before it:

model.add(layers.Dropout(0.5))

Let’s add two Dropout layers in the IMDB network to see how well they do at reducing
overfitting.

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))

Figure 4.9 shows a plot of the results. Again, this is a clear improvement over the refer-
ence network.

To recap, these are the most common ways to prevent overfitting in neural networks:

 Get more training data.
 Reduce the capacity of the network.
 Add weight regularization.
 Add dropout.

1 See the Reddit thread “AMA: We are the Google Brain team. We’d love to answer your questions about
machine learning,” http://mng.bz/XrsS.

Listing 4.8 Adding dropout to the IMDB network

Figure 4.9 Effect of dropout
on validation loss

111The universal workflow of machine learning
4.5 The universal workflow of machine learning
In this section, we’ll present a universal blueprint that you can use to attack and solve
any machine-learning problem. The blueprint ties together the concepts you’ve
learned about in this chapter: problem definition, evaluation, feature engineering,
and fighting overfitting.

4.5.1 Defining the problem and assembling a dataset

First, you must define the problem at hand:

 What will your input data be? What are you trying to predict? You can only learn
to predict something if you have available training data: for example, you can
only learn to classify the sentiment of movie reviews if you have both movie
reviews and sentiment annotations available. As such, data availability is usually
the limiting factor at this stage (unless you have the means to pay people to col-
lect data for you).

 What type of problem are you facing? Is it binary classification? Multiclass classi-
fication? Scalar regression? Vector regression? Multiclass, multilabel classifica-
tion? Something else, like clustering, generation, or reinforcement learning?
Identifying the problem type will guide your choice of model architecture, loss
function, and so on.

You can’t move to the next stage until you know what your inputs and outputs are, and
what data you’ll use. Be aware of the hypotheses you make at this stage:

 You hypothesize that your outputs can be predicted given your inputs.
 You hypothesize that your available data is sufficiently informative to learn the

relationship between inputs and outputs.

Until you have a working model, these are merely hypotheses, waiting to be validated
or invalidated. Not all problems can be solved; just because you’ve assembled exam-
ples of inputs X and targets Y doesn’t mean X contains enough information to predict
Y. For instance, if you’re trying to predict the movements of a stock on the stock mar-
ket given its recent price history, you’re unlikely to succeed, because price history
doesn’t contain much predictive information.

 One class of unsolvable problems you should be aware of is nonstationary problems.
Suppose you’re trying to build a recommendation engine for clothing, you’re training
it on one month of data (August), and you want to start generating recommendations
in the winter. One big issue is that the kinds of clothes people buy change from season
to season: clothes buying is a nonstationary phenomenon over the scale of a few
months. What you’re trying to model changes over time. In this case, the right move is
to constantly retrain your model on data from the recent past, or gather data at a
timescale where the problem is stationary. For a cyclical problem like clothes buying, a
few years’ worth of data will suffice to capture seasonal variation—but remember to
make the time of the year an input of your model!

112 CHAPTER 4 Fundamentals of machine learning
 Keep in mind that machine learning can only be used to memorize patterns that
are present in your training data. You can only recognize what you’ve seen before.
Using machine learning trained on past data to predict the future is making the
assumption that the future will behave like the past. That often isn’t the case.

4.5.2 Choosing a measure of success

To control something, you need to be able to observe it. To achieve success, you must
define what you mean by success—accuracy? Precision and recall? Customer-retention
rate? Your metric for success will guide the choice of a loss function: what your model
will optimize. It should directly align with your higher-level goals, such as the success
of your business.

 For balanced-classification problems, where every class is equally likely, accuracy and
area under the receiver operating characteristic curve (ROC AUC) are common metrics. For
class-imbalanced problems, you can use precision and recall. For ranking problems or
multilabel classification, you can use mean average precision. And it isn’t uncommon
to have to define your own custom metric by which to measure success. To get a sense
of the diversity of machine-learning success metrics and how they relate to different
problem domains, it’s helpful to browse the data science competitions on Kaggle
(https://kaggle.com); they showcase a wide range of problems and evaluation metrics.

4.5.3 Deciding on an evaluation protocol

Once you know what you’re aiming for, you must establish how you’ll measure your
current progress. We’ve previously reviewed three common evaluation protocols:

 Maintaining a hold-out validation set—The way to go when you have plenty of
data

 Doing K-fold cross-validation—The right choice when you have too few samples
for hold-out validation to be reliable

 Doing iterated K-fold validation—For performing highly accurate model evalua-
tion when little data is available

Just pick one of these. In most cases, the first will work well enough.

4.5.4 Preparing your data

Once you know what you’re training on, what you’re optimizing for, and how to evalu-
ate your approach, you’re almost ready to begin training models. But first, you should
format your data in a way that can be fed into a machine-learning model—here, we’ll
assume a deep neural network:

 As you saw previously, your data should be formatted as tensors.
 The values taken by these tensors should usually be scaled to small values: for

example, in the [-1, 1] range or [0, 1] range.

113The universal workflow of machine learning
 If different features take values in different ranges (heterogeneous data), then
the data should be normalized.

 You may want to do some feature engineering, especially for small-data problems.

Once your tensors of input data and target data are ready, you can begin to train models.

4.5.5 Developing a model that does better than a baseline

Your goal at this stage is to achieve statistical power : that is, to develop a small model
that is capable of beating a dumb baseline. In the MNIST digit-classification example,
anything that achieves an accuracy greater than 0.1 can be said to have statistical
power; in the IMDB example, it’s anything with an accuracy greater than 0.5.

 Note that it’s not always possible to achieve statistical power. If you can’t beat a ran-
dom baseline after trying multiple reasonable architectures, it may be that the answer
to the question you’re asking isn’t present in the input data. Remember that you make
two hypotheses:

 You hypothesize that your outputs can be predicted given your inputs.
 You hypothesize that the available data is sufficiently informative to learn the

relationship between inputs and outputs.

It may well be that these hypotheses are false, in which case you must go back to the
drawing board.

 Assuming that things go well, you need to make three key choices to build your
first working model:

 Last-layer activation—This establishes useful constraints on the network’s out-
put. For instance, the IMDB classification example used sigmoid in the last
layer; the regression example didn’t use any last-layer activation; and so on.

 Loss function—This should match the type of problem you’re trying to solve. For
instance, the IMDB example used binary_crossentropy, the regression exam-
ple used mse, and so on.

 Optimization configuration—What optimizer will you use? What will its learning
rate be? In most cases, it’s safe to go with rmsprop and its default learning rate.

Regarding the choice of a loss function, note that it isn’t always possible to directly
optimize for the metric that measures success on a problem. Sometimes there is no
easy way to turn a metric into a loss function; loss functions, after all, need to be com-
putable given only a mini-batch of data (ideally, a loss function should be computable
for as little as a single data point) and must be differentiable (otherwise, you can’t use
backpropagation to train your network). For instance, the widely used classification
metric ROC AUC can’t be directly optimized. Hence, in classification tasks, it’s com-
mon to optimize for a proxy metric of ROC AUC, such as crossentropy. In general, you
can hope that the lower the crossentropy gets, the higher the ROC AUC will be.

 Table 4.1 can help you choose a last-layer activation and a loss function for a few
common problem types.

114 CHAPTER 4 Fundamentals of machine learning
4.5.6 Scaling up: developing a model that overfits

Once you’ve obtained a model that has statistical power, the question becomes, is your
model sufficiently powerful? Does it have enough layers and parameters to properly
model the problem at hand? For instance, a network with a single hidden layer with
two units would have statistical power on MNIST but wouldn’t be sufficient to solve the
problem well. Remember that the universal tension in machine learning is between
optimization and generalization; the ideal model is one that stands right at the border
between underfitting and overfitting; between undercapacity and overcapacity. To fig-
ure out where this border lies, first you must cross it.

 To figure out how big a model you’ll need, you must develop a model that overfits.
This is fairly easy:

1 Add layers.
2 Make the layers bigger.
3 Train for more epochs.

Always monitor the training loss and validation loss, as well as the training and valida-
tion values for any metrics you care about. When you see that the model’s perfor-
mance on the validation data begins to degrade, you’ve achieved overfitting.

 The next stage is to start regularizing and tuning the model, to get as close as pos-
sible to the ideal model that neither underfits nor overfits.

4.5.7 Regularizing your model and tuning your hyperparameters

This step will take the most time: you’ll repeatedly modify your model, train it, evalu-
ate on your validation data (not the test data, at this point), modify it again, and
repeat, until the model is as good as it can get. These are some things you should try:

 Add dropout.
 Try different architectures: add or remove layers.
 Add L1 and/or L2 regularization.

Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type Last-layer activation Loss function

Binary classification sigmoid binary_crossentropy

Multiclass, single-label classification softmax categorical_crossentropy

Multiclass, multilabel classification sigmoid binary_crossentropy

Regression to arbitrary values None mse

Regression to values between 0 and 1 sigmoid mse or binary_crossentropy

115The universal workflow of machine learning
 Try different hyperparameters (such as the number of units per layer or the
learning rate of the optimizer) to find the optimal configuration.

 Optionally, iterate on feature engineering: add new features, or remove fea-
tures that don’t seem to be informative.

Be mindful of the following: every time you use feedback from your validation process
to tune your model, you leak information about the validation process into the model.
Repeated just a few times, this is innocuous; but done systematically over many itera-
tions, it will eventually cause your model to overfit to the validation process (even
though no model is directly trained on any of the validation data). This makes the
evaluation process less reliable.

 Once you’ve developed a satisfactory model configuration, you can train your final
production model on all the available data (training and validation) and evaluate it
one last time on the test set. If it turns out that performance on the test set is signifi-
cantly worse than the performance measured on the validation data, this may mean
either that your validation procedure wasn’t reliable after all, or that you began over-
fitting to the validation data while tuning the parameters of the model. In this case,
you may want to switch to a more reliable evaluation protocol (such as iterated K-fold
validation).

116 CHAPTER 4 Fundamentals of machine learning
Chapter summary
 Define the problem at hand and the data on which you’ll train. Collect

this data, or annotate it with labels if need be.

 Choose how you’ll measure success on your problem. Which metrics will
you monitor on your validation data?

 Determine your evaluation protocol: hold-out validation? K-fold valida-
tion? Which portion of the data should you use for validation?

 Develop a first model that does better than a basic baseline: a model with
statistical power.

 Develop a model that overfits.

 Regularize your model and tune its hyperparameters, based on perfor-
mance on the validation data. A lot of machine-learning research tends to
focus only on this step—but keep the big picture in mind.

Part 2

Deep learning in practice

Chapters 5–9 will help you gain practical intuition about how to solve real-
world problems using deep learning, and will familiarize you with essential deep-
learning best practices. Most of the code examples in the book are concentrated
in this second half.

Deep learning
for computer vision
This chapter introduces convolutional neural networks, also known as convnets, a
type of deep-learning model almost universally used in computer vision applica-
tions. You’ll learn to apply convnets to image-classification problems—in particular
those involving small training datasets, which are the most common use case if you
aren’t a large tech company.

This chapter covers
 Understanding convolutional neural networks

(convnets)

 Using data augmentation to mitigate overfitting

 Using a pretrained convnet to do feature
extraction

 Fine-tuning a pretrained convnet

 Visualizing what convnets learn and how they
make classification decisions
119

120 CHAPTER 5 Deep learning for computer vision
5.1 Introduction to convnets
We’re about to dive into the theory of what convnets are and why they have been so
successful at computer vision tasks. But first, let’s take a practical look at a simple conv-
net example. It uses a convnet to classify MNIST digits, a task we performed in chapter
2 using a densely connected network (our test accuracy then was 97.8%). Even though
the convnet will be basic, its accuracy will blow out of the water that of the densely
connected model from chapter 2.

 The following lines of code show you what a basic convnet looks like. It’s a stack of
Conv2D and MaxPooling2D layers. You’ll see in a minute exactly what they do.

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

Importantly, a convnet takes as input tensors of shape (image_height, image_width,
image_channels) (not including the batch dimension). In this case, we’ll configure
the convnet to process inputs of size (28, 28, 1), which is the format of MNIST
images. We’ll do this by passing the argument input_shape=(28, 28, 1) to the first
layer.

 Let’s display the architecture of the convnet so far:

>>> model.summary()

__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0
__
conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0
__
conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
==
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

You can see that the output of every Conv2D and MaxPooling2D layer is a 3D tensor of
shape (height, width, channels). The width and height dimensions tend to shrink

Listing 5.1 Instantiating a small convnet

121Introduction to convnets
as you go deeper in the network. The number of channels is controlled by the first
argument passed to the Conv2D layers (32 or 64).

 The next step is to feed the last output tensor (of shape (3, 3, 64)) into a densely
connected classifier network like those you’re already familiar with: a stack of Dense
layers. These classifiers process vectors, which are 1D, whereas the current output is a
3D tensor. First we have to flatten the 3D outputs to 1D, and then add a few Dense lay-
ers on top.

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

We’ll do 10-way classification, using a final layer with 10 outputs and a softmax activa-
tion. Here’s what the network looks like now:

>>> model.summary()

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
maxpooling2d_1 (MaxPooling2D) (None, 13, 13, 32) 0
__
conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0
__
conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
__
flatten_1 (Flatten) (None, 576) 0
__
dense_1 (Dense) (None, 64) 36928
__
dense_2 (Dense) (None, 10) 650
==
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

As you can see, the (3, 3, 64) outputs are flattened into vectors of shape (576,)
before going through two Dense layers.

 Now, let’s train the convnet on the MNIST digits. We’ll reuse a lot of the code from
the MNIST example in chapter 2.

from keras.datasets import mnist
from keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Listing 5.2 Adding a classifier on top of the convnet

Listing 5.3 Training the convnet on MNIST images

122 CHAPTER 5 Deep learning for computer vision
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=64)

Let’s evaluate the model on the test data:

>>> test_loss, test_acc = model.evaluate(test_images, test_labels)
>>> test_acc
0.99080000000000001

Whereas the densely connected network from chapter 2 had a test accuracy of 97.8%,
the basic convnet has a test accuracy of 99.3%: we decreased the error rate by 68%
(relative). Not bad!

 But why does this simple convnet work so well, compared to a densely connected
model? To answer this, let’s dive into what the Conv2D and MaxPooling2D layers do.

5.1.1 The convolution operation

The fundamental difference between a densely connected layer and a convolution
layer is this: Dense layers learn global patterns in their input feature space (for exam-
ple, for a MNIST digit, patterns involving all pixels), whereas convolution layers learn
local patterns (see figure 5.1): in the case of images, patterns found in small 2D win-
dows of the inputs. In the previous example, these windows were all 3 × 3.

Figure 5.1 Images can be broken
into local patterns such as edges,
textures, and so on.

123Introduction to convnets
This key characteristic gives convnets two interesting properties:

 The patterns they learn are translation invariant. After learning a certain pattern in
the lower-right corner of a picture, a convnet can recognize it anywhere: for
example, in the upper-left corner. A densely connected network would have to
learn the pattern anew if it appeared at a new location. This makes convnets
data efficient when processing images (because the visual world is fundamentally
translation invariant): they need fewer training samples to learn representations
that have generalization power.

 They can learn spatial hierarchies of patterns (see figure 5.2). A first convolution layer
will learn small local patterns such as edges, a second convolution layer will
learn larger patterns made of the features of the first layers, and so on. This
allows convnets to efficiently learn increasingly complex and abstract visual con-
cepts (because the visual world is fundamentally spatially hierarchical).

Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height
and width) as well as a depth axis (also called the channels axis). For an RGB image, the
dimension of the depth axis is 3, because the image has three color channels: red,
green, and blue. For a black-and-white picture, like the MNIST digits, the depth is 1
(levels of gray). The convolution operation extracts patches from its input feature
map and applies the same transformation to all of these patches, producing an output
feature map. This output feature map is still a 3D tensor: it has a width and a height. Its
depth can be arbitrary, because the output depth is a parameter of the layer, and the

“cat”

Figure 5.2 The visual world forms a spatial hierarchy of visual
modules: hyperlocal edges combine into local objects such as eyes
or ears, which combine into high-level concepts such as “cat.”

124 CHAPTER 5 Deep learning for computer vision
different channels in that depth axis no longer stand for specific colors as in RGB
input; rather, they stand for filters. Filters encode specific aspects of the input data: at a
high level, a single filter could encode the concept “presence of a face in the input,”
for instance.

 In the MNIST example, the first convolution layer takes a feature map of size (28,
28, 1) and outputs a feature map of size (26, 26, 32): it computes 32 filters over its
input. Each of these 32 output channels contains a 26 × 26 grid of values, which is a
response map of the filter over the input, indicating the response of that filter pattern at
different locations in the input (see figure 5.3). That is what the term feature map
means: every dimension in the depth axis is a feature (or filter), and the 2D tensor
output[:, :, n] is the 2D spatial map of the response of this filter over the input.

Convolutions are defined by two key parameters:

 Size of the patches extracted from the inputs—These are typically 3 × 3 or 5 × 5. In the
example, they were 3 × 3, which is a common choice.

 Depth of the output feature map—The number of filters computed by the convolu-
tion. The example started with a depth of 32 and ended with a depth of 64.

In Keras Conv2D layers, these parameters are the first arguments passed to the layer:
Conv2D(output_depth, (window_height, window_width)).

 A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D input
feature map, stopping at every possible location, and extracting the 3D patch of sur-
rounding features (shape (window_height, window_width, input_depth)). Each
such 3D patch is then transformed (via a tensor product with the same learned weight
matrix, called the convolution kernel) into a 1D vector of shape (output_depth,). All of
these vectors are then spatially reassembled into a 3D output map of shape (height,
width, output_depth). Every spatial location in the output feature map corresponds
to the same location in the input feature map (for example, the lower-right corner of
the output contains information about the lower-right corner of the input). For
instance, with 3 × 3 windows, the vector output[i, j, :] comes from the 3D patch
input[i-1:i+1, j-1:j+1, :]. The full process is detailed in figure 5.4.

Response map,
quantifying the presence
of the filter’s pattern at
different locationsOriginal input

Single filter

Figure 5.3 The concept of a
response map: a 2D map of the
presence of a pattern at different
locations in an input

125Introduction to convnets
Note that the output width and height may differ from the input width and height.
They may differ for two reasons:

 Border effects, which can be countered by padding the input feature map
 The use of strides, which I’ll define in a second

Let’s take a deeper look at these notions.

UNDERSTANDING BORDER EFFECTS AND PADDING

Consider a 5 × 5 feature map (25 tiles total). There are only 9 tiles around which you
can center a 3 × 3 window, forming a 3 × 3 grid (see figure 5.5). Hence, the output fea-
ture map will be 3 × 3. It shrinks a little: by exactly two tiles alongside each dimension,
in this case. You can see this border effect in action in the earlier example: you start
with 28 × 28 inputs, which become 26 × 26 after the first convolution layer.

Height

Input feature map

Output feature map

3 × 3 input patches

Transformed patches

Width

Input
depth

Dot product
with kernel

Output
depth

Output
depth

Figure 5.4 How convolution works

126 CHAPTER 5 Deep learning for computer vision
If you want to get an output feature map with the same spatial dimensions as the
input, you can use padding. Padding consists of adding an appropriate number of rows
and columns on each side of the input feature map so as to make it possible to fit cen-
ter convolution windows around every input tile. For a 3 × 3 window, you add one col-
umn on the right, one column on the left, one row at the top, and one row at the
bottom. For a 5 × 5 window, you add two rows (see figure 5.6).

In Conv2D layers, padding is configurable via the padding argument, which takes two
values: "valid", which means no padding (only valid window locations will be used);
and "same", which means “pad in such a way as to have an output with the same width
and height as the input.” The padding argument defaults to "valid".

Figure 5.5 Valid locations of 3 × 3 patches in a 5 × 5 input feature map

etc.

Figure 5.6 Padding a 5 × 5 input in order to be able to extract 25 3 × 3 patches

127Introduction to convnets
UNDERSTANDING CONVOLUTION STRIDES

The other factor that can influence output size is the notion of strides. The description
of convolution so far has assumed that the center tiles of the convolution windows are
all contiguous. But the distance between two successive windows is a parameter of the
convolution, called its stride, which defaults to 1. It’s possible to have strided convolu-
tions : convolutions with a stride higher than 1. In figure 5.7, you can see the patches
extracted by a 3 × 3 convolution with stride 2 over a 5 × 5 input (without padding).

Using stride 2 means the width and height of the feature map are downsampled by a
factor of 2 (in addition to any changes induced by border effects). Strided convolu-
tions are rarely used in practice, although they can come in handy for some types of
models; it’s good to be familiar with the concept.

 To downsample feature maps, instead of strides, we tend to use the max-pooling
operation, which you saw in action in the first convnet example. Let’s look at it in
more depth.

5.1.2 The max-pooling operation

In the convnet example, you may have noticed that the size of the feature maps is
halved after every MaxPooling2D layer. For instance, before the first MaxPooling2D lay-
ers, the feature map is 26 × 26, but the max-pooling operation halves it to 13 × 13.
That’s the role of max pooling: to aggressively downsample feature maps, much like
strided convolutions.

 Max pooling consists of extracting windows from the input feature maps and out-
putting the max value of each channel. It’s conceptually similar to convolution, except
that instead of transforming local patches via a learned linear transformation (the con-
volution kernel), they’re transformed via a hardcoded max tensor operation. A big dif-
ference from convolution is that max pooling is usually done with 2 × 2 windows and

1
1 2

3 4

2

3 4

Figure 5.7 3 × 3 convolution patches with 2 × 2 strides

128 CHAPTER 5 Deep learning for computer vision
stride 2, in order to downsample the feature maps by a factor of 2. On the other hand,
convolution is typically done with 3 × 3 windows and no stride (stride 1).

 Why downsample feature maps this way? Why not remove the max-pooling layers
and keep fairly large feature maps all the way up? Let’s look at this option. The convo-
lutional base of the model would then look like this:

model_no_max_pool = models.Sequential()
model_no_max_pool.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))
model_no_max_pool.add(layers.Conv2D(64, (3, 3), activation='relu'))

Here’s a summary of the model:

>>> model_no_max_pool.summary()

Layer (type) Output Shape Param #
==
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
__
conv2d_6 (Conv2D) (None, 22, 22, 64) 36928
==
Total params: 55,744
Trainable params: 55,744
Non-trainable params: 0

What’s wrong with this setup? Two things:

 It isn’t conducive to learning a spatial hierarchy of features. The 3 × 3 windows
in the third layer will only contain information coming from 7 × 7 windows in
the initial input. The high-level patterns learned by the convnet will still be very
small with regard to the initial input, which may not be enough to learn to clas-
sify digits (try recognizing a digit by only looking at it through windows that are
7 × 7 pixels!). We need the features from the last convolution layer to contain
information about the totality of the input.

 The final feature map has 22 × 22 × 64 = 30,976 total coefficients per sample.
This is huge. If you were to flatten it to stick a Dense layer of size 512 on top,
that layer would have 15.8 million parameters. This is far too large for such a
small model and would result in intense overfitting.

In short, the reason to use downsampling is to reduce the number of feature-map
coefficients to process, as well as to induce spatial-filter hierarchies by making succes-
sive convolution layers look at increasingly large windows (in terms of the fraction of
the original input they cover).

 Note that max pooling isn’t the only way you can achieve such downsampling. As
you already know, you can also use strides in the prior convolution layer. And you can

129Introduction to convnets
use average pooling instead of max pooling, where each local input patch is trans-
formed by taking the average value of each channel over the patch, rather than the
max. But max pooling tends to work better than these alternative solutions. In a nut-
shell, the reason is that features tend to encode the spatial presence of some pattern
or concept over the different tiles of the feature map (hence, the term feature map),
and it’s more informative to look at the maximal presence of different features than at
their average presence. So the most reasonable subsampling strategy is to first produce
dense maps of features (via unstrided convolutions) and then look at the maximal
activation of the features over small patches, rather than looking at sparser windows of
the inputs (via strided convolutions) or averaging input patches, which could cause
you to miss or dilute feature-presence information.

 At this point, you should understand the basics of convnets—feature maps, convo-
lution, and max pooling—and you know how to build a small convnet to solve a toy
problem such as MNIST digits classification. Now let’s move on to more useful, practi-
cal applications.

130 CHAPTER 5 Deep learning for computer vision
5.2 Training a convnet from scratch on a small dataset
Having to train an image-classification model using very little data is a common situ-
ation, which you’ll likely encounter in practice if you ever do computer vision in a
professional context. A “few” samples can mean anywhere from a few hundred to a
few tens of thousands of images. As a practical example, we’ll focus on classifying
images as dogs or cats, in a dataset containing 4,000 pictures of cats and dogs (2,000
cats, 2,000 dogs). We’ll use 2,000 pictures for training—1,000 for validation, and
1,000 for testing.

 In this section, we’ll review one basic strategy to tackle this problem: training a new
model from scratch using what little data you have. You’ll start by naively training a
small convnet on the 2,000 training samples, without any regularization, to set a base-
line for what can be achieved. This will get you to a classification accuracy of 71%. At
that point, the main issue will be overfitting. Then we’ll introduce data augmentation, a
powerful technique for mitigating overfitting in computer vision. By using data aug-
mentation, you’ll improve the network to reach an accuracy of 82%.

 In the next section, we’ll review two more essential techniques for applying deep
learning to small datasets: feature extraction with a pretrained network (which will get you
to an accuracy of 90% to 96%) and fine-tuning a pretrained network (this will get you to a
final accuracy of 97%). Together, these three strategies—training a small model from
scratch, doing feature extraction using a pretrained model, and fine-tuning a pre-
trained model—will constitute your future toolbox for tackling the problem of per-
forming image classification with small datasets.

5.2.1 The relevance of deep learning for small-data problems

You’ll sometimes hear that deep learning only works when lots of data is available.
This is valid in part: one fundamental characteristic of deep learning is that it can find
interesting features in the training data on its own, without any need for manual fea-
ture engineering, and this can only be achieved when lots of training examples are
available. This is especially true for problems where the input samples are very high-
dimensional, like images.

 But what constitutes lots of samples is relative—relative to the size and depth of the
network you’re trying to train, for starters. It isn’t possible to train a convnet to solve a
complex problem with just a few tens of samples, but a few hundred can potentially
suffice if the model is small and well regularized and the task is simple. Because conv-
nets learn local, translation-invariant features, they’re highly data efficient on percep-
tual problems. Training a convnet from scratch on a very small image dataset will still
yield reasonable results despite a relative lack of data, without the need for any custom
feature engineering. You’ll see this in action in this section.

 What’s more, deep-learning models are by nature highly repurposable: you can
take, say, an image-classification or speech-to-text model trained on a large-scale dataset
and reuse it on a significantly different problem with only minor changes. Specifically,

131Training a convnet from scratch on a small dataset
in the case of computer vision, many pretrained models (usually trained on the Image-
Net dataset) are now publicly available for download and can be used to bootstrap pow-
erful vision models out of very little data. That’s what you’ll do in the next section. Let’s
start by getting your hands on the data.

5.2.2 Downloading the data

The Dogs vs. Cats dataset that you’ll use isn’t packaged with Keras. It was made avail-
able by Kaggle as part of a computer-vision competition in late 2013, back when
convnets weren’t mainstream. You can download the original dataset from www.kaggle
.com/c/dogs-vs-cats/data (you’ll need to create a Kaggle account if you don’t already
have one—don’t worry, the process is painless).

 The pictures are medium-resolution color JPEGs. Figure 5.8 shows some examples.

Unsurprisingly, the dogs-versus-cats Kaggle competition in 2013 was won by entrants
who used convnets. The best entries achieved up to 95% accuracy. In this example,
you’ll get fairly close to this accuracy (in the next section), even though you’ll train
your models on less than 10% of the data that was available to the competitors.

 This dataset contains 25,000 images of dogs and cats (12,500 from each class) and
is 543 MB (compressed). After downloading and uncompressing it, you’ll create a new
dataset containing three subsets: a training set with 1,000 samples of each class, a vali-
dation set with 500 samples of each class, and a test set with 500 samples of each class.

Figure 5.8 Samples from the Dogs vs. Cats dataset. Sizes weren’t modified: the samples are
heterogeneous in size, appearance, and so on.

132 CHAPTER 5 Deep learning for computer vision
 Following is the code to do this.

import os, shutil

original_dataset_dir = '/Users/fchollet/Downloads/kaggle_original_data'

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
os.mkdir(base_dir)

train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)

Listing 5.4 Copying images to training, validation, and test directories

Path to the directory where the
original dataset was uncompressed

Directory where you’ll store
your smaller dataset

Directories for
the training,
validation, and
test splits

Directory with
training cat pictures

Directory with
training dog pictures

Directory with
validation cat pictures

Directory with
validation dog pictures

Directory with test cat pictures

Directory with test dog pictures

Copies the first
1,000 cat images
to train_cats_dir

Copies the next 500
cat images to
validation_cats_dir

Copies the next 500
cat images to
test_cats_dir

133Training a convnet from scratch on a small dataset
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst)

fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:

src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst)

As a sanity check, let’s count how many pictures are in each training split (train/vali-
dation/test):

>>> print('total training cat images:', len(os.listdir(train_cats_dir)))
total training cat images: 1000
>>> print('total training dog images:', len(os.listdir(train_dogs_dir)))
total training dog images: 1000
>>> print('total validation cat images:', len(os.listdir(validation_cats_dir)))
total validation cat images: 500
>>> print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
total validation dog images: 500
>>> print('total test cat images:', len(os.listdir(test_cats_dir)))
total test cat images: 500
>>> print('total test dog images:', len(os.listdir(test_dogs_dir)))
total test dog images: 500

So you do indeed have 2,000 training images, 1,000 validation images, and 1,000 test
images. Each split contains the same number of samples from each class: this is a bal-
anced binary-classification problem, which means classification accuracy will be an
appropriate measure of success.

5.2.3 Building your network

You built a small convnet for MNIST in the previous example, so you should be famil-
iar with such convnets. You’ll reuse the same general structure: the convnet will be a
stack of alternated Conv2D (with relu activation) and MaxPooling2D layers.

 But because you’re dealing with bigger images and a more complex problem, you’ll
make your network larger, accordingly: it will have one more Conv2D + MaxPooling2D
stage. This serves both to augment the capacity of the network and to further reduce
the size of the feature maps so they aren’t overly large when you reach the Flatten
layer. Here, because you start from inputs of size 150 × 150 (a somewhat arbitrary
choice), you end up with feature maps of size 7 × 7 just before the Flatten layer.

Copies the first
1,000 dog images
to train_dogs_dir

Copies the next 500
dog images to
validation_dogs_dir

Copies the next 500
dog images to
test_dogs_dir

134 CHAPTER 5 Deep learning for computer vision
NOTE The depth of the feature maps progressively increases in the network
(from 32 to 128), whereas the size of the feature maps decreases (from 148 ×
148 to 7 × 7). This is a pattern you’ll see in almost all convnets.

Because you’re attacking a binary-classification problem, you’ll end the network with a
single unit (a Dense layer of size 1) and a sigmoid activation. This unit will encode the
probability that the network is looking at one class or the other.

from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

Let’s look at how the dimensions of the feature maps change with every successive
layer:

>>> model.summary()

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 148, 148, 32) 896
__
maxpooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0
__
conv2d_2 (Conv2D) (None, 72, 72, 64) 18496
__
maxpooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0
__
conv2d_3 (Conv2D) (None, 34, 34, 128) 73856
__
maxpooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0
__
conv2d_4 (Conv2D) (None, 15, 15, 128) 147584
__
maxpooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0
__
flatten_1 (Flatten) (None, 6272) 0
__
dense_1 (Dense) (None, 512) 3211776
__

Listing 5.5 Instantiating a small convnet for dogs vs. cats classification

135Training a convnet from scratch on a small dataset
dense_2 (Dense) (None, 1) 513
==
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

For the compilation step, you’ll go with the RMSprop optimizer, as usual. Because you
ended the network with a single sigmoid unit, you’ll use binary crossentropy as the
loss (as a reminder, check out table 4.1 for a cheatsheet on what loss function to use in
various situations).

from keras import optimizers

model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])

5.2.4 Data preprocessing

As you know by now, data should be formatted into appropriately preprocessed floating-
point tensors before being fed into the network. Currently, the data sits on a drive as
JPEG files, so the steps for getting it into the network are roughly as follows:

1 Read the picture files.
2 Decode the JPEG content to RGB grids of pixels.
3 Convert these into floating-point tensors.
4 Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know,

neural networks prefer to deal with small input values).

It may seem a bit daunting, but fortunately Keras has utilities to take care of these
steps automatically. Keras has a module with image-processing helper tools, located at
keras.preprocessing.image. In particular, it contains the class ImageDataGenerator,
which lets you quickly set up Python generators that can automatically turn image files
on disk into batches of preprocessed tensors. This is what you’ll use here.

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150)
batch_size=20,
class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
validation_dir,

Listing 5.6 Configuring the model for training

Listing 5.7 Using ImageDataGenerator to read images from directories

Rescales all images by 1/255

Target
directory

Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

136 CHAPTER 5 Deep learning for computer vision
target_size=(150, 150),
batch_size=20,
class_mode='binary')

Let’s look at the output of one of these generators: it yields batches of 150 × 150 RGB
images (shape (20, 150, 150, 3)) and binary labels (shape (20,)). There are 20 sam-
ples in each batch (the batch size). Note that the generator yields these batches indef-
initely: it loops endlessly over the images in the target folder. For this reason, you need
to break the iteration loop at some point:

>>> for data_batch, labels_batch in train_generator:
>>> print('data batch shape:', data_batch.shape)
>>> print('labels batch shape:', labels_batch.shape)
>>> break
data batch shape: (20, 150, 150, 3)
labels batch shape: (20,)

Let’s fit the model to the data using the generator. You do so using the fit_generator
method, the equivalent of fit for data generators like this one. It expects as its first
argument a Python generator that will yield batches of inputs and targets indefinitely,
like this one does. Because the data is being generated endlessly, the Keras model
needs to know how many samples to draw from the generator before declaring an
epoch over. This is the role of the steps_per_epoch argument: after having drawn
steps_per_epoch batches from the generator—that is, after having run for

Understanding Python generators
A Python generator is an object that acts as an iterator: it’s an object you can use
with the for … in operator. Generators are built using the yield operator.

Here is an example of a generator that yields integers:

def generator():
i = 0
while True:

i += 1
yield i

for item in generator():
print(item)
if item > 4:

break

It prints this:

1
2
3
4
5

137Training a convnet from scratch on a small dataset
steps_per_epoch gradient descent steps—the fitting process will go to the next
epoch. In this case, batches are 20 samples, so it will take 100 batches until you see
your target of 2,000 samples.

 When using fit_generator, you can pass a validation_data argument, much as
with the fit method. It’s important to note that this argument is allowed to be a data
generator, but it could also be a tuple of Numpy arrays. If you pass a generator as
validation_data, then this generator is expected to yield batches of validation data
endlessly; thus you should also specify the validation_steps argument, which tells
the process how many batches to draw from the validation generator for evaluation.

history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50)

It’s good practice to always save your models after training.

model.save('cats_and_dogs_small_1.h5')

Let’s plot the loss and accuracy of the model over the training and validation data
during training (see figures 5.9 and 5.10).

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

Listing 5.8 Fitting the model using a batch generator

Listing 5.9 Saving the model

Listing 5.10 Displaying curves of loss and accuracy during training

138 CHAPTER 5 Deep learning for computer vision
These plots are characteristic of overfitting. The training accuracy increases linearly
over time, until it reaches nearly 100%, whereas the validation accuracy stalls at 70–72%.
The validation loss reaches its minimum after only five epochs and then stalls, whereas
the training loss keeps decreasing linearly until it reaches nearly 0.

 Because you have relatively few training samples (2,000), overfitting will be your
number-one concern. You already know about a number of techniques that can help
mitigate overfitting, such as dropout and weight decay (L2 regularization). We’re now
going to work with a new one, specific to computer vision and used almost universally
when processing images with deep-learning models: data augmentation.

5.2.5 Using data augmentation

Overfitting is caused by having too few samples to learn from, rendering you unable
to train a model that can generalize to new data. Given infinite data, your model

Figure 5.9 Training and
validation accuracy

Figure 5.10 Training and
validation loss

139Training a convnet from scratch on a small dataset
would be exposed to every possible aspect of the data distribution at hand: you would
never overfit. Data augmentation takes the approach of generating more training data
from existing training samples, by augmenting the samples via a number of random
transformations that yield believable-looking images. The goal is that at training time,
your model will never see the exact same picture twice. This helps expose the model
to more aspects of the data and generalize better.

 In Keras, this can be done by configuring a number of random transformations to
be performed on the images read by the ImageDataGenerator instance. Let’s get
started with an example.

datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')

These are just a few of the options available (for more, see the Keras documentation).
Let’s quickly go over this code:

 rotation_range is a value in degrees (0–180), a range within which to ran-
domly rotate pictures.

 width_shift and height_shift are ranges (as a fraction of total width or
height) within which to randomly translate pictures vertically or horizontally.

 shear_range is for randomly applying shearing transformations.
 zoom_range is for randomly zooming inside pictures.
 horizontal_flip is for randomly flipping half the images horizontally—rele-

vant when there are no assumptions of horizontal asymmetry (for example,
real-world pictures).

 fill_mode is the strategy used for filling in newly created pixels, which can
appear after a rotation or a width/height shift.

Let’s look at the augmented images (see figure 5.11).

from keras.preprocessing import image

fnames = [os.path.join(train_cats_dir, fname) for
fname in os.listdir(train_cats_dir)]

img_path = fnames[3]

img = image.load_img(img_path, target_size=(150, 150))

Listing 5.11 Setting up a data augmentation configuration via ImageDataGenerator

Listing 5.12 Displaying some randomly augmented training images

Module with image-
preprocessing utilities

Chooses one image to augment

Reads the image
and resizes it

140 CHAPTER 5 Deep learning for computer vision
x = image.img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0
for batch in datagen.flow(x, batch_size=1):

plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:

break

plt.show()

If you train a new network using this data-augmentation configuration, the network
will never see the same input twice. But the inputs it sees are still heavily intercor-
related, because they come from a small number of original images—you can’t pro-
duce new information, you can only remix existing information. As such, this may not
be enough to completely get rid of overfitting. To further fight overfitting, you’ll also
add a Dropout layer to your model, right before the densely connected classifier.

Converts it to a Numpy array with shape (150, 150, 3)

Reshapes it to (1, 150, 150, 3)

Generates batches of
randomly transformed
images. Loops indefinitely,
so you need to break the
loop at some point!

Figure 5.11 Generation of cat pictures via random data augmentation

141Training a convnet from scratch on a small dataset
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])

Let’s train the network using data augmentation and dropout.

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')

history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=100,
validation_data=validation_generator,
validation_steps=50)

Listing 5.13 Defining a new convnet that includes dropout

Listing 5.14 Training the convnet using data-augmentation generators

Note that the
validation data
shouldn’t be
augmented!

Target
directory Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

142 CHAPTER 5 Deep learning for computer vision
Let’s save the model—you’ll use it in section 5.4.

model.save('cats_and_dogs_small_2.h5')

And let’s plot the results again: see figures 5.12 and 5.13. Thanks to data augmenta-
tion and dropout, you’re no longer overfitting: the training curves are closely tracking
the validation curves. You now reach an accuracy of 82%, a 15% relative improvement
over the non-regularized model.

By using regularization techniques even further, and by tuning the network’s parame-
ters (such as the number of filters per convolution layer, or the number of layers in
the network), you may be able to get an even better accuracy, likely up to 86% or 87%.
But it would prove difficult to go any higher just by training your own convnet from
scratch, because you have so little data to work with. As a next step to improve your
accuracy on this problem, you’ll have to use a pretrained model, which is the focus of
the next two sections.

Listing 5.15 Saving the model

Figure 5.12 Training and validation
accuracy with data augmentation

Figure 5.13 Training and validation
loss with data augmentation

143Using a pretrained convnet
5.3 Using a pretrained convnet
A common and highly effective approach to deep learning on small image datasets is
to use a pretrained network. A pretrained network is a saved network that was previously
trained on a large dataset, typically on a large-scale image-classification task. If this
original dataset is large enough and general enough, then the spatial hierarchy of fea-
tures learned by the pretrained network can effectively act as a generic model of the
visual world, and hence its features can prove useful for many different computer-
vision problems, even though these new problems may involve completely different
classes than those of the original task. For instance, you might train a network on
ImageNet (where classes are mostly animals and everyday objects) and then repur-
pose this trained network for something as remote as identifying furniture items in
images. Such portability of learned features across different problems is a key advan-
tage of deep learning compared to many older, shallow-learning approaches, and it
makes deep learning very effective for small-data problems.

 In this case, let’s consider a large convnet trained on the ImageNet dataset
(1.4 million labeled images and 1,000 different classes). ImageNet contains many ani-
mal classes, including different species of cats and dogs, and you can thus expect to
perform well on the dogs-versus-cats classification problem.

 You’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew
Zisserman in 2014; it’s a simple and widely used convnet architecture for ImageNet.1

Although it’s an older model, far from the current state of the art and somewhat
heavier than many other recent models, I chose it because its architecture is similar to
what you’re already familiar with and is easy to understand without introducing any
new concepts. This may be your first encounter with one of these cutesy model
names—VGG, ResNet, Inception, Inception-ResNet, Xception, and so on; you’ll get
used to them, because they will come up frequently if you keep doing deep learning
for computer vision.

 There are two ways to use a pretrained network: feature extraction and fine-tuning.
We’ll cover both of them. Let’s start with feature extraction.

5.3.1 Feature extraction

Feature extraction consists of using the representations learned by a previous network
to extract interesting features from new samples. These features are then run through
a new classifier, which is trained from scratch.

 As you saw previously, convnets used for image classification comprise two parts:
they start with a series of pooling and convolution layers, and they end with a densely
connected classifier. The first part is called the convolutional base of the model. In the
case of convnets, feature extraction consists of taking the convolutional base of a

1 Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,” arXiv (2014), https://arxiv.org/abs/1409.1556.

144 CHAPTER 5 Deep learning for computer vision
previously trained network, running the new data through it, and training a new clas-
sifier on top of the output (see figure 5.14).

Why only reuse the convolutional base? Could you reuse the densely connected classi-
fier as well? In general, doing so should be avoided. The reason is that the representa-
tions learned by the convolutional base are likely to be more generic and therefore
more reusable: the feature maps of a convnet are presence maps of generic concepts
over a picture, which is likely to be useful regardless of the computer-vision problem at
hand. But the representations learned by the classifier will necessarily be specific to the
set of classes on which the model was trained—they will only contain information about
the presence probability of this or that class in the entire picture. Additionally, repre-
sentations found in densely connected layers no longer contain any information about
where objects are located in the input image: these layers get rid of the notion of space,
whereas the object location is still described by convolutional feature maps. For prob-
lems where object location matters, densely connected features are largely useless.

 Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the
model. Layers that come earlier in the model extract local, highly generic feature
maps (such as visual edges, colors, and textures), whereas layers that are higher up
extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset
differs a lot from the dataset on which the original model was trained, you may be bet-
ter off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

Trained
classifier

Trained
convolutional

base

Prediction

Input

New classifier
(randomly initialized)

Trained
convolutional

base
(frozen)

Figure 5.14 Swapping classifiers while keeping the same convolutional base

145Using a pretrained convnet
 In this case, because the ImageNet class set contains multiple dog and cat classes,
it’s likely to be beneficial to reuse the information contained in the densely connected
layers of the original model. But we’ll choose not to, in order to cover the more gen-
eral case where the class set of the new problem doesn’t overlap the class set of the
original model. Let’s put this in practice by using the convolutional base of the VGG16
network, trained on ImageNet, to extract interesting features from cat and dog
images, and then train a dogs-versus-cats classifier on top of these features.

 The VGG16 model, among others, comes prepackaged with Keras. You can import
it from the keras.applications module. Here’s the list of image-classification
models (all pretrained on the ImageNet dataset) that are available as part of keras
.applications:

 Xception
 Inception V3

 ResNet50
 VGG16
 VGG19
 MobileNet

Let’s instantiate the VGG16 model.

from keras.applications import VGG16

conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))

You pass three arguments to the constructor:

 weights specifies the weight checkpoint from which to initialize the model.
 include_top refers to including (or not) the densely connected classifier on

top of the network. By default, this densely connected classifier corresponds to
the 1,000 classes from ImageNet. Because you intend to use your own densely
connected classifier (with only two classes: cat and dog), you don’t need to
include it.

 input_shape is the shape of the image tensors that you’ll feed to the network.
This argument is purely optional: if you don’t pass it, the network will be able to
process inputs of any size.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to
the simple convnets you’re already familiar with:

>>> conv_base.summary()

Layer (type) Output Shape Param #
==
input_1 (InputLayer) (None, 150, 150, 3) 0

Listing 5.16 Instantiating the VGG16 convolutional base

146 CHAPTER 5 Deep learning for computer vision
__
block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792
__
block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928
__
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
__
block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856
__
block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584
__
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0
__
block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168
__
block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
__
block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160
__
block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
__
block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
==
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

The final feature map has shape (4, 4, 512). That’s the feature on top of which you’ll
stick a densely connected classifier.

 At this point, there are two ways you could proceed:

 Running the convolutional base over your dataset, recording its output to a
Numpy array on disk, and then using this data as input to a standalone, densely
connected classifier similar to those you saw in part 1 of this book. This solution
is fast and cheap to run, because it only requires running the convolutional
base once for every input image, and the convolutional base is by far the most
expensive part of the pipeline. But for the same reason, this technique won’t
allow you to use data augmentation.

147Using a pretrained convnet
 Extending the model you have (conv_base) by adding Dense layers on top, and
running the whole thing end to end on the input data. This will allow you to use
data augmentation, because every input image goes through the convolutional
base every time it’s seen by the model. But for the same reason, this technique is
far more expensive than the first.

We’ll cover both techniques. Let’s walk through the code required to set up the first
one: recording the output of conv_base on your data and using these outputs as
inputs to a new model.

FAST FEATURE EXTRACTION WITHOUT DATA AUGMENTATION

You’ll start by running instances of the previously introduced ImageDataGenerator to
extract images as Numpy arrays as well as their labels. You’ll extract features from
these images by calling the predict method of the conv_base model.

import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator

base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')

datagen = ImageDataGenerator(rescale=1./255)
batch_size = 20

def extract_features(directory, sample_count):
features = np.zeros(shape=(sample_count, 4, 4, 512))
labels = np.zeros(shape=(sample_count))
generator = datagen.flow_from_directory(

directory,
target_size=(150, 150),
batch_size=batch_size,
class_mode='binary')

i = 0
for inputs_batch, labels_batch in generator:

features_batch = conv_base.predict(inputs_batch)
features[i * batch_size : (i + 1) * batch_size] = features_batch
labels[i * batch_size : (i + 1) * batch_size] = labels_batch
i += 1
if i * batch_size >= sample_count:

break
return features, labels

train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)

The extracted features are currently of shape (samples, 4, 4, 512). You’ll feed them
to a densely connected classifier, so first you must flatten them to (samples, 8192):

Listing 5.17 Extracting features using the pretrained convolutional base

Note that because generators
yield data indefinitely in a loop,

you must break after every
image has been seen once.

148 CHAPTER 5 Deep learning for computer vision
train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4 * 512))

At this point, you can define your densely connected classifier (note the use of drop-
out for regularization) and train it on the data and labels that you just recorded.

from keras import models
from keras import layers
from keras import optimizers

model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(train_features, train_labels,
epochs=30,
batch_size=20,
validation_data=(validation_features, validation_labels))

Training is very fast, because you only have to deal with two Dense layers—an epoch
takes less than one second even on CPU.

 Let’s look at the loss and accuracy curves during training (see figures 5.15 and
5.16).

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

Listing 5.18 Defining and training the densely connected classifier

Listing 5.19 Plotting the results

149Using a pretrained convnet
You reach a validation accuracy of about 90%—much better than you achieved in the
previous section with the small model trained from scratch. But the plots also indicate
that you’re overfitting almost from the start—despite using dropout with a fairly large
rate. That’s because this technique doesn’t use data augmentation, which is essential
for preventing overfitting with small image datasets.

FEATURE EXTRACTION WITH DATA AUGMENTATION

Now, let’s review the second technique I mentioned for doing feature extraction,
which is much slower and more expensive, but which allows you to use data augmenta-
tion during training: extending the conv_base model and running it end to end on
the inputs.

NOTE This technique is so expensive that you should only attempt it if you
have access to a GPU—it’s absolutely intractable on CPU. If you can’t run your
code on GPU, then the previous technique is the way to go.

Figure 5.15 Training and validation
accuracy for simple feature extraction

Figure 5.16 Training and validation
loss for simple feature extraction

150 CHAPTER 5 Deep learning for computer vision
Because models behave just like layers, you can add a model (like conv_base) to a
Sequential model just like you would add a layer.

from keras import models
from keras import layers

model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

This is what the model looks like now:

>>> model.summary()

Layer (type) Output Shape Param #
==
vgg16 (Model) (None, 4, 4, 512) 14714688
__
flatten_1 (Flatten) (None, 8192) 0
__
dense_1 (Dense) (None, 256) 2097408
__
dense_2 (Dense) (None, 1) 257
==
Total params: 16,812,353
Trainable params: 16,812,353
Non-trainable params: 0

As you can see, the convolutional base of VGG16 has 14,714,688 parameters, which is
very large. The classifier you’re adding on top has 2 million parameters.

 Before you compile and train the model, it’s very important to freeze the convolu-
tional base. Freezing a layer or set of layers means preventing their weights from being
updated during training. If you don’t do this, then the representations that were pre-
viously learned by the convolutional base will be modified during training. Because
the Dense layers on top are randomly initialized, very large weight updates would be
propagated through the network, effectively destroying the representations previously
learned.

 In Keras, you freeze a network by setting its trainable attribute to False:

>>> print('This is the number of trainable weights '
'before freezing the conv base:', len(model.trainable_weights))

This is the number of trainable weights before freezing the conv base: 30
>>> conv_base.trainable = False
>>> print('This is the number of trainable weights '

'after freezing the conv base:', len(model.trainable_weights))
This is the number of trainable weights after freezing the conv base: 4

Listing 5.20 Adding a densely connected classifier on top of the convolutional base

151Using a pretrained convnet
With this setup, only the weights from the two Dense layers that you added will be
trained. That’s a total of four weight tensors: two per layer (the main weight matrix
and the bias vector). Note that in order for these changes to take effect, you must first
compile the model. If you ever modify weight trainability after compilation, you
should then recompile the model, or these changes will be ignored.

 Now you can start training your model, with the same data-augmentation configu-
ration that you used in the previous example.

from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')

model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=2e-5),
metrics=['acc'])

history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50)

Let’s plot the results again (see figures 5.17 and 5.18). As you can see, you reach a val-
idation accuracy of about 96%. This is much better than you achieved with the small
convnet trained from scratch.

Listing 5.21 Training the model end to end with a frozen convolutional base

Note that the
validation data

shouldn’t be
augmented!

Target
directory Resizes all images to 150 × 150

Because you use
binary_crossentropy
loss, you need binary
labels.

152 CHAPTER 5 Deep learning for computer vision

5.3.2 Fine-tuning

Another widely used technique for model reuse, complementary to feature
extraction, is fine-tuning (see figure 5.19). Fine-tuning consists of unfreezing a few of
the top layers of a frozen model base used for feature extraction, and jointly training
both the newly added part of the model (in this case, the fully connected classifier)
and these top layers. This is called fine-tuning because it slightly adjusts the more
abstract representations of the model being reused, in order to make them more rele-
vant for the problem at hand.

Figure 5.17 Training and validation
accuracy for feature extraction with
data augmentation

Figure 5.18 Training and validation
loss for feature extraction with data
augmentation

153Using a pretrained convnet
Dense

Dense

Flatten

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3:
frozen

Conv block 4:
frozen

We fine-tune
Conv block 5.

We fine-tune
our own fully
connected
classifier.

Figure 5.19 Fine-tuning the last
convolutional block of the VGG16 network

154 CHAPTER 5 Deep learning for computer vision
I stated earlier that it’s necessary to freeze the convolution base of VGG16 in order to
be able to train a randomly initialized classifier on top. For the same reason, it’s only
possible to fine-tune the top layers of the convolutional base once the classifier on top
has already been trained. If the classifier isn’t already trained, then the error signal
propagating through the network during training will be too large, and the represen-
tations previously learned by the layers being fine-tuned will be destroyed. Thus the
steps for fine-tuning a network are as follow:

1 Add your custom network on top of an already-trained base network.
2 Freeze the base network.
3 Train the part you added.
4 Unfreeze some layers in the base network.
5 Jointly train both these layers and the part you added.

You already completed the first three steps when doing feature extraction. Let’s pro-
ceed with step 4: you’ll unfreeze your conv_base and then freeze individual layers
inside it.

 As a reminder, this is what your convolutional base looks like:

>>> conv_base.summary()

Layer (type) Output Shape Param #
==
input_1 (InputLayer) (None, 150, 150, 3) 0
__
block1_conv1 (Convolution2D) (None, 150, 150, 64) 1792
__
block1_conv2 (Convolution2D) (None, 150, 150, 64) 36928
__
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
__
block2_conv1 (Convolution2D) (None, 75, 75, 128) 73856
__
block2_conv2 (Convolution2D) (None, 75, 75, 128) 147584
__
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0
__
block3_conv1 (Convolution2D) (None, 37, 37, 256) 295168
__
block3_conv2 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_conv3 (Convolution2D) (None, 37, 37, 256) 590080
__
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
__
block4_conv1 (Convolution2D) (None, 18, 18, 512) 1180160
__
block4_conv2 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_conv3 (Convolution2D) (None, 18, 18, 512) 2359808
__
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

155Using a pretrained convnet
__
block5_conv1 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv2 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_conv3 (Convolution2D) (None, 9, 9, 512) 2359808
__
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
==
Total params: 14714688

You’ll fine-tune the last three convolutional layers, which means all layers up to
block4_pool should be frozen, and the layers block5_conv1, block5_conv2, and
block5_conv3 should be trainable.

 Why not fine-tune more layers? Why not fine-tune the entire convolutional base?
You could. But you need to consider the following:

 Earlier layers in the convolutional base encode more-generic, reusable features,
whereas layers higher up encode more-specialized features. It’s more useful to
fine-tune the more specialized features, because these are the ones that need to
be repurposed on your new problem. There would be fast-decreasing returns in
fine-tuning lower layers.

 The more parameters you’re training, the more you’re at risk of overfitting.
The convolutional base has 15 million parameters, so it would be risky to
attempt to train it on your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers
in the convolutional base. Let’s set this up, starting from where you left off in the pre-
vious example.

conv_base.trainable = True

set_trainable = False
for layer in conv_base.layers:

if layer.name == 'block5_conv1':
set_trainable = True

if set_trainable:
layer.trainable = True

else:
layer.trainable = False

Now you can begin fine-tuning the network. You’ll do this with the RMSProp opti-
mizer, using a very low learning rate. The reason for using a low learning rate is that
you want to limit the magnitude of the modifications you make to the representations
of the three layers you’re fine-tuning. Updates that are too large may harm these rep-
resentations.

Listing 5.22 Freezing all layers up to a specific one

156 CHAPTER 5 Deep learning for computer vision
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-5),
metrics=['acc'])

history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=100,
validation_data=validation_generator,
validation_steps=50)

Let’s plot the results using the same plotting code as before (see figures 5.20 and 5.21).

These curves look noisy. To make them more readable, you can smooth them by
replacing every loss and accuracy with exponential moving averages of these quanti-
ties. Here’s a trivial utility function to do this (see figures 5.22 and 5.23).

Listing 5.23 Fine-tuning the model

Figure 5.20 Training and
validation accuracy for fine-tuning

Figure 5.21 Training and
validation loss for fine-tuning

157Using a pretrained convnet
def smooth_curve(points, factor=0.8):
smoothed_points = []
for point in points:

if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))

else:
smoothed_points.append(point)

return smoothed_points

plt.plot(epochs,
smooth_curve(acc), 'bo', label='Smoothed training acc')

plt.plot(epochs,
smooth_curve(val_acc), 'b', label='Smoothed validation acc')

plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs,
smooth_curve(loss), 'bo', label='Smoothed training loss')

plt.plot(epochs,
smooth_curve(val_loss), 'b', label='Smoothed validation loss')

plt.title('Training and validation loss')
plt.legend()

plt.show()

Listing 5.24 Smoothing the plots

Figure 5.22 Smoothed curves for training and validation accuracy
for fine-tuning

158 CHAPTER 5 Deep learning for computer vision
The validation accuracy curve look much cleaner. You’re seeing a nice 1% absolute
improvement in accuracy, from about 96% to above 97%.

 Note that the loss curve doesn’t show any real improvement (in fact, it’s deteriorat-
ing). You may wonder, how could accuracy stay stable or improve if the loss isn’t
decreasing? The answer is simple: what you display is an average of pointwise loss val-
ues; but what matters for accuracy is the distribution of the loss values, not their aver-
age, because accuracy is the result of a binary thresholding of the class probability
predicted by the model. The model may still be improving even if this isn’t reflected
in the average loss.

 You can now finally evaluate this model on the test data:

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')

test_loss, test_acc = model.evaluate_generator(test_generator, steps=50)
print('test acc:', test_acc)

Here you get a test accuracy of 97%. In the original Kaggle competition around this
dataset, this would have been one of the top results. But using modern deep-learning
techniques, you managed to reach this result using only a small fraction of the train-
ing data available (about 10%). There is a huge difference between being able to train
on 20,000 samples compared to 2,000 samples!

Figure 5.23 Smoothed curves for training and validation loss for fine-tuning

159Using a pretrained convnet
5.3.3 Wrapping up

Here’s what you should take away from the exercises in the past two sections:

 Convnets are the best type of machine-learning models for computer-vision
tasks. It’s possible to train one from scratch even on a very small dataset, with
decent results.

 On a small dataset, overfitting will be the main issue. Data augmentation is a
powerful way to fight overfitting when you’re working with image data.

 It’s easy to reuse an existing convnet on a new dataset via feature extraction.
This is a valuable technique for working with small image datasets.

 As a complement to feature extraction, you can use fine-tuning, which adapts to
a new problem some of the representations previously learned by an existing
model. This pushes performance a bit further.

Now you have a solid set of tools for dealing with image-classification problems—in
particular with small datasets.

160 CHAPTER 5 Deep learning for computer vision
5.4 Visualizing what convnets learn
It’s often said that deep-learning models are “black boxes”: learning representations
that are difficult to extract and present in a human-readable form. Although this is
partially true for certain types of deep-learning models, it’s definitely not true for
convnets. The representations learned by convnets are highly amenable to visualiza-
tion, in large part because they’re representations of visual concepts. Since 2013, a wide
array of techniques have been developed for visualizing and interpreting these repre-
sentations. We won’t survey all of them, but we’ll cover three of the most accessible
and useful ones:

 Visualizing intermediate convnet outputs (intermediate activations)—Useful for
understanding how successive convnet layers transform their input, and for get-
ting a first idea of the meaning of individual convnet filters.

 Visualizing convnets filters—Useful for understanding precisely what visual pat-
tern or concept each filter in a convnet is receptive to.

 Visualizing heatmaps of class activation in an image—Useful for understanding
which parts of an image were identified as belonging to a given class, thus allow-
ing you to localize objects in images.

For the first method—activation visualization—you’ll use the small convnet that you
trained from scratch on the dogs-versus-cats classification problem in section 5.2. For
the next two methods, you’ll use the VGG16 model introduced in section 5.3.

5.4.1 Visualizing intermediate activations

Visualizing intermediate activations consists of displaying the feature maps that are
output by various convolution and pooling layers in a network, given a certain input
(the output of a layer is often called its activation, the output of the activation func-
tion). This gives a view into how an input is decomposed into the different filters
learned by the network. You want to visualize feature maps with three dimensions:
width, height, and depth (channels). Each channel encodes relatively independent
features, so the proper way to visualize these feature maps is by independently plot-
ting the contents of every channel as a 2D image. Let’s start by loading the model that
you saved in section 5.2:

>>> from keras.models import load_model
>>> model = load_model('cats_and_dogs_small_2.h5')
>>> model.summary() <1> As a reminder.
__
Layer (type) Output Shape Param #
==
conv2d_5 (Conv2D) (None, 148, 148, 32) 896
__
maxpooling2d_5 (MaxPooling2D) (None, 74, 74, 32) 0
__
conv2d_6 (Conv2D) (None, 72, 72, 64) 18496
__
maxpooling2d_6 (MaxPooling2D) (None, 36, 36, 64) 0

161Visualizing what convnets learn
__
conv2d_7 (Conv2D) (None, 34, 34, 128) 73856
__
maxpooling2d_7 (MaxPooling2D) (None, 17, 17, 128) 0
__
conv2d_8 (Conv2D) (None, 15, 15, 128) 147584
__
maxpooling2d_8 (MaxPooling2D) (None, 7, 7, 128) 0
__
flatten_2 (Flatten) (None, 6272) 0
__
dropout_1 (Dropout) (None, 6272) 0
__
dense_3 (Dense) (None, 512) 3211776
__
dense_4 (Dense) (None, 1) 513
==
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

Next, you’ll get an input image—a picture of a cat, not part of the images the network
was trained on.

img_path = '/Users/fchollet/Downloads/cats_and_dogs_small/test/cats/cat.1700.jpg'

from keras.preprocessing import image
import numpy as np

img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.

<1> Its shape is (1, 150, 150, 3)
print(img_tensor.shape)

Let’s display the picture (see figure 5.24).

import matplotlib.pyplot as plt

plt.imshow(img_tensor[0])
plt.show()

Listing 5.25 Preprocessing a single image

Listing 5.26 Displaying the test picture

Preprocesses the image
into a 4D tensor

Remember that the model
was trained on inputs that
were preprocessed this way.

162 CHAPTER 5 Deep learning for computer vision
In order to extract the feature maps you want to look at, you’ll create a Keras model
that takes batches of images as input, and outputs the activations of all convolution and
pooling layers. To do this, you’ll use the Keras class Model. A model is instantiated
using two arguments: an input tensor (or list of input tensors) and an output tensor
(or list of output tensors). The resulting class is a Keras model, just like the Sequential
models you’re familiar with, mapping the specified inputs to the specified outputs.
What sets the Model class apart is that it allows for models with multiple outputs, unlike
Sequential. For more information about the Model class, see section 7.1.

from keras import models

layer_outputs = [layer.output for layer in model.layers[:8]]
activation_model = models.Model(inputs=model.input, outputs=layer_outputs)

When fed an image input, this model returns the values of the layer activations in the
original model. This is the first time you’ve encountered a multi-output model in this
book: until now, the models you’ve seen have had exactly one input and one output.
In the general case, a model can have any number of inputs and outputs. This one has
one input and eight outputs: one output per layer activation.

Listing 5.27 Instantiating a model from an input tensor and a list of output tensors

Figure 5.24 The test cat picture

Extracts the outputs of
the top eight layers

Creates a model that will return these
outputs, given the model input

163Visualizing what convnets learn
activations = activation_model.predict(img_tensor)

For instance, this is the activation of the first convolution layer for the cat image input:

>>> first_layer_activation = activations[0]
>>> print(first_layer_activation.shape)
(1, 148, 148, 32)

It’s a 148 × 148 feature map with 32 channels. Let’s try plotting the fourth channel of
the activation of the first layer of the original model (see figure 5.25).

import matplotlib.pyplot as plt

plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')

This channel appears to encode a diagonal edge detector. Let’s try the seventh chan-
nel (see figure 5.26)—but note that your own channels may vary, because the specific
filters learned by convolution layers aren’t deterministic.

plt.matshow(first_layer_activation[0, :, :, 7], cmap='viridis')

Listing 5.28 Running the model in predict mode

Listing 5.29 Visualizing the fourth channel

Listing 5.30 Visualizing the seventh channel

Returns a list of five
Numpy arrays: one array
per layer activation

Figure 5.25 Fourth channel of the activation
of the first layer on the test cat picture

164 CHAPTER 5 Deep learning for computer vision

feat
fe

Pos
the

mak
This one looks like a “bright green dot” detector, useful to encode cat eyes. At this
point, let’s plot a complete visualization of all the activations in the network (see fig-
ure 5.27). You’ll extract and plot every channel in each of the eight activation maps,
and you’ll stack the results in one big image tensor, with channels stacked side by side.

layer_names = []
for layer in model.layers[:8]:

layer_names.append(layer.name)

images_per_row = 16

for layer_name, layer_activation in zip(layer_names, activations):
n_features = layer_activation.shape[-1]

size = layer_activation.shape[1]

n_cols = n_features // images_per_row
display_grid = np.zeros((size * n_cols, images_per_row * size))

for col in range(n_cols):
for row in range(images_per_row):

channel_image = layer_activation[0,
:, :,
col * images_per_row + row]

channel_image -= channel_image.mean()
channel_image /= channel_image.std()
channel_image *= 64
channel_image += 128
channel_image = np.clip(channel_image, 0, 255).astype('uint8')
display_grid[col * size : (col + 1) * size,

row * size : (row + 1) * size] = channel_image

scale = 1. / size
plt.figure(figsize=(scale * display_grid.shape[1],

scale * display_grid.shape[0]))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')

Listing 5.31 Visualizing every channel in every intermediate activation

Figure 5.26 Seventh channel of the activation
of the first layer on the test cat picture

Names of the layers, so you can
have them as part of your plot

Displays the feature maps

Number of
ures in the
ature map

The feature map has shape
(1, size, size, n_features).

Tiles the
activation

channels in
this matrix

Tiles each filter into
a big horizontal grid

t-processes
 feature to

e it visually
palatable

Displays the grid

165Visualizing what convnets learn
Figure 5.27 Every channel of every layer activation on the test cat picture

166 CHAPTER 5 Deep learning for computer vision
There are a few things to note here:

 The first layer acts as a collection of various edge detectors. At that stage, the
activations retain almost all of the information present in the initial picture.

 As you go higher, the activations become increasingly abstract and less visually
interpretable. They begin to encode higher-level concepts such as “cat ear” and
“cat eye.” Higher presentations carry increasingly less information about the
visual contents of the image, and increasingly more information related to the
class of the image.

 The sparsity of the activations increases with the depth of the layer: in the first
layer, all filters are activated by the input image; but in the following layers,
more and more filters are blank. This means the pattern encoded by the filter
isn’t found in the input image.

We have just evidenced an important universal characteristic of the representations
learned by deep neural networks: the features extracted by a layer become increas-
ingly abstract with the depth of the layer. The activations of higher layers carry less
and less information about the specific input being seen, and more and more infor-
mation about the target (in this case, the class of the image: cat or dog). A deep neu-
ral network effectively acts as an information distillation pipeline, with raw data going in
(in this case, RGB pictures) and being repeatedly transformed so that irrelevant infor-
mation is filtered out (for example, the specific visual appearance of the image), and
useful information is magnified and refined (for example, the class of the image).

 This is analogous to the way humans and animals perceive the world: after observ-
ing a scene for a few seconds, a human can remember which abstract objects were
present in it (bicycle, tree) but can’t remember the specific appearance of these
objects. In fact, if you tried to draw a generic bicycle from memory, chances are you
couldn’t get it even remotely right, even though you’ve seen thousands of bicycles in
your lifetime (see, for example, figure 5.28). Try it right now: this effect is absolutely
real. You brain has learned to completely abstract its visual input—to transform it into
high-level visual concepts while filtering out irrelevant visual details—making it tre-
mendously difficult to remember how things around you look.

Figure 5.28 Left: attempts
to draw a bicycle from
memory. Right: what a
schematic bicycle should
look like.

167Visualizing what convnets learn
5.4.2 Visualizing convnet filters

Another easy way to inspect the filters learned by convnets is to display the visual pat-
tern that each filter is meant to respond to. This can be done with gradient ascent in
input space : applying gradient descent to the value of the input image of a convnet so as
to maximize the response of a specific filter, starting from a blank input image. The
resulting input image will be one that the chosen filter is maximally responsive to.

 The process is simple: you’ll build a loss function that maximizes the value of a
given filter in a given convolution layer, and then you’ll use stochastic gradient
descent to adjust the values of the input image so as to maximize this activation value.
For instance, here’s a loss for the activation of filter 0 in the layer block3_conv1 of the
VGG16 network, pretrained on ImageNet.

from keras.applications import VGG16
from keras import backend as K

model = VGG16(weights='imagenet',
include_top=False)

layer_name = 'block3_conv1'
filter_index = 0

layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:, :, :, filter_index])

To implement gradient descent, you’ll need the gradient of this loss with respect to
the model’s input. To do this, you’ll use the gradients function packaged with the
backend module of Keras.

grads = K.gradients(loss, model.input)[0]

A non-obvious trick to use to help the gradient-descent process go smoothly is to nor-
malize the gradient tensor by dividing it by its L2 norm (the square root of the average
of the square of the values in the tensor). This ensures that the magnitude of the
updates done to the input image is always within the same range.

grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

Now you need a way to compute the value of the loss tensor and the gradient tensor,
given an input image. You can define a Keras backend function to do this: iterate is

Listing 5.32 Defining the loss tensor for filter visualization

Listing 5.33 Obtaining the gradient of the loss with regard to the input

Listing 5.34 Gradient-normalization trick

The call to gradients returns a list of
tensors (of size 1 in this case). Hence,
you keep only the first element—
which is a tensor.

Add 1e–5 before dividing
to avoid accidentally
dividing by 0.

168 CHAPTER 5 Deep learning for computer vision
a function that takes a Numpy tensor (as a list of tensors of size 1) and returns a list of
two Numpy tensors: the loss value and the gradient value.

iterate = K.function([model.input], [loss, grads])

import numpy as np
loss_value, grads_value = iterate([np.zeros((1, 150, 150, 3))])

At this point, you can define a Python loop to do stochastic gradient descent.

input_img_data = np.random.random((1, 150, 150, 3)) * 20 + 128.

step = 1.
for i in range(40):

loss_value, grads_value = iterate([input_img_data])

input_img_data += grads_value * step

The resulting image tensor is a floating-point tensor of shape (1, 150, 150, 3), with
values that may not be integers within [0, 255]. Hence, you need to postprocess this
tensor to turn it into a displayable image. You do so with the following straightforward
utility function.

def deprocess_image(x):
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1

x += 0.5
x = np.clip(x, 0, 1)

x *= 255
x = np.clip(x, 0, 255).astype('uint8')
return x

Now you have all the pieces. Let’s put them together into a Python function that takes
as input a layer name and a filter index, and returns a valid image tensor representing
the pattern that maximizes the activation of the specified filter.

Listing 5.35 Fetching Numpy output values given Numpy input values

Listing 5.36 Loss maximization via stochastic gradient descent

Listing 5.37 Utility function to convert a tensor into a valid image

Starts from a gray image
with some noise

Runs gradient
ascent for 40
steps

Computes the loss value
and gradient value

Adjusts the input image in the
direction that maximizes the loss

Magnitude of each gradient update

Normalizes the tensor:
centers on 0, ensures
that std is 0.1

Clips to [0, 1]

Converts to an RGB array

169Visualizing what convnets learn
def generate_pattern(layer_name, filter_index, size=150):
layer_output = model.get_layer(layer_name).output
loss = K.mean(layer_output[:, :, :, filter_index])

grads = K.gradients(loss, model.input)[0]

grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)

iterate = K.function([model.input], [loss, grads])

input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.

step = 1.
for i in range(40):

loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step

img = input_img_data[0]
return deprocess_image(img)

Let’s try it (see figure 5.29):

>>> plt.imshow(generate_pattern('block3_conv1', 0))

It seems that filter 0 in layer block3_conv1 is responsive to a polka-dot pattern. Now
the fun part: you can start visualizing every filter in every layer. For simplicity, you’ll
only look at the first 64 filters in each layer, and you’ll only look at the first layer of
each convolution block (block1_conv1, block2_conv1, block3_conv1, block4_

conv1, block5_conv1). You’ll arrange the outputs on an 8 × 8 grid of 64 × 64 filter pat-
terns, with some black margins between each filter pattern (see figures 5.30–5.33).

Listing 5.38 Function to generate filter visualizations

Runs
gradient

ascent for
40 steps

Builds a loss function that maximizes
the activation of the nth filter of the
layer under consideration

Computes the
gradient of the
input picture with
regard to this loss

Normalization
trick: normalizes
the gradient

Returns the loss
and grads given
the input picture

Starts from a
gray image with

some noise

Figure 5.29 Pattern that the zeroth
channel in layer block3_conv1
responds to maximally

170 CHAPTER 5 Deep learning for computer vision

fi
layer_name = 'block1_conv1'

size = 64

margin = 5

results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3))

for i in range(8):

for j in range(8):

filter_img = generate_pattern(layer_name, i + (j * 8), size=size)

horizontal_start = i * size + i * margin

horizontal_end = horizontal_start + size

vertical_start = j * size + j * margin

vertical_end = vertical_start + size

results[horizontal_start: horizontal_end,

vertical_start: vertical_end, :] = filter_img

plt.figure(figsize=(20, 20))

plt.imshow(results)

Listing 5.39 Generating a grid of all filter response patterns in a layer

Empty (black) image
to store results

Iterates over the rows of the results grid
Iterates over the columns of the results grid

Generates the
pattern for

lter i + (j * 8)
in layer_name

Puts the result
in the square
(i, j) of the
results grid

Displays the results grid

Figure 5.30 Filter patterns for layer block1_conv1

171Visualizing what convnets learn
Figure 5.31 Filter patterns for layer block2_conv1

Figure 5.32 Filter patterns for layer block3_conv1

172 CHAPTER 5 Deep learning for computer vision
These filter visualizations tell you a lot about how convnet layers see the world: each
layer in a convnet learns a collection of filters such that their inputs can be expressed
as a combination of the filters. This is similar to how the Fourier transform decom-
poses signals onto a bank of cosine functions. The filters in these convnet filter banks
get increasingly complex and refined as you go higher in the model:

 The filters from the first layer in the model (block1_conv1) encode simple
directional edges and colors (or colored edges, in some cases).

 The filters from block2_conv1 encode simple textures made from combina-
tions of edges and colors.

 The filters in higher layers begin to resemble textures found in natural images:
feathers, eyes, leaves, and so on.

5.4.3 Visualizing heatmaps of class activation

I’ll introduce one more visualization technique: one that is useful for understanding
which parts of a given image led a convnet to its final classification decision. This is
helpful for debugging the decision process of a convnet, particularly in the case of a
classification mistake. It also allows you to locate specific objects in an image.

 This general category of techniques is called class activation map (CAM) visualization,
and it consists of producing heatmaps of class activation over input images. A class acti-
vation heatmap is a 2D grid of scores associated with a specific output class, computed
for every location in any input image, indicating how important each location is with

Figure 5.33 Filter patterns for layer block4_conv1

173Visualizing what convnets learn
respect to the class under consideration. For instance, given an image fed into a dogs-
versus-cats convnet, CAM visualization allows you to generate a heatmap for the class
“cat,” indicating how cat-like different parts of the image are, and also a heatmap for the
class “dog,” indicating how dog-like parts of the image are.

 The specific implementation you’ll use is the one described in “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-based Localization.”2 It’s very simple:
it consists of taking the output feature map of a convolution layer, given an input
image, and weighing every channel in that feature map by the gradient of the class
with respect to the channel. Intuitively, one way to understand this trick is that you’re
weighting a spatial map of “how intensely the input image activates different chan-
nels” by “how important each channel is with regard to the class,” resulting in a spatial
map of “how intensely the input image activates the class.”

 We’ll demonstrate this technique using the pretrained VGG16 network again.

from keras.applications.vgg16 import VGG16

model = VGG16(weights='imagenet')

Consider the image of two African elephants shown in figure 5.34 (under a Creative
Commons license), possibly a mother and her calf, strolling on the savanna. Let’s con-
vert this image into something the VGG16 model can read: the model was trained on
images of size 224 × 244, preprocessed according to a few rules that are packaged in
the utility function keras.applications.vgg16.preprocess_input. So you need to
load the image, resize it to 224 × 224, convert it to a Numpy float32 tensor, and apply
these preprocessing rules.

2 Ramprasaath R. Selvaraju et al., arXiv (2017), https://arxiv.org/abs/ 1610.02391.

Listing 5.40 Loading the VGG16 network with pretrained weights

Note that you include the densely
connected classifier on top; in all
previous cases, you discarded it.

Figure 5.34 Test picture of African elephants

174 CHAPTER 5 Deep learning for computer vision
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np

img_path = '/Users/fchollet/Downloads/creative_commons_elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

You can now run the pretrained network on the image and decode its prediction vec-
tor back to a human-readable format:

>>> preds = model.predict(x)
>>> print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted:', [(u'n02504458', u'African_elephant', 0.92546833),
(u'n01871265', u'tusker', 0.070257246),
(u'n02504013', u'Indian_elephant', 0.0042589349)]

The top three classes predicted for this image are as follows:

 African elephant (with 92.5% probability)
 Tusker (with 7% probability)
 Indian elephant (with 0.4% probability)

The network has recognized the image as containing an undetermined quantity of
African elephants. The entry in the prediction vector that was maximally activated is
the one corresponding to the “African elephant” class, at index 386:

>>> np.argmax(preds[0])
386

To visualize which parts of the image are the most African elephant–like, let’s set up
the Grad-CAM process.

african_e66lephant_output = model.output[:, 386]

last_conv_layer = model.get_layer('block5_conv3')

Listing 5.41 Preprocessing an input image for VGG16

Listing 5.42 Setting up the Grad-CAM algorithm

Python Imaging Library (PIL) image
of size 224 × 224

Local path to the target image

float32 Numpy array of shape
(224, 224, 3)

Adds a dimension to transform the array
into a batch of size (1, 224, 224, 3)

Preprocesses the batch (this does
channel-wise color normalization)

“African elephant” entry in the
prediction vector

Output feature map of
the block5_conv3 layer,
the last convolutional
layer in VGG16

175Visualizing what convnets learn
grads = K.gradients(african_elephant_output, last_conv_layer.output)[0]

pooled_grads = K.mean(grads, axis=(0, 1, 2))

iterate = K.function([model.input],
[pooled_grads, last_conv_layer.output[0]])

pooled_grads_value, conv_layer_output_value = iterate([x])

for i in range(512):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]

heatmap = np.mean(conv_layer_output_value, axis=-1)

For visualization purposes, you’ll also normalize the heatmap between 0 and 1. The
result is shown in figure 5.35.

heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
plt.matshow(heatmap)

Listing 5.43 Heatmap post-processing

Gradient of the “African
elephant” class with regard to
the output feature map of
block5_conv3

Vector of shape (512,), where each entry
is the mean intensity of the gradient
over a specific feature-map channel

Values of these two quantities, as
Numpy arrays, given the sample image
of two elephants

Lets you access the values of the quantities
you just defined: pooled_grads and the
output feature map of block5_conv3, given
a sample image

The channel-wise mean of
the resulting feature map

is the heatmap of the
class activation.

Multiplies each
channel in the

feature-map array
by “how

important this
channel is” with

regard to the
“elephant” class

0
0

2

4

6

8

10

12

2 4 6 8 10 12

Figure 5.35 African elephant class
activation heatmap over the test picture

176 CHAPTER 5 Deep learning for computer vision
Finally, you’ll use OpenCV to generate an image that superimposes the original image
on the heatmap you just obtained (see figure 5.36).

import cv2

img = cv2.imread(img_path)

heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

heatmap = np.uint8(255 * heatmap)

heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

superimposed_img = heatmap * 0.4 + img

cv2.imwrite('/Users/fchollet/Downloads/elephant_cam.jpg', superimposed_img)

This visualization technique answers two important questions:

 Why did the network think this image contained an African elephant?
 Where is the African elephant located in the picture?

In particular, it’s interesting to note that the ears of the elephant calf are strongly acti-
vated: this is probably how the network can tell the difference between African and
Indian elephants.

Listing 5.44 Superimposing the heatmap with the original picture

Uses cv2 to load the
original image

Resizes the heatmap to
be the same size as the

original image

Applies the heatmap to the
original image

Converts the
heatmap to RGB

0.4 here is a heatmap
intensity factor.

Saves the image to disk

Figure 5.36 Superimposing the class activation heatmap on the original picture

177Visualizing what convnets learn
Chapter summary
 Convnets are the best tool for attacking visual-classification problems.

 Convnets work by learning a hierarchy of modular patterns and concepts
to represent the visual world.

 The representations they learn are easy to inspect—convnets are the
opposite of black boxes!

 You’re now capable of training your own convnet from scratch to solve an
image-classification problem.

 You understand how to use visual data augmentation to fight overfitting.

 You know how to use a pretrained convnet to do feature extraction and
fine-tuning.

 You can generate visualizations of the filters learned by your convnets, as
well as heatmaps of class activity.

Deep learning for
text and sequences
This chapter explores deep-learning models that can process text (understood as
sequences of word or sequences of characters), timeseries, and sequence data in
general. The two fundamental deep-learning algorithms for sequence processing
are recurrent neural networks and 1D convnets, the one-dimensional version of the 2D
convnets that we covered in the previous chapters. We’ll discuss both of these
approaches in this chapter.

 Applications of these algorithms include the following:

 Document classification and timeseries classification, such as identifying the
topic of an article or the author of a book

 Timeseries comparisons, such as estimating how closely related two docu-
ments or two stock tickers are

This chapter covers
 Preprocessing text data into useful

representations

 Working with recurrent neural networks

 Using 1D convnets for sequence processing
178

179
 Sequence-to-sequence learning, such as decoding an English sentence into
French

 Sentiment analysis, such as classifying the sentiment of tweets or movie reviews
as positive or negative

 Timeseries forecasting, such as predicting the future weather at a certain loca-
tion, given recent weather data

This chapter’s examples focus on two narrow tasks: sentiment analysis on the IMDB
dataset, a task we approached earlier in the book, and temperature forecasting. But
the techniques demonstrated for these two tasks are relevant to all the applications
just listed, and many more.

180 CHAPTER 6 Deep learning for text and sequences
6.1 Working with text data
Text is one of the most widespread forms of sequence data. It can be understood as
either a sequence of characters or a sequence of words, but it’s most common to work
at the level of words. The deep-learning sequence-processing models introduced in
the following sections can use text to produce a basic form of natural-language under-
standing, sufficient for applications including document classification, sentiment
analysis, author identification, and even question-answering (QA) (in a constrained
context). Of course, keep in mind throughout this chapter that none of these deep-
learning models truly understand text in a human sense; rather, these models can
map the statistical structure of written language, which is sufficient to solve many sim-
ple textual tasks. Deep learning for natural-language processing is pattern recognition
applied to words, sentences, and paragraphs, in much the same way that computer
vision is pattern recognition applied to pixels.

 Like all other neural networks, deep-learning models don’t take as input raw text:
they only work with numeric tensors. Vectorizing text is the process of transforming text
into numeric tensors. This can be done in multiple ways:

 Segment text into words, and transform each word into a vector.
 Segment text into characters, and transform each character into a vector.
 Extract n-grams of words or characters, and transform each n-gram into a vector.

N-grams are overlapping groups of multiple consecutive words or characters.

Collectively, the different units into which you can break down text (words, charac-
ters, or n-grams) are called tokens, and breaking text into such tokens is called tokeniza-
tion. All text-vectorization processes consist of applying some tokenization scheme and
then associating numeric vectors with the generated tokens. These vectors, packed
into sequence tensors, are fed into deep neural networks. There are multiple ways to
associate a vector with a token. In this section, I’ll present two major ones: one-hot
encoding of tokens, and token embedding (typically used exclusively for words, and called
word embedding). The remainder of this section explains these techniques and shows
how to use them to go from raw text to a Numpy tensor that you can send to a Keras
network.

Text
“The cat sat on the mat.”

Tokens
“the”, “cat”, “sat”, “on”, “the”, “mat”, “.”

Vector encoding of the tokens
0.0 0.0 0.4 0.0 0.0 1.0 0.0
0.5 1.0 0.5 0.2 0.5 0.5 0.0
1.0 0.2 1.0 1.0 1.0 0.0 0.0
the cat sat on the mat .

Figure 6.1 From text
to tokens to vectors

181Working with text data
6.1.1 One-hot encoding of words and characters

One-hot encoding is the most common, most basic way to turn a token into a vector.
You saw it in action in the initial IMDB and Reuters examples in chapter 3 (done with
words, in that case). It consists of associating a unique integer index with every word
and then turning this integer index i into a binary vector of size N (the size of the
vocabulary); the vector is all zeros except for the i th entry, which is 1.

 Of course, one-hot encoding can be done at the character level, as well. To unam-
biguously drive home what one-hot encoding is and how to implement it, listings 6.1
and 6.2 show two toy examples: one for words, the other for characters.

Understanding n-grams and bag-of-words
Word n-grams are groups of N (or fewer) consecutive words that you can extract from
a sentence. The same concept may also be applied to characters instead of words.

Here’s a simple example. Consider the sentence “The cat sat on the mat.” It may be
decomposed into the following set of 2-grams:

{"The", "The cat", "cat", "cat sat", "sat",
"sat on", "on", "on the", "the", "the mat", "mat"}

It may also be decomposed into the following set of 3-grams:

{"The", "The cat", "cat", "cat sat", "The cat sat",
"sat", "sat on", "on", "cat sat on", "on the", "the",
"sat on the", "the mat", "mat", "on the mat"}

Such a set is called a bag-of-2-grams or bag-of-3-grams, respectively. The term bag
here refers to the fact that you’re dealing with a set of tokens rather than a list or
sequence: the tokens have no specific order. This family of tokenization methods is
called bag-of-words.

Because bag-of-words isn’t an order-preserving tokenization method (the tokens gen-
erated are understood as a set, not a sequence, and the general structure of the sen-
tences is lost), it tends to be used in shallow language-processing models rather than
in deep-learning models. Extracting n-grams is a form of feature engineering, and
deep learning does away with this kind of rigid, brittle approach, replacing it with hier-
archical feature learning. One-dimensional convnets and recurrent neural networks,
introduced later in this chapter, are capable of learning representations for groups of
words and characters without being explicitly told about the existence of such groups,
by looking at continuous word or character sequences. For this reason, we won’t
cover n-grams any further in this book. But do keep in mind that they’re a powerful,
unavoidable feature-engineering tool when using lightweight, shallow text-processing
models such as logistic regression and random forests.

182 CHAPTER 6 Deep learning for text and sequences
import numpy as np

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

token_index = {}
for sample in samples:

for word in sample.split():
if word not in token_index:

token_index[word] = len(token_index) + 1

max_length = 10

results = np.zeros(shape=(len(samples),
max_length,
max(token_index.values()) + 1))

for i, sample in enumerate(samples):
for j, word in list(enumerate(sample.split()))[:max_length]:

index = token_index.get(word)
results[i, j, index] = 1.

import string

samples = ['The cat sat on the mat.', 'The dog ate my homework.']
characters = string.printable
token_index = dict(zip(range(1, len(characters) + 1), characters))

max_length = 50
results = np.zeros((len(samples), max_length, max(token_index.keys()) + 1))
for i, sample in enumerate(samples):

for j, character in enumerate(sample):
index = token_index.get(character)
results[i, j, index] = 1.

Note that Keras has built-in utilities for doing one-hot encoding of text at the word level
or character level, starting from raw text data. You should use these utilities, because
they take care of a number of important features such as stripping special characters
from strings and only taking into account the N most common words in your dataset (a
common restriction, to avoid dealing with very large input vector spaces).

Listing 6.1 Word-level one-hot encoding (toy example)

Listing 6.2 Character-level one-hot encoding (toy example)

Initial data: one entry per sample (in
this example, a sample is a sentence,
but it could be an entire document)

Builds an index of all tokens in the data

Tokenizes the samples via the split
method. In real life, you’d also strip
punctuation and special characters

from the samples.

Assigns a unique index to each
unique word. Note that you don’t
attribute index 0 to anything.

This is where you
store the results.

Vectorizes the samples. You’ll only
consider the first max_length

words in each sample.

All printable ASCII
characters

183Working with text data

B

from keras.preprocessing.text import Tokenizer

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

tokenizer = Tokenizer(num_words=1000)
tokenizer.fit_on_texts(samples)

sequences = tokenizer.texts_to_sequences(samples)

one_hot_results = tokenizer.texts_to_matrix(samples, mode='binary')

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

A variant of one-hot encoding is the so-called one-hot hashing trick, which you can use
when the number of unique tokens in your vocabulary is too large to handle explicitly.
Instead of explicitly assigning an index to each word and keeping a reference of these
indices in a dictionary, you can hash words into vectors of fixed size. This is typically
done with a very lightweight hashing function. The main advantage of this method is
that it does away with maintaining an explicit word index, which saves memory and
allows online encoding of the data (you can generate token vectors right away, before
you’ve seen all of the available data). The one drawback of this approach is that it’s
susceptible to hash collisions : two different words may end up with the same hash, and
subsequently any machine-learning model looking at these hashes won’t be able to tell
the difference between these words. The likelihood of hash collisions decreases when
the dimensionality of the hashing space is much larger than the total number of
unique tokens being hashed.

samples = ['The cat sat on the mat.', 'The dog ate my homework.']

dimensionality = 1000
max_length = 10

results = np.zeros((len(samples), max_length, dimensionality))
for i, sample in enumerate(samples):

for j, word in list(enumerate(sample.split()))[:max_length]:
index = abs(hash(word)) % dimensionality
results[i, j, index] = 1.

Listing 6.3 Using Keras for word-level one-hot encoding

Listing 6.4 Word-level one-hot encoding with hashing trick (toy example)

Creates a tokenizer, configured
to only take into account the
1,000 most common words

Turns strings into lists
of integer indices

How you can recover
the word index that
was computed

You could also directly get the one-hot
binary representations. Vectorization
modes other than one-hot encoding
are supported by this tokenizer.

uilds
the

word
index

Stores the words as vectors of size 1,000. If you have close
to 1,000 words (or more), you’ll see many hash collisions,
which will decrease the accuracy of this encoding method.

Hashes the word into a
random integer index
between 0 and 1,000

184 CHAPTER 6 Deep learning for text and sequences
6.1.2 Using word embeddings

Another popular and powerful way to associate a vector with a word is the use of dense
word vectors, also called word embeddings. Whereas the vectors obtained through one-hot
encoding are binary, sparse (mostly made of zeros), and very high-dimensional (same
dimensionality as the number of words in the vocabulary), word embeddings are low-
dimensional floating-point vectors (that is, dense vectors, as opposed to sparse vec-
tors); see figure 6.2. Unlike the word vectors obtained via one-hot encoding, word
embeddings are learned from data. It’s common to see word embeddings that are
256-dimensional, 512-dimensional, or 1,024-dimensional when dealing with very large
vocabularies. On the other hand, one-hot encoding words generally leads to vectors
that are 20,000-dimensional or greater (capturing a vocabulary of 20,000 tokens, in
this case). So, word embeddings pack more information into far fewer dimensions.

There are two ways to obtain word embeddings:

 Learn word embeddings jointly with the main task you care about (such as doc-
ument classification or sentiment prediction). In this setup, you start with ran-
dom word vectors and then learn word vectors in the same way you learn the
weights of a neural network.

 Load into your model word embeddings that were precomputed using a differ-
ent machine-learning task than the one you’re trying to solve. These are called
pretrained word embeddings.

Let’s look at both.

One-hot word vectors:
 - Sparse
 - High-dimensional
 - Hardcoded

Word embeddings:
 - Dense
 - Lower-dimensional
 - Learned from data

Figure 6.2 Whereas word representations
obtained from one-hot encoding or hashing are
sparse, high-dimensional, and hardcoded, word
embeddings are dense, relatively low-
dimensional, and learned from data.

185Working with text data
LEARNING WORD EMBEDDINGS WITH THE EMBEDDING LAYER

The simplest way to associate a dense vector with a word is to choose the vector at
random. The problem with this approach is that the resulting embedding space has
no structure: for instance, the words accurate and exact may end up with completely
different embeddings, even though they’re interchangeable in most sentences. It’s
difficult for a deep neural network to make sense of such a noisy, unstructured
embedding space.

 To get a bit more abstract, the geometric relationships between word vectors
should reflect the semantic relationships between these words. Word embeddings are
meant to map human language into a geometric space. For instance, in a reasonable
embedding space, you would expect synonyms to be embedded into similar word vec-
tors; and in general, you would expect the geometric distance (such as L2 distance)
between any two word vectors to relate to the semantic distance between the associ-
ated words (words meaning different things are embedded at points far away from
each other, whereas related words are closer). In addition to distance, you may want
specific directions in the embedding space to be meaningful. To make this clearer, let’s
look at a concrete example.

 In figure 6.3, four words are embedded on a 2D plane:
cat, dog, wolf, and tiger. With the vector representations we
chose here, some semantic relationships between these
words can be encoded as geometric transformations. For
instance, the same vector allows us to go from cat to tiger
and from dog to wolf : this vector could be interpreted as the
“from pet to wild animal” vector. Similarly, another vector
lets us go from dog to cat and from wolf to tiger, which could
be interpreted as a “from canine to feline” vector.

 In real-world word-embedding spaces, common exam-
ples of meaningful geometric transformations are “gender”
vectors and “plural” vectors. For instance, by adding a “female” vector to the vector
“king,” we obtain the vector “queen.” By adding a “plural” vector, we obtain “kings.”
Word-embedding spaces typically feature thousands of such interpretable and poten-
tially useful vectors.

 Is there some ideal word-embedding space that would perfectly map human lan-
guage and could be used for any natural-language-processing task? Possibly, but we
have yet to compute anything of the sort. Also, there is no such a thing as human lan-
guage—there are many different languages, and they aren’t isomorphic, because a lan-
guage is the reflection of a specific culture and a specific context. But more
pragmatically, what makes a good word-embedding space depends heavily on your task:
the perfect word-embedding space for an English-language movie-review sentiment-
analysis model may look different from the perfect embedding space for an English-
language legal-document-classification model, because the importance of certain
semantic relationships varies from task to task.

1

0
10

Wolf
Tiger

Cat
Dog

X

Figure 6.3 A toy example
of a word-embedding space

186 CHAPTER 6 Deep learning for text and sequences
 It’s thus reasonable to learn a new embedding space with every new task. Fortu-
nately, backpropagation makes this easy, and Keras makes it even easier. It’s about
learning the weights of a layer: the Embedding layer.

from keras.layers import Embedding

embedding_layer = Embedding(1000, 64)

The Embedding layer is best understood as a dictionary that maps integer indices
(which stand for specific words) to dense vectors. It takes integers as input, it looks up
these integers in an internal dictionary, and it returns the associated vectors. It’s effec-
tively a dictionary lookup (see figure 6.4).

The Embedding layer takes as input a 2D tensor of integers, of shape (samples,
sequence_length), where each entry is a sequence of integers. It can embed
sequences of variable lengths: for instance, you could feed into the Embedding layer in
the previous example batches with shapes (32, 10) (batch of 32 sequences of length
10) or (64, 15) (batch of 64 sequences of length 15). All sequences in a batch must
have the same length, though (because you need to pack them into a single tensor),
so sequences that are shorter than others should be padded with zeros, and sequences
that are longer should be truncated.

 This layer returns a 3D floating-point tensor of shape (samples, sequence_
length, embedding_dimensionality). Such a 3D tensor can then be processed by
an RNN layer or a 1D convolution layer (both will be introduced in the following
sections).

 When you instantiate an Embedding layer, its weights (its internal dictionary of
token vectors) are initially random, just as with any other layer. During training, these
word vectors are gradually adjusted via backpropagation, structuring the space into
something the downstream model can exploit. Once fully trained, the embedding
space will show a lot of structure—a kind of structure specialized for the specific prob-
lem for which you’re training your model.

 Let’s apply this idea to the IMDB movie-review sentiment-prediction task that
you’re already familiar with. First, you’ll quickly prepare the data. You’ll restrict the
movie reviews to the top 10,000 most common words (as you did the first time you
worked with this dataset) and cut off the reviews after only 20 words. The network will
learn 8-dimensional embeddings for each of the 10,000 words, turn the input integer

Listing 6.5 Instantiating an Embedding layer

The Embedding layer takes at least two
arguments: the number of possible tokens
(here, 1,000: 1 + maximum word index)
and the dimensionality of the embeddings
(here, 64).

Word index Embedding layer Corresponding word vector

Figure 6.4 The Embedding layer

187Working with text data
sequences (2D integer tensor) into embedded sequences (3D float tensor), flatten the
tensor to 2D, and train a single Dense layer on top for classification.

from keras.datasets import imdb
from keras import preprocessing

max_features = 10000
maxlen = 20

(x_train, y_train), (x_test, y_test) = imdb.load_data(
num_words=max_features)

x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)

from keras.models import Sequential
from keras.layers import Flatten, Dense

model = Sequential()
model.add(Embedding(10000, 8, input_length=maxlen))

model.add(Flatten())

model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
model.summary()

history = model.fit(x_train, y_train,
epochs=10,
batch_size=32,
validation_split=0.2)

You get to a validation accuracy of ~76%, which is pretty good considering that you’re
only looking at the first 20 words in every review. But note that merely flattening the
embedded sequences and training a single Dense layer on top leads to a model that
treats each word in the input sequence separately, without considering inter-word
relationships and sentence structure (for example, this model would likely treat both
“this movie is a bomb” and “this movie is the bomb” as being negative reviews). It’s
much better to add recurrent layers or 1D convolutional layers on top of the embed-
ded sequences to learn features that take into account each sequence as a whole.
That’s what we’ll focus on in the next few sections.

Listing 6.6 Loading the IMDB data for use with an Embedding layer

Listing 6.7 Using an Embedding layer and classifier on the IMDB data

Number of words to
consider as features

Cuts off the text after this
number of words (among
the max_features most
common words)

Loads the data as lists of integers

Turns the lists of integers into
a 2D integer tensor of shape

(samples, maxlen)

Specifies the maximum input length to the
Embedding layer so you can later flatten the
embedded inputs. After the Embedding layer,
the activations have shape (samples, maxlen, 8). Flattens the 3D tensor of

embeddings into a 2D
tensor of shape (samples,
maxlen * 8)

Adds the
classifier on top

188 CHAPTER 6 Deep learning for text and sequences
USING PRETRAINED WORD EMBEDDINGS

Sometimes, you have so little training data available that you can’t use your data
alone to learn an appropriate task-specific embedding of your vocabulary. What do
you do then?

 Instead of learning word embeddings jointly with the problem you want to solve,
you can load embedding vectors from a precomputed embedding space that you
know is highly structured and exhibits useful properties—that captures generic
aspects of language structure. The rationale behind using pretrained word embed-
dings in natural-language processing is much the same as for using pretrained conv-
nets in image classification: you don’t have enough data available to learn truly
powerful features on your own, but you expect the features that you need to be fairly
generic—that is, common visual features or semantic features. In this case, it makes
sense to reuse features learned on a different problem.

 Such word embeddings are generally computed using word-occurrence statistics
(observations about what words co-occur in sentences or documents), using a variety of
techniques, some involving neural networks, others not. The idea of a dense, low-
dimensional embedding space for words, computed in an unsupervised way, was ini-
tially explored by Bengio et al. in the early 2000s,1 but it only started to take off in
research and industry applications after the release of one of the most famous and suc-
cessful word-embedding schemes: the Word2vec algorithm (https://code.google.com/
archive/p/word2vec), developed by Tomas Mikolov at Google in 2013. Word2vec
dimensions capture specific semantic properties, such as gender.

 There are various precomputed databases of word embeddings that you can down-
load and use in a Keras Embedding layer. Word2vec is one of them. Another popular
one is called Global Vectors for Word Representation (GloVe, https://nlp.stanford
.edu/projects/glove), which was developed by Stanford researchers in 2014. This
embedding technique is based on factorizing a matrix of word co-occurrence statis-
tics. Its developers have made available precomputed embeddings for millions of
English tokens, obtained from Wikipedia data and Common Crawl data.

 Let’s look at how you can get started using GloVe embeddings in a Keras model.
The same method is valid for Word2vec embeddings or any other word-embedding
database. You’ll also use this example to refresh the text-tokenization techniques
introduced a few paragraphs ago: you’ll start from raw text and work your way up.

6.1.3 Putting it all together: from raw text to word embeddings

You’ll use a model similar to the one we just went over: embedding sentences in
sequences of vectors, flattening them, and training a Dense layer on top. But you’ll do
so using pretrained word embeddings; and instead of using the pretokenized IMDB
data packaged in Keras, you’ll start from scratch by downloading the original text data.

1 Yoshua Bengio et al., Neural Probabilistic Language Models (Springer, 2003).

189Working with text data
DOWNLOADING THE IMDB DATA AS RAW TEXT

First, head to http://mng.bz/0tIo and download the raw IMDB dataset. Uncompress it.
 Now, let’s collect the individual training reviews into a list of strings, one string per

review. You’ll also collect the review labels (positive/negative) into a labels list.

import os

imdb_dir = '/Users/fchollet/Downloads/aclImdb'
train_dir = os.path.join(imdb_dir, 'train')

labels = []
texts = []

for label_type in ['neg', 'pos']:
dir_name = os.path.join(train_dir, label_type)
for fname in os.listdir(dir_name):

if fname[-4:] == '.txt':
f = open(os.path.join(dir_name, fname))
texts.append(f.read())
f.close()
if label_type == 'neg':

labels.append(0)
else:

labels.append(1)

TOKENIZING THE DATA

Let’s vectorize the text and prepare a training and validation split, using the concepts
introduced earlier in this section. Because pretrained word embeddings are meant to
be particularly useful on problems where little training data is available (otherwise,
task-specific embeddings are likely to outperform them), we’ll add the following twist:
restricting the training data to the first 200 samples. So you’ll learn to classify movie
reviews after looking at just 200 examples.

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

import numpy as np

maxlen = 100

training_samples = 200

validation_samples = 10000

max_words = 10000

tokenizer = Tokenizer(num_words=max_words)

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

Listing 6.8 Processing the labels of the raw IMDB data

Listing 6.9 Tokenizing the text of the raw IMDB data

Cuts off reviews after 100 words
Trains on 200 samples

Validates on 10,000 samples

Considers only the top
10,000 words in the dataset

190 CHAPTER 6 Deep learning for text and sequences
word_index = tokenizer.word_index

print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=maxlen)

labels = np.asarray(labels)

print('Shape of data tensor:', data.shape)

print('Shape of label tensor:', labels.shape)

indices = np.arange(data.shape[0])

np.random.shuffle(indices)

data = data[indices]

labels = labels[indices]

x_train = data[:training_samples]

y_train = labels[:training_samples]

x_val = data[training_samples: training_samples + validation_samples]

y_val = labels[training_samples: training_samples + validation_samples]

DOWNLOADING THE GLOVE WORD EMBEDDINGS

Go to https://nlp.stanford.edu/projects/glove, and download the precomputed
embeddings from 2014 English Wikipedia. It’s an 822 MB zip file called glove.6B.zip,
containing 100-dimensional embedding vectors for 400,000 words (or nonword
tokens). Unzip it.

PREPROCESSING THE EMBEDDINGS

Let’s parse the unzipped file (a .txt file) to build an index that maps words (as strings)
to their vector representation (as number vectors).

glove_dir = '/Users/fchollet/Downloads/glove.6B'

embeddings_index = {}
f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
for line in f:

values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs

f.close()

print('Found %s word vectors.' % len(embeddings_index))

Next, you’ll build an embedding matrix that you can load into an Embedding layer. It
must be a matrix of shape (max_words, embedding_dim), where each entry i contains
the embedding_dim-dimensional vector for the word of index i in the reference word
index (built during tokenization). Note that index 0 isn’t supposed to stand for any
word or token—it’s a placeholder.

Listing 6.10 Parsing the GloVe word-embeddings file

Splits the data into a training set and a
validation set, but first shuffles the data,
because you’re starting with data in which
samples are ordered (all negative first, then
all positive)

191Working with text data
embedding_dim = 100

embedding_matrix = np.zeros((max_words, embedding_dim))
for word, i in word_index.items():

if i < max_words:
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

DEFINING A MODEL

You’ll use the same model architecture as before.

from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

LOADING THE GLOVE EMBEDDINGS IN THE MODEL

The Embedding layer has a single weight matrix: a 2D float matrix where each entry i is
the word vector meant to be associated with index i. Simple enough. Load the GloVe
matrix you prepared into the Embedding layer, the first layer in the model.

model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False

Additionally, you’ll freeze the Embedding layer (set its trainable attribute to False),
following the same rationale you’re already familiar with in the context of pretrained
convnet features: when parts of a model are pretrained (like your Embedding layer)
and parts are randomly initialized (like your classifier), the pretrained parts shouldn’t
be updated during training, to avoid forgetting what they already know. The large gra-
dient updates triggered by the randomly initialized layers would be disruptive to the
already-learned features.

Listing 6.11 Preparing the GloVe word-embeddings matrix

Listing 6.12 Model definition

Listing 6.13 Loading pretrained word embeddings into the Embedding layer

Words not found in the
embedding index will
be all zeros.

192 CHAPTER 6 Deep learning for text and sequences
TRAINING AND EVALUATING THE MODEL

Compile and train the model.

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(x_train, y_train,
epochs=10,
batch_size=32,
validation_data=(x_val, y_val))

model.save_weights('pre_trained_glove_model.h5')

Now, plot the model’s performance over time (see figures 6.5 and 6.6).

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

Listing 6.14 Training and evaluation

Listing 6.15 Plotting the results

Figure 6.5 Training and validation loss
when using pretrained word embeddings

193Working with text data
The model quickly starts overfitting, which is unsurprising given the small number of
training samples. Validation accuracy has high variance for the same reason, but it
seems to reach the high 50s.

 Note that your mileage may vary: because you have so few training samples, perfor-
mance is heavily dependent on exactly which 200 samples you choose—and you’re
choosing them at random. If this works poorly for you, try choosing a different ran-
dom set of 200 samples, for the sake of the exercise (in real life, you don’t get to
choose your training data).

 You can also train the same model without loading the pretrained word embed-
dings and without freezing the embedding layer. In that case, you’ll learn a task-
specific embedding of the input tokens, which is generally more powerful than
pretrained word embeddings when lots of data is available. But in this case, you have
only 200 training samples. Let’s try it (see figures 6.7 and 6.8).

from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(x_train, y_train,
epochs=10,
batch_size=32,
validation_data=(x_val, y_val))

Listing 6.16 Training the same model without pretrained word embeddings

Figure 6.6 Training and
validation accuracy when using
pretrained word embeddings

194 CHAPTER 6 Deep learning for text and sequences
Validation accuracy stalls in the low 50s. So in this case, pretrained word embeddings
outperform jointly learned embeddings. If you increase the number of training sam-
ples, this will quickly stop being the case—try it as an exercise.

 Finally, let’s evaluate the model on the test data. First, you need to tokenize the test
data.

test_dir = os.path.join(imdb_dir, 'test')

labels = []
texts = []

for label_type in ['neg', 'pos']:
dir_name = os.path.join(test_dir, label_type)
for fname in sorted(os.listdir(dir_name)):

if fname[-4:] == '.txt':
f = open(os.path.join(dir_name, fname))
texts.append(f.read())

Listing 6.17 Tokenizing the data of the test set

Figure 6.7 Training and
validation loss without using
pretrained word embeddings

Figure 6.8 Training and validation
accuracy without using pretrained
word embeddings

195Working with text data
f.close()
if label_type == 'neg':

labels.append(0)
else:

labels.append(1)

sequences = tokenizer.texts_to_sequences(texts)
x_test = pad_sequences(sequences, maxlen=maxlen)
y_test = np.asarray(labels)

Next, load and evaluate the first model.

model.load_weights('pre_trained_glove_model.h5')
model.evaluate(x_test, y_test)

You get an appalling test accuracy of 56%. Working with just a handful of training
samples is difficult!

6.1.4 Wrapping up

Now you’re able to do the following:

 Turn raw text into something a neural network can process
 Use the Embedding layer in a Keras model to learn task-specific token embed-

dings
 Use pretrained word embeddings to get an extra boost on small natural-

language-processing problems

Listing 6.18 Evaluating the model on the test set

196 CHAPTER 6 Deep learning for text and sequences
6.2 Understanding recurrent neural networks
A major characteristic of all neural networks you’ve seen so far, such as densely con-
nected networks and convnets, is that they have no memory. Each input shown to
them is processed independently, with no state kept in between inputs. With such net-
works, in order to process a sequence or a temporal series of data points, you have to
show the entire sequence to the network at once: turn it into a single data point. For
instance, this is what you did in the IMDB example: an entire movie review was trans-
formed into a single large vector and processed in one go. Such networks are called
feedforward networks.

 In contrast, as you’re reading the present sentence, you’re processing it word by
word—or rather, eye saccade by eye saccade—while keeping memories of what came
before; this gives you a fluid representation of the meaning conveyed by this sentence.
Biological intelligence processes information incrementally while maintaining an
internal model of what it’s processing, built from past information and constantly
updated as new information comes in.

 A recurrent neural network (RNN) adopts the same principle, albeit in an extremely
simplified version: it processes sequences by iterating through the sequence elements
and maintaining a state containing information relative
to what it has seen so far. In effect, an RNN is a type of
neural network that has an internal loop (see figure 6.9).
The state of the RNN is reset between processing two dif-
ferent, independent sequences (such as two different
IMDB reviews), so you still consider one sequence a sin-
gle data point: a single input to the network. What
changes is that this data point is no longer processed in a
single step; rather, the network internally loops over
sequence elements.

 To make these notions of loop and state clear, let’s implement the forward pass of a
toy RNN in Numpy. This RNN takes as input a sequence of vectors, which you’ll encode
as a 2D tensor of size (timesteps, input_features). It loops over timesteps, and at
each timestep, it considers its current state at t and the input at t (of shape (input_
features,), and combines them to obtain the output at t. You’ll then set the state for
the next step to be this previous output. For the first timestep, the previous output
isn’t defined; hence, there is no current state. So, you’ll initialize the state as an all-
zero vector called the initial state of the network.

 In pseudocode, this is the RNN.

state_t = 0

for input_t in input_sequence:

output_t = f(input_t, state_t)

state_t = output_t

Listing 6.19 Pseudocode RNN

The state at t
Iterates over sequence elements

The previous output becomes the state for the next iteration.

RNN

Input

Output

Recurrent
connection

Figure 6.9 A recurrent
network: a network with a loop

197Understanding recurrent neural networks
You can even flesh out the function f: the transformation of the input and state into an
output will be parameterized by two matrices, W and U, and a bias vector. It’s similar to
the transformation operated by a densely connected layer in a feedforward network.

state_t = 0
for input_t in input_sequence:

output_t = activation(dot(W, input_t) + dot(U, state_t) + b)
state_t = output_t

To make these notions absolutely unambiguous, let’s write a naive Numpy implemen-
tation of the forward pass of the simple RNN.

import numpy as np

timesteps = 100
input_features = 32
output_features = 64

inputs = np.random.random((timesteps, input_features))

state_t = np.zeros((output_features,))

W = np.random.random((output_features, input_features))
U = np.random.random((output_features, output_features))
b = np.random.random((output_features,))

successive_outputs = []
for input_t in inputs:

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

successive_outputs.append(output_t)

state_t = output_t

final_output_sequence = np.concatenate(successive_outputs, axis=0)

Easy enough: in summary, an RNN is a for loop that reuses quantities computed
during the previous iteration of the loop, nothing more. Of course, there are many
different RNNs fitting this definition that you could build—this example is one of the
simplest RNN formulations. RNNs are characterized by their step function, such as the
following function in this case (see figure 6.10):

output_t = np.tanh(np.dot(W, input_t) + np.dot(U, state_t) + b)

Listing 6.20 More detailed pseudocode for the RNN

Listing 6.21 Numpy implementation of a simple RNN

Number of timesteps in
the input sequence Dimensionality of the

input feature space

Dimensionality of the
output feature space

Input data: random
noise for the sake of
the example

Initial state: an
all-zero vector

Creates random
weight matrices

input_t is a vector of
shape (input_features,).

Combines the input with the current
state (the previous output) to obtain
the current output

Stores this output in a list

Updates the state of the
network for the next timestep

The final output is a 2D tensor of
shape (timesteps, output_features).

198 CHAPTER 6 Deep learning for text and sequences
NOTE In this example, the final output is a 2D tensor of shape (timesteps,
output_features), where each timestep is the output of the loop at time t.
Each timestep t in the output tensor contains information about timesteps 0
to t in the input sequence—about the entire past. For this reason, in many
cases, you don’t need this full sequence of outputs; you just need the last out-
put (output_t at the end of the loop), because it already contains informa-
tion about the entire sequence.

6.2.1 A recurrent layer in Keras

The process you just naively implemented in Numpy corresponds to an actual Keras
layer—the SimpleRNN layer:

from keras.layers import SimpleRNN

There is one minor difference: SimpleRNN processes batches of sequences, like all other
Keras layers, not a single sequence as in the Numpy example. This means it takes inputs
of shape (batch_size, timesteps, input_features), rather than (timesteps,
input_features).

 Like all recurrent layers in Keras, SimpleRNN can be run in two different modes: it
can return either the full sequences of successive outputs for each timestep (a 3D ten-
sor of shape (batch_size, timesteps, output_features)) or only the last output for
each input sequence (a 2D tensor of shape (batch_size, output_features)). These
two modes are controlled by the return_sequences constructor argument. Let’s look
at an example that uses SimpleRNN and returns only the output at the last timestep:

>>> from keras.models import Sequential
>>> from keras.layers import Embedding, SimpleRNN
>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32))
>>> model.summary()

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =
activation(

W•input_t +
U•state_t +
bo)

Figure 6.10 A simple RNN, unrolled over time

199Understanding recurrent neural networks
__
Layer (type) Output Shape Param #
==
embedding_22 (Embedding) (None, None, 32) 320000
__
simplernn_10 (SimpleRNN) (None, 32) 2080
==
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

The following example returns the full state sequence:

>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.summary()
__
Layer (type) Output Shape Param #
==
embedding_23 (Embedding) (None, None, 32) 320000
__
simplernn_11 (SimpleRNN) (None, None, 32) 2080
==
Total params: 322,080
Trainable params: 322,080
Non-trainable params: 0

It’s sometimes useful to stack several recurrent layers one after the other in order to
increase the representational power of a network. In such a setup, you have to get all
of the intermediate layers to return full sequence of outputs:

>>> model = Sequential()
>>> model.add(Embedding(10000, 32))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32, return_sequences=True))
>>> model.add(SimpleRNN(32))
>>> model.summary()
__
Layer (type) Output Shape Param #
==
embedding_24 (Embedding) (None, None, 32) 320000
__
simplernn_12 (SimpleRNN) (None, None, 32) 2080
__
simplernn_13 (SimpleRNN) (None, None, 32) 2080
__
simplernn_14 (SimpleRNN) (None, None, 32) 2080
__
simplernn_15 (SimpleRNN) (None, 32) 2080
==
Total params: 328,320
Trainable params: 328,320
Non-trainable params: 0

Last layer only returns
the last output

200 CHAPTER 6 Deep learning for text and sequences
Now, let’s use such a model on the IMDB movie-review-classification problem. First,
preprocess the data.

from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000
maxlen = 500
batch_size = 32

print('Loading data...')
(input_train, y_train), (input_test, y_test) = imdb.load_data(

num_words=max_features)
print(len(input_train), 'train sequences')
print(len(input_test), 'test sequences')

print('Pad sequences (samples x time)')
input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
print('input_train shape:', input_train.shape)
print('input_test shape:', input_test.shape)

Let’s train a simple recurrent network using an Embedding layer and a SimpleRNN
layer.

from keras.layers import Dense

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(input_train, y_train,

epochs=10,
batch_size=128,
validation_split=0.2)

Now, let’s display the training and validation loss and accuracy (see figures 6.11 and 6.12).

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')

Listing 6.22 Preparing the IMDB data

Listing 6.23 Training the model with Embedding and SimpleRNN layers

Listing 6.24 Plotting results

Number of words to
consider as features

Cuts off texts after this many words (among
the max_features most common words)

201Understanding recurrent neural networks
plt.title('Training and validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

As a reminder, in chapter 3, the first naive approach to this dataset got you to a test
accuracy of 88%. Unfortunately, this small recurrent network doesn’t perform well
compared to this baseline (only 85% validation accuracy). Part of the problem is that
your inputs only consider the first 500 words, rather than full sequences—hence, the
RNN has access to less information than the earlier baseline model. The remainder of
the problem is that SimpleRNN isn’t good at processing long sequences, such as text.

Figure 6.11 Training and validation
loss on IMDB with SimpleRNN

Figure 6.12 Training and validation
accuracy on IMDB with SimpleRNN

202 CHAPTER 6 Deep learning for text and sequences
Other types of recurrent layers perform much better. Let’s look at some more-
advanced layers.

6.2.2 Understanding the LSTM and GRU layers

SimpleRNN isn’t the only recurrent layer available in Keras. There are two others: LSTM
and GRU. In practice, you’ll always use one of these, because SimpleRNN is generally too
simplistic to be of real use. SimpleRNN has a major issue: although it should theoretically
be able to retain at time t information about inputs seen many timesteps before, in
practice, such long-term dependencies are impossible to learn. This is due to the van-
ishing gradient problem, an effect that is similar to what is observed with non-recurrent
networks (feedforward networks) that are many layers deep: as you keep adding layers
to a network, the network eventually becomes untrainable. The theoretical reasons for
this effect were studied by Hochreiter, Schmidhuber, and Bengio in the early 1990s.2

The LSTM and GRU layers are designed to solve this problem.
 Let’s consider the LSTM layer. The underlying Long Short-Term Memory (LSTM)

algorithm was developed by Hochreiter and Schmidhuber in 1997;3 it was the culmi-
nation of their research on the vanishing gradient problem.

 This layer is a variant of the SimpleRNN layer you already know about; it adds a way
to carry information across many timesteps. Imagine a conveyor belt running parallel
to the sequence you’re processing. Information from the sequence can jump onto the
conveyor belt at any point, be transported to a later timestep, and jump off, intact,
when you need it. This is essentially what LSTM does: it saves information for later,
thus preventing older signals from gradually vanishing during processing.

 To understand this in detail, let’s start from the SimpleRNN cell (see figure 6.13).
Because you’ll have a lot of weight matrices, index the W and U matrices in the cell with
the letter o (Wo and Uo) for output.

2 See, for example, Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning Long-Term Dependencies
with Gradient Descent Is Difficult,” IEEE Transactions on Neural Networks 5, no. 2 (1994).

3 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation 9, no. 8 (1997).

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

output_t =
activation(

Wo•input_t +
Uo•state_t +
bo)

Figure 6.13 The starting point of an LSTM layer: a SimpleRNN

203Understanding recurrent neural networks
Let’s add to this picture an additional data flow that carries information across time-
steps. Call its values at different timesteps Ct, where C stands for carry. This informa-
tion will have the following impact on the cell: it will be combined with the input
connection and the recurrent connection (via a dense transformation: a dot product
with a weight matrix followed by a bias add and the application of an activation func-
tion), and it will affect the state being sent to the next timestep (via an activation
function an a multiplication operation). Conceptually, the carry dataflow is a way to
modulate the next output and the next state (see figure 6.14). Simple so far.

Now the subtlety: the way the next value of the carry dataflow is computed. It involves
three distinct transformations. All three have the form of a SimpleRNN cell:

y = activation(dot(state_t, U) + dot(input_t, W) + b)

But all three transformations have their own weight matrices, which you’ll index with
the letters i, f, and k. Here’s what you have so far (it may seem a bit arbitrary, but bear
with me).

output_t = activation(dot(state_t, Uo) + dot(input_t, Wo) + dot(C_t, Vo) + bo)

i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)

You obtain the new carry state (the next c_t) by combining i_t, f_t, and k_t.

c_t+1 = i_t * k_t + c_t * f_t

Add this as shown in figure 6.15. And that’s it. Not so complicated—merely a tad
complex.

Listing 6.25 Pseudocode details of the LSTM architecture (1/2)

Listing 6.26 Pseudocode details of the LSTM architecture (2/2)

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =
activation(

Wo•input_t +
Uo•state_t +
Vo•c_t +
bo)

Figure 6.14 Going from a SimpleRNN to an LSTM: adding a carry track

204 CHAPTER 6 Deep learning for text and sequences
If you want to get philosophical, you can interpret what each of these operations is
meant to do. For instance, you can say that multiplying c_t and f_t is a way to deliber-
ately forget irrelevant information in the carry dataflow. Meanwhile, i_t and k_t pro-
vide information about the present, updating the carry track with new information.
But at the end of the day, these interpretations don’t mean much, because what these
operations actually do is determined by the contents of the weights parameterizing
them; and the weights are learned in an end-to-end fashion, starting over with each
training round, making it impossible to credit this or that operation with a specific
purpose. The specification of an RNN cell (as just described) determines your hypoth-
esis space—the space in which you’ll search for a good model configuration during
training—but it doesn’t determine what the cell does; that is up to the cell weights.
The same cell with different weights can be doing very different things. So the combi-
nation of operations making up an RNN cell is better interpreted as a set of constraints
on your search, not as a design in an engineering sense.

 To a researcher, it seems that the choice of such constraints—the question of how to
implement RNN cells—is better left to optimization algorithms (like genetic algorithms
or reinforcement learning processes) than to human engineers. And in the future,
that’s how we’ll build networks. In summary: you don’t need to understand anything
about the specific architecture of an LSTM cell; as a human, it shouldn’t be your job to
understand it. Just keep in mind what the LSTM cell is meant to do: allow past informa-
tion to be reinjected at a later time, thus fighting the vanishing-gradient problem.

6.2.3 A concrete LSTM example in Keras

Now let’s switch to more practical concerns: you’ll set up a model using an LSTM layer
and train it on the IMDB data (see figures 6.16 and 6.17). The network is similar to the
one with SimpleRNN that was just presented. You only specify the output dimensional-
ity of the LSTM layer; leave every other argument (there are many) at the Keras

...

output t-1 output t output t+1

input t-1 input t input t+1

...
State t State t+1

Carry trackc t+1c t

c t c t

c t-1

output_t =
activation(

Wo•input_t +
Uo•state_t +
Vo•c_t +
bo)

Compute
new
carry

Compute
new
carry

Figure 6.15 Anatomy of an LSTM

205Understanding recurrent neural networks
defaults. Keras has good defaults, and things will almost always “just work” without you
having to spend time tuning parameters by hand.

from keras.layers import LSTM

model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(input_train, y_train,
epochs=10,
batch_size=128,
validation_split=0.2)

Listing 6.27 Using the LSTM layer in Keras

Figure 6.16 Training and validation
loss on IMDB with LSTM

Figure 6.17 Training and validation
accuracy on IMDB with LSTM

206 CHAPTER 6 Deep learning for text and sequences
This time, you achieve up to 89% validation accuracy. Not bad: certainly much better
than the SimpleRNN network—that’s largely because LSTM suffers much less from the
vanishing-gradient problem—and slightly better than the fully connected approach
from chapter 3, even though you’re looking at less data than you were in chapter 3.
You’re truncating sequences after 500 timesteps, whereas in chapter 3, you were con-
sidering full sequences.

 But this result isn’t groundbreaking for such a computationally intensive
approach. Why isn’t LSTM performing better? One reason is that you made no effort
to tune hyperparameters such as the embeddings dimensionality or the LSTM output
dimensionality. Another may be lack of regularization. But honestly, the primary rea-
son is that analyzing the global, long-term structure of the reviews (what LSTM is good
at) isn’t helpful for a sentiment-analysis problem. Such a basic problem is well solved
by looking at what words occur in each review, and at what frequency. That’s what the
first fully connected approach looked at. But there are far more difficult natural-
language-processing problems out there, where the strength of LSTM will become
apparent: in particular, question-answering and machine translation.

6.2.4 Wrapping up

Now you understand the following:

 What RNNs are and how they work
 What LSTM is, and why it works better on long sequences than a naive RNN

 How to use Keras RNN layers to process sequence data

Next, we’ll review a number of more advanced features of RNNs, which can help you
get the most out of your deep-learning sequence models.

207Advanced use of recurrent neural networks
6.3 Advanced use of recurrent neural networks
In this section, we’ll review three advanced techniques for improving the perfor-
mance and generalization power of recurrent neural networks. By the end of the sec-
tion, you’ll know most of what there is to know about using recurrent networks with
Keras. We’ll demonstrate all three concepts on a temperature-forecasting problem,
where you have access to a timeseries of data points coming from sensors installed on
the roof of a building, such as temperature, air pressure, and humidity, which you use
to predict what the temperature will be 24 hours after the last data point. This is a
fairly challenging problem that exemplifies many common difficulties encountered
when working with timeseries.

 We’ll cover the following techniques:

 Recurrent dropout—This is a specific, built-in way to use dropout to fight overfit-
ting in recurrent layers.

 Stacking recurrent layers—This increases the representational power of the net-
work (at the cost of higher computational loads).

 Bidirectional recurrent layers—These present the same information to a recurrent
network in different ways, increasing accuracy and mitigating forgetting issues.

6.3.1 A temperature-forecasting problem

Until now, the only sequence data we’ve covered has been text data, such as the IMDB
dataset and the Reuters dataset. But sequence data is found in many more problems
than just language processing. In all the examples in this section, you’ll play with a
weather timeseries dataset recorded at the Weather Station at the Max Planck Insti-
tute for Biogeochemistry in Jena, Germany.4

 In this dataset, 14 different quantities (such air temperature, atmospheric pres-
sure, humidity, wind direction, and so on) were recorded every 10 minutes, over sev-
eral years. The original data goes back to 2003, but this example is limited to data
from 2009–2016. This dataset is perfect for learning to work with numerical
timeseries. You’ll use it to build a model that takes as input some data from the recent
past (a few days’ worth of data points) and predicts the air temperature 24 hours in
the future.

 Download and uncompress the data as follows:

cd ~/Downloads
mkdir jena_climate
cd jena_climate
wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
unzip jena_climate_2009_2016.csv.zip

Let’s look at the data.

4 Olaf Kolle, www.bgc-jena.mpg.de/wetter.

208 CHAPTER 6 Deep learning for text and sequences
import os

data_dir = '/users/fchollet/Downloads/jena_climate'
fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')

f = open(fname)
data = f.read()
f.close()

lines = data.split('\n')
header = lines[0].split(',')
lines = lines[1:]

print(header)
print(len(lines))

This outputs a count of 420,551 lines of data (each line is a timestep: a record of a
date and 14 weather-related values), as well as the following header:

["Date Time",
"p (mbar)",
"T (degC)",
"Tpot (K)",
"Tdew (degC)",
"rh (%)",
"VPmax (mbar)",
"VPact (mbar)",
"VPdef (mbar)",
"sh (g/kg)",
"H2OC (mmol/mol)",
"rho (g/m**3)",
"wv (m/s)",
"max. wv (m/s)",
"wd (deg)"]

Now, convert all 420,551 lines of data into a Numpy array.

import numpy as np

float_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):

values = [float(x) for x in line.split(',')[1:]]
float_data[i, :] = values

For instance, here is the plot of temperature (in degrees Celsius) over time (see figure
6.18). On this plot, you can clearly see the yearly periodicity of temperature.

Listing 6.28 Inspecting the data of the Jena weather dataset

Listing 6.29 Parsing the data

209Advanced use of recurrent neural networks
from matplotlib import pyplot as plt

temp = float_data[:, 1] <1> temperature (in degrees Celsius)
plt.plot(range(len(temp)), temp)

Here is a more narrow plot of the first 10 days of temperature data (see figure 6.19).
Because the data is recorded every 10 minutes, you get 144 data points per day.

plt.plot(range(1440), temp[:1440])

Listing 6.30 Plotting the temperature timeseries

Listing 6.31 Plotting the first 10 days of the temperature timeseries

Figure 6.18 Temperature
over the full temporal range of
the dataset (ºC)

Figure 6.19 Temperature
over the first 10 days of the
dataset (ºC)

210 CHAPTER 6 Deep learning for text and sequences
On this plot, you can see daily periodicity, especially evident for the last 4 days. Also
note that this 10-day period must be coming from a fairly cold winter month.

 If you were trying to predict average temperature for the next month given a few
months of past data, the problem would be easy, due to the reliable year-scale period-
icity of the data. But looking at the data over a scale of days, the temperature looks a
lot more chaotic. Is this timeseries predictable at a daily scale? Let’s find out.

6.3.2 Preparing the data

The exact formulation of the problem will be as follows: given data going as far back
as lookback timesteps (a timestep is 10 minutes) and sampled every steps timesteps,
can you predict the temperature in delay timesteps? You’ll use the following parame-
ter values:

 lookback = 720—Observations will go back 5 days.
 steps = 6—Observations will be sampled at one data point per hour.
 delay = 144—Targets will be 24 hours in the future.

To get started, you need to do two things:

 Preprocess the data to a format a neural network can ingest. This is easy: the
data is already numerical, so you don’t need to do any vectorization. But each
timeseries in the data is on a different scale (for example, temperature is typi-
cally between -20 and +30, but atmospheric pressure, measured in mbar, is
around 1,000). You’ll normalize each timeseries independently so that they all
take small values on a similar scale.

 Write a Python generator that takes the current array of float data and yields
batches of data from the recent past, along with a target temperature in the
future. Because the samples in the dataset are highly redundant (sample N and
sample N + 1 will have most of their timesteps in common), it would be wasteful
to explicitly allocate every sample. Instead, you’ll generate the samples on the
fly using the original data.

You’ll preprocess the data by subtracting the mean of each timeseries and dividing by
the standard deviation. You’re going to use the first 200,000 timesteps as training data,
so compute the mean and standard deviation only on this fraction of the data.

mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data[:200000].std(axis=0)
float_data /= std

Listing 6.33 shows the data generator you’ll use. It yields a tuple (samples, targets),
where samples is one batch of input data and targets is the corresponding array of
target temperatures. It takes the following arguments:

Listing 6.32 Normalizing the data

211Advanced use of recurrent neural networks
 data—The original array of floating-point data, which you normalized in listing 6.32.
 lookback—How many timesteps back the input data should go.
 delay—How many timesteps in the future the target should be.
 min_index and max_index—Indices in the data array that delimit which time-

steps to draw from. This is useful for keeping a segment of the data for valida-
tion and another for testing.

 shuffle—Whether to shuffle the samples or draw them in chronological order.
 batch_size—The number of samples per batch.
 step—The period, in timesteps, at which you sample data. You’ll set it to 6 in

order to draw one data point every hour.

def generator(data, lookback, delay, min_index, max_index,
shuffle=False, batch_size=128, step=6):

if max_index is None:
max_index = len(data) - delay - 1

i = min_index + lookback
while 1:

if shuffle:
rows = np.random.randint(

min_index + lookback, max_index, size=batch_size)
else:

if i + batch_size >= max_index:
i = min_index + lookback

rows = np.arange(i, min(i + batch_size, max_index))
i += len(rows)

samples = np.zeros((len(rows),
lookback // step,
data.shape[-1]))

targets = np.zeros((len(rows),))
for j, row in enumerate(rows):

indices = range(rows[j] - lookback, rows[j], step)
samples[j] = data[indices]
targets[j] = data[rows[j] + delay][1]

yield samples, targets

Now, let’s use the abstract generator function to instantiate three generators: one for
training, one for validation, and one for testing. Each will look at different temporal
segments of the original data: the training generator looks at the first 200,000 time-
steps, the validation generator looks at the following 100,000, and the test generator
looks at the remainder.

lookback = 1440
step = 6
delay = 144
batch_size = 128

Listing 6.33 Generator yielding timeseries samples and their targets

Listing 6.34 Preparing the training, validation, and test generators

212 CHAPTER 6 Deep learning for text and sequences
train_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=0,
max_index=200000,
shuffle=True,
step=step,
batch_size=batch_size)

val_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=200001,
max_index=300000,
step=step,
batch_size=batch_size)

test_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=300001,
max_index=None,
step=step,
batch_size=batch_size)

val_steps = (300000 - 200001 - lookback)

test_steps = (len(float_data) - 300001 - lookback)

6.3.3 A common-sense, non-machine-learning baseline

Before you start using black-box deep-learning models to solve the temperature-
prediction problem, let’s try a simple, common-sense approach. It will serve as a sanity
check, and it will establish a baseline that you’ll have to beat in order to demonstrate
the usefulness of more-advanced machine-learning models. Such common-sense base-
lines can be useful when you’re approaching a new problem for which there is no
known solution (yet). A classic example is that of unbalanced classification tasks,
where some classes are much more common than others. If your dataset contains 90%
instances of class A and 10% instances of class B, then a common-sense approach to
the classification task is to always predict “A” when presented with a new sample. Such
a classifier is 90% accurate overall, and any learning-based approach should therefore
beat this 90% score in order to demonstrate usefulness. Sometimes, such elementary
baselines can prove surprisingly hard to beat.

 In this case, the temperature timeseries can safely be assumed to be continuous
(the temperatures tomorrow are likely to be close to the temperatures today) as well
as periodical with a daily period. Thus a common-sense approach is to always predict
that the temperature 24 hours from now will be equal to the temperature right now.
Let’s evaluate this approach, using the mean absolute error (MAE) metric:

np.mean(np.abs(preds - targets))

How many steps to draw from
val_gen in order to see the
entire validation set

How many steps to draw
from test_gen in order to
see the entire test set

213Advanced use of recurrent neural networks
Here’s the evaluation loop.

def evaluate_naive_method():
batch_maes = []
for step in range(val_steps):

samples, targets = next(val_gen)
preds = samples[:, -1, 1]
mae = np.mean(np.abs(preds - targets))
batch_maes.append(mae)

print(np.mean(batch_maes))

evaluate_naive_method()

This yields an MAE of 0.29. Because the temperature data has been normalized to be
centered on 0 and have a standard deviation of 1, this number isn’t immediately inter-
pretable. It translates to an average absolute error of 0.29 × temperature_std degrees
Celsius: 2.57˚C.

celsius_mae = 0.29 * std[1]

That’s a fairly large average absolute error. Now the game is to use your knowledge of
deep learning to do better.

6.3.4 A basic machine-learning approach

In the same way that it’s useful to establish a common-sense baseline before trying
machine-learning approaches, it’s useful to try simple, cheap machine-learning mod-
els (such as small, densely connected networks) before looking into complicated and
computationally expensive models such as RNNs. This is the best way to make sure any
further complexity you throw at the problem is legitimate and delivers real benefits.

 The following listing shows a fully connected model that starts by flattening the
data and then runs it through two Dense layers. Note the lack of activation function on
the last Dense layer, which is typical for a regression problem. You use MAE as the loss.
Because you evaluate on the exact same data and with the exact same metric you did
with the common-sense approach, the results will be directly comparable.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Flatten(input_shape=(lookback // step, float_data.shape[-1])))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))

Listing 6.35 Computing the common-sense baseline MAE

Listing 6.36 Converting the MAE back to a Celsius error

Listing 6.37 Training and evaluating a densely connected model

214 CHAPTER 6 Deep learning for text and sequences
model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=20,
validation_data=val_gen,
validation_steps=val_steps)

Let’s display the loss curves for validation and training (see figure 6.20).

import matplotlib.pyplot as plt

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()

plt.show()

Some of the validation losses are close to the no-learning baseline, but not reliably.
This goes to show the merit of having this baseline in the first place: it turns out to be
not easy to outperform. Your common sense contains a lot of valuable information
that a machine-learning model doesn’t have access to.

 You may wonder, if a simple, well-performing model exists to go from the data to
the targets (the common-sense baseline), why doesn’t the model you’re training find it
and improve on it? Because this simple solution isn’t what your training setup is look-
ing for. The space of models in which you’re searching for a solution—that is, your
hypothesis space—is the space of all possible two-layer networks with the configuration
you defined. These networks are already fairly complicated. When you’re looking for a

Listing 6.38 Plotting results

Figure 6.20 Training and validation
loss on the Jena temperature-
forecasting task with a simple, densely
connected network

215Advanced use of recurrent neural networks
solution with a space of complicated models, the simple, well-performing baseline may
be unlearnable, even if it’s technically part of the hypothesis space. That is a pretty sig-
nificant limitation of machine learning in general: unless the learning algorithm is
hardcoded to look for a specific kind of simple model, parameter learning can some-
times fail to find a simple solution to a simple problem.

6.3.5 A first recurrent baseline

The first fully connected approach didn’t do well, but that doesn’t mean machine
learning isn’t applicable to this problem. The previous approach first flattened the
timeseries, which removed the notion of time from the input data. Let’s instead look
at the data as what it is: a sequence, where causality and order matter. You’ll try a
recurrent-sequence processing model—it should be the perfect fit for such sequence
data, precisely because it exploits the temporal ordering of data points, unlike the first
approach.

 Instead of the LSTM layer introduced in the previous section, you’ll use the GRU
layer, developed by Chung et al. in 2014.5 Gated recurrent unit (GRU) layers work
using the same principle as LSTM, but they’re somewhat streamlined and thus
cheaper to run (although they may not have as much representational power as
LSTM). This trade-off between computational expensiveness and representational
power is seen everywhere in machine learning.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=20,
validation_data=val_gen,
validation_steps=val_steps)

Figure 6.21 shows the results. Much better! You can significantly beat the common-
sense baseline, demonstrating the value of machine learning as well as the superiority
of recurrent networks compared to sequence-flattening dense networks on this type
of task.

5 Junyoung Chung et al., “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,”
Conference on Neural Information Processing Systems (2014), https://arxiv.org/abs/1412.3555.

Listing 6.39 Training and evaluating a GRU-based model

216 CHAPTER 6 Deep learning for text and sequences
The new validation MAE of ~0.265 (before you start significantly overfitting) translates
to a mean absolute error of 2.35˚C after denormalization. That’s a solid gain on the
initial error of 2.57˚C, but you probably still have a bit of a margin for improvement.

6.3.6 Using recurrent dropout to fight overfitting

It’s evident from the training and validation curves that the model is overfitting: the
training and validation losses start to diverge considerably after a few epochs. You’re
already familiar with a classic technique for fighting this phenomenon: dropout,
which randomly zeros out input units of a layer in order to break happenstance cor-
relations in the training data that the layer is exposed to. But how to correctly apply
dropout in recurrent networks isn’t a trivial question. It has long been known that
applying dropout before a recurrent layer hinders learning rather than helping with
regularization. In 2015, Yarin Gal, as part of his PhD thesis on Bayesian deep learn-
ing,6 determined the proper way to use dropout with a recurrent network: the same
dropout mask (the same pattern of dropped units) should be applied at every time-
step, instead of a dropout mask that varies randomly from timestep to timestep.
What’s more, in order to regularize the representations formed by the recurrent gates
of layers such as GRU and LSTM, a temporally constant dropout mask should be applied
to the inner recurrent activations of the layer (a recurrent dropout mask). Using the
same dropout mask at every timestep allows the network to properly propagate its
learning error through time; a temporally random dropout mask would disrupt this
error signal and be harmful to the learning process.

 Yarin Gal did his research using Keras and helped build this mechanism directly
into Keras recurrent layers. Every recurrent layer in Keras has two dropout-related
arguments: dropout, a float specifying the dropout rate for input units of the layer,

6 See Yarin Gal, “Uncertainty in Deep Learning (PhD Thesis),” October 13, 2016, http://mlg.eng.cam.ac.uk/
yarin/blog_2248.html.

Figure 6.21 Training and validation
loss on the Jena temperature-
forecasting task with a GRU

217Advanced use of recurrent neural networks
and recurrent_dropout, specifying the dropout rate of the recurrent units. Let’s add
dropout and recurrent dropout to the GRU layer and see how doing so impacts overfit-
ting. Because networks being regularized with dropout always take longer to fully con-
verge, you’ll train the network for twice as many epochs.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32,

dropout=0.2,
recurrent_dropout=0.2,
input_shape=(None, float_data.shape[-1])))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=40,
validation_data=val_gen,
validation_steps=val_steps)

Figure 6.22 shows the results. Success! You’re no longer overfitting during the first 30
epochs. But although you have more stable evaluation scores, your best scores aren’t
much lower than they were previously.

6.3.7 Stacking recurrent layers

Because you’re no longer overfitting but seem to have hit a performance bottleneck,
you should consider increasing the capacity of the network. Recall the description of
the universal machine-learning workflow: it’s generally a good idea to increase the
capacity of your network until overfitting becomes the primary obstacle (assuming

Listing 6.40 Training and evaluating a dropout-regularized GRU-based model

Figure 6.22 Training and validation
loss on the Jena temperature-
forecasting task with a dropout-
regularized GRU

218 CHAPTER 6 Deep learning for text and sequences
you’re already taking basic steps to mitigate overfitting, such as using dropout). As
long as you aren’t overfitting too badly, you’re likely under capacity.

 Increasing network capacity is typically done by increasing the number of units in
the layers or adding more layers. Recurrent layer stacking is a classic way to build
more-powerful recurrent networks: for instance, what currently powers the Google
Translate algorithm is a stack of seven large LSTM layers—that’s huge.

 To stack recurrent layers on top of each other in Keras, all intermediate layers
should return their full sequence of outputs (a 3D tensor) rather than their output at
the last timestep. This is done by specifying return_sequences=True.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32,

dropout=0.1,
recurrent_dropout=0.5,
return_sequences=True,
input_shape=(None, float_data.shape[-1])))

model.add(layers.GRU(64, activation='relu',
dropout=0.1,
recurrent_dropout=0.5))

model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=40,
validation_data=val_gen,
validation_steps=val_steps)

Figure 6.23 shows the results. You can see that the added layer does improve the
results a bit, though not significantly. You can draw two conclusions:

 Because you’re still not overfitting too badly, you could safely increase the size of
your layers in a quest for validation-loss improvement. This has a non-negligible
computational cost, though.

 Adding a layer didn’t help by a significant factor, so you may be seeing diminish-
ing returns from increasing network capacity at this point.

Listing 6.41 Training and evaluating a dropout-regularized, stacked GRU model

219Advanced use of recurrent neural networks

6.3.8 Using bidirectional RNNs

The last technique introduced in this section is called bidirectional RNNs. A bidirec-
tional RNN is a common RNN variant that can offer greater performance than a regu-
lar RNN on certain tasks. It’s frequently used in natural-language processing—you
could call it the Swiss Army knife of deep learning for natural-language processing.

RNNs are notably order dependent, or time dependent: they process the timesteps
of their input sequences in order, and shuffling or reversing the timesteps can com-
pletely change the representations the RNN extracts from the sequence. This is pre-
cisely the reason they perform well on problems where order is meaningful, such as
the temperature-forecasting problem. A bidirectional RNN exploits the order sensitiv-
ity of RNNs: it consists of using two regular RNNs, such as the GRU and LSTM layers
you’re already familiar with, each of which processes the input sequence in one direc-
tion (chronologically and antichronologically), and then merging their representa-
tions. By processing a sequence both ways, a bidirectional RNN can catch patterns that
may be overlooked by a unidirectional RNN.

 Remarkably, the fact that the RNN layers in this section have processed sequences in
chronological order (older timesteps first) may have been an arbitrary decision. At least,
it’s a decision we made no attempt to question so far. Could the RNNs have performed
well enough if they processed input sequences in antichronological order, for instance
(newer timesteps first)? Let’s try this in practice and see what happens. All you need to
do is write a variant of the data generator where the input sequences are reverted along
the time dimension (replace the last line with yield samples[:, ::-1, :], targets).
Training the same one-GRU-layer network that you used in the first experiment in this
section, you get the results shown in figure 6.24.

Figure 6.23 Training and validation
loss on the Jena temperature-
forecasting task with a stacked
GRU network

220 CHAPTER 6 Deep learning for text and sequences
The reversed-order GRU strongly underperforms even the common-sense baseline,
indicating that in this case, chronological processing is important to the success of your
approach. This makes perfect sense: the underlying GRU layer will typically be better at
remembering the recent past than the distant past, and naturally the more recent
weather data points are more predictive than older data points for the problem (that’s
what makes the common-sense baseline fairly strong). Thus the chronological version
of the layer is bound to outperform the reversed-order version. Importantly, this isn’t
true for many other problems, including natural language: intuitively, the importance
of a word in understanding a sentence isn’t usually dependent on its position in the sen-
tence. Let’s try the same trick on the LSTM IMDB example from section 6.2.

from keras.datasets import imdb
from keras.preprocessing import sequence
from keras import layers
from keras.models import Sequential

max_features = 10000
maxlen = 500

(x_train, y_train), (x_test, y_test) = imdb.load_data(
num_words=max_features)

x_train = [x[::-1] for x in x_train]
x_test = [x[::-1] for x in x_test]

x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

model = Sequential()
model.add(layers.Embedding(max_features, 128))
model.add(layers.LSTM(32))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

Listing 6.42 Training and evaluating an LSTM using reversed sequences

Figure 6.24 Training and validation
loss on the Jena temperature-
forecasting task with a GRU trained
on reversed sequences

Number of words
to consider as
features

Cuts off texts after this
number of words (among
the max_features most
common words)

Loads
data Reverses

sequences

Pads
sequences

221Advanced use of recurrent neural networks
history = model.fit(x_train, y_train,
epochs=10,
batch_size=128,
validation_split=0.2)

You get performance nearly identical to that of the chronological-order LSTM.
Remarkably, on such a text dataset, reversed-order processing works just as well as
chronological processing, confirming the hypothesis that, although word order does
matter in understanding language, which order you use isn’t crucial. Importantly, an
RNN trained on reversed sequences will learn different representations than one
trained on the original sequences, much as you would have different mental models if
time flowed backward in the real world—if you lived a life where you died on your first
day and were born on your last day. In machine learning, representations that are dif-
ferent yet useful are always worth exploiting, and the more they differ, the better: they
offer a new angle from which to look at your data, capturing aspects of the data that
were missed by other approaches, and thus they can help boost performance on a
task. This is the intuition behind ensembling, a concept we’ll explore in chapter 7.

 A bidirectional RNN exploits this idea to improve on the performance of chronological-
order RNNs. It looks at its input sequence both ways (see figure 6.25), obtaining poten-
tially richer representations and capturing patterns that may have been missed by the
chronological-order version alone.

To instantiate a bidirectional RNN in Keras, you use the Bidirectional layer, which takes
as its first argument a recurrent layer instance. Bidirectional creates a second, separate
instance of this recurrent layer and uses one instance for processing the input sequences
in chronological order and the other instance for processing the input sequences in
reversed order. Let’s try it on the IMDB sentiment-analysis task.

model = Sequential()
model.add(layers.Embedding(max_features, 32))
model.add(layers.Bidirectional(layers.LSTM(32)))
model.add(layers.Dense(1, activation='sigmoid'))

Listing 6.43 Training and evaluating a bidirectional LSTM

Chronological
sequence

Reversed
sequence

Merge (add,
concatenate)

Input data

a, b, c, d, e

a, b, c, d, e

e, d, c, b, a

RNN RNN

Figure 6.25 How a
bidirectional RNN layer works

222 CHAPTER 6 Deep learning for text and sequences
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train,

epochs=10,
batch_size=128,
validation_split=0.2)

It performs slightly better than the regular LSTM you tried in the previous section,
achieving over 89% validation accuracy. It also seems to overfit more quickly, which is
unsurprising because a bidirectional layer has twice as many parameters as a chrono-
logical LSTM. With some regularization, the bidirectional approach would likely be a
strong performer on this task.

 Now let’s try the same approach on the temperature-prediction task.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Bidirectional(

layers.GRU(32), input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=40,
validation_data=val_gen,
validation_steps=val_steps)

This performs about as well as the regular GRU layer. It’s easy to understand why: all the
predictive capacity must come from the chronological half of the network, because the
antichronological half is known to be severely underperforming on this task (again,
because the recent past matters much more than the distant past in this case).

6.3.9 Going even further

There are many other things you could try, in order to improve performance on the
temperature-forecasting problem:

 Adjust the number of units in each recurrent layer in the stacked setup. The
current choices are largely arbitrary and thus probably suboptimal.

 Adjust the learning rate used by the RMSprop optimizer.
 Try using LSTM layers instead of GRU layers.
 Try using a bigger densely connected regressor on top of the recurrent layers:

that is, a bigger Dense layer or even a stack of Dense layers.
 Don’t forget to eventually run the best-performing models (in terms of valida-

tion MAE) on the test set! Otherwise, you’ll develop architectures that are over-
fitting to the validation set.

Listing 6.44 Training a bidirectional GRU

223Advanced use of recurrent neural networks
As always, deep learning is more an art than a science. We can provide guidelines that
suggest what is likely to work or not work on a given problem, but, ultimately, every
problem is unique; you’ll have to evaluate different strategies empirically. There is
currently no theory that will tell you in advance precisely what you should do to opti-
mally solve a problem. You must iterate.

6.3.10 Wrapping up

Here’s what you should take away from this section:

 As you first learned in chapter 4, when approaching a new problem, it’s good to
first establish common-sense baselines for your metric of choice. If you don’t
have a baseline to beat, you can’t tell whether you’re making real progress.

 Try simple models before expensive ones, to justify the additional expense.
Sometimes a simple model will turn out to be your best option.

 When you have data where temporal ordering matters, recurrent networks are
a great fit and easily outperform models that first flatten the temporal data.

 To use dropout with recurrent networks, you should use a time-constant drop-
out mask and recurrent dropout mask. These are built into Keras recurrent lay-
ers, so all you have to do is use the dropout and recurrent_dropout arguments
of recurrent layers.

 Stacked RNNs provide more representational power than a single RNN layer.
They’re also much more expensive and thus not always worth it. Although they
offer clear gains on complex problems (such as machine translation), they may
not always be relevant to smaller, simpler problems.

 Bidirectional RNNs, which look at a sequence both ways, are useful on natural-
language processing problems. But they aren’t strong performers on sequence
data where the recent past is much more informative than the beginning of the
sequence.

NOTE There are two important concepts we won’t cover in detail here: recur-
rent attention and sequence masking. Both tend to be especially relevant for
natural-language processing, and they aren’t particularly applicable to the
temperature-forecasting problem. We’ll leave them for future study outside of
this book.

224 CHAPTER 6 Deep learning for text and sequences
Markets and machine learning
Some readers are bound to want to take the techniques we’ve introduced here and
try them on the problem of forecasting the future price of securities on the stock mar-
ket (or currency exchange rates, and so on). Markets have very different statistical
characteristics than natural phenomena such as weather patterns. Trying to use
machine learning to beat markets, when you only have access to publicly available
data, is a difficult endeavor, and you’re likely to waste your time and resources with
nothing to show for it.

Always remember that when it comes to markets, past performance is not a good
predictor of future returns—looking in the rear-view mirror is a bad way to drive.
Machine learning, on the other hand, is applicable to datasets where the past is a
good predictor of the future.

225Sequence processing with convnets
6.4 Sequence processing with convnets
In chapter 5, you learned about convolutional neural networks (convnets) and how
they perform particularly well on computer vision problems, due to their ability to
operate convolutionally, extracting features from local input patches and allowing for
representation modularity and data efficiency. The same properties that make conv-
nets excel at computer vision also make them highly relevant to sequence processing.
Time can be treated as a spatial dimension, like the height or width of a 2D image.

 Such 1D convnets can be competitive with RNNs on certain sequence-processing
problems, usually at a considerably cheaper computational cost. Recently, 1D conv-
nets, typically used with dilated kernels, have been used with great success for audio
generation and machine translation. In addition to these specific successes, it has long
been known that small 1D convnets can offer a fast alternative to RNNs for simple tasks
such as text classification and timeseries forecasting.

6.4.1 Understanding 1D convolution for sequence data

The convolution layers introduced previously were 2D convolutions, extracting 2D
patches from image tensors and applying an identical transformation to every patch.
In the same way, you can use 1D convolutions, extracting local 1D patches (subse-
quences) from sequences (see figure 6.26).

Such 1D convolution layers can recognize local patterns in a sequence. Because the
same input transformation is performed on every patch, a pattern learned at a certain
position in a sentence can later be recognized at a different position, making 1D conv-
nets translation invariant (for temporal translations). For instance, a 1D convnet pro-
cessing sequences of characters using convolution windows of size 5 should be able to
learn words or word fragments of length 5 or less, and it should be able to recognize

Input
features

Input

Output

Extracted
patch

Window of
size 5

Dot product
with weights

Output
features

Time

Figure 6.26 How 1D convolution
works: each output timestep is
obtained from a temporal patch in
the input sequence.

226 CHAPTER 6 Deep learning for text and sequences
these words in any context in an input sequence. A character-level 1D convnet is thus
able to learn about word morphology.

6.4.2 1D pooling for sequence data

You’re already familiar with 2D pooling operations, such as 2D average pooling and
max pooling, used in convnets to spatially downsample image tensors. The 2D pooling
operation has a 1D equivalent: extracting 1D patches (subsequences) from an input
and outputting the maximum value (max pooling) or average value (average pooling).
Just as with 2D convnets, this is used for reducing the length of 1D inputs (subsampling).

6.4.3 Implementing a 1D convnet

In Keras, you use a 1D convnet via the Conv1D layer, which has an interface similar to
Conv2D. It takes as input 3D tensors with shape (samples, time, features) and
returns similarly shaped 3D tensors. The convolution window is a 1D window on the
temporal axis: axis 1 in the input tensor.

 Let’s build a simple two-layer 1D convnet and apply it to the IMDB sentiment-
classification task you’re already familiar with. As a reminder, this is the code for
obtaining and preprocessing the data.

from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 10000
max_len = 500

print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

1D convnets are structured in the same way as their 2D counterparts, which you used
in chapter 5: they consist of a stack of Conv1D and MaxPooling1D layers, ending in
either a global pooling layer or a Flatten layer, that turn the 3D outputs into 2D out-
puts, allowing you to add one or more Dense layers to the model for classification or
regression.

 One difference, though, is the fact that you can afford to use larger convolution
windows with 1D convnets. With a 2D convolution layer, a 3 × 3 convolution window
contains 3 × 3 = 9 feature vectors; but with a 1D convolution layer, a convolution win-
dow of size 3 contains only 3 feature vectors. You can thus easily afford 1D convolution
windows of size 7 or 9.

Listing 6.45 Preparing the IMDB data

227Sequence processing with convnets
 This is the example 1D convnet for the IMDB dataset.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(lr=1e-4),
loss='binary_crossentropy',
metrics=['acc'])

history = model.fit(x_train, y_train,
epochs=10,
batch_size=128,
validation_split=0.2)

Figures 6.27 and 6.28 show the training and validation results. Validation accuracy is
somewhat less than that of the LSTM, but runtime is faster on both CPU and GPU (the
exact increase in speed will vary greatly depending on your exact configuration). At this
point, you could retrain this model for the right number of epochs (eight) and run it
on the test set. This is a convincing demonstration that a 1D convnet can offer a fast,
cheap alternative to a recurrent network on a word-level sentiment-classification task.

Listing 6.46 Training and evaluating a simple 1D convnet on the IMDB data

Figure 6.27 Training and
validation loss on IMDB with a
simple 1D convnet

228 CHAPTER 6 Deep learning for text and sequences
6.4.4 Combining CNNs and RNNs to process long sequences

Because 1D convnets process input patches independently, they aren’t sensitive to the
order of the timesteps (beyond a local scale, the size of the convolution windows),
unlike RNNs. Of course, to recognize longer-term patterns, you can stack many convo-
lution layers and pooling layers, resulting in upper layers that will see long chunks of
the original inputs—but that’s still a fairly weak way to induce order sensitivity. One
way to evidence this weakness is to try 1D convnets on the temperature-forecasting
problem, where order-sensitivity is key to producing good predictions. The following
example reuses the following variables defined previously: float_data, train_gen,
val_gen, and val_steps.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Conv1D(32, 5, activation='relu',

input_shape=(None, float_data.shape[-1])))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,

steps_per_epoch=500,
epochs=20,
validation_data=val_gen,
validation_steps=val_steps)

Listing 6.47 Training and evaluating a simple 1D convnet on the Jena data

Figure 6.28 Training and
validation accuracy on IMDB
with a simple 1D convnet

229Sequence processing with convnets
Figure 6.29 shows the training and validation MAEs.

The validation MAE stays in the 0.40s: you can’t even beat the common-sense baseline
using the small convnet. Again, this is because the convnet looks for patterns any-
where in the input timeseries and has no knowledge of the temporal position of a pat-
tern it sees (toward the beginning, toward the end, and so on). Because more recent
data points should be interpreted differently from older data points in the case of this
specific forecasting problem, the convnet fails at producing meaningful results. This
limitation of convnets isn’t an issue with the IMDB data, because patterns of keywords
associated with a positive or negative sentiment are informative independently of
where they’re found in the input sentences.

 One strategy to combine the speed and lightness of convnets with the order-sensitivity
of RNNs is to use a 1D convnet as a preprocessing step before an RNN (see figure 6.30).
This is especially beneficial when you’re deal-
ing with sequences that are so long they can’t
realistically be processed with RNNs, such as
sequences with thousands of steps. The conv-
net will turn the long input sequence into
much shorter (downsampled) sequences of
higher-level features. This sequence of
extracted features then becomes the input to
the RNN part of the network.

 This technique isn’t seen often in
research papers and practical applications,
possibly because it isn’t well known. It’s effec-
tive and ought to be more common. Let’s try
it on the temperature-forecasting dataset.
Because this strategy allows you to manipu-
late much longer sequences, you can either

Figure 6.29 Training and
validation loss on the Jena
temperature-forecasting task
with a simple 1D convnet

RNN

1D CNN

Long sequence

Shorter
sequence

CNN features

Figure 6.30 Combining a 1D convnet and
an RNN for processing long sequences

230 CHAPTER 6 Deep learning for text and sequences

Un
look at data from longer ago (by increasing the lookback parameter of the data gen-
erator) or look at high-resolution timeseries (by decreasing the step parameter of the
generator). Here, somewhat arbitrarily, you’ll use a step that’s half as large, resulting
in a timeseries twice as long, where the temperature data is sampled at a rate of
1 point per 30 minutes. The example reuses the generator function defined earlier.

step = 3
lookback = 720
delay = 144

train_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=0,
max_index=200000,
shuffle=True,
step=step)

val_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=200001,
max_index=300000,
step=step)

test_gen = generator(float_data,
lookback=lookback,
delay=delay,
min_index=300001,
max_index=None,
step=step)

val_steps = (300000 - 200001 - lookback) // 128
test_steps = (len(float_data) - 300001 - lookback) // 128

This is the model, starting with two Conv1D layers and following up with a GRU layer.
Figure 6.31 shows the results.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Conv1D(32, 5, activation='relu',

input_shape=(None, float_data.shape[-1])))
model.add(layers.MaxPooling1D(3))
model.add(layers.Conv1D(32, 5, activation='relu'))
model.add(layers.GRU(32, dropout=0.1, recurrent_dropout=0.5))
model.add(layers.Dense(1))

model.summary()

model.compile(optimizer=RMSprop(), loss='mae')

Listing 6.48 Preparing higher-resolution data generators for the Jena dataset

Listing 6.49 Model combining a 1D convolutional base and a GRU layer

Previously set to 6 (1 point per hour);
now 3 (1 point per 30 min)changed

231Sequence processing with convnets
history = model.fit_generator(train_gen,
steps_per_epoch=500,
epochs=20,
validation_data=val_gen,
validation_steps=val_steps)

Judging from the validation loss, this setup isn’t as good as the regularized GRU alone,
but it’s significantly faster. It looks at twice as much data, which in this case doesn’t
appear to be hugely helpful but may be important for other datasets.

6.4.5 Wrapping up

Here’s what you should take away from this section:

 In the same way that 2D convnets perform well for processing visual patterns in
2D space, 1D convnets perform well for processing temporal patterns. They
offer a faster alternative to RNNs on some problems, in particular natural-
language processing tasks.

 Typically, 1D convnets are structured much like their 2D equivalents from the
world of computer vision: they consist of stacks of Conv1D layers and Max-
Pooling1D layers, ending in a global pooling operation or flattening operation.

 Because RNNs are extremely expensive for processing very long sequences, but
1D convnets are cheap, it can be a good idea to use a 1D convnet as a prepro-
cessing step before an RNN, shortening the sequence and extracting useful rep-
resentations for the RNN to process.

Figure 6.31 Training and validation
loss on the Jena temperature-
forecasting task with a 1D convnet
followed by a GRU

232 CHAPTER 6 Deep learning for text and sequences
Chapter summary
 In this chapter, you learned the following techniques, which are widely

applicable to any dataset of sequence data, from text to timeseries:
– How to tokenize text
– What word embeddings are, and how to use them
– What recurrent networks are, and how to use them
– How to stack RNN layers and use bidirectional RNNs to build more-power-

ful sequence-processing models
– How to use 1D convnets for sequence processing
– How to combine 1D convnets and RNNs to process long sequences

 You can use RNNs for timeseries regression (“predicting the future”),
timeseries classification, anomaly detection in timeseries, and sequence
labeling (such as identifying names or dates in sentences).

 Similarly, you can use 1D convnets for machine translation (sequence-to-
sequence convolutional models, like SliceNeta), document classification,
and spelling correction.

 If global order matters in your sequence data, then it’s preferable to use a
recurrent network to process it. This is typically the case for timeseries,
where the recent past is likely to be more informative than the distant
past.

 If global ordering isn’t fundamentally meaningful, then 1D convnets will turn
out to work at least as well and are cheaper. This is often the case for text
data, where a keyword found at the beginning of a sentence is just as
meaningful as a keyword found at the end.

a See https://arxiv.org/abs/1706.03059.

Advanced deep-learning
best practices
This chapter explores a number of powerful tools that will bring you closer to
being able to develop state-of-the-art models on difficult problems. Using the Keras
functional API, you can build graph-like models, share a layer across different
inputs, and use Keras models just like Python functions. Keras callbacks and the
TensorBoard browser-based visualization tool let you monitor models during train-
ing. We’ll also discuss several other best practices including batch normalization,
residual connections, hyperparameter optimization, and model ensembling.

This chapter covers
 The Keras functional API

 Using Keras callbacks

 Working with the TensorBoard visualization tool

 Important best practices for developing state-of-
the-art models
233

234 CHAPTER 7 Advanced deep-learning best practices
7.1 Going beyond the Sequential model:
the Keras functional API
Until now, all neural networks introduced in this book
have been implemented using the Sequential model.
The Sequential model makes the assumption that the
network has exactly one input and exactly one output, and
that it consists of a linear stack of layers (see figure 7.1).

 This is a commonly verified assumption; the configu-
ration is so common that we’ve been able to cover many
topics and practical applications in these pages so far
using only the Sequential model class. But this set of
assumptions is too inflexible in a number of cases. Some
networks require several independent inputs, others
require multiple outputs, and some networks have inter-
nal branching between layers that makes them look like
graphs of layers rather than linear stacks of layers.

 Some tasks, for instance, require multimodal inputs: they merge data coming from
different input sources, processing each type of data using different kinds of neural
layers. Imagine a deep-learning model trying to predict the most likely market price of
a second-hand piece of clothing, using the following inputs: user-provided metadata
(such as the item’s brand, age, and so on), a user-provided text description, and a pic-
ture of the item. If you had only the metadata available, you could one-hot encode it
and use a densely connected network to predict the price. If you had only the text
description available, you could use an RNN or a 1D convnet. If you had only the pic-
ture, you could use a 2D convnet. But how can you use all three at the same time? A
naive approach would be to train three separate models and then do a weighted aver-
age of their predictions. But this may be suboptimal, because the information
extracted by the models may be redundant. A better way is to jointly learn a more accu-
rate model of the data by using a model that can see all available input modalities
simultaneously: a model with three input branches (see figure 7.2).

Merging
module

Price prediction

Text descriptionMetadata Picture

Dense module RNN module Convnet module

Figure 7.2 A multi-input model

Layer

Output

Input
Sequential

Layer

Layer

Figure 7.1 A Sequential
model: a linear stack of layers

235Going beyond the Sequential model: the Keras functional API
Similarly, some tasks need to predict multiple target attributes of input data. Given the
text of a novel or short story, you might want to automatically classify it by genre (such
as romance or thriller) but also predict the approximate date it was written. Of course,
you could train two separate models: one for the genre and one for the date. But
because these attributes aren’t statistically independent, you could build a better
model by learning to jointly predict both genre and date at the same time. Such a
joint model would then have two outputs, or heads (see figure 7.3). Due to correla-
tions between genre and date, knowing the date of a novel would help the model
learn rich, accurate representations of the space of novel genres, and vice versa.

Additionally, many recently developed neural architectures require nonlinear net-
work topology: networks structured as directed acyclic graphs. The Inception family of
networks (developed by Szegedy et al. at Google),1 for instance, relies on Inception
modules, where the input is processed by several parallel convolutional branches whose
outputs are then merged back into a single tensor (see figure 7.4). There’s also the
recent trend of adding residual connections to a model, which started with the ResNet
family of networks (developed by He et al. at Microsoft).2 A residual connection con-
sists of reinjecting previous representations into the downstream flow of data by add-
ing a past output tensor to a later output tensor (see figure 7.5), which helps prevent
information loss along the data-processing flow. There are many other examples of
such graph-like networks.

1 Christian Szegedy et al., “Going Deeper with Convolutions,” Conference on Computer Vision and Pattern
Recognition (2014), https://arxiv.org/abs/1409.4842.

2 Kaiming He et al., “Deep Residual Learning for Image Recognition,” Conference on Computer Vision and
Pattern Recognition (2015), https://arxiv.org/abs/1512.03385.

Date

Date
regressor

Genre

Genre
classifier

Text-processing
module

Novel text

Figure 7.3 A multi-output (or multihead) model

236 CHAPTER 7 Advanced deep-learning best practices
These three important use cases—multi-input models, multi-output models, and
graph-like models—aren’t possible when using only the Sequential model class in
Keras. But there’s another far more general and flexible way to use Keras: the func-
tional API. This section explains in detail what it is, what it can do, and how to use it.

7.1.1 Introduction to the functional API

In the functional API, you directly manipulate tensors, and you use layers as functions
that take tensors and return tensors (hence, the name functional API):

from keras import Input, layers

input_tensor = Input(shape=(32,))

Conv2D
3 × 3, strides=2

Conv2D
3 × 3, strides=2

Conv2D
3 × 3

Conv2D
3 × 3

Conv2D
1 × 1, strides=2

Conv2D
1 × 1

AvgPool2D
3 × 3, strides=2

Conv2D
1 × 1

Concatenate

Output

Input

Figure 7.4 An Inception module: a subgraph of layers with several
parallel convolutional branches

Layer

Residual
connection

+

Layer

Layer

Layer

Figure 7.5 A residual connection:
reinjection of prior information
downstream via feature-map addition

A tensor

237Going beyond the Sequential model: the Keras functional API
dense = layers.Dense(32, activation='relu')

output_tensor = dense(input_tensor)

Let’s start with a minimal example that shows side by side a simple Sequential model
and its equivalent in the functional API:

from keras.models import Sequential, Model
from keras import layers
from keras import Input

seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))

input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)

model = Model(input_tensor, output_tensor)

model.summary()

This is what the call to model.summary() displays:

Layer (type) Output Shape Param #
===
input_1 (InputLayer) (None, 64) 0

dense_1 (Dense) (None, 32) 2080

dense_2 (Dense) (None, 32) 1056

dense_3 (Dense) (None, 10) 330
===
Total params: 3,466
Trainable params: 3,466
Non-trainable params: 0

The only part that may seem a bit magical at this point is instantiating a Model object
using only an input tensor and an output tensor. Behind the scenes, Keras retrieves
every layer involved in going from input_tensor to output_tensor, bringing them
together into a graph-like data structure—a Model. Of course, the reason it works is
that output_tensor was obtained by repeatedly transforming input_tensor. If you
tried to build a model from inputs and outputs that weren’t related, you’d get a Run-
timeError:

>>> unrelated_input = Input(shape=(32,))
>>> bad_model = model = Model(unrelated_input, output_tensor)

A layer is a function.

A layer may be called on a
tensor, and it returns a tensor.

Sequential model, which
you already know about

Its functional
equivalent

The Model class turns an input tensor
and output tensor into a model.Let’s look at it!

238 CHAPTER 7 Advanced deep-learning best practices

l

RuntimeError: Graph disconnected: cannot
obtain value for tensor

➥Tensor("input_1:0", shape=(?, 64), dtype=float32) at layer "input_1".

This error tells you, in essence, that Keras couldn’t reach input_1 from the provided
output tensor.

 When it comes to compiling, training, or evaluating such an instance of Model, the
API is the same as that of Sequential:

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

import numpy as np
x_train = np.random.random((1000, 64))
y_train = np.random.random((1000, 10))

model.fit(x_train, y_train, epochs=10, batch_size=128)

score = model.evaluate(x_train, y_train)

7.1.2 Multi-input models

The functional API can be used to build models that have multiple inputs. Typically,
such models at some point merge their different input branches using a layer that can
combine several tensors: by adding them, concatenating them, and so on. This is usu-
ally done via a Keras merge operation such as keras.layers.add, keras.layers
.concatenate, and so on. Let’s look at a very simple example of a multi-input model:
a question-answering model.

 A typical question-answering model has two inputs: a natural-language question
and a text snippet (such as a news article) providing information to be used for
answering the question. The model must then produce an answer: in the simplest pos-
sible setup, this is a one-word answer obtained via a softmax over some predefined
vocabulary (see figure 7.6).

Compiles
the mode

Generates dummy Numpy
data to train on

Trains the model
for 10 epochs

Evaluates
the model

Dense

Answer

Concatenate

LSTM LSTM

Reference text Question

Embedding Embedding

Figure 7.6 A question-answering model

239Going beyond the Sequential model: the Keras functional API

Following is an example of how you can build such a model with the functional API.
You set up two independent branches, encoding the text input and the question input
as representation vectors; then, concatenate these vectors; and finally, add a softmax
classifier on top of the concatenated representations.

from keras.models import Model
from keras import layers
from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

embedded_text = layers.Embedding(
64, text_vocabulary_size)(text_input)

encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
dtype='int32',
name='question')

embedded_question = layers.Embedding(
32, question_vocabulary_size)(question_input)

encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],
axis=-1)

answer = layers.Dense(answer_vocabulary_size,
activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',
metrics=['acc'])

Now, how do you train this two-input model? There are two possible APIs: you can feed
the model a list of Numpy arrays as inputs, or you can feed it a dictionary that maps
input names to Numpy arrays. Naturally, the latter option is available only if you give
names to your inputs.

import numpy as np

num_samples = 1000
max_length = 100

text = np.random.randint(1, text_vocabulary_size,
size=(num_samples, max_length))

Listing 7.1 Functional API implementation of a two-input question-answering model

Listing 7.2 Feeding data to a multi-input model

The text input is a variable-
length sequence of integers.
Note that you can optionally

name the inputs.

Embeds the inputs
into a sequence of
vectors of size 64

Encodes the vectors in a
single vector via an LSTM

Same process (with different layer
instances) for the question

Concatenates the encoded
question and encoded text

Adds a softmax
classifier on top

At model instantiation, you specify
the two inputs and the output.

Generates dummy
Numpy data

240 CHAPTER 7 Advanced deep-learning best practices
question = np.random.randint(1, question_vocabulary_size,
size=(num_samples, max_length))

answers = np.random.randint(0, 1,
size=(num_samples, answer_vocabulary_size))

model.fit([text, question], answers, epochs=10, batch_size=128)

model.fit({'text': text, 'question': question}, answers,
epochs=10, batch_size=128)

7.1.3 Multi-output models

In the same way, you can use the functional API to build models with multiple outputs
(or multiple heads). A simple example is a network that attempts to simultaneously
predict different properties of the data, such as a network that takes as input a series
of social media posts from a single anonymous person and tries to predict attributes of
that person, such as age, gender, and income level (see figure 7.7).

from keras import layers
from keras import Input
from keras.models import Model

vocabulary_size = 50000
num_income_groups = 10

posts_input = Input(shape=(None,), dtype='int32', name='posts')
embedded_posts = layers.Embedding(256, vocabulary_size)(posts_input)
x = layers.Conv1D(128, 5, activation='relu')(embedded_posts)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dense(128, activation='relu')(x)

age_prediction = layers.Dense(1, name='age')(x)
income_prediction = layers.Dense(num_income_groups,

activation='softmax',
name='income')(x)

gender_prediction = layers.Dense(1, activation='sigmoid', name='gender')(x)

model = Model(posts_input,
[age_prediction, income_prediction, gender_prediction])

Listing 7.3 Functional API implementation of a three-output model

Answers are one-
hot encoded,
not integers

Fitting using a list of inputs Fitting using a dictionary of
inputs (only if inputs are named)

Note that the output
layers are given names.

241Going beyond the Sequential model: the Keras functional API
Importantly, training such a model requires the ability to specify different loss func-
tions for different heads of the network: for instance, age prediction is a scalar regres-
sion task, but gender prediction is a binary classification task, requiring a different
training procedure. But because gradient descent requires you to minimize a scalar,
you must combine these losses into a single value in order to train the model. The
simplest way to combine different losses is to sum them all. In Keras, you can use
either a list or a dictionary of losses in compile to specify different objects for different
outputs; the resulting loss values are summed into a global loss, which is minimized
during training.

model.compile(optimizer='rmsprop',
loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'])

model.compile(optimizer='rmsprop',
loss={'age': 'mse',

'income': 'categorical_crossentropy',
'gender': 'binary_crossentropy'})

Note that very imbalanced loss contributions will cause the model representations to
be optimized preferentially for the task with the largest individual loss, at the expense
of the other tasks. To remedy this, you can assign different levels of importance to the
loss values in their contribution to the final loss. This is useful in particular if the
losses’ values use different scales. For instance, the mean squared error (MSE) loss
used for the age-regression task typically takes a value around 3–5, whereas the cross-
entropy loss used for the gender-classification task can be as low as 0.1. In such a situa-
tion, to balance the contribution of the different losses, you can assign a weight of 10
to the crossentropy loss and a weight of 0.25 to the MSE loss.

model.compile(optimizer='rmsprop',
loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'],
loss_weights=[0.25, 1., 10.])

Listing 7.4 Compilation options of a multi-output model: multiple losses

Listing 7.5 Compilation options of a multi-output model: loss weighting

Gender

Social media posts

Dense

Income

Dense

Age

Dense

1D convnet

Figure 7.7 A social media
model with three heads

Equivalent (possible
only if you give names
to the output layers)

242 CHAPTER 7 Advanced deep-learning best practices
model.compile(optimizer='rmsprop',
loss={'age': 'mse',

'income': 'categorical_crossentropy',
'gender': 'binary_crossentropy'},

loss_weights={'age': 0.25,
'income': 1.,
'gender': 10.})

Much as in the case of multi-input models, you can pass Numpy data to the model for
training either via a list of arrays or via a dictionary of arrays.

model.fit(posts, [age_targets, income_targets, gender_targets],
epochs=10, batch_size=64)

model.fit(posts, {'age': age_targets,
'income': income_targets,
'gender': gender_targets},

epochs=10, batch_size=64)

7.1.4 Directed acyclic graphs of layers

With the functional API, not only can you build models with multiple inputs and mul-
tiple outputs, but you can also implement networks with a complex internal topology.
Neural networks in Keras are allowed to be arbitrary directed acyclic graphs of layers. The
qualifier acyclic is important: these graphs can’t have cycles. It’s impossible for a tensor
x to become the input of one of the layers that generated x. The only processing loops
that are allowed (that is, recurrent connections) are those internal to recurrent layers.

 Several common neural-network components are implemented as graphs. Two
notable ones are Inception modules and residual connections. To better understand
how the functional API can be used to build graphs of layers, let’s take a look at how
you can implement both of them in Keras.

INCEPTION MODULES

Inception3 is a popular type of network architecture for convolutional neural networks;
it was developed by Christian Szegedy and his colleagues at Google in 2013–2014,
inspired by the earlier network-in-network architecture.4 It consists of a stack of modules
that themselves look like small independent networks, split into several parallel
branches. The most basic form of an Inception module has three to four branches
starting with a 1 × 1 convolution, followed by a 3 × 3 convolution, and ending with the
concatenation of the resulting features. This setup helps the network separately learn

Listing 7.6 Feeding data to a multi-output model

3 https://arxiv.org/abs/1409.4842.
4 Min Lin, Qiang Chen, and Shuicheng Yan, “Network in Network,” International Conference on Learning

Representations (2013), https://arxiv.org/abs/1312.4400.

Equivalent (possible
only if you give names
to the output layers)

age_targets, income_targets, and
gender_targets are assumed to be
Numpy arrays.

Equivalent (possible only if you
give names to the output layers)

243Going beyond the Sequential model: the Keras functional API
spatial features and channel-wise features, which is more efficient than learning them
jointly. More-complex versions of an Inception module are also possible, typically
involving pooling operations, different spatial convolution sizes (for example, 5 × 5
instead of 3 × 3 on some branches), and branches without a spatial convolution (only
a 1 × 1 convolution). An example of such a module, taken from Inception V3, is
shown in figure 7.8.

Here’s how you’d implement the module featured in figure 7.8 using the functional
API. This example assumes the existence of a 4D input tensor x:

Conv2D
3 × 3, strides=2

Conv2D
3 × 3, strides=2

Conv2D
3 × 3

Conv2D
3 × 3

Conv2D
1 × 1, strides=2

Conv2D
1 × 1

AvgPool2D
3 × 3, strides=2

Conv2D
1 × 1

Concatenate

Output

Input

Figure 7.8 An Inception
module

The purpose of 1 × 1 convolutions
You already know that convolutions extract spatial patches around every tile in an
input tensor and apply the same transformation to each patch. An edge case is when
the patches extracted consist of a single tile. The convolution operation then
becomes equivalent to running each tile vector through a Dense layer: it will compute
features that mix together information from the channels of the input tensor, but it
won’t mix information across space (because it’s looking at one tile at a time). Such
1 × 1 convolutions (also called pointwise convolutions) are featured in Inception mod-
ules, where they contribute to factoring out channel-wise feature learning and space-
wise feature learning—a reasonable thing to do if you assume that each channel is
highly autocorrelated across space, but different channels may not be highly cor-
related with each other.

244 CHAPTER 7 Advanced deep-learning best practices
from keras import layers

branch_a = layers.Conv2D(128, 1,
activation='relu', strides=2)(x)

branch_b = layers.Conv2D(128, 1, activation='relu')(x)
branch_b = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_b)

branch_c = layers.AveragePooling2D(3, strides=2)(x)
branch_c = layers.Conv2D(128, 3, activation='relu')(branch_c)

branch_d = layers.Conv2D(128, 1, activation='relu')(x)
branch_d = layers.Conv2D(128, 3, activation='relu')(branch_d)
branch_d = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_d)

output = layers.concatenate(
[branch_a, branch_b, branch_c, branch_d], axis=-1)

Note that the full Inception V3 architecture is available in Keras as keras.applications
.inception_v3.InceptionV3, including weights pretrained on the ImageNet dataset.
Another closely related model available as part of the Keras applications module is
Xception.5 Xception, which stands for extreme inception, is a convnet architecture loosely
inspired by Inception. It takes the idea of separating the learning of channel-wise and
space-wise features to its logical extreme, and replaces Inception modules with depth-
wise separable convolutions consisting of a depthwise convolution (a spatial convolu-
tion where every input channel is handled separately) followed by a pointwise
convolution (a 1 × 1 convolution)—effectively, an extreme form of an Inception mod-
ule, where spatial features and channel-wise features are fully separated. Xception has
roughly the same number of parameters as Inception V3, but it shows better runtime
performance and higher accuracy on ImageNet as well as other large-scale datasets,
due to a more efficient use of model parameters.

RESIDUAL CONNECTIONS

Residual connections are a common graph-like network component found in many post-
2015 network architectures, including Xception. They were introduced by He et al.
from Microsoft in their winning entry in the ILSVRC ImageNet challenge in late 2015.6

They tackle two common problems that plague any large-scale deep-learning model:
vanishing gradients and representational bottlenecks. In general, adding residual con-
nections to any model that has more than 10 layers is likely to be beneficial.

5 François Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Conference on Com-
puter Vision and Pattern Recognition (2017), https://arxiv.org/abs/1610.02357.

6 He et al., “Deep Residual Learning for Image Recognition,” https://arxiv.org/abs/1512.03385.

Every branch has the same stride value (2),
which is necessary to keep all branch outputs
the same size so you can concatenate them.

In this branch, the striding occurs
in the spatial convolution layer.

In this branch, the striding occurs
in the average pooling layer.

Concatenates the
branch outputs to
obtain the module
output

245Going beyond the Sequential model: the Keras functional API
 A residual connection consists of making the output of an earlier layer available as
input to a later layer, effectively creating a shortcut in a sequential network. Rather
than being concatenated to the later activation, the earlier output is summed with the
later activation, which assumes that both activations are the same size. If they’re differ-
ent sizes, you can use a linear transformation to reshape the earlier activation into the
target shape (for example, a Dense layer without an activation or, for convolutional
feature maps, a 1 × 1 convolution without an activation).

 Here’s how to implement a residual connection in Keras when the feature-map
sizes are the same, using identity residual connections. This example assumes the exis-
tence of a 4D input tensor x:

from keras import layers

x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.add([y, x])

And the following implements a residual connection when the feature-map sizes dif-
fer, using a linear residual connection (again, assuming the existence of a 4D input
tensor x):

from keras import layers

x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.MaxPooling2D(2, strides=2)(y)

residual = layers.Conv2D(128, 1, strides=2, padding='same')(x)

y = layers.add([y, residual])

Applies a transformation to x

Adds the original x back to
the output features

Uses a 1 × 1 convolution to
linearly downsample the original
x tensor to the same shape as y

Adds the residual tensor
back to the output features

Representational bottlenecks in deep learning
In a Sequential model, each successive representation layer is built on top of the
previous one, which means it only has access to information contained in the activa-
tion of the previous layer. If one layer is too small (for example, it has features that
are too low-dimensional), then the model will be constrained by how much informa-
tion can be crammed into the activations of this layer.

246 CHAPTER 7 Advanced deep-learning best practices
7.1.5 Layer weight sharing

One more important feature of the functional API is the ability to reuse a layer
instance several times. When you call a layer instance twice, instead of instantiating a
new layer for each call, you reuse the same weights with every call. This allows you to
build models that have shared branches—several branches that all share the same
knowledge and perform the same operations. That is, they share the same representa-
tions and learn these representations simultaneously for different sets of inputs.

 For example, consider a model that attempts to assess the semantic similarity
between two sentences. The model has two inputs (the two sentences to compare)
and outputs a score between 0 and 1, where 0 means unrelated sentences and 1 means
sentences that are either identical or reformulations of each other. Such a model
could be useful in many applications, including deduplicating natural-language que-
ries in a dialog system.

 In this setup, the two input sentences are interchangeable, because semantic simi-
larity is a symmetrical relationship: the similarity of A to B is identical to the similarity
of B to A. For this reason, it wouldn’t make sense to learn two independent models for

(continued)
You can grasp this concept with a signal-processing analogy: if you have an audio-
processing pipeline that consists of a series of operations, each of which takes as
input the output of the previous operation, then if one operation crops your signal to
a low-frequency range (for example, 0–15 kHz), the operations downstream will never
be able to recover the dropped frequencies. Any loss of information is permanent.
Residual connections, by reinjecting earlier information downstream, partially solve
this issue for deep-learning models.

Vanishing gradients in deep learning
Backpropagation, the master algorithm used to train deep neural networks, works by
propagating a feedback signal from the output loss down to earlier layers. If this feed-
back signal has to be propagated through a deep stack of layers, the signal may
become tenuous or even be lost entirely, rendering the network untrainable. This
issue is known as vanishing gradients.

This problem occurs both with deep networks and with recurrent networks over very
long sequences—in both cases, a feedback signal must be propagated through a
long series of operations. You’re already familiar with the solution that the LSTM layer
uses to address this problem in recurrent networks: it introduces a carry track that
propagates information parallel to the main processing track. Residual connections
work in a similar way in feedforward deep networks, but they’re even simpler: they
introduce a purely linear information carry track parallel to the main layer stack, thus
helping to propagate gradients through arbitrarily deep stacks of layers.

247Going beyond the Sequential model: the Keras functional API
processing each input sentence. Rather, you want to process both with a single LSTM
layer. The representations of this LSTM layer (its weights) are learned based on both
inputs simultaneously. This is what we call a Siamese LSTM model or a shared LSTM.

 Here’s how to implement such a model using layer sharing (layer reuse) in the
Keras functional API:

from keras import layers
from keras import Input
from keras.models import Model

lstm = layers.LSTM(32)

left_input = Input(shape=(None, 128))
left_output = lstm(left_input)

right_input = Input(shape=(None, 128))
right_output = lstm(right_input)

merged = layers.concatenate([left_output, right_output], axis=-1)
predictions = layers.Dense(1, activation='sigmoid')(merged)

model = Model([left_input, right_input], predictions)
model.fit([left_data, right_data], targets)

Naturally, a layer instance may be used more than once—it can be called arbitrarily
many times, reusing the same set of weights every time.

7.1.6 Models as layers

Importantly, in the functional API, models can be used as you’d use layers—effectively,
you can think of a model as a “bigger layer.” This is true of both the Sequential and
Model classes. This means you can call a model on an input tensor and retrieve an out-
put tensor:

y = model(x)

If the model has multiple input tensors and multiple output tensors, it should be
called with a list of tensors:

y1, y2 = model([x1, x2])

When you call a model instance, you’re reusing the weights of the model—exactly like
what happens when you call a layer instance. Calling an instance, whether it’s a layer
instance or a model instance, will always reuse the existing learned representations of
the instance—which is intuitive.

 One simple practical example of what you can build by reusing a model instance is
a vision model that uses a dual camera as its input: two parallel cameras, a few centi-
meters (one inch) apart. Such a model can perceive depth, which can be useful in
many applications. You shouldn’t need two independent models to extract visual

Instantiates a single
LSTM layer, once

Building the left branch of the
model: inputs are variable-length
sequences of vectors of size 128.

Building the right branch of the model:
when you call an existing layer
instance, you reuse its weights.

Builds the classifier on top Instantiating and training the model: when you
train such a model, the weights of the LSTM layer

are updated based on both inputs.

248 CHAPTER 7 Advanced deep-learning best practices
features from the left camera and the right camera before merging the two feeds.
Such low-level processing can be shared across the two inputs: that is, done via layers
that use the same weights and thus share the same representations. Here’s how you’d
implement a Siamese vision model (shared convolutional base) in Keras:

from keras import layers
from keras import applications
from keras import Input

xception_base = applications.Xception(weights=None,
include_top=False)

left_input = Input(shape=(250, 250, 3))
right_input = Input(shape=(250, 250, 3))

left_features = xception_base(left_input)
right_input = xception_base(right_input)

merged_features = layers.concatenate(
[left_features, right_input], axis=-1)

7.1.7 Wrapping up

This concludes our introduction to the Keras functional API—an essential tool for
building advanced deep neural network architectures. Now you know the following:

 To step out of the Sequential API whenever you need anything more than a lin-
ear stack of layers

 How to build Keras models with several inputs, several outputs, and complex
internal network topology, using the Keras functional API

 How to reuse the weights of a layer or model across different processing
branches, by calling the same layer or model instance several times

The base image-processing
model is the Xception network

(convolutional base only).

The inputs are 250 × 250
RGB images.

Calls the same vision
model twice

The merged features contain
information from the right visual
feed and the left visual feed.

249Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
7.2 Inspecting and monitoring deep-learning models using
Keras callbacks and TensorBoard
In this section, we’ll review ways to gain greater access to and control over what goes
on inside your model during training. Launching a training run on a large dataset for
tens of epochs using model.fit() or model.fit_generator() can be a bit like
launching a paper airplane: past the initial impulse, you don’t have any control over
its trajectory or its landing spot. If you want to avoid bad outcomes (and thus wasted
paper airplanes), it’s smarter to use not a paper plane, but a drone that can sense its
environment, send data back to its operator, and automatically make steering deci-
sions based on its current state. The techniques we present here will transform the call
to model.fit() from a paper airplane into a smart, autonomous drone that can self-
introspect and dynamically take action.

7.2.1 Using callbacks to act on a model during training

When you’re training a model, there are many things you can’t predict from the start.
In particular, you can’t tell how many epochs will be needed to get to an optimal vali-
dation loss. The examples so far have adopted the strategy of training for enough
epochs that you begin overfitting, using the first run to figure out the proper number
of epochs to train for, and then finally launching a new training run from scratch
using this optimal number. Of course, this approach is wasteful.

 A much better way to handle this is to stop training when you measure that the val-
idation loss in no longer improving. This can be achieved using a Keras callback. A
callback is an object (a class instance implementing specific methods) that is passed to
the model in the call to fit and that is called by the model at various points during
training. It has access to all the available data about the state of the model and its per-
formance, and it can take action: interrupt training, save a model, load a different
weight set, or otherwise alter the state of the model.

 Here are some examples of ways you can use callbacks:

 Model checkpointing—Saving the current weights of the model at different points
during training.

 Early stopping—Interrupting training when the validation loss is no longer
improving (and of course, saving the best model obtained during training).

 Dynamically adjusting the value of certain parameters during training—Such as the
learning rate of the optimizer.

 Logging training and validation metrics during training, or visualizing the representa-
tions learned by the model as they’re updated—The Keras progress bar that you’re
familiar with is a callback!

The keras.callbacks module includes a number of built-in callbacks (this is not an
exhaustive list):

keras.callbacks.ModelCheckpoint
keras.callbacks.EarlyStopping

250 CHAPTER 7 Advanced deep-learning best practices
keras.callbacks.LearningRateScheduler
keras.callbacks.ReduceLROnPlateau
keras.callbacks.CSVLogger

Let’s review a few of them to give you an idea of how to use them: ModelCheckpoint,
EarlyStopping, and ReduceLROnPlateau.

THE MODELCHECKPOINT AND EARLYSTOPPING CALLBACKS

You can use the EarlyStopping callback to interrupt training once a target metric
being monitored has stopped improving for a fixed number of epochs. For instance,
this callback allows you to interrupt training as soon as you start overfitting, thus
avoiding having to retrain your model for a smaller number of epochs. This callback is
typically used in combination with ModelCheckpoint, which lets you continually save
the model during training (and, optionally, save only the current best model so far:
the version of the model that achieved the best performance at the end of an epoch):

import keras

callbacks_list = [
keras.callbacks.EarlyStopping(

monitor='acc',
patience=1,

),
keras.callbacks.ModelCheckpoint(

filepath='my_model.h5',
monitor='val_loss',
save_best_only=True,

)
]

model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])

model.fit(x, y,
epochs=10,
batch_size=32,
callbacks=callbacks_list,
validation_data=(x_val, y_val))

THE REDUCELRONPLATEAU CALLBACK

You can use this callback to reduce the learning rate when the validation loss has
stopped improving. Reducing or increasing the learning rate in case of a loss plateau is
is an effective strategy to get out of local minima during training. The following exam-
ple uses the ReduceLROnPlateau callback:

Callbacks are passed to the model via the
callbacks argument in fit, which takes a list of
callbacks. You can pass any number of callbacks.

Interrupts training when
improvement stops

Monitors the model’s
validation accuracy

Interrupts training when
accuracy has stopped
improving for more than one
epoch (that is, two epochs)

Saves the current weights after every epoch
Path to the destination model file

These two arguments mean you won’t overwrite the
model file unless val_loss has improved, which allows
you to keep the best model seen during training.

You monitor accuracy, so it should
be part of the model’s metrics.

Note that because the callback will
monitor validation loss and
validation accuracy, you need to pass
validation_data to the call to fit.

251Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
callbacks_list = [
keras.callbacks.ReduceLROnPlateau(

monitor='val_loss'
factor=0.1,
patience=10,

)
]

model.fit(x, y,
epochs=10,
batch_size=32,
callbacks=callbacks_list,
validation_data=(x_val, y_val))

WRITING YOUR OWN CALLBACK

If you need to take a specific action during training that isn’t covered by one of the
built-in callbacks, you can write your own callback. Callbacks are implemented by sub-
classing the class keras.callbacks.Callback. You can then implement any number
of the following transparently named methods, which are called at various points
during training:

on_epoch_begin
on_epoch_end

on_batch_begin
on_batch_end

on_train_begin
on_train_end

These methods all are called with a logs argument, which is a dictionary containing
information about the previous batch, epoch, or training run: training and validation
metrics, and so on. Additionally, the callback has access to the following attributes:

 self.model—The model instance from which the callback is being called
 self.validation_data—The value of what was passed to fit as validation data

Here’s a simple example of a custom callback that saves to disk (as Numpy arrays) the
activations of every layer of the model at the end of every epoch, computed on the
first sample of the validation set:

import keras
import numpy as np

class ActivationLogger(keras.callbacks.Callback):

def set_model(self, model):
self.model = model
layer_outputs = [layer.output for layer in model.layers]
self.activations_model = keras.models.Model(model.input,

layer_outputs)

def on_epoch_end(self, epoch, logs=None):
if self.validation_data is None:

raise RuntimeError('Requires validation_data.')

Monitors the model’s
validation loss

Divides the learning rate by 10 when triggered

The callback is triggered after the validation
loss has stopped improving for 10 epochs.

Because the callback will
monitor the validation loss, you
need to pass validation_data to
the call to fit.

Called at the start of every epoch
Called at the end of every epoch

Called right before processing each batch
Called right after processing each batch

Called at the start of training
Called at the end of training

Called by the parent model
before training, to inform
the callback of what model
will be calling it

Model instance
that returns the

activations of
every layer

252 CHAPTER 7 Advanced deep-learning best practices
validation_sample = self.validation_data[0][0:1]
activations = self.activations_model.predict(validation_sample)
f = open('activations_at_epoch_' + str(epoch) + '.npz', 'w')
np.savez(f, activations)
f.close()

This is all you need to know about callbacks—the rest is technical details, which you
can easily look up. Now you’re equipped to perform any sort of logging or prepro-
grammed intervention on a Keras model during training.

7.2.2 Introduction to TensorBoard:
the TensorFlow visualization framework

To do good research or develop good models, you need rich, frequent feedback about
what’s going on inside your models during your experiments. That’s the point of run-
ning experiments: to get information about how well a model performs—as much
information as possible. Making progress is an iterative process, or loop: you start with
an idea and express it as an experiment, attempting to validate or invalidate your idea.
You run this experiment and process the information it generates. This inspires your
next idea. The more iterations of this loop you’re able to run, the more refined and
powerful your ideas become. Keras helps you go from idea to experiment in the least
possible time, and fast GPUs can help you get from experiment to result as quickly as
possible. But what about processing the experiment results? That’s where Tensor-
Board comes in.

This section introduces TensorBoard, a browser-based visualization tool that comes
packaged with TensorFlow. Note that it’s only available for Keras models when you’re
using Keras with the TensorFlow backend.

 The key purpose of TensorBoard is to help you visually monitor everything that
goes on inside your model during training. If you’re monitoring more information
than just the model’s final loss, you can develop a clearer vision of what the model
does and doesn’t do, and you can make progress more quickly. TensorBoard gives you
access to several neat features, all in your browser:

Obtains the first input sample
of the validation data

Saves arrays to disk

Idea

Visualization
framework:

TensorBoard

Deep-learning
framework:

Keras

Infrastructure

Results Experiment

Figure 7.9 The loop of progress

253Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
 Visually monitoring metrics during training
 Visualizing your model architecture
 Visualizing histograms of activations and gradients
 Exploring embeddings in 3D

Let’s demonstrate these features on a simple example. You’ll train a 1D convnet on
the IMDB sentiment-analysis task.

 The model is similar to the one you saw in the last section of chapter 6. You’ll con-
sider only the top 2,000 words in the IMDB vocabulary, to make visualizing word
embeddings more tractable.

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 2000
max_len = 500

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)

model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128,

input_length=max_len,
name='embed'))

model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop',

loss='binary_crossentropy',
metrics=['acc'])

Before you start using TensorBoard, you need to create a directory where you’ll store
the log files it generates.

$ mkdir my_log_dir

Let’s launch the training with a TensorBoard callback instance. This callback will write
log events to disk at the specified location.

Listing 7.7 Text-classification model to use with TensorBoard

Listing 7.8 Creating a directory for TensorBoard log files

Number of words to
consider as features

Cuts off texts after this number
of words (among max_features
most common words)

254 CHAPTER 7 Advanced deep-learning best practices
callbacks = [
keras.callbacks.TensorBoard(

log_dir='my_log_dir',
histogram_freq=1,
embeddings_freq=1,

)
]
history = model.fit(x_train, y_train,

epochs=20,
batch_size=128,
validation_split=0.2,
callbacks=callbacks)

At this point, you can launch the TensorBoard server from the command line,
instructing it to read the logs the callback is currently writing. The tensorboard utility
should have been automatically installed on your machine the moment you installed
TensorFlow (for example, via pip):

$ tensorboard --logdir=my_log_dir

You can then browse to http://localhost:6006 and look at your model training (see
figure 7.10). In addition to live graphs of the training and validation metrics, you get
access to the Histograms tab, where you can find pretty visualizations of histograms of
activation values taken by your layers (see figure 7.11).

Listing 7.9 Training the model with a TensorBoard callback

Log files will be written
at this location.

Records activation histograms every 1 epoch

Records embedding
data every 1 epoch

Figure 7.10 TensorBoard: metrics monitoring

255Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
The Embeddings tab gives you a way to inspect the embedding locations and spatial
relationships of the 10,000 words in the input vocabulary, as learned by the initial
Embedding layer. Because the embedding space is 128-dimensional, TensorBoard auto-
matically reduces it to 2D or 3D using a dimensionality-reduction algorithm of your
choice: either principal component analysis (PCA) or t-distributed stochastic neighbor
embedding (t-SNE). In figure 7.12, in the point cloud, you can clearly see two clusters:
words with a positive connotation and words with a negative connotation. The visual-
ization makes it immediately obvious that embeddings trained jointly with a specific
objective result in models that are completely specific to the underlying task—that’s
the reason using pretrained generic word embeddings is rarely a good idea.

Figure 7.11 TensorBoard: activation histograms

256 CHAPTER 7 Advanced deep-learning best practices
The Graphs tab shows an interactive visualization of the graph of low-level TensorFlow
operations underlying your Keras model (see figure 7.13). As you can see, there’s a lot
more going on than you would expect. The model you just built may look simple
when defined in Keras—a small stack of basic layers—but under the hood, you need
to construct a fairly complex graph structure to make it work. A lot of it is related to
the gradient-descent process. This complexity differential between what you see and
what you’re manipulating is the key motivation for using Keras as your way of building
models, instead of working with raw TensorFlow to define everything from scratch.
Keras makes your workflow dramatically simpler.

Figure 7.12 TensorBoard: interactive 3D word-embedding visualization

257Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
Note that Keras also provides another, cleaner way to plot models as graphs of layers
rather than graphs of TensorFlow operations: the utility keras.utils.plot_model.
Using it requires that you’ve installed the Python pydot and pydot-ng libraries as well
as the graphviz library. Let’s take a quick look:

from keras.utils import plot_model

plot_model(model, to_file='model.png')

This creates the PNG image shown in figure 7.14.

Figure 7.13 TensorBoard: TensorFlow graph visualization

258 CHAPTER 7 Advanced deep-learning best practices
You also have the option of displaying shape information in the graph of layers. This
example visualizes model topology using plot_model and the show_shapes option
(see figure 7.15):

from keras.utils import plot_model

plot_model(model, show_shapes=True, to_file='model.png')

Figure 7.14 A model plot as a graph of layers,
generated with plot_model

259Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
7.2.3 Wrapping up

 Keras callbacks provide a simple way to monitor models during training and
automatically take action based on the state of the model.

 When you’re using TensorFlow, TensorBoard is a great way to visualize model
activity in your browser. You can use it in Keras models via the TensorBoard call-
back.

Figure 7.15 A model plot with shape information

260 CHAPTER 7 Advanced deep-learning best practices
7.3 Getting the most out of your models
Trying out architectures blindly works well enough if you just need something that
works okay. In this section, we’ll go beyond “works okay” to “works great and wins
machine-learning competitions” by offering you a quick guide to a set of must-know
techniques for building state-of-the-art deep-learning models.

7.3.1 Advanced architecture patterns

We covered one important design pattern in detail in the previous section: residual
connections. There are two more design patterns you should know about: normaliza-
tion and depthwise separable convolution. These patterns are especially relevant
when you’re building high-performing deep convnets, but they’re commonly found
in many other types of architectures as well.

BATCH NORMALIZATION

Normalization is a broad category of methods that seek to make different samples seen
by a machine-learning model more similar to each other, which helps the model learn
and generalize well to new data. The most common form of data normalization is one
you’ve seen several times in this book already: centering the data on 0 by subtracting
the mean from the data, and giving the data a unit standard deviation by dividing the
data by its standard deviation. In effect, this makes the assumption that the data fol-
lows a normal (or Gaussian) distribution and makes sure this distribution is centered
and scaled to unit variance:

normalized_data = (data - np.mean(data, axis=...)) / np.std(data, axis=...)

Previous examples normalized data before feeding it into models. But data normaliza-
tion should be a concern after every transformation operated by the network: even if
the data entering a Dense or Conv2D network has a 0 mean and unit variance, there’s
no reason to expect a priori that this will be the case for the data coming out.

 Batch normalization is a type of layer (BatchNormalization in Keras) introduced
in 2015 by Ioffe and Szegedy;7 it can adaptively normalize data even as the mean and
variance change over time during training. It works by internally maintaining an expo-
nential moving average of the batch-wise mean and variance of the data seen during
training. The main effect of batch normalization is that it helps with gradient propa-
gation—much like residual connections—and thus allows for deeper networks. Some
very deep networks can only be trained if they include multiple BatchNormalization
layers. For instance, BatchNormalization is used liberally in many of the advanced
convnet architectures that come packaged with Keras, such as ResNet50, Inception
V3, and Xception.

7 Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift,” Proceedings of the 32nd International Conference on Machine Learning (2015),
https://arxiv.org/abs/1502.03167.

261Getting the most out of your models
 The BatchNormalization layer is typically used after a convolutional or densely
connected layer:

conv_model.add(layers.Conv2D(32, 3, activation='relu'))
conv_model.add(layers.BatchNormalization())

dense_model.add(layers.Dense(32, activation='relu'))
dense_model.add(layers.BatchNormalization())

The BatchNormalization layer takes an axis argument, which specifies the feature
axis that should be normalized. This argument defaults to -1, the last axis in the input
tensor. This is the correct value when using Dense layers, Conv1D layers, RNN layers,
and Conv2D layers with data_format set to "channels_last". But in the niche use case
of Conv2D layers with data_format set to "channels_first", the features axis is axis 1;
the axis argument in BatchNormalization should accordingly be set to 1.

DEPTHWISE SEPARABLE CONVOLUTION

What if I told you that there’s a layer you can use as a drop-in replacement for Conv2D
that will make your model lighter (fewer trainable weight parameters) and faster
(fewer floating-point operations) and cause it to perform a few percentage points bet-
ter on its task? That is precisely what the depthwise separable convolution layer does
(SeparableConv2D). This layer performs a spatial convolution on each channel of its
input, independently, before mixing output channels via a pointwise convolution (a
1 × 1 convolution), as shown in figure 7.16. This is equivalent to separating the learn-
ing of spatial features and the learning of channel-wise features, which makes a lot of
sense if you assume that spatial locations in the input are highly correlated, but differ-
ent channels are fairly independent. It requires significantly fewer parameters and
involves fewer computations, thus resulting in smaller, speedier models. And because
it’s a more representationally efficient way to perform convolution, it tends to learn
better representations using less data, resulting in better-performing models.

After a Conv layer

After a Dense layer

Batch renormalization
A recent improvement over regular batch normalization is batch renormalization, intro-
duced by Ioffe in 2017.a It offers clears benefits over batch normalization, at no appar-
ent cost. At the time of writing, it’s too early to tell whether it will supplant batch
normalization—but I think it’s likely. Even more recently, Klambauer et al. introduced
self-normalizing neural networks,b which manage to keep data normalized after going
through any Dense layer by using a specific activation function (selu) and a specific ini-
tializer (lecun_normal). This scheme, although highly interesting, is limited to densely
connected networks for now, and its usefulness hasn’t yet been broadly replicated.

a Sergey Ioffe, “Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-
Normalized Models” (2017), https://arxiv.org/abs/1702.03275.
b Günter Klambauer et al., “Self-Normalizing Neural Networks,” Conference on Neural Informa-
tion Processing Systems (2017), https://arxiv.org/abs/1706.02515.

262 CHAPTER 7 Advanced deep-learning best practices
These advantages become especially important when you’re training small models
from scratch on limited data. For instance, here’s how you can build a lightweight,
depthwise separable convnet for an image-classification task (softmax categorical clas-
sification) on a small dataset:

from keras.models import Sequential, Model
from keras import layers

height = 64
width = 64
channels = 3
num_classes = 10

model = Sequential()
model.add(layers.SeparableConv2D(32, 3,

activation='relu',
input_shape=(height, width, channels,)))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.GlobalAveragePooling2D())

model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

When it comes to larger-scale models, depthwise separable convolutions are the basis
of the Xception architecture, a high-performing convnet that comes packaged with
Keras. You can read more about the theoretical grounding for depthwise separable

1 × 1 conv
(pointwise conv)

Depthwise convolution:
independent spatial
convs per channel

Concatenate

Split channels

3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv

Figure 7.16 Depthwise separable
convolution: a depthwise convolution
followed by a pointwise convolution

263Getting the most out of your models
convolutions and Xception in my paper “Xception: Deep Learning with Depthwise
Separable Convolutions.”8

7.3.2 Hyperparameter optimization

When building a deep-learning model, you have to make many seemingly arbitrary
decisions: How many layers should you stack? How many units or filters should go in
each layer? Should you use relu as activation, or a different function? Should you use
BatchNormalization after a given layer? How much dropout should you use? And so
on. These architecture-level parameters are called hyperparameters to distinguish them
from the parameters of a model, which are trained via backpropagation.

 In practice, experienced machine-learning engineers and researchers build intu-
ition over time as to what works and what doesn’t when it comes to these choices—
they develop hyperparameter-tuning skills. But there are no formal rules. If you want
to get to the very limit of what can be achieved on a given task, you can’t be content
with arbitrary choices made by a fallible human. Your initial decisions are almost
always suboptimal, even if you have good intuition. You can refine your choices by
tweaking them by hand and retraining the model repeatedly—that’s what machine-
learning engineers and researchers spend most of their time doing. But it shouldn’t
be your job as a human to fiddle with hyperparameters all day—that is better left to a
machine.

 Thus you need to explore the space of possible decisions automatically, systemati-
cally, in a principled way. You need to search the architecture space and find the best-
performing ones empirically. That’s what the field of automatic hyperparameter opti-
mization is about: it’s an entire field of research, and an important one.

 The process of optimizing hyperparameters typically looks like this:

1 Choose a set of hyperparameters (automatically).
2 Build the corresponding model.
3 Fit it to your training data, and measure the final performance on the valida-

tion data.
4 Choose the next set of hyperparameters to try (automatically).
5 Repeat.
6 Eventually, measure performance on your test data.

The key to this process is the algorithm that uses this history of validation perfor-
mance, given various sets of hyperparameters, to choose the next set of hyperparame-
ters to evaluate. Many different techniques are possible: Bayesian optimization,
genetic algorithms, simple random search, and so on.

 Training the weights of a model is relatively easy: you compute a loss function on a
mini-batch of data and then use the Backpropagation algorithm to move the weights

8 See note 5 above.

264 CHAPTER 7 Advanced deep-learning best practices
in the right direction. Updating hyperparameters, on the other hand, is extremely
challenging. Consider the following:

 Computing the feedback signal (does this set of hyperparameters lead to a
high-performing model on this task?) can be extremely expensive: it requires
creating and training a new model from scratch on your dataset.

 The hyperparameter space is typically made of discrete decisions and thus isn’t
continuous or differentiable. Hence, you typically can’t do gradient descent in
hyperparameter space. Instead, you must rely on gradient-free optimization
techniques, which naturally are far less efficient than gradient descent.

Because these challenges are difficult and the field is still young, we currently only
have access to very limited tools to optimize models. Often, it turns out that random
search (choosing hyperparameters to evaluate at random, repeatedly) is the best solu-
tion, despite being the most naive one. But one tool I have found reliably better than
random search is Hyperopt (https://github.com/hyperopt/hyperopt), a Python
library for hyperparameter optimization that internally uses trees of Parzen estimators
to predict sets of hyperparameters that are likely to work well. Another library called
Hyperas (https://github.com/maxpumperla/hyperas) integrates Hyperopt for use
with Keras models. Do check it out.

NOTE One important issue to keep in mind when doing automatic hyperpa-
rameter optimization at scale is validation-set overfitting. Because you’re
updating hyperparameters based on a signal that is computed using your vali-
dation data, you’re effectively training them on the validation data, and thus
they will quickly overfit to the validation data. Always keep this in mind.

Overall, hyperparameter optimization is a powerful technique that is an absolute
requirement to get to state-of-the-art models on any task or to win machine-learning
competitions. Think about it: once upon a time, people handcrafted the features that
went into shallow machine-learning models. That was very much suboptimal. Now,
deep learning automates the task of hierarchical feature engineering—features are
learned using a feedback signal, not hand-tuned, and that’s the way it should be. In
the same way, you shouldn’t handcraft your model architectures; you should optimize
them in a principled way. At the time of writing, the field of automatic hyperparame-
ter optimization is very young and immature, as deep learning was some years ago, but
I expect it to boom in the next few years.

7.3.3 Model ensembling

Another powerful technique for obtaining the best possible results on a task is model
ensembling. Ensembling consists of pooling together the predictions of a set of differ-
ent models, to produce better predictions. If you look at machine-learning competi-
tions, in particular on Kaggle, you’ll see that the winners use very large ensembles of
models that inevitably beat any single model, no matter how good.

265Getting the most out of your models
 Ensembling relies on the assumption that different good models trained inde-
pendently are likely to be good for different reasons : each model looks at slightly differ-
ent aspects of the data to make its predictions, getting part of the “truth” but not all of
it. You may be familiar with the ancient parable of the blind men and the elephant: a
group of blind men come across an elephant for the first time and try to understand
what the elephant is by touching it. Each man touches a different part of the ele-
phant’s body—just one part, such as the trunk or a leg. Then the men describe to
each other what an elephant is: “It’s like a snake,” “Like a pillar or a tree,” and so on.
The blind men are essentially machine-learning models trying to understand the man-
ifold of the training data, each from its own perspective, using its own assumptions
(provided by the unique architecture of the model and the unique random weight ini-
tialization). Each of them gets part of the truth of the data, but not the whole truth. By
pooling their perspectives together, you can get a far more accurate description of the
data. The elephant is a combination of parts: not any single blind man gets it quite
right, but, interviewed together, they can tell a fairly accurate story.

 Let’s use classification as an example. The easiest way to pool the predictions of a set
of classifiers (to ensemble the classifiers) is to average their predictions at inference time:

preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)

final_preds = 0.25 * (preds_a + preds_b + preds_c + preds_d)

This will work only if the classifiers are more or less equally good. If one of them is sig-
nificantly worse than the others, the final predictions may not be as good as the best
classifier of the group.

 A smarter way to ensemble classifiers is to do a weighted average, where the
weights are learned on the validation data—typically, the better classifiers are given a
higher weight, and the worse classifiers are given a lower weight. To search for a good
set of ensembling weights, you can use random search or a simple optimization algo-
rithm such as Nelder-Mead:

preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)

final_preds = 0.5 * preds_a + 0.25 * preds_b + 0.1 * preds_c + 0.15 * preds_d

There are many possible variants: you can do an average of an exponential of the pre-
dictions, for instance. In general, a simple weighted average with weights optimized
on the validation data provides a very strong baseline.

 The key to making ensembling work is the diversity of the set of classifiers. Diversity
is strength. If all the blind men only touched the elephant’s trunk, they would agree

Use four different models to compute initial predictions.

This new prediction array
should be more accurate

than any of the initial ones.

These weights (0.5, 0.25,
0.1, 0.15) are assumed to

be learned empirically.

266 CHAPTER 7 Advanced deep-learning best practices
that elephants are like snakes, and they would forever stay ignorant of the truth of the
elephant. Diversity is what makes ensembling work. In machine-learning terms, if all
of your models are biased in the same way, then your ensemble will retain this same
bias. If your models are biased in different ways, the biases will cancel each other out,
and the ensemble will be more robust and more accurate.

 For this reason, you should ensemble models that are as good as possible while being
as different as possible. This typically means using very different architectures or even
different brands of machine-learning approaches. One thing that is largely not worth
doing is ensembling the same network trained several times independently, from dif-
ferent random initializations. If the only difference between your models is their ran-
dom initialization and the order in which they were exposed to the training data, then
your ensemble will be low-diversity and will provide only a tiny improvement over any
single model.

 One thing I have found to work well in practice—but that doesn’t generalize to
every problem domain—is the use of an ensemble of tree-based methods (such as ran-
dom forests or gradient-boosted trees) and deep neural networks. In 2014, partner
Andrei Kolev and I took fourth place in the Higgs Boson decay detection challenge
on Kaggle (www.kaggle.com/c/higgs-boson) using an ensemble of various tree mod-
els and deep neural networks. Remarkably, one of the models in the ensemble origi-
nated from a different method than the others (it was a regularized greedy forest) and
had a significantly worse score than the others. Unsurprisingly, it was assigned a small
weight in the ensemble. But to our surprise, it turned out to improve the overall
ensemble by a large factor, because it was so different from every other model: it pro-
vided information that the other models didn’t have access to. That’s precisely the
point of ensembling. It’s not so much about how good your best model is; it’s about
the diversity of your set of candidate models.

 In recent times, one style of basic ensemble that has been very successful in prac-
tice is the wide and deep category of models, blending deep learning with shallow learn-
ing. Such models consist of jointly training a deep neural network with a large linear
model. The joint training of a family of diverse models is yet another option to
achieve model ensembling.

7.3.4 Wrapping up

 When building high-performing deep convnets, you’ll need to use residual con-
nections, batch normalization, and depthwise separable convolutions. In the
future, it’s likely that depthwise separable convolutions will completely replace
regular convolutions, whether for 1D, 2D, or 3D applications, due to their
higher representational efficiency.

 Building deep networks requires making many small hyperparameter and
architecture choices, which together define how good your model will be.
Rather than basing these choices on intuition or random chance, it’s better to
systematically search hyperparameter space to find optimal choices. At this

267Getting the most out of your models
time, the process is expensive, and the tools to do it aren’t very good. But the
Hyperopt and Hyperas libraries may be able to help you. When doing hyperpa-
rameter optimization, be mindful of validation-set overfitting!

 Winning machine-learning competitions or otherwise obtaining the best possi-
ble results on a task can only be done with large ensembles of models. Ensem-
bling via a well-optimized weighted average is usually good enough. Remember:
diversity is strength. It’s largely pointless to ensemble very similar models; the
best ensembles are sets of models that are as dissimilar as possible (while having
as much predictive power as possible, naturally).

268 CHAPTER 7 Advanced deep-learning best practices
Chapter summary
 In this chapter, you learned the following:

– How to build models as arbitrary graphs of layers, reuse layers (layer
weight sharing), and use models as Python functions (model templating).

– You can use Keras callbacks to monitor your models during training and
take action based on model state.

– TensorBoard allows you to visualize metrics, activation histograms, and
even embedding spaces.

– What batch normalization, depthwise separable convolution, and resid-
ual connections are.

– Why you should use hyperparameter optimization and model ensembling.

 With these new tools, you’re better equipped to use deep learning in the
real world and start building highly competitive deep-learning models.

Generative deep learning
The potential of artificial intelligence to emulate human thought processes goes
beyond passive tasks such as object recognition and mostly reactive tasks such as
driving a car. It extends well into creative activities. When I first made the claim that
in a not-so-distant future, most of the cultural content that we consume will be cre-
ated with substantial help from AIs, I was met with utter disbelief, even from long-
time machine-learning practitioners. That was in 2014. Fast-forward three years,
and the disbelief has receded—at an incredible speed. In the summer of 2015, we
were entertained by Google’s DeepDream algorithm turning an image into a psy-
chedelic mess of dog eyes and pareidolic artifacts; in 2016, we used the Prisma appli-
cation to turn photos into paintings of various styles. In the summer of 2016, an
experimental short movie, Sunspring, was directed using a script written by a Long
Short-Term Memory (LSTM) algorithm—complete with dialogue. Maybe you’ve
recently listened to music that was tentatively generated by a neural network.

This chapter covers
 Text generation with LSTM

 Implementing DeepDream

 Performing neural style transfer

 Variational autoencoders

 Understanding generative adversarial networks
269

270 CHAPTER 8 Generative deep learning
 Granted, the artistic productions we’ve seen from AI so far have been fairly low
quality. AI isn’t anywhere close to rivaling human screenwriters, painters, and compos-
ers. But replacing humans was always beside the point: artificial intelligence isn’t
about replacing our own intelligence with something else, it’s about bringing into our
lives and work more intelligence—intelligence of a different kind. In many fields, but
especially in creative ones, AI will be used by humans as a tool to augment their own
capabilities: more augmented intelligence than artificial intelligence.

 A large part of artistic creation consists of simple pattern recognition and technical
skill. And that’s precisely the part of the process that many find less attractive or even
dispensable. That’s where AI comes in. Our perceptual modalities, our language, and
our artwork all have statistical structure. Learning this structure is what deep-learning
algorithms excel at. Machine-learning models can learn the statistical latent space of
images, music, and stories, and they can then sample from this space, creating new art-
works with characteristics similar to those the model has seen in its training data. Nat-
urally, such sampling is hardly an act of artistic creation in itself. It’s a mere
mathematical operation: the algorithm has no grounding in human life, human emo-
tions, or our experience of the world; instead, it learns from an experience that has lit-
tle in common with ours. It’s only our interpretation, as human spectators, that will
give meaning to what the model generates. But in the hands of a skilled artist, algo-
rithmic generation can be steered to become meaningful—and beautiful. Latent
space sampling can become a brush that empowers the artist, augments our creative
affordances, and expands the space of what we can imagine. What’s more, it can make
artistic creation more accessible by eliminating the need for technical skill and prac-
tice—setting up a new medium of pure expression, factoring art apart from craft.

 Iannis Xenakis, a visionary pioneer of electronic and algorithmic music, beauti-
fully expressed this same idea in the 1960s, in the context of the application of auto-
mation technology to music composition:1

Freed from tedious calculations, the composer is able to devote himself to the general
problems that the new musical form poses and to explore the nooks and crannies of this
form while modifying the values of the input data. For example, he may test all
instrumental combinations from soloists to chamber orchestras, to large orchestras. With
the aid of electronic computers the composer becomes a sort of pilot: he presses the buttons,
introduces coordinates, and supervises the controls of a cosmic vessel sailing in the space
of sound, across sonic constellations and galaxies that he could formerly glimpse only as
a distant dream.

In this chapter, we’ll explore from various angles the potential of deep learning to
augment artistic creation. We’ll review sequence data generation (which can be used
to generate text or music), DeepDream, and image generation using both variational
autoencoders and generative adversarial networks. We’ll get your computer to dream
up content never seen before; and maybe we’ll get you to dream, too, about the fan-
tastic possibilities that lie at the intersection of technology and art. Let’s get started.

1 Iannis Xenakis, “Musiques formelles: nouveaux principes formels de composition musicale,” special issue of La
Revue musicale, nos. 253 -254 (1963).

271Text generation with LSTM
8.1 Text generation with LSTM
In this section, we’ll explore how recurrent neural networks can be used to generate
sequence data. We’ll use text generation as an example, but the exact same tech-
niques can be generalized to any kind of sequence data: you could apply it to
sequences of musical notes in order to generate new music, to timeseries of brush-
stroke data (for example, recorded while an artist paints on an iPad) to generate
paintings stroke by stroke, and so on.

 Sequence data generation is in no way limited to artistic content generation. It
has been successfully applied to speech synthesis and to dialogue generation for chat-
bots. The Smart Reply feature that Google released in 2016, capable of automatically
generating a selection of quick replies to emails or text messages, is powered by simi-
lar techniques.

8.1.1 A brief history of generative recurrent networks

In late 2014, few people had ever seen the initials LSTM, even in the machine-learning
community. Successful applications of sequence data generation with recurrent net-
works only began to appear in the mainstream in 2016. But these techniques have a
fairly long history, starting with the development of the LSTM algorithm in 1997.2 This
new algorithm was used early on to generate text character by character.

 In 2002, Douglas Eck, then at Schmidhuber’s lab in Switzerland, applied LSTM to
music generation for the first time, with promising results. Eck is now a researcher at
Google Brain, and in 2016 he started a new research group there, called Magenta,
focused on applying modern deep-learning techniques to produce engaging music.
Sometimes, good ideas take 15 years to get started.

 In the late 2000s and early 2010s, Alex Graves did important pioneering work on
using recurrent networks for sequence data generation. In particular, his 2013 work
on applying recurrent mixture density networks to generate human-like handwriting
using timeseries of pen positions is seen by some as a turning point.3 This specific
application of neural networks at that specific moment in time captured for me the
notion of machines that dream and was a significant inspiration around the time I
started developing Keras. Graves left a similar commented-out remark hidden in a
2013 LaTeX file uploaded to the preprint server arXiv: “generating sequential data is
the closest computers get to dreaming.” Several years later, we take a lot of these devel-
opments for granted; but at the time, it was difficult to watch Graves’s demonstrations
and not walk away awe-inspired by the possibilities.

 Since then, recurrent neural networks have been successfully used for music gener-
ation, dialogue generation, image generation, speech synthesis, and molecule design.
They were even used to produce a movie script that was then cast with live actors.

2 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation 9, no. 8 (1997).
3 Alex Graves, “Generating Sequences With Recurrent Neural Networks,” arXiv (2013), https://arxiv.org/

abs/1308.0850.

272 CHAPTER 8 Generative deep learning
8.1.2 How do you generate sequence data?

The universal way to generate sequence data in deep learning is to train a network (usu-
ally an RNN or a convnet) to predict the next token or next few tokens in a sequence,
using the previous tokens as input. For instance, given the input “the cat is on the ma,”
the network is trained to predict the target t, the next character. As usual when working
with text data, tokens are typically words or characters, and any network that can model
the probability of the next token given the previous ones is called a language model. A
language model captures the latent space of language: its statistical structure.

 Once you have such a trained language model, you can sample from it (generate
new sequences): you feed it an initial string of text (called conditioning data), ask it to
generate the next character or the next word (you can even generate several tokens at
once), add the generated output back to the input data, and repeat the process many
times (see figure 8.1). This loop allows you to generate sequences of arbitrary length
that reflect the structure of the data on which the model was trained: sequences that
look almost like human-written sentences. In the example we present in this section,
you’ll take a LSTM layer, feed it strings of N characters extracted from a text corpus,
and train it to predict character N + 1. The output of the model will be a softmax over
all possible characters: a probability distribution for the next character. This LSTM is
called a character-level neural language model.

8.1.3 The importance of the sampling strategy

When generating text, the way you choose the next character is crucially important. A
naive approach is greedy sampling, consisting of always choosing the most likely next
character. But such an approach results in repetitive, predictable strings that don’t
look like coherent language. A more interesting approach makes slightly more sur-
prising choices: it introduces randomness in the sampling process, by sampling from
the probability distribution for the next character. This is called stochastic sampling
(recall that stochasticity is what we call randomness in this field). In such a setup, if e has
a probability 0.3 of being the next character, according to the model, you’ll choose it

Language
model

Initial text

Probability
distribution for the

next characterInitial text
Sampled next

character

Sampling
strategy aThe cat sat on the m

Language
model

...

Sampling
strategy tThe cat sat on the ma

Figure 8.1 The process of character-by-character text generation using a language model

273Text generation with LSTM
30% of the time. Note that greedy sampling can be also cast as sampling from a prob-
ability distribution: one where a certain character has probability 1 and all others have
probability 0.

 Sampling probabilistically from the softmax output of the model is neat: it allows
even unlikely characters to be sampled some of the time, generating more interesting-
looking sentences and sometimes showing creativity by coming up with new, realistic-
sounding words that didn’t occur in the training data. But there’s one issue with this
strategy: it doesn’t offer a way to control the amount of randomness in the sampling process.

 Why would you want more or less randomness? Consider an extreme case: pure
random sampling, where you draw the next character from a uniform probability dis-
tribution, and every character is equally likely. This scheme has maximum random-
ness; in other words, this probability distribution has maximum entropy. Naturally, it
won’t produce anything interesting. At the other extreme, greedy sampling doesn’t
produce anything interesting, either, and has no randomness: the corresponding
probability distribution has minimum entropy. Sampling from the “real” probability
distribution—the distribution that is output by the model’s softmax function—consti-
tutes an intermediate point between these two extremes. But there are many other
intermediate points of higher or lower entropy that you may want to explore. Less
entropy will give the generated sequences a more predictable structure (and thus they
will potentially be more realistic looking), whereas more entropy will result in more
surprising and creative sequences. When sampling from generative models, it’s always
good to explore different amounts of randomness in the generation process. Because
we—humans—are the ultimate judges of how interesting the generated data is, inter-
estingness is highly subjective, and there’s no telling in advance where the point of
optimal entropy lies.

 In order to control the amount of stochasticity in the sampling process, we’ll intro-
duce a parameter called the softmax temperature that characterizes the entropy of the
probability distribution used for sampling: it characterizes how surprising or predict-
able the choice of the next character will be. Given a temperature value, a new proba-
bility distribution is computed from the original one (the softmax output of the
model) by reweighting it in the following way.

import numpy as np

def reweight_distribution(original_distribution, temperature=0.5):
distribution = np.log(original_distribution) / temperature
distribution = np.exp(distribution)
return distribution / np.sum(distribution)

Listing 8.1 Reweighting a probability distribution to a different temperature

original_distribution is a 1D Numpy array
of probability values that must sum to 1.
temperature is a factor quantifying the
entropy of the output distribution.

Returns a reweighted version of
the original distribution. The sum
of the distribution may no longer
be 1, so you divide it by its sum to
obtain the new distribution.

274 CHAPTER 8 Generative deep learning
Higher temperatures result in sampling distributions of higher entropy that will generate more
surprising and unstructured generated data, whereas a lower temperature will result in less ran-
domness and much more predictable generated data (see figure 8.2).

8.1.4 Implementing character-level LSTM text generation

Let’s put these ideas into practice in a Keras implementation. The first thing you need
is a lot of text data that you can use to learn a language model. You can use any suffi-
ciently large text file or set of text files—Wikipedia, The Lord of the Rings, and so on. In
this example, you’ll use some of the writings of Nietzsche, the late-nineteenth century
German philosopher (translated into English). The language model you’ll learn will
thus be specifically a model of Nietzsche’s writing style and topics of choice, rather
than a more generic model of the English language.

PREPARING THE DATA

Let’s start by downloading the corpus and converting it to lowercase.

import keras
import numpy as np

path = keras.utils.get_file(
'nietzsche.txt',
origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt')

text = open(path).read().lower()
print('Corpus length:', len(text))

Listing 8.2 Downloading and parsing the initial text file

temperature = 0.01 temperature = 0.2 temperature = 0.4

temperature = 0.6

Discrete elements (characters)P
ro

ba
bi

lit
y

of
 s

am
pl

in
g

el
em

en
t

temperature = 0.8 temperature = 1.0

Figure 8.2 Different reweightings of one probability distribution. Low temperature = more
deterministic, high temperature = more random.

275Text generation with LSTM

s

Next, you’ll extract partially overlapping sequences of length maxlen, one-hot encode
them, and pack them in a 3D Numpy array x of shape (sequences, maxlen,
unique_characters). Simultaneously, you’ll prepare an array y containing the corre-
sponding targets: the one-hot-encoded characters that come after each extracted
sequence.

maxlen = 60

step = 3

sentences = []

next_chars = []

for i in range(0, len(text) - maxlen, step):

sentences.append(text[i: i + maxlen])

next_chars.append(text[i + maxlen])

print('Number of sequences:', len(sentences))

chars = sorted(list(set(text)))

print('Unique characters:', len(chars))

char_indices = dict((char, chars.index(char)) for char in chars)

print('Vectorization...')

x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)

y = np.zeros((len(sentences), len(chars)), dtype=np.bool)

for i, sentence in enumerate(sentences):

for t, char in enumerate(sentence):

x[i, t, char_indices[char]] = 1

y[i, char_indices[next_chars[i]]] = 1

BUILDING THE NETWORK

This network is a single LSTM layer followed by a Dense classifier and softmax over all
possible characters. But note that recurrent neural networks aren’t the only way to do
sequence data generation; 1D convnets also have proven extremely successful at this
task in recent times.

from keras import layers

model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

Listing 8.3 Vectorizing sequences of characters

Listing 8.4 Single-layer LSTM model for next-character prediction

You’ll extract sequences
of 60 characters.

You’ll sample a new sequence
every three characters.

Holds the extracted sequences

Holds the targets (the
follow-up characters)

List of unique characters
in the corpus

One-hot encodes
the characters
into binary array

Dictionary that maps
unique characters to their

index in the list “chars”

276 CHAPTER 8 Generative deep learning
Because your targets are one-hot encoded, you’ll use categorical_crossentropy as
the loss to train the model.

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)

TRAINING THE LANGUAGE MODEL AND SAMPLING FROM IT
Given a trained model and a seed text snippet, you can generate new text by doing the
following repeatedly:

1 Draw from the model a probability distribution for the next character, given the
generated text available so far.

2 Reweight the distribution to a certain temperature.
3 Sample the next character at random according to the reweighted distribution.
4 Add the new character at the end of the available text.

This is the code you use to reweight the original probability distribution coming out
of the model and draw a character index from it (the sampling function).

def sample(preds, temperature=1.0):
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / temperature
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probas = np.random.multinomial(1, preds, 1)
return np.argmax(probas)

Finally, the following loop repeatedly trains and generates text. You begin generating
text using a range of different temperatures after every epoch. This allows you to see
how the generated text evolves as the model begins to converge, as well as the impact
of temperature in the sampling strategy.

import random
import sys

for epoch in range(1, 60):
print('epoch', epoch)
model.fit(x, y, batch_size=128, epochs=1)
start_index = random.randint(0, len(text) - maxlen - 1)
generated_text = text[start_index: start_index + maxlen]
print('--- Generating with seed: "' + generated_text + '"')

for temperature in [0.2, 0.5, 1.0, 1.2]:
print('------ temperature:', temperature)
sys.stdout.write(generated_text)

Listing 8.5 Model compilation configuration

Listing 8.6 Function to sample the next character given the model’s predictions

Listing 8.7 Text-generation loop

Trains the model for 60 epochs

Fits the model for one iteration
on the data

Selects a text
seed at
random

Tries a range of different
sampling temperatures

277Text generation with LSTM
for i in range(400):
sampled = np.zeros((1, maxlen, len(chars)))
for t, char in enumerate(generated_text):

sampled[0, t, char_indices[char]] = 1.

preds = model.predict(sampled, verbose=0)[0]
next_index = sample(preds, temperature)
next_char = chars[next_index]

generated_text += next_char
generated_text = generated_text[1:]

sys.stdout.write(next_char)

Here, we used the random seed text “new faculty, and the jubilation reached its cli-
max when kant.” Here’s what you get at epoch 20, long before the model has fully
converged, with temperature=0.2:

new faculty, and the jubilation reached its climax when kant and such a man
in the same time the spirit of the surely and the such the such
as a man is the sunligh and subject the present to the superiority of the
special pain the most man and strange the subjection of the
special conscience the special and nature and such men the subjection of the
special men, the most surely the subjection of the special
intellect of the subjection of the same things and

Here’s the result with temperature=0.5:

new faculty, and the jubilation reached its climax when kant in the eterned
and such man as it's also become himself the condition of the
experience of off the basis the superiory and the special morty of the
strength, in the langus, as which the same time life and "even who
discless the mankind, with a subject and fact all you have to be the stand
and lave no comes a troveration of the man and surely the
conscience the superiority, and when one must be w

And here’s what you get with temperature=1.0:

new faculty, and the jubilation reached its climax when kant, as a
periliting of manner to all definites and transpects it it so
hicable and ont him artiar resull
too such as if ever the proping to makes as cnecience. to been juden,
all every could coldiciousnike hother aw passife, the plies like
which might thiod was account, indifferent germin, that everythery
certain destrution, intellect into the deteriorablen origin of moralian,
and a lessority o

At epoch 60, the model has mostly converged, and the text starts to look significantly
more coherent. Here’s the result with temperature=0.2:

cheerfulness, friendliness and kindness of a heart are the sense of the
spirit is a man with the sense of the sense of the world of the
self-end and self-concerning the subjection of the strengthorixes--the

Generates 400
characters,

starting from
the seed text

One-hot encodes
the characters
generated so far

Samples
the next
character

278 CHAPTER 8 Generative deep learning
subjection of the subjection of the subjection of the
self-concerning the feelings in the superiority in the subjection of the
subjection of the spirit isn't to be a man of the sense of the
subjection and said to the strength of the sense of the

Here’s temperature=0.5:

cheerfulness, friendliness and kindness of a heart are the part of the soul
who have been the art of the philosophers, and which the one
won't say, which is it the higher the and with religion of the frences.
the life of the spirit among the most continuess of the
strengther of the sense the conscience of men of precisely before enough
presumption, and can mankind, and something the conceptions, the
subjection of the sense and suffering and the

And here’s temperature=1.0:

cheerfulness, friendliness and kindness of a heart are spiritual by the
ciuture for the
entalled is, he astraged, or errors to our you idstood--and it needs,
to think by spars to whole the amvives of the newoatly, prefectly
raals! it was
name, for example but voludd atu-especity"--or rank onee, or even all
"solett increessic of the world and
implussional tragedy experience, transf, or insiderar,--must hast
if desires of the strubction is be stronges

As you can see, a low temperature value results in extremely repetitive and predictable
text, but local structure is highly realistic: in particular, all words (a word being a local
pattern of characters) are real English words. With higher temperatures, the gener-
ated text becomes more interesting, surprising, even creative; it sometimes invents
completely new words that sound somewhat plausible (such as eterned and troveration).
With a high temperature, the local structure starts to break down, and most words
look like semi-random strings of characters. Without a doubt, 0.5 is the most interest-
ing temperature for text generation in this specific setup. Always experiment with
multiple sampling strategies! A clever balance between learned structure and random-
ness is what makes generation interesting.

 Note that by training a bigger model, longer, on more data, you can achieve gen-
erated samples that look much more coherent and realistic than this one. But, of
course, don’t expect to ever generate any meaningful text, other than by random
chance: all you’re doing is sampling data from a statistical model of which characters
come after which characters. Language is a communication channel, and there’s a
distinction between what communications are about and the statistical structure of
the messages in which communications are encoded. To evidence this distinction,
here’s a thought experiment: what if human language did a better job of compressing
communications, much like computers do with most digital communications?
Language would be no less meaningful, but it would lack any intrinsic statistical struc-
ture, thus making it impossible to learn a language model as you just did.

279Text generation with LSTM
Wrapping up8.1.5

 You can generate discrete sequence data by training a model to predict the next
tokens(s), given previous tokens.

 In the case of text, such a model is called a language model. It can be based on
either words or characters.

 Sampling the next token requires balance between adhering to what the model
judges likely, and introducing randomness.

 One way to handle this is the notion of softmax temperature. Always experi-
ment with different temperatures to find the right one.

280 CHAPTER 8 Generative deep learning
DeepDream8.2
DeepDream is an artistic image-modification technique that uses the representations
learned by convolutional neural networks. It was first released by Google in the sum-
mer of 2015, as an implementation written using the Caffe deep-learning library (this
was several months before the first public release of TensorFlow).4 It quickly became
an internet sensation thanks to the trippy pictures it could generate (see, for example,
figure 8.3), full of algorithmic pareidolia artifacts, bird feathers, and dog eyes—a
byproduct of the fact that the DeepDream convnet was trained on ImageNet, where
dog breeds and bird species are vastly overrepresented.

The DeepDream algorithm is almost identical to the convnet filter-visualization tech-
nique introduced in chapter 5, consisting of running a convnet in reverse: doing gra-
dient ascent on the input to the convnet in order to maximize the activation of a
specific filter in an upper layer of the convnet. DeepDream uses this same idea, with a
few simple differences:

 With DeepDream, you try to maximize the activation of entire layers rather
than that of a specific filter, thus mixing together visualizations of large num-
bers of features at once.

4 Alexander Mordvintsev, Christopher Olah, and Mike Tyka, “DeepDream: A Code Example for Visualizing
Neural Networks,” Google Research Blog, July 1, 2015, http://mng.bz/xXlM.

Example of a DeepDream output imageFigure 8.3

281DeepDream
 You start not from blank, slightly noisy input, but rather from an existing
image—thus the resulting effects latch on to preexisting visual patterns, distort-
ing elements of the image in a somewhat artistic fashion.

 The input images are processed at different scales (called octaves), which
improves the quality of the visualizations.

Let’s make some DeepDreams.

8.2.1 Implementing DeepDream in Keras

You’ll start from a convnet pretrained on ImageNet. In Keras, many such convnets are
available: VGG16, VGG19, Xception, ResNet50, and so on. You can implement Deep-
Dream with any of them, but your convnet of choice will naturally affect your visualiza-
tions, because different convnet architectures result in different learned features. The
convnet used in the original DeepDream release was an Inception model, and in prac-
tice Inception is known to produce nice-looking DeepDreams, so you’ll use the Incep-
tion V3 model that comes with Keras.

from keras.applications import inception_v3
from keras import backend as K

K.set_learning_phase(0)

model = inception_v3.InceptionV3(weights='imagenet',
include_top=False)

Next, you’ll compute the loss: the quantity you’ll seek to maximize during the gradient-ascent
process. In chapter 5, for filter visualization, you tried to maximize the value of a specific filter
in a specific layer. Here, you’ll simultaneously maximize the activation of all filters in a number
of layers. Specifically, you’ll maximize a weighted sum of the L2 norm of the activations of a set
of high-level layers. The exact set of layers you choose (as well as their contribution to the final
loss) has a major influence on the visuals you’ll be able to produce, so you want to make these
parameters easily configurable. Lower layers result in geometric patterns, whereas higher layers
result in visuals in which you can recognize some classes from ImageNet (for example, birds or
dogs). You’ll start from a somewhat arbitrary configuration involving four layers—but you’ll
definitely want to explore many different configurations later.

layer_contributions = {
'mixed2': 0.2,
'mixed3': 3.,
'mixed4': 2.,
'mixed5': 1.5,

}

Loading the pretrained Inception V3 modelListing 8.8

Setting up the DeepDream configurationListing 8.9

You won’t be training the model, so
this command disables all training-
specific operations.

Builds the Inception V3 network,
without its convolutional base.
The model will be loaded with
pretrained ImageNet weights.

Dictionary mapping layer names to a coefficient quantifying
how much the layer’s activation contributes to the loss
you’ll seek to maximize. Note that the layer names are
hardcoded in the built-in Inception V3 application. You can
list all layer names using model.summary().

282 CHAPTER 8 Generative deep learning
Now, let’s define a tensor that contains the loss: the weighted sum of the L2 norm of
the activations of the layers in listing 8.9.

layer_dict = dict([(layer.name, layer) for layer in model.layers])

loss = K.variable(0.)
for layer_name in layer_contributions:

coeff = layer_contributions[layer_name]
activation = layer_dict[layer_name].output

scaling = K.prod(K.cast(K.shape(activation), 'float32'))
loss += coeff * K.sum(K.square(activation[:, 2: -2, 2: -2, :])) / scaling

Next, you can set up the gradient-ascent process.

dream = model.input

grads = K.gradients(loss, dream)[0]

grads /= K.maximum(K.mean(K.abs(grads)), 1e-7)

outputs = [loss, grads]
fetch_loss_and_grads = K.function([dream], outputs)

def eval_loss_and_grads(x):
outs = fetch_loss_and_grads([x])
loss_value = outs[0]
grad_values = outs[1]
return loss_value, grad_values

def gradient_ascent(x, iterations, step, max_loss=None):
for i in range(iterations):

loss_value, grad_values = eval_loss_and_grads(x)
if max_loss is not None and loss_value > max_loss:

break
print('...Loss value at', i, ':', loss_value)
x += step * grad_values

return x

Finally: the actual DeepDream algorithm. First, you define a list of scales (also called
octaves) at which to process the images. Each successive scale is larger than the previ-
ous one by a factor of 1.4 (it’s 40% larger): you start by processing a small image and
then increasingly scale it up (see figure 8.4).

Defining the loss to be maximizedListing 8.10

Gradient-ascent processListing 8.11

Creates a dictionary that maps
layer names to layer instances

You’ll define the loss by adding
layer contributions to this
scalar variable.

Retrieves the layer’s output
Adds the L2 norm of the features of a layer

to the loss. You avoid border artifacts by
only involving nonborder pixels in the loss.

This tensor holds the
generated image: the dream. Computes the gradients of the

dream with regard to the loss

Normalizes the gradients
(important trick)

Sets up a Keras function
to retrieve the value of
the loss and gradients,
given an input image

This function runs
gradient ascent for a
number of iterations.

283DeepDream

For each successive scale, from the smallest to the largest, you run gradient ascent to
maximize the loss you previously defined, at that scale. After each gradient ascent run,
you upscale the resulting image by 40%.

 To avoid losing a lot of image detail after each successive scale-up (resulting in
increasingly blurry or pixelated images), you can use a simple trick: after each scale-
up, you’ll reinject the lost details back into the image, which is possible because you
know what the original image should look like at the larger scale. Given a small image
size S and a larger image size L, you can compute the difference between the original
image resized to size L and the original resized to size S —this difference quantifies the
details lost when going from S to L.

import numpy as np

step = 0.01
num_octave = 3
octave_scale = 1.4
iterations = 20

max_loss = 10.

base_image_path = '...'

img = preprocess_image(base_image_path)

Running gradient ascent over different successive scalesListing 8.12

Dream

Octave 1
Octave 2

Octave 3

Upscale

Detail
reinjection

Detail
reinjection

DreamUpscaleDream

Figure 8.4 The DeepDream process: successive scales of spatial processing (octaves) and detail reinjection
upon upscaling

Playing with these hyperparameters
will let you achieve new effects.

Number of scales at which to run
gradient ascent

Size ratio between scales

Number of ascent steps to
run at each scale

If the loss grows larger than 10, you’ll interrupt
the gradient-ascent process to avoid ugly artifacts.

Fill this with the path to the image you want to use.

Gradient ascent step size

Loads the base image into a Numpy
array (function is defined in listing 8.13)

284 CHAPTER 8 Generative deep learning

S

as
original_shape = img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):

shape = tuple([int(dim / (octave_scale ** i))
 for dim in original_shape])

successive_shapes.append(shape)

successive_shapes = successive_shapes[::-1]

original_img = np.copy(img)
shrunk_original_img = resize_img(img, successive_shapes[0])

for shape in successive_shapes:
print('Processing image shape', shape)
img = resize_img(img, shape)
img = gradient_ascent(img,

iterations=iterations,
step=step,
max_loss=max_loss)

upscaled_shrunk_original_img = resize_img(shrunk_original_img, shape)
same_size_original = resize_img(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img

img += lost_detail
shrunk_original_img = resize_img(original_img, shape)
save_img(img, fname='dream_at_scale_' + str(shape) + '.png')

save_img(img, fname='final_dream.png')

Note that this code uses the following straightforward auxiliary Numpy functions,
which all do as their names suggest. They require that you have SciPy installed.

import scipy
from keras.preprocessing import image

def resize_img(img, size):
img = np.copy(img)
factors = (1,

float(size[0]) / img.shape[1],
float(size[1]) / img.shape[2],
1)

return scipy.ndimage.zoom(img, factors, order=1)

def save_img(img, fname):
pil_img = deprocess_image(np.copy(img))
scipy.misc.imsave(fname, pil_img)

def preprocess_image(image_path):
img = image.load_img(image_path)
img = image.img_to_array(img)

Auxiliary functionsListing 8.13

Prepares a list of shape
tuples defining the different
scales at which to run
gradient ascent

Reverses the list of
shapes so they’re in
increasing order

Resizes the Numpy
array of the image

to the smallest scale

cales up
the

dream
image

Runs gradient
cent, altering

the dream

Scales up the smaller
version of the original

image: it will be pixellated.

Computes the high-quality version
of the original image at this size The difference between the two is the

detail that was lost when scaling up.

Reinjects lost detail into the dream

Util function to open, resize, and
format pictures into tensors
that Inception V3 can process

285DeepDream
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img

def deprocess_image(x):
if K.image_data_format() == 'channels_first':

x = x.reshape((3, x.shape[2], x.shape[3]))
x = x.transpose((1, 2, 0))

else:
x = x.reshape((x.shape[1], x.shape[2], 3))

x /= 2.
x += 0.5
x *= 255.
x = np.clip(x, 0, 255).astype('uint8')
return x

NOTE Because the original Inception V3 network was trained to recognize
concepts in images of size 299 × 299, and given that the process involves scal-
ing the images down by a reasonable factor, the DeepDream implementation
produces much better results on images that are somewhere between 300 ×
300 and 400 × 400. Regardless, you can run the same code on images of any
size and any ratio.

Starting from a photograph taken in the small hills between San Francisco Bay and
the Google campus, we obtained the DeepDream shown in figure 8.5.

We strongly suggest that you explore what you can do by adjusting which layers you
use in your loss. Layers that are lower in the network contain more-local, less-abstract
representations and lead to dream patterns that look more geometric. Layers that are
higher up lead to more-recognizable visual patterns based on the most common
objects found in ImageNet, such as dog eyes, bird feathers, and so on. You can use

Util function to convert a
tensor into a valid image

Undoes preprocessing that
was performed by
inception_v3.preprocess_
input

Running the DeepDream code on an example imageFigure 8.5

286 CHAPTER 8 Generative deep learning
random generation of the parameters in the layer_contributions dictionary to
quickly explore many different layer combinations. Figure 8.6 shows a range of results
obtained using different layer configurations, from an image of a delicious home-
made pastry.

Wrapping up8.2.2

 DeepDream consists of running a convnet in reverse to generate inputs based
on the representations learned by the network.

 The results produced are fun and somewhat similar to the visual artifacts
induced in humans by the disruption of the visual cortex via psychedelics.

 Note that the process isn’t specific to image models or even to convnets. It can
be done for speech, music, and more.

Trying a range of DeepDream configurations on an example imageFigure 8.6

287Neural style transfer
Neural style transfer8.3
In addition to DeepDream, another major development in deep-learning-driven
image modification is neural style transfer, introduced by Leon Gatys et al. in the sum-
mer of 2015.5 The neural style transfer algorithm has undergone many refinements
and spawned many variations since its original introduction, and it has made its way
into many smartphone photo apps. For simplicity, this section focuses on the formula-
tion described in the original paper.

 Neural style transfer consists of applying the style of a reference image to a target
image while conserving the content of the target image. Figure 8.7 shows an example.

In this context, style essentially means textures, colors, and visual patterns in the image, at
various spatial scales; and the content is the higher-level macrostructure of the image.
For instance, blue-and-yellow circular brushstrokes are considered to be the style in fig-
ure 8.7 (using Starry Night by Vincent Van Gogh), and the buildings in the Tübingen
photograph are considered to be the content.

 The idea of style transfer, which is tightly related to that of texture generation, has
had a long history in the image-processing community prior to the development of
neural style transfer in 2015. But as it turns out, the deep-learning-based implementa-
tions of style transfer offer results unparalleled by what had been previously achieved
with classical computer-vision techniques, and they triggered an amazing renaissance
in creative applications of computer vision.

 The key notion behind implementing style transfer is the same idea that’s central
to all deep-learning algorithms: you define a loss function to specify what you want to
achieve, and you minimize this loss. You know what you want to achieve: conserving
the content of the original image while adopting the style of the reference image. If
we were able to mathematically define content and style, then an appropriate loss func-
tion to minimize would be the following:

loss = distance(style(reference_image) - style(generated_image)) +
distance(content(original_image) - content(generated_image))

5 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural Algorithm of Artistic Style,” arXiv (2015),
https://arxiv.org/abs/1508.06576.

Combination imageStyle referenceContent target

A style transfer exampleFigure 8.7

288 CHAPTER 8 Generative deep learning
Here, distance is a norm function such as the L2 norm, content is a function that
takes an image and computes a representation of its content, and style is a function
that takes an image and computes a representation of its style. Minimizing this
loss causes style(generated_image) to be close to style(reference_image), and
content(generated_image) is close to content(generated_image), thus achieving
style transfer as we defined it.

 A fundamental observation made by Gatys et al. was that deep convolutional neu-
ral networks offer a way to mathematically define the style and content functions.
Let’s see how.

The content loss8.3.1

As you already know, activations from earlier layers in a network contain local informa-
tion about the image, whereas activations from higher layers contain increasingly global,
abstract information. Formulated in a different way, the activations of the different lay-
ers of a convnet provide a decomposition of the contents of an image over different spa-
tial scales. Therefore, you’d expect the content of an image, which is more global and
abstract, to be captured by the representations of the upper layers in a convnet.

 A good candidate for content loss is thus the L2 norm between the activations of
an upper layer in a pretrained convnet, computed over the target image, and the acti-
vations of the same layer computed over the generated image. This guarantees that, as
seen from the upper layer, the generated image will look similar to the original target
image. Assuming that what the upper layers of a convnet see is really the content of
their input images, then this works as a way to preserve image content.

The style loss8.3.2

The content loss only uses a single upper layer, but the style loss as defined by Gatys
et al. uses multiple layers of a convnet: you try to capture the appearance of the style-
reference image at all spatial scales extracted by the convnet, not just a single scale.
For the style loss, Gatys et al. use the Gram matrix of a layer’s activations: the inner
product of the feature maps of a given layer. This inner product can be understood as
representing a map of the correlations between the layer’s features. These feature cor-
relations capture the statistics of the patterns of a particular spatial scale, which empir-
ically correspond to the appearance of the textures found at this scale.

 Hence, the style loss aims to preserve similar internal correlations within the activa-
tions of different layers, across the style-reference image and the generated image. In
turn, this guarantees that the textures found at different spatial scales look similar
across the style-reference image and the generated image.

 In short, you can use a pretrained convnet to define a loss that will do the following:

 Preserve content by maintaining similar high-level layer activations between the
target content image and the generated image. The convnet should “see” both
the target image and the generated image as containing the same things.

289Neural style transfer

 Preserve style by maintaining similar correlations within activations for both low-
level layers and high-level layers. Feature correlations capture textures : the gen-
erated image and the style-reference image should share the same textures at
different spatial scales.

Now, let’s look at a Keras implementation of the original 2015 neural style transfer
algorithm. As you’ll see, it shares many similarities with the DeepDream implementa-
tion developed in the previous section.

8.3.3 Neural style transfer in Keras

Neural style transfer can be implemented using any pretrained convnet. Here, you’ll
use the VGG19 network used by Gatys et al. VGG19 is a simple variant of the VGG16 net-
work introduced in chapter 5, with three more convolutional layers.

 This is the general process:

1 Set up a network that computes VGG19 layer activations for the style-reference
image, the target image, and the generated image at the same time.

2 Use the layer activations computed over these three images to define the loss
function described earlier, which you’ll minimize in order to achieve style
transfer.

3 Set up a gradient-descent process to minimize this loss function.

Let’s start by defining the paths to the style-reference image and the target image. To
make sure that the processed images are a similar size (widely different sizes make
style transfer more difficult), you’ll later resize them all to a shared height of 400 px.

from keras.preprocessing.image import load_img, img_to_array

target_image_path = 'img/portrait.jpg'
style_reference_image_path = 'img/transfer_style_reference.jpg'

width, height = load_img(target_image_path).size
img_height = 400
img_width = int(width * img_height / height)

You need some auxiliary functions for loading, preprocessing, and postprocessing the
images that go in and out of the VGG19 convnet.

import numpy as np
from keras.applications import vgg19

def preprocess_image(image_path):
img = load_img(image_path, target_size=(img_height, img_width))
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg19.preprocess_input(img)
return img

Defining initial variablesListing 8.14

Auxiliary functionsListing 8.15

Path to the image you
want to transform

Path to the
style image

Dimensions of the
generated picture

290 CHAPTER 8 Generative deep learning
def deprocess_image(x):

x[:, :, 0] += 103.939

x[:, :, 1] += 116.779

x[:, :, 2] += 123.68

x = x[:, :, ::-1]

x = np.clip(x, 0, 255).astype('uint8')

return x

Let’s set up the VGG19 network. It takes as input a batch of three images: the style-
reference image, the target image, and a placeholder that will contain the generated
image. A placeholder is a symbolic tensor, the values of which are provided externally
via Numpy arrays. The style-reference and target image are static and thus defined
using K.constant, whereas the values contained in the placeholder of the generated
image will change over time.

from keras import backend as K

target_image = K.constant(preprocess_image(target_image_path))
style_reference_image = K.constant(preprocess_image(style_reference_image_path))
combination_image = K.placeholder((1, img_height, img_width, 3))

input_tensor = K.concatenate([target_image,
style_reference_image,
combination_image], axis=0)

model = vgg19.VGG19(input_tensor=input_tensor,
weights='imagenet',
include_top=False)

print('Model loaded.')

Let’s define the content loss, which will make sure the top layer of the VGG19 convnet
has a similar view of the target image and the generated image.

def content_loss(base, combination):
return K.sum(K.square(combination - base))

Next is the style loss. It uses an auxiliary function to compute the Gram matrix of an
input matrix: a map of the correlations found in the original feature matrix.

def gram_matrix(x):
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
gram = K.dot(features, K.transpose(features))
return gram

Loading the pretrained VGG19 network and applying it to the three imagesListing 8.16

Content lossListing 8.17

Style lossListing 8.18

Zero-centering by removing the mean pixel value
from ImageNet. This reverses a transformation
done by vgg19.preprocess_input.

Converts images from 'BGR' to 'RGB'.
This is also part of the reversal of
vgg19.preprocess_input.

Placeholder that will contain
the generated image

Combines the three
images in a single batch

Builds the VGG19 network with
the batch of three images as
input. The model will be loaded
with pretrained ImageNet weights.

291Neural style transfer
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_height * img_width
return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))

To these two loss components, you add a third: the total variation loss, which operates
on the pixels of the generated combination image. It encourages spatial continuity in
the generated image, thus avoiding overly pixelated results. You can interpret it as a
regularization loss.

def total_variation_loss(x):
a = K.square(

x[:, :img_height - 1, :img_width - 1, :] -
 x[:, 1:, :img_width - 1, :])

b = K.square(
x[:, :img_height - 1, :img_width - 1, :] -

 x[:, :img_height - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))

The loss that you minimize is a weighted average of these three losses. To compute the
content loss, you use only one upper layer—the block5_conv2 layer—whereas for the
style loss, you use a list of layers than spans both low-level and high-level layers. You
add the total variation loss at the end.

 Depending on the style-reference image and content image you’re using, you’ll
likely want to tune the content_weight coefficient (the contribution of the content
loss to the total loss). A higher content_weight means the target content will be more
recognizable in the generated image.

outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])

content_layer = 'block5_conv2'

style_layers = ['block1_conv1',

'block2_conv1',

'block3_conv1',

'block4_conv1',

'block5_conv1']

total_variation_weight = 1e-4

style_weight = 1.

content_weight = 0.025

Total variation lossListing 8.19

Listing 8.20 Defining the final loss that you’ll minimize

Dictionary that maps layer
names to activation tensors

Layer used for content loss

Layers used for style loss

Weights in the weighted average
of the loss components

292 CHAPTER 8 Generative deep learning

Add

vari

Get
grad

o
gene

image
rega

the
loss = K.variable(0.)
layer_features = outputs_dict[content_layer]
target_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(target_image_features,

combination_features)
for layer_name in style_layers:

layer_features = outputs_dict[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[2, :, :, :]
sl = style_loss(style_reference_features, combination_features)
loss += (style_weight / len(style_layers)) * sl

loss += total_variation_weight * total_variation_loss(combination_image)

Finally, you’ll set up the gradient-descent process. In the original Gatys et al. paper,
optimization is performed using the L-BFGS algorithm, so that’s what you’ll use here.
This is a key difference from the DeepDream example in section 8.2. The L-BFGS algo-
rithm comes packaged with SciPy, but there are two slight limitations with the SciPy
implementation:

 It requires that you pass the value of the loss function and the value of the gra-
dients as two separate functions.

 It can only be applied to flat vectors, whereas you have a 3D image array.

It would be inefficient to compute the value of the loss function and the value of the
gradients independently, because doing so would lead to a lot of redundant computa-
tion between the two; the process would be almost twice as slow as computing them
jointly. To bypass this, you’ll set up a Python class named Evaluator that computes
both the loss value and the gradients value at once, returns the loss value when called
the first time, and caches the gradients for the next call.

grads = K.gradients(loss, combination_image)[0]

fetch_loss_and_grads = K.function([combination_image], [loss, grads])

class Evaluator(object):

def __init__(self):
self.loss_value = None
self.grads_values = None

def loss(self, x):
assert self.loss_value is None
x = x.reshape((1, img_height, img_width, 3))
outs = fetch_loss_and_grads([x])

Setting up the gradient-descent processListing 8.21

Adds
the

content
loss

You’ll define the loss by
adding all components to
this scalar variable.

Adds a style loss
component for
each target layer

s the
total
ation
loss

Function to fetch
the values of

the current loss
and the current

gradients

This class wraps fetch_loss_and_grads
in a way that lets you retrieve the losses and

gradients via two separate method calls, which is
required by the SciPy optimizer you'll use.

s the
ients
f the

rated
 with
rd to
 loss

293Neural style transfer

ion

yle
e
at
the
s

loss_value = outs[0]
grad_values = outs[1].flatten().astype('float64')
self.loss_value = loss_value
self.grad_values = grad_values
return self.loss_value

def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values

evaluator = Evaluator()

Finally, you can run the gradient-ascent process using SciPy’s L-BFGS algorithm, saving
the current generated image at each iteration of the algorithm (here, a single itera-
tion represents 20 steps of gradient ascent).

from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imsave
import time

'my_result'=result_prefix
20=iterations

x = preprocess_image(target_image_path)
x = x.flatten()
for i in range(iterations):

print('Start of iteration', i)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss,

 x,
 fprime=evaluator.grads,

 maxfun=20)
print('Current loss value:', min_val)
img = x.copy().reshape((img_height, img_width, 3))
img = deprocess_image(img)
fname = result_prefix + '_at_iteration_%d.png' % i
imsave(fname, img)
print('Image saved as', fname)
end_time = time.time()

Style-transfer loopListing 8.22

This is the initial state:
the target image.

You flatten the image because
scipy.optimize.fmin_l_bfgs_b
can only process flat vectors.

Runs L-BFGS optimizat
over the pixels of the
generated image to
minimize the neural st
loss. Note that you hav
to pass the function th
computes the loss and
function that compute
the gradients as two
separate arguments.

Saves the current
generated image.

print('Iteration %d completed in %ds' % (i, end_time - start_time))

Figure 8.8 shows what you get. Keep in mind that what this technique achieves is
merely a form of image retexturing, or texture transfer. It works best with style-
reference images that are strongly textured and highly self-similar, and with content
targets that don’t require high levels of detail in order to be recognizable. It typically
can’t achieve fairly abstract feats such as transferring the style of one portrait to
another. The algorithm is closer to classical signal processing than to AI, so don’t
expect it to work like magic!

294 CHAPTER 8 Generative deep learning

Some example resultsFigure 8.8

295Neural style transfer
Additionally, note that running this style-transfer algorithm is slow. But the transfor-
mation operated by the setup is simple enough that it can be learned by a small, fast
feedforward convnet as well—as long as you have appropriate training data available.
Fast style transfer can thus be achieved by first spending a lot of compute cycles to
generate input-output training examples for a fixed style-reference image, using the
method outlined here, and then training a simple convnet to learn this style-specific
transformation. Once that’s done, stylizing a given image is instantaneous: it’s just a
forward pass of this small convnet.

8.3.4 Wrapping up

 Style transfer consists of creating a new image that preserves the contents of a
target image while also capturing the style of a reference image.

 Content can be captured by the high-level activations of a convnet.
 Style can be captured by the internal correlations of the activations of different

layers of a convnet.
 Hence, deep learning allows style transfer to be formulated as an optimization

process using a loss defined with a pretrained convnet.
 Starting from this basic idea, many variants and refinements are possible.

296 CHAPTER 8 Generative deep learning
Generating images with variational autoencoders8.4
Sampling from a latent space of images to create entirely new images or edit existing
ones is currently the most popular and successful application of creative AI. In this sec-
tion and the next, we’ll review some high-level concepts pertaining to image genera-
tion, alongside implementations details relative to the two main techniques in this
domain: variational autoencoders (VAEs) and generative adversarial networks (GANs). The
techniques we present here aren’t specific to images—you could develop latent spaces
of sound, music, or even text, using GANs and VAEs—but in practice, the most inter-
esting results have been obtained with pictures, and that’s what we focus on here.

Sampling from latent spaces of images8.4.1

The key idea of image generation is to develop a low-dimensional latent space of repre-
sentations (which naturally is a vector space) where any point can be mapped to a
realistic-looking image. The module capable of realizing this mapping, taking as input
a latent point and outputting an image (a grid of pixels), is called a generator (in the
case of GANs) or a decoder (in the case of VAEs). Once such a latent space has been
developed, you can sample points from it, either deliberately or at random, and, by
mapping them to image space, generate images that have never been seen before (see
figure 8.9).

GANs and VAEs are two different strategies for learning such latent spaces of image
representations, each with its own characteristics. VAEs are great for learning latent
spaces that are well structured, where specific directions encode a meaningful axis of
variation in the data. GANs generate images that can potentially be highly realistic, but
the latent space they come from may not have as much structure and continuity.

Generator / Decoder

Training data

Latent space
of images

(a vector space)

Vector from the
latent space

Artificial
image

Learning
process?

Learning a latent vector space of images, and using it to sample new imagesFigure 8.9

297Generating images with variational autoencoders

Concept vectors for image editing8.4.2

We already hinted at the idea of a concept vector when we covered word embeddings in
chapter 6. The idea is still the same: given a latent space of representations, or an
embedding space, certain directions in the space may encode interesting axes of vari-
ation in the original data. In a latent space of images of faces, for instance, there may
be a smile vectors, such that if latent point z is the embedded representation of a cer-
tain face, then latent point z + s is the embedded representation of the same face,
smiling. Once you’ve identified such a vector, it then becomes possible to edit images
by projecting them into the latent space, moving their representation in a meaningful
way, and then decoding them back to image space. There are concept vectors for
essentially any independent dimension of variation in image space—in the case of
faces, you may discover vectors for adding sunglasses to a face, removing glasses, turn-
ing a male face into as female face, and so on. Figure 8.11 is an example of a smile vec-
tor, a concept vector discovered by Tom White from the Victoria University School of
Design in New Zealand, using VAEs trained on a dataset of faces of celebrities (the
CelebA dataset).

A continuous space of faces generated by Tom White using VAEsFigure 8.10

298 CHAPTER 8 Generative deep learning

Variational autoencoders8.4.3

Variational autoencoders, simultaneously discovered by Kingma and Welling in
December 20136 and Rezende, Mohamed, and Wierstra in January 2014,7 are a kind
of generative model that’s especially appropriate for the task of image editing via con-
cept vectors. They’re a modern take on autoencoders—a type of network that aims to
encode an input to a low-dimensional latent space and then decode it back—that
mixes ideas from deep learning with Bayesian inference.

 A classical image autoencoder takes an image, maps it to a latent vector space via
an encoder module, and then decodes it back to an output with the same dimensions
as the original image, via a decoder module (see figure 8.12). It’s then trained by
using as target data the same images as the input images, meaning the autoencoder
learns to reconstruct the original inputs. By imposing various constraints on the code
(the output of the encoder), you can get the autoencoder to learn more-or-less inter-
esting latent representations of the data. Most commonly, you’ll constrain the code to
be low-dimensional and sparse (mostly zeros), in which case the encoder acts as a way
to compress the input data into fewer bits of information.

6 Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes, arXiv (2013), https://arxiv.org/
abs/1312.6114.

7 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra, “Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models,” arXiv (2014), https://arxiv.org/abs/1401.4082.

The smile vectorFigure 8.11

299Generating images with variational autoencoders

In practice, such classical autoencoders don’t lead to particularly useful or nicely
structured latent spaces. They’re not much good at compression, either. For these rea-
sons, they have largely fallen out of fashion. VAEs, however, augment autoencoders
with a little bit of statistical magic that forces them to learn continuous, highly struc-
tured latent spaces. They have turned out to be a powerful tool for image generation.

 A VAE, instead of compressing its input image into a fixed code in the latent space,
turns the image into the parameters of a statistical distribution: a mean and a vari-
ance. Essentially, this means you’re assuming the input image has been generated by a
statistical process, and that the randomness of this process should be taken into
accounting during encoding and decoding. The VAE then uses the mean and variance
parameters to randomly sample one element of the distribution, and decodes that ele-
ment back to the original input (see figure 8.13). The stochasticity of this process
improves robustness and forces the latent space to encode meaningful representa-
tions everywhere: every point sampled in the latent space is decoded to a valid output.

Figure 8.12 An autoencoder: mapping an input x to a compressed representation
and then decoding it back as x'

Original
input x

Compressed
representation

Reconstructed
input x

Encoder Decoder

Input image

Reconstructed
image

Distribution over latent
space defined by z_mean

and z_log_var

Point randomly
sampled from
the distribution

Encoder

Decoder

Figure 8.13 A VAE maps an image to two vectors, z_mean and z_log_sigma, which define
a probability distribution over the latent space, used to sample a latent point to decode.

300 CHAPTER 8 Generative deep learning

Dec
z ba
an i
 In technical terms, here’s how a VAE works:

1 An encoder module turns the input samples input_img into two parameters in
a latent space of representations, z_mean and z_log_variance.

2 You randomly sample a point z from the latent normal distribution that’s
assumed to generate the input image, via z = z_mean + exp(z_log_variance) *
epsilon, where epsilon is a random tensor of small values.

3 A decoder module maps this point in the latent space back to the original input
image.

Because epsilon is random, the process ensures that every point that’s close to the latent loca-
tion where you encoded input_img (z-mean) can be decoded to something similar to
input_img, thus forcing the latent space to be continuously meaningful. Any two close points
in the latent space will decode to highly similar images. Continuity, combined with the low
dimensionality of the latent space, forces every direction in the latent space to encode a mean-
ingful axis of variation of the data, making the latent space very structured and thus highly suit-
able to manipulation via concept vectors.

 The parameters of a VAE are trained via two loss functions: a reconstruction loss that
forces the decoded samples to match the initial inputs, and a regularization loss that
helps learn well-formed latent spaces and reduce overfitting to the training data. Let’s
quickly go over a Keras implementation of a VAE. Schematically, it looks like this:

z_mean, z_log_variance = encoder(input_img)

z = z_mean + exp(z_log_variance) * epsilon

reconstructed_img = decoder(z)

model = Model(input_img, reconstructed_img)

You can then train the model using the reconstruction loss and the regularization loss.
 The following listing shows the encoder network you’ll use, mapping images to the

parameters of a probability distribution over the latent space. It’s a simple convnet
that maps the input image x to two vectors, z_mean and z_log_var.

import keras
from keras import layers
from keras import backend as K
from keras.models import Model
import numpy as np

img_shape = (28, 28, 1)
batch_size = 16
latent_dim = 2

input_img = keras.Input(shape=img_shape)

VAE encoder networkListing 8.23

Encodes the input into a
mean and variance parameter

Draws a latent point using
a small random epsilonodes

ck to
mage Instantiates the autoencoder

model, which maps an input image
to its reconstruction

Dimensionality of the
latent space: a 2D plane

301Generating images with variational autoencoders
x = layers.Conv2D(32, 3,
padding='same', activation='relu')(input_img)

x = layers.Conv2D(64, 3,
padding='same', activation='relu',
strides=(2, 2))(x)

x = layers.Conv2D(64, 3,
padding='same', activation='relu')(x)

x = layers.Conv2D(64, 3,
padding='same', activation='relu')(x)

shape_before_flattening = K.int_shape(x)

x = layers.Flatten()(x)
x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim)(x)
z_log_var = layers.Dense(latent_dim)(x)

Next is the code for using z_mean and z_log_var, the parameters of the statistical dis-
tribution assumed to have produced input_img, to generate a latent space point z.
Here, you wrap some arbitrary code (built on top of Keras backend primitives) into a
Lambda layer. In Keras, everything needs to be a layer, so code that isn’t part of a built-
in layer should be wrapped in a Lambda (or in a custom layer).

def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),

mean=0., stddev=1.)
return z_mean + K.exp(z_log_var) * epsilon

z = layers.Lambda(sampling)([z_mean, z_log_var])

The following listing shows the decoder implementation. You reshape the vector z to
the dimensions of an image and then use a few convolution layers to obtain a final
image output that has the same dimensions as the original input_img.

decoder_input = layers.Input(K.int_shape(z)[1:])

x = layers.Dense(np.prod(shape_before_flattening[1:]),
activation='relu')(decoder_input)

x = layers.Reshape(shape_before_flattening[1:])(x)

x = layers.Conv2DTranspose(32, 3,
padding='same',

 activation='relu',
strides=(2, 2))(x)

x = layers.Conv2D(1, 3,
padding='same',

 activation='sigmoid')(x)

Latent-space-sampling functionListing 8.24

VAE decoder network, mapping latent space points to imagesListing 8.25

The input image ends up
being encoded into these
two parameters.

Input where you’ll feed z

Upsamples the input

Uses a Conv2DTranspose
layer and Conv2D layer to
decode z into a feature map
the same size as the
original image input

Reshapes z into a feature map of the same shape as the feature
map just before the last Flatten layer in the encoder model

302 CHAPTER 8 Generative deep learning
decoder = Model(decoder_input, x)

z_decoded = decoder(z)

The dual loss of a VAE doesn’t fit the traditional expectation of a sample-wise function
of the form loss(input, target). Thus, you’ll set up the loss by writing a custom
layer that internally uses the built-in add_loss layer method to create an arbitrary loss.

class CustomVariationalLayer(keras.layers.Layer):

def vae_loss(self, x, z_decoded):
x = K.flatten(x)
z_decoded = K.flatten(z_decoded)
xent_loss = keras.metrics.binary_crossentropy(x, z_decoded)
kl_loss = -5e-4 * K.mean(

1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)

def call(self, inputs):
x = inputs[0]
z_decoded = inputs[1]
loss = self.vae_loss(x, z_decoded)
self.add_loss(loss, inputs=inputs)
return x

y = CustomVariationalLayer()([input_img, z_decoded])

Finally, you’re ready to instantiate and train the model. Because the loss is taken care
of in the custom layer, you don’t specify an external loss at compile time (loss=None),
which in turn means you won’t pass target data during training (as you can see, you
only pass x_train to the model in fit).

from keras.datasets import mnist

vae = Model(input_img, y)
vae.compile(optimizer='rmsprop', loss=None)
vae.summary()

(x_train, _), (x_test, y_test) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape(x_train.shape + (1,))
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape(x_test.shape + (1,))

vae.fit(x=x_train, y=None,
shuffle=True,
epochs=10,
batch_size=batch_size,
validation_data=(x_test, None))

Custom layer used to compute the VAE lossListing 8.26

Training the VAEListing 8.27

Instantiates the decoder model,
which turns “decoder_input”
into the decoded imageApplies it to z to

recover the decoded z

You implement custom layers
by writing a call method.You don't use

this output,
but the layer
must return
something.

Calls the custom layer on
the input and the
decoded output to obtain
the final model output

303Generating images with variational autoencoders

r
Once such a model is trained—on MNIST, in this case—you can use the decoder net-
work to turn arbitrary latent space vectors into images.

import matplotlib.pyplot as plt
from scipy.stats import norm

n = 15
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))

for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):

z_sample = np.array([[xi, yi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size)

figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()

The grid of sampled digits (see fig-
ure 8.14) shows a completely contin-
uous distribution of the different
digit classes, with one digit morphing
into another as you follow a path
through latent space. Specific direc-
tions in this space have a meaning:
for example, there’s a direction for
“four-ness,” “one-ness,” and so on.

 In the next section, we’ll cover in
detail the other major tool for gener-
ating artificial images: generative
adversarial networks (GANs).

Listing 8.28 Sampling a grid of points from the 2D latent space and decoding them to images

You’ll display a grid of 15 × 15
digits (255 digits total).

Transforms linearly spaced
coordinates using the SciPy ppf
function to produce values of the
latent variable z (because the prio
of the latent space is Gaussian)

Repeats z multiple times to
form a complete batch

Reshapes the first digit in
the batch from 28 × 28 × 1

to 28 × 28

Decodes the batch
into digit images

Grid of digits decoded from the latentFigure 8.14
space

304 CHAPTER 8 Generative deep learning
Wrapping up8.4.4

 Image generation with deep learning is done by learning latent spaces that cap-
ture statistical information about a dataset of images. By sampling and decod-
ing points from the latent space, you can generate never-before-seen images.
There are two major tools to do this: VAEs and GANs.

 VAEs result in highly structured, continuous latent representations. For this rea-
son, they work well for doing all sorts of image editing in latent space: face
swapping, turning a frowning face into a smiling face, and so on. They also work
nicely for doing latent-space-based animations, such as animating a walk along a
cross section of the latent space, showing a starting image slowly morphing into
different images in a continuous way.

 GANs enable the generation of realistic single-frame images but may not induce
latent spaces with solid structure and high continuity.

Most successful practical applications I have seen with images rely on VAEs, but GANs
are extremely popular in the world of academic research—at least, circa 2016–2017.
You’ll find out how they work and how to implement one in the next section.

TIP To play further with image generation, I suggest working with the Large-
scale Celeb Faces Attributes (CelebA) dataset. It’s a free-to-download image
dataset containing more than 200,000 celebrity portraits. It’s great for experi-
menting with concept vectors in particular—it definitely beats MNIST.

305Introduction to generative adversarial networks
Introduction to generative adversarial networks8.5
Generative adversarial networks (GANs), introduced in 2014 by Goodfellow et al.,8 are
an alternative to VAEs for learning latent spaces of images. They enable the generation
of fairly realistic synthetic images by forcing the generated images to be statistically
almost indistinguishable from real ones.

 An intuitive way to understand GANs is to imagine a forger trying to create a fake
Picasso painting. At first, the forger is pretty bad at the task. He mixes some of his
fakes with authentic Picassos and shows them all to an art dealer. The art dealer makes
an authenticity assessment for each painting and gives the forger feedback about what
makes a Picasso look like a Picasso. The forger goes back to his studio to prepare some
new fakes. As times goes on, the forger becomes increasingly competent at imitating
the style of Picasso, and the art dealer becomes increasingly expert at spotting fakes.
In the end, they have on their hands some excellent fake Picassos.

 That’s what a GAN is: a forger network and an expert network, each being trained
to best the other. As such, a GAN is made of two parts:

 Generator network—Takes as input a random vector (a random point in the
latent space), and decodes it into a synthetic image

 Discriminator network (or adversary)—Takes as input an image (real or synthetic),
and predicts whether the image came from the training set or was created by
the generator network.

The generator network is trained to be able to fool the discriminator network, and
thus it evolves toward generating increasingly realistic images as training goes on: arti-
ficial images that look indistinguishable from real ones, to the extent that it’s impossi-
ble for the discriminator network to tell the two apart (see figure 8.15). Meanwhile,
the discriminator is constantly adapting to the gradually improving capabilities of the
generator, setting a high bar of realism for the generated images. Once training is
over, the generator is capable of turning any point in its input space into a believable
image. Unlike VAEs, this latent space has fewer explicit guarantees of meaningful
structure; in particular, it isn’t continuous.

8 Ian Goodfellow et al., “Generative Adversarial Networks,” arXiv (2014), https://arxiv.org/abs/1406.2661.

306 CHAPTER 8 Generative deep learning

Remarkably, a GAN is a system where the optimization minimum isn’t fixed, unlike in
any other training setup you’ve encountered in this book. Normally, gradient descent
consists of rolling down hills in a static loss landscape. But with a GAN, every step
taken down the hill changes the entire landscape a little. It’s a dynamic system where
the optimization process is seeking not a minimum, but an equilibrium between two
forces. For this reason, GANs are notoriously difficult to train—getting a GAN to work
requires lots of careful tuning of the model architecture and training parameters.

Generator (decoder)

Discriminator “Real,” “Fake”

Random vector
from the

latent space

Generated
(decoded)

image

Mix of real
and fake images

Training
feedback

Figure 8.15 A generator transforms random latent vectors into images, and a discriminator
seeks to tell real images from generated ones. The generator is trained to fool the discriminator.

Figure 8.16 Latent space dwellers. Images generated by Mike Tyka using
a multistaged GAN trained on a dataset of faces (www.miketyka.com).

307Introduction to generative adversarial networks
A schematic GAN implementation8.5.1

In this section, we’ll explain how to implement a GAN in Keras, in its barest form—
because GANs are advanced, diving deeply into the technical details would be out of
scope for this book. The specific implementation is a deep convolutional GAN (DCGAN):
a GAN where the generator and discriminator are deep convnets. In particular, it uses
a Conv2DTranspose layer for image upsampling in the generator.

 You’ll train the GAN on images from CIFAR10, a dataset of 50,000 32 × 32 RGB
images belonging to 10 classes (5,000 images per class). To make things easier, you’ll
only use images belonging to the class “frog.”

 Schematically, the GAN looks like this:

1 A generator network maps vectors of shape (latent_dim,) to images of shape
(32, 32, 3).

2 A discriminator network maps images of shape (32, 32, 3) to a binary score
estimating the probability that the image is real.

3 A gan network chains the generator and the discriminator together: gan(x) =
discriminator(generator(x)). Thus this gan network maps latent space vec-
tors to the discriminator’s assessment of the realism of these latent vectors as
decoded by the generator.

4 You train the discriminator using examples of real and fake images along with
“real”/“fake” labels, just as you train any regular image-classification model.

5 To train the generator, you use the gradients of the generator’s weights with
regard to the loss of the gan model. This means, at every step, you move the
weights of the generator in a direction that makes the discriminator more likely
to classify as “real” the images decoded by the generator. In other words, you
train the generator to fool the discriminator.

A bag of tricks8.5.2

The process of training GANs and tuning GAN implementations is notoriously diffi-
cult. There are a number of known tricks you should keep in mind. Like most things
in deep learning, it’s more alchemy than science: these tricks are heuristics, not
theory-backed guidelines. They’re supported by a level of intuitive understanding of
the phenomenon at hand, and they’re known to work well empirically, although not
necessarily in every context.

 Here are a few of the tricks used in the implementation of the GAN generator and
discriminator in this section. It isn’t an exhaustive list of GAN-related tips; you’ll find
many more across the GAN literature:

 We use tanh as the last activation in the generator, instead of sigmoid, which is
more commonly found in other types of models.

 We sample points from the latent space using a normal distribution (Gaussian dis-
tribution), not a uniform distribution.

308 CHAPTER 8 Generative deep learning
 Stochasticity is good to induce robustness. Because GAN training results in a
dynamic equilibrium, GANs are likely to get stuck in all sorts of ways. Introduc-
ing randomness during training helps prevent this. We introduce randomness
in two ways: by using dropout in the discriminator and by adding random noise
to the labels for the discriminator.

 Sparse gradients can hinder GAN training. In deep learning, sparsity is often a
desirable property, but not in GANs. Two things can induce gradient sparsity:
max pooling operations and ReLU activations. Instead of max pooling, we rec-
ommend using strided convolutions for downsampling, and we recommend
using a LeakyReLU layer instead of a ReLU activation. It’s similar to ReLU, but it
relaxes sparsity constraints by allowing small negative activation values.

 In generated images, it’s common to see checkerboard artifacts caused by
unequal coverage of the pixel space in the generator (see figure 8.17). To fix
this, we use a kernel size that’s divisible by the stride size whenever we use a
strided Conv2DTranpose or Conv2D in both the generator and the discriminator.

8.5.3 The generator

First, let’s develop a generator model that turns a vector (from the latent space—
during training it will be sampled at random) into a candidate image. One of the
many issues that commonly arise with GANs is that the generator gets stuck with gener-
ated images that look like noise. A possible solution is to use dropout on both the dis-
criminator and the generator.

import keras
from keras import layers
import numpy as np

latent_dim = 32
height = 32
width = 32
channels = 3

GAN generator networkListing 8.29

Figure 8.17 Checkerboard artifacts caused by mismatching strides and kernel
sizes, resulting in unequal pixel-space coverage: one of the many gotchas of GANs

309Introduction to generative adversarial networks

-
ns
a

y

generator_input = keras.Input(shape=(latent_dim,))

x = layers.Dense(128 * 16 * 16)(generator_input)
x = layers.LeakyReLU()(x)
x = layers.Reshape((16, 16, 128))(x)

x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2DTranspose(256, 4, strides=2, padding='same')(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(256, 5, padding='same')(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2D(channels, 7, activation='tanh', padding='same')(x)
generator = keras.models.Model(generator_input, x)
generator.summary()

The discriminator8.5.4

Next, you’ll develop a discriminator model that takes as input a candidate image
(real or synthetic) and classifies it into one of two classes: “generated image” or “real
image that comes from the training set.”

discriminator_input = layers.Input(shape=(height, width, channels))
x = layers.Conv2D(128, 3)(discriminator_input)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Flatten()(x)

x = layers.Dropout(0.4)(x)

x = layers.Dense(1, activation='sigmoid')(x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

discriminator_optimizer = keras.optimizers.RMSprop(
 lr=0.0008,
 clipvalue=1.0,
 decay=1e-8)

discriminator.compile(optimizer=discriminator_optimizer,
loss='binary_crossentropy')

The GAN discriminator networkListing 8.30

Transforms the input into
a 16 × 16 128-channel
feature map

Upsamples
to 32 × 32

Instantiates the generator model, which maps the input
of shape (latent_dim,) into an image of shape (32, 32, 3)

Produces a 32 × 32 1-channel feature
map (shape of a CIFAR10 image)

One dropout layer:
an important trick!

Classification layer

Instantiates the discrim
inator model, which tur
a (32, 32, 3) input into
binary classifi-cation
decision (fake/real)

Uses gradient clipping (by
value) in the optimizer

To stabilize training,
uses learning-rate deca

310 CHAPTER 8 Generative deep learning
The adversarial network8.5.5

Finally, you’ll set up the GAN, which chains the generator and the discriminator.
When trained, this model will move the generator in a direction that improves its abil-
ity to fool the discriminator. This model turns latent-space points into a classification
decision—“fake” or “real”—and it’s meant to be trained with labels that are always
“these are real images.” So, training gan will update the weights of generator in a way
that makes discriminator more likely to predict “real” when looking at fake images.
It’s very important to note that you set the discriminator to be frozen during training
(non-trainable): its weights won’t be updated when training gan. If the discriminator
weights could be updated during this process, then you’d be training the discrimina-
tor to always predict “real,” which isn’t what you want!

discriminator.trainable = False

gan_input = keras.Input(shape=(latent_dim,))
gan_output = discriminator(generator(gan_input))
gan = keras.models.Model(gan_input, gan_output)

gan_optimizer = keras.optimizers.RMSprop(lr=0.0004, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=gan_optimizer, loss='binary_crossentropy')

8.5.6 How to train your DCGAN

Now you can begin training. To recapitulate, this is what the training loop looks like
schematically. For each epoch, you do the following:

1 Draw random points in the latent space (random noise).
2 Generate images with generator using this random noise.
3 Mix the generated images with real ones.
4 Train discriminator using these mixed images, with corresponding targets:

either “real” (for the real images) or “fake” (for the generated images).
5 Draw new random points in the latent space.
6 Train gan using these random vectors, with targets that all say “these are real

images.” This updates the weights of the generator (only, because the discrimi-
nator is frozen inside gan) to move them toward getting the discriminator to
predict “these are real images” for generated images: this trains the generator
to fool the discriminator.

Let’s implement it.

import os
from keras.preprocessing import image

(x_train, y_train), (_, _) = keras.datasets.cifar10.load_data()

Adversarial networkListing 8.31

Implementing GAN trainingListing 8.32

Sets discriminator weights to
non-trainable (this will only
apply to the gan model)

Loads CIFAR10 data

311Introduction to generative adversarial networks

es

!di

-

x_train = x_train[y_train.flatten() == 6]

x_train = x_train.reshape(
(x_train.shape[0],) +
(height, width, channels)).astype('float32') / 255.

iterations = 10000
batch_size = 20
save_dir = 'your_dir'

start = 0
for step in range(iterations):

random_latent_vectors = np.random.normal(size=(batch_size,
latent_dim))

generated_images = generator.predict(random_latent_vectors)

stop = start + batch_size
real_images = x_train[start: stop]
combined_images = np.concatenate([generated_images, real_images])

labels = np.concatenate([np.ones((batch_size, 1)),
np.zeros((batch_size, 1))])

labels += 0.05 * np.random.random(labels.shape)

d_loss = discriminator.train_on_batch(combined_images, labels)

random_latent_vectors = np.random.normal(size=(batch_size,
latent_dim))

misleading_targets = np.zeros((batch_size, 1))

a_loss = gan.train_on_batch(random_latent_vectors,
misleading_targets)

start += batch_size
if start > len(x_train) - batch_size:

start = 0

if step % 100 == 0:
gan.save_weights('gan.h5')

print('discriminator loss:', d_loss)
print('adversarial loss:', a_loss)

img = image.array_to_img(generated_images[0] * 255., scale=False)
img.save(os.path.join(save_dir,

 'generated_frog' + str(step) + '.png'))

img = image.array_to_img(real_images[0] * 255., scale=False)
img.save(os.path.join(save_dir,

 'real_frog' + str(step) + '.png'))

Selects frog images (class 6)

Normalizes data

Specifies where you want
to save generated images

Samples random
points in the
latent space

Decodes
them to

fake
images

Combines them
with real images

Assembles labels, discrim-
inating real from fake imag

Adds random
noise to the
labels—an
important trick

Trains the
scriminator

Samples random
points in the
latent spaceAssembles

labels that
say “these
are all real

images”
 (it’s a lie!)

Trains the generator (via the
gan model, where the discrim
inator weights are frozen)

Occasionally saves and
plots (every 100 steps)

Saves model weights

Prints metrics
Saves one

generated image

Saves one real image
for comparison

312 CHAPTER 8 Generative deep learning
When training, you may see the adversarial loss begin to increase considerably, while
the discriminative loss tends to zero—the discriminator may end up dominating the
generator. If that’s the case, try reducing the discriminator learning rate, and increase
the dropout rate of the discriminator.

8.5.7 Wrapping up

 A GAN consists of a generator network coupled with a discriminator network.
The discriminator is trained to differenciate between the output of the generator
and real images from a training dataset, and the generator is trained to fool the
discriminator. Remarkably, the generator nevers sees images from the training
set directly; the information it has about the data comes from the discriminator.

 GANs are difficult to train, because training a GAN is a dynamic process rather
than a simple gradient descent process with a fixed loss landscape. Getting a
GAN to train correctly requires using a number of heuristic tricks, as well as
extensive tuning.

 GANs can potentially produce highly realistic images. But unlike VAEs, the
latent space they learn doesn’t have a neat continuous structure and thus may
not be suited for certain practical applications, such as image editing via latent-
space concept vectors.

Figure 8.18 Play the discriminator: in each row, two images were dreamed up by the GAN,
and one image comes from the training set. Can you tell them apart? (Answers: the real
images in each column are middle, top, bottom, middle.)

313Introduction to generative adversarial networks
Chapter summary
 With creative applications of deep learning, deep networks go beyond

annotating existing content and start generating their own. You learned
the following:
– How to generate sequence data, one timestep at a time. This is applicable

to text generation and also to note-by-note music generation or any other
type of timeseries data.

– How DeepDream works: by maximizing convnet layer activations through
gradient ascent in input space.

– How to perform style transfer, where a content image and a style image are
combined to produce interesting-looking results.

– What GANs and VAEs are, how they can be used to dream up new images,
and how latent-space concept vectors can be used for image editing.

 These few techniques cover only the basics of this fast-expanding field.
There’s a lot more to discover out there—generative deep learning is
deserving of an entire book of its own.

Conclusions
You’ve almost reached the end of this book. This last chapter will summarize and
review core concepts while also expanding your horizons beyond the relatively basic
notions you’ve learned so far. Understanding deep learning and AI is a journey, and
finishing this book is merely the first step on it. I want to make sure you realize this
and are properly equipped to take the next steps of this journey on your own.

 We’ll start with a bird’s-eye view of what you should take away from this book.
This should refresh your memory regarding some of the concepts you’ve learned.
Next, we’ll present an overview of some key limitations of deep learning. To use a
tool appropriately, you should not only understand what it can do but also be aware
of what it can’t do. Finally, I’ll offer some speculative thoughts about the future evo-
lution of the fields of deep learning, machine learning, and AI. This should be
especially interesting to you if you’d like to get into fundamental research. The
chapter ends with a short list of resources and strategies for learning further about
AI and staying up to date with new advances.

This chapter covers
 Important takeaways from this book

 The limitations of deep learning

 The future of deep learning, machine learning,
and AI

 Resources for learning further and working in
the field
314

315Key concepts in review
Key concepts in review9.1
This section briefly synthesizes the key takeaways from this book. If you ever need a
quick refresher to help you recall what you’ve learned, you can read these few pages.

Various approaches to AI9.1.1

First of all, deep learning isn’t synonymous with AI or even with machine learning.
Artificial intelligence is an ancient, broad field that can generally be defined as “all
attempts to automate cognitive processes”—in other words, the automation of
thought. This can range from the very basic, such as an Excel spreadsheet, to the very
advanced, like a humanoid robot that can walk and talk.

 Machine learning is a specific subfield of AI that aims at automatically developing
programs (called models) purely from exposure to training data. This process of turn-
ing data into a program is called learning. Although machine learning has been
around for a long time, it only started to take off in the 1990s.

 Deep learning is one of many branches of machine learning, where the models are
long chains of geometric functions, applied one after the other. These operations are
structured into modules called layers : deep-learning models are typically stacks of lay-
ers—or, more generally, graphs of layers. These layers are parameterized by weights,
which are the parameters learned during training. The knowledge of a model is stored
in its weights, and the process of learning consists of finding good values for these
weights.

 Even though deep learning is just one among many approaches to machine learn-
ing, it isn’t on an equal footing with the others. Deep learning is a breakout success.
Here’s why.

What makes deep learning special9.1.2
within the field of machine learning

In the span of only a few years, deep learning has achieved tremendous break-
throughs across a wide range of tasks that have been historically perceived as
extremely difficult for computers, especially in the area of machine perception:
extracting useful information from images, videos, sound, and more. Given sufficient
training data (in particular, training data appropriately labeled by humans), it’s possi-
ble to extract from perceptual data almost anything that a human could extract.
Hence, it’s sometimes said that deep learning has solved perception, although that’s true
only for a fairly narrow definition of perception.

 Due to its unprecedented technical successes, deep learning has singlehandedly
brought about the third and by far the largest AI summer: a period of intense interest,
investment, and hype in the field of AI. As this book is being written, we’re in the middle
of it. Whether this period will end in the near future, and what happens after it ends,
are topics of debate. One thing is certain: in stark contrast with previous AI summers,
deep learning has provided enormous business value to a number of large technology
companies, enabling human-level speech recognition, smart assistants, human-level

316 CHAPTER 9 Conclusions
image classification, vastly improved machine translation, and more. The hype may
(and likely will) recede, but the sustained economic and technological impact of deep
learning will remain. In that sense, deep learning could be analogous to the internet:
it may be overly hyped up for a few years, but in the longer term it will still be a major
revolution that will transform our economy and our lives.

 I’m particularly optimistic about deep learning because even if we were to make no
further technological progress in the next decade, deploying existing algorithms to
every applicable problem would be a game changer for most industries. Deep learn-
ing is nothing short of a revolution, and progress is currently happening at an incred-
ibly fast rate, due to an exponential investment in resources and headcount. From
where I stand, the future looks bright, although short-term expectations are somewhat
overoptimistic; deploying deep learning to the full extent of its potential will take well
over a decade.

How to think about deep learning9.1.3

The most surprising thing about deep learning is how simple it is. Ten years ago, no
one expected that we would achieve such amazing results on machine-perception
problems by using simple parametric models trained with gradient descent. Now, it
turns out that all you need is sufficiently large parametric models trained with gradi-
ent descent on sufficiently many examples. As Feynman once said about the universe,
“It’s not complicated, it’s just a lot of it.”1

 In deep learning, everything is a vector: everything is a point in a geometric space.
Model inputs (text, images, and so on) and targets are first vectorized: turned into an
initial input vector space and target vector space. Each layer in a deep-learning model
operates one simple geometric transformation on the data that goes through it.
Together, the chain of layers in the model forms one complex geometric transforma-
tion, broken down into a series of simple ones. This complex transformation attempts
to map the input space to the target space, one point at a time. This transformation is
parameterized by the weights of the layers, which are iteratively updated based on how
well the model is currently performing. A key characteristic of this geometric transfor-
mation is that it must be differentiable, which is required in order for us to be able to
learn its parameters via gradient descent. Intuitively, this means the geometric morph-
ing from inputs to outputs must be smooth and continuous—a significant constraint.

 The entire process of applying this complex geometric transformation to the input
data can be visualized in 3D by imagining a person trying to uncrumple a paper ball:
the crumpled paper ball is the manifold of the input data that the model starts with.
Each movement operated by the person on the paper ball is similar to a simple geo-
metric transformation operated by one layer. The full uncrumpling gesture sequence
is the complex transformation of the entire model. Deep-learning models are mathe-
matical machines for uncrumpling complicated manifolds of high-dimensional data.

1 Richard Feynman, interview, The World from Another Point of View, Yorkshire Television, 1972.

317Key concepts in review
 That’s the magic of deep learning: turning meaning into vectors, into geometric
spaces, and then incrementally learning complex geometric transformations that map
one space to another. All you need are spaces of sufficiently high dimensionality in
order to capture the full scope of the relationships found in the original data.

 The whole thing hinges on a single core idea: that meaning is derived from the pairwise
relationship between things (between words in a language, between pixels in an image,
and so on) and that these relationships can be captured by a distance function. But note that
whether the brain implements meaning via geometric spaces is an entirely separate
question. Vector spaces are efficient to work with from a computational standpoint,
but different data structures for intelligence can easily be envisioned—in particular,
graphs. Neural networks initially emerged from the idea of using graphs as a way to
encode meaning, which is why they’re named neural networks ; the surrounding field of
research used to be called connectionism. Nowadays the name neural network exists
purely for historical reasons—it’s an extremely misleading name because they’re nei-
ther neural nor networks. In particular, neural networks have hardly anything to do
with the brain. A more appropriate name would have been layered representations learn-
ing or hierarchical representations learning, or maybe even deep differentiable models or
chained geometric transforms, to emphasize the fact that continuous geometric space
manipulation is at their core.

9.1.4 Key enabling technologies

The technological revolution that’s currently unfolding didn’t start with any single
breakthrough invention. Rather, like any other revolution, it’s the product of a vast
accumulation of enabling factors—slowly at first, and then suddenly. In the case of
deep learning, we can point out the following key factors:

 Incremental algorithmic innovations, first spread over two decades (starting
with backpropagation) and then happening increasingly faster as more
research effort was poured into deep learning after 2012.

 The availability of large amounts of perceptual data, which is a requirement in
order to realize that sufficiently large models trained on sufficiently large data
are all we need. This is in turn a byproduct of the rise of the consumer internet
and Moore’s law applied to storage media.

 The availability of fast, highly parallel computation hardware at a low price,
especially the GPUs produced by NVIDIA—first gaming GPUs and then chips
designed from the ground up for deep learning. Early on, NVIDIA CEO Jensen
Huang took note of the deep-learning boom and decided to bet the company’s
future on it.

 A complex stack of software layers that makes this computational power available
to humans: the CUDA language, frameworks like TensorFlow that do automatic
differentiation, and Keras, which makes deep learning accessible to most people.

318 CHAPTER 9 Conclusions
In the future, deep learning will not only be used by specialists—researchers, graduate
students, and engineers with an academic profile—but will also be a tool in the tool-
box of every developer, much like web technology today. Everyone needs to build
intelligent apps: just as every business today needs a website, every product will need
to intelligently make sense of user-generated data. Bringing about this future will
require us to build tools that make deep learning radically easy to use and accessible
to anyone with basic coding abilities. Keras is the first major step in that direction.

The universal machine-learning workflow9.1.5

Having access to an extremely powerful tool for creating models that map any input
space to any target space is great, but the difficult part of the machine-learning work-
flow is often everything that comes before designing and training such models (and,
for production models, what comes after, as well). Understanding the problem
domain so as to be able to determine what to attempt to predict, given what data, and
how to measure success, is a prerequisite for any successful application of machine
learning, and it isn’t something that advanced tools like Keras and TensorFlow can
help you with. As a reminder, here’s a quick summary of the typical machine-learning
workflow as described in chapter 4:

1 Define the problem: What data is available, and what are you trying to predict?
Will you need to collect more data or hire people to manually label a dataset?

2 Identify a way to reliably measure success on your goal. For simple tasks, this
may be prediction accuracy, but in many cases it will require sophisticated
domain-specific metrics.

3 Prepare the validation process that you’ll use to evaluate your models. In partic-
ular, you should define a training set, a validation set, and a test set. The valida-
tion- and test-set labels shouldn’t leak into the training data: for instance, with
temporal prediction, the validation and test data should be posterior to the
training data.

4 Vectorize the data by turning it into vectors and preprocessing it in a way that
makes it more easily approachable by a neural network (normalization, and so
on).

5 Develop a first model that beats a trivial common-sense baseline, thus demon-
strating that machine learning can work on your problem. This may not always
be the case!

6 Gradually refine your model architecture by tuning hyperparameters and add-
ing regularization. Make changes based on performance on the validation data
only, not the test data or the training data. Remember that you should get your
model to overfit (thus identifying a model capacity level that’s greater than you
need) and only then begin to add regularization or downsize your model.

319Key concepts in review
7 Be aware of validation-set overfitting when turning hyperparameters: the fact
that your hyperparameters may end up being overspecialized to the validation
set. Avoiding this is the purpose of having a separate test set!

9.1.6 Key network architectures

The three families of network architectures that you should be familiar with are densely
connected networks, convolutional networks, and recurrent networks. Each type of network is
meant for a specific input modality: a network architecture (dense, convolutional,
recurrent) encodes assumptions about the structure of the data: a hypothesis space within
which the search for a good model will proceed. Whether a given architecture will
work on a given problem depends entirely on the match between the structure of the
data and the assumptions of the network architecture.

 These different network types can easily be combined to achieve larger multi-
modal networks, much as you combine LEGO bricks. In a way, deep-learning layers are
LEGO bricks for information processing. Here’s a quick overview of the mapping
between input modalities and appropriate network architectures:

 Vector data—Densely connected network (Dense layers).
 Image data—2D convnets.
 Sound data (for example, waveform)—Either 1D convnets (preferred) or RNNs.
 Text data—Either 1D convnets (preferred) or RNNs.
 Timeseries data—Either RNNs (preferred) or 1D convnets.
 Other types of sequence data—Either RNNs or 1D convnets. Prefer RNNs if data

ordering is strongly meaningful (for example, for timeseries, but not for text).
 Video data—Either 3D convnets (if you need to capture motion effects) or a

combination of a frame-level 2D convnet for feature extraction followed by
either an RNN or a 1D convnet to process the resulting sequences.

 Volumetric data—3D convnets.

Now, let’s quickly review the specificities of each network architecture.

DENSELY CONNECTED NETWORKS

A densely connected network is a stack of Dense layers, meant to process vector data
(batches of vectors). Such networks assume no specific structure in the input features:
they’re called densely connected because the units of a Dense layer are connected to every
other unit. The layer attempts to map relationships between any two input features; this
is unlike a 2D convolution layer, for instance, which only looks at local relationships.

 Densely connected networks are most commonly used for categorical data (for
example, where the input features are lists of attributes), such as the Boston Housing
Price dataset used in chapter 3. They’re also used as the final classification or regres-
sion stage of most networks. For instance, the convnets covered in chapter 5 typically
end with one or two Dense layers, and so do the recurrent networks in chapter 6.

320 CHAPTER 9 Conclusions
 Remember: to perform binary classification, end your stack of layers with a Dense
layer with a single unit and a sigmoid activation, and use binary_crossentropy as the
loss. Your targets should be either 0 or 1:

from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')

To perform single-label categorical classification (where each sample has exactly one class,
no more), end your stack of layers with a Dense layer with a number of units equal to the
number of classes, and a softmax activation. If your targets are one-hot encoded, use
categorical_crossentropy as the loss; if they’re integers, use sparse_categorical_
crossentropy:

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

To perform multilabel categorical classification (where each sample can have several
classes), end your stack of layers with a Dense layer with a number of units equal to the
number of classes and a sigmoid activation, and use binary_crossentropy as the loss.
Your targets should be k-hot encoded:

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')

To perform regression toward a vector of continuous values, end your stack of layers
with a Dense layer with a number of units equal to the number of values you’re trying
to predict (often a single one, such as the price of a house), and no activation. Several
losses can be used for regression, most commonly mean_squared_error (MSE) and
mean_absolute_error (MAE):

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(num_input_features,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_values))

model.compile(optimizer='rmsprop', loss='mse')

321Key concepts in review
CONVNETS

Convolution layers look at spatially local patterns by applying the same geometric
transformation to different spatial locations (patches) in an input tensor. This results
in representations that are translation invariant, making convolution layers highly data
efficient and modular. This idea is applicable to spaces of any dimensionality: 1D
(sequences), 2D (images), 3D (volumes), and so on. You can use the Conv1D layer to
process sequences (especially text—it doesn’t work as well on timeseries, which often
don’t follow the translation-invariance assumption), the Conv2D layer to process
images, and the Conv3D layers to process volumes.

 Convnets, or convolutional networks, consist of stacks of convolution and max-pooling
layers. The pooling layers let you spatially downsample the data, which is required to
keep feature maps to a reasonable size as the number of features grows, and to allow
subsequent convolution layers to “see” a greater spatial extent of the inputs. Convnets
are often ended with either a Flatten operation or a global pooling layer, turning spa-
tial feature maps into vectors, followed by Dense layers to achieve classification or
regression.

 Note that it’s highly likely that regular convolutions will soon be mostly (or com-
pletely) replaced by an equivalent but faster and representationally efficient alterna-
tive: the depthwise separable convolution (SeparableConv2D layer). This is true for 3D,
2D, and 1D inputs. When you’re building a new network from scratch, using depth-
wise separable convolutions is definitely the way to go. The SeparableConv2D layer
can be used as a drop-in replacement for Conv2D, resulting in a smaller, faster network
that also performs better on its task.

 Here’s a typical image-classification network (categorical classification, in this
case):

model = models.Sequential()
model.add(layers.SeparableConv2D(32, 3, activation='relu',

 input_shape=(height, width, channels)))
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))

model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.GlobalAveragePooling2D())

model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

RNNS

Recurrent neural networks (RNNs) work by processing sequences of inputs one timestep at
a time and maintaining a state throughout (a state is typically a vector or set of vectors:

322 CHAPTER 9 Conclusions
a point in a geometric space of states). They should be used preferentially over 1D conv-
nets in the case of sequences where patterns of interest aren’t invariant by temporal
translation (for instance, timeseries data where the recent past is more important than
the distant past).

 Three RNN layers are available in Keras: SimpleRNN, GRU, and LSTM. For most prac-
tical purposes, you should use either GRU or LSTM. LSTM is the more powerful of the
two but is also more expensive; you can think of GRU as a simpler, cheaper alternative
to it.

 In order to stack multiple RNN layers on top of each other, each layer prior to the
last layer in the stack should return the full sequence of its outputs (each input time-
step will correspond to an output timestep); if you aren’t stacking any further RNN lay-
ers, then it’s common to return only the last output, which contains information
about the entire sequence.

 Following is a single RNN layer for binary classification of vector sequences:

model = models.Sequential()
model.add(layers.LSTM(32, input_shape=(num_timesteps, num_features)))
model.add(layers.Dense(num_classes, activation='sigmoid'))

50model.compile(optimizer='rmsprop', loss='binary_crossentropy')

And this is a stacked RNN layer for binary classification of vector sequences:

model = models.Sequential()
model.add(layers.LSTM(32, return_sequences=True,

input_shape=(num_timesteps, num_features)))
model.add(layers.LSTM(32, return_sequences=True))
model.add(layers.LSTM(32))
model.add(layers.Dense(num_classes, activation='sigmoid'))

model.compile(optimizer='rmsprop', loss='binary_crossentropy')

The space of possibilities9.1.7

What will you build with deep learning? Remember, building deep-learning models is
like playing with LEGO bricks: layers can be plugged together to map essentially any-
thing to anything, given that you have appropriate training data available and that the
mapping is achievable via a continuous geometric transformation of reasonable com-
plexity. The space of possibilities is infinite. This section offers a few examples to
inspire you to think beyond the basic classification and regression tasks that have tra-
ditionally been the bread and butter of machine learning.

 I’ve sorted my suggested applications by input and output modalities. Note that
quite a few of them stretch the limits of what is possible—although a model could be
trained on all of these tasks, in some cases such a model probably wouldn’t generalize
far from its training data. Sections 9.2 and 9.3 will address how these limitations could
be lifted in the future.

323Key concepts in review
 Mapping vector data to vector data
– Predictive healthcare—Mapping patient medical records to predictions of

patient outcomes
– Behavioral targeting—Mapping a set of website attributes with data on how

long a user will spend on the website
– Product quality control—Mapping a set of attributes relative to an instance of a

manufactured product with the probability that the product will fail by next
year

 Mapping image data to vector data
– Doctor assistant—Mapping slides of medical images with a prediction about

the presence of a tumor
– Self-driving vehicle—Mapping car dash-cam video frames to steering wheel

angle commands
– Board game AI—Mapping Go and chess boards to the next player move
– Diet helper—Mapping pictures of a dish to its calorie count
– Age prediction—Mapping selfies to the age of the person

 Mapping timeseries data to vector data
– Weather prediction—Mapping timeseries of weather data in a grid of locations

of weather data the following week at a specific location
– Brain-computer interfaces—Mapping timeseries of magnetoencephalogram

(MEG) data to computer commands
– Behavioral targeting—Mapping timeseries of user interactions on a website to

the probability that a user will buy something
 Mapping text to text

– Smart reply—Mapping emails to possible one-line replies
– Answering questions—Mapping general-knowledge questions to answers
– Summarization—Mapping a long article to a short summary of the article

 Mapping images to text
– Captioning—Mapping images to short captions describing the contents of

the images
 Mapping text to images

– Conditioned image generation—Mapping a short text description to images
matching the description

– Logo generation/selection—Mapping the name and description of a company
to the company’s logo

 Mapping images to images
– Super-resolution—Mapping downsized images to higher-resolution versions of

the same images
– Visual depth sensing—Mapping images of indoor environments to maps of

depth predictions

324 CHAPTER 9 Conclusions
 Mapping images and text to text
– Visual QA—Mapping images and natural-language questions about the con-

tents of images to natural-language answers
 Mapping video and text to text

– Video QA—Mapping short videos and natural-language questions about the
contents of videos to natural-language answers

Almost anything is possible—but not quite anything. Let’s see in the next section what
we can’t do with deep learning.

325The limitations of deep learning
The limitations of deep learning9.2
The space of applications that can be implemented with deep learning is nearly
infinite. And yet, many applications are completely out of reach for current deep-
learning techniques—even given vast amounts of human-annotated data. Say, for
instance, that you could assemble a dataset of hundreds of thousands—even mil-
lions—of English-language descriptions of the features of a software product, written
by a product manager, as well as the corresponding source code developed by a team
of engineers to meet these requirements. Even with this data, you could not train a
deep-learning model to read a product description and generate the appropriate
codebase. That’s just one example among many. In general, anything that requires
reasoning—like programming or applying the scientific method—long-term plan-
ning, and algorithmic data manipulation is out of reach for deep-learning models, no
matter how much data you throw at them. Even learning a sorting algorithm with a
deep neural network is tremendously difficult.

 This is because a deep-learning model is just a chain of simple, continuous geometric
transformations mapping one vector space into another. All it can do is map one data
manifold X into another manifold Y, assuming the existence of a learnable continuous
transform from X to Y. A deep-learning model can be interpreted as a kind of pro-
gram; but, inversely, most programs can’t be expressed as deep-learning models—for most
tasks, either there exists no corresponding deep-neural network that solves the task or,
even if one exists, it may not be learnable : the corresponding geometric transform may
be far too complex, or there may not be appropriate data available to learn it.

 Scaling up current deep-learning techniques by stacking more layers and using
more training data can only superficially palliate some of these issues. It won’t solve
the more fundamental problems that deep-learning models are limited in what they
can represent and that most of the programs you may wish to learn can’t be expressed
as a continuous geometric morphing of a data manifold.

The risk of anthropomorphizing machine-learning models9.2.1

One real risk with contemporary AI is misinterpreting what deep-learning models do
and overestimating their abilities. A fundamental feature of humans is our theory of
mind: our tendency to project intentions, beliefs, and knowledge on the things around
us. Drawing a smiley face on a rock suddenly makes it “happy”—in our minds. Applied
to deep learning, this means that, for instance, when we’re able to somewhat success-
fully train a model to generate captions to describe pictures, we’re led to believe that
the model “understands” the contents of the pictures and the captions it generates.
Then we’re surprised when any slight departure from the sort of images present in the
training data causes the model to generate completely absurd captions (see figure 9.1).

326 CHAPTER 9 Conclusions

In particular, this is highlighted by adversarial examples, which are samples fed to a
deep-learning network that are designed to trick the model into misclassifying them.
You’re already aware that, for instance, it’s possible to do gradient ascent in input
space to generate inputs that maximize the activation of some convnet filter—this is
the basis of the filter-visualization technique introduced in chapter 5, as well as the
DeepDream algorithm in chapter 8. Similarly, through gradient ascent, you can
slightly modify an image in order to maximize the class prediction for a given class. By
taking a picture of a panda and adding to it a gibbon gradient, we can get a neural
network to classify the panda as a gibbon (see figure 9.2). This evidences both the brit-
tleness of these models and the deep difference between their input-to-output map-
ping and our human perception.

The boy is holding a baseball bat.

Figure 9.1 Failure of an image-captioning
system based on deep learning

Gibbon
class gradient

Panda

Panda

f(x)

Adversarial example

Gibbon!

f(x)

Figure 9.2 An adversarial example: imperceptible changes in an image can
upend a model’s classification of the image.

327The limitations of deep learning
In short, deep-learning models don’t have any understanding of their input—at least,
not in a human sense. Our own understanding of images, sounds, and language is
grounded in our sensorimotor experience as humans. Machine-learning models have
no access to such experiences and thus can’t understand their inputs in a human-
relatable way. By annotating large numbers of training examples to feed into our mod-
els, we get them to learn a geometric transform that maps data to human concepts on
a specific set of examples, but this mapping is a simplistic sketch of the original model
in our minds—the one developed from our experience as embodied agents. It’s like a
dim image in a mirror (see figure 9.3).

As a machine-learning practitioner, always be mindful of this, and never fall into the
trap of believing that neural networks understand the task they perform—they don’t,
at least not in a way that would make sense to us. They were trained on a different, far
narrower task than the one we wanted to teach them: that of mapping training inputs
to training targets, point by point. Show them anything that deviates from their train-
ing data, and they will break in absurd ways.

9.2.2 Local generalization vs. extreme generalization

There are fundamental differences between the straightforward geometric morphing
from input to output that deep-learning models do, and the way humans think and
learn. It isn’t only the fact that humans learn by themselves from embodied experi-
ence instead of being presented with explicit training examples. In addition to the dif-
ferent learning processes, there’s a basic difference in the nature of the underlying
representations.

 Humans are capable of far more than mapping immediate stimuli to immediate
responses, as a deep network, or maybe an insect, would. We maintain complex, abstract
models of our current situation, of ourselves, and of other people, and can use these
models to anticipate different possible futures and perform long-term planning. We
can merge together known concepts to represent something we’ve never experienced

Real world
Embodied

human experience
Abstract concepts

in human mind

Labeled data
exemplifying

these concepts

May not always
transfer well to
the real world

Doesn’t match the
human mental model

it came from

Matches the
training data

Machine-learning
model

f(x)

Current machine-learning models: like a dim image in a mirrorFigure 9.3

328 CHAPTER 9 Conclusions
before—like picturing a horse wearing jeans, for instance, or imagining what we’d do
if we won the lottery. This ability to handle hypotheticals, to expand our mental model
space far beyond what we can experience directly—to perform abstraction and reason-
ing—is arguably the defining characteristic of human cognition. I call it extreme general-
ization: an ability to adapt to novel, never-before-experienced situations using little data
or even no new data at all.

 This stands in sharp contrast with what deep nets do, which I call local generalization
(see figure 9.4). The mapping from inputs to outputs performed by a deep net quickly
stops making sense if new inputs differ even slightly from what the net saw at training
time. Consider, for instance, the problem of learning the appropriate launch parame-
ters to get a rocket to land on the moon. If you used a deep net for this task and trained
it using supervised learning or reinforcement learning, you’d have to feed it thousands
or even millions of launch trials: you’d need to expose it to a dense sampling of the input
space, in order for it to learn a reliable mapping from input space to output space. In
contrast, as humans we can use our power of abstraction to come up with physical mod-
els—rocket science—and derive an exact solution that will land the rocket on the moon
in one or a few trials. Similarly, if you developed a deep net controlling a human body,
and you wanted it to learn to safely navigate a city without getting hit by cars, the net
would have to die many thousands of times in various situations until it could infer that
cars are dangerous, and develop appropriate avoidance behaviors. Dropped into a new
city, the net would have to relearn most of what it knows. On the other hand, humans
are able to learn safe behaviors without having to die even once—again, thanks to our
power of abstract modeling of hypothetical situations.

In short, despite our progress on machine perception, we’re still far from human-
level AI. Our models can only perform local generalization, adapting to new situa-
tions that must be similar to past data, whereas human cognition is capable of

The same set of
data points

or experience

Local generalization:
generalization power of

pattern recognition

Extreme generalization:
generalization power

achieved via abstraction
and reasoning

Figure 9.4 Local generalization
vs. extreme generalization

329The limitations of deep learning
extreme generalization, quickly adapting to radically novel situations and planning
for long-term future situations.

9.2.3 Wrapping up

Here’s what you should remember: the only real success of deep learning so far has
been the ability to map space X to space Y using a continuous geometric transform,
given large amounts of human-annotated data. Doing this well is a game-changer for
essentially every industry, but it’s still a long way from human-level AI.

 To lift some of the limitations we have discussed and create AI that can compete
with human brains, we need to move away from straightforward input-to-output map-
pings and on to reasoning and abstraction. A likely appropriate substrate for abstract
modeling of various situations and concepts is that of computer programs. We said
previously that machine-learning models can be defined as learnable programs ; cur-
rently we can only learn programs that belong to a narrow and specific subset of all
possible programs. But what if we could learn any program, in a modular and reusable
way? Let’s see in the next section what the road ahead may look like.

330 CHAPTER 9 Conclusions
The future of deep learning9.3
This is a more speculative section aimed at opening horizons for people who want to
join a research program or begin doing independent research. Given what we know of
how deep nets work, their limitations, and the current state of the research landscape,
can we predict where things are headed in the medium term? Following are some
purely personal thoughts. Note that I don’t have a crystal ball, so a lot of what I antici-
pate may fail to become reality. I’m sharing these predictions not because I expect
them to be proven completely right in the future, but because they’re interesting and
actionable in the present.

 At a high level, these are the main directions in which I see promise:

 Models closer to general-purpose computer programs, built on top of far richer primi-
tives than the current differentiable layers. This is how we’ll get to reasoning and
abstraction, the lack of which is the fundamental weakness of current models.

 New forms of learning that make the previous point possible, allowing models to move
away from differentiable transforms.

 Models that require less involvement from human engineers. It shouldn’t be your job to
tune knobs endlessly.

 Greater, systematic reuse of previously learned features and architectures, such as meta-
learning systems using reusable and modular program subroutines.

Additionally, note that these considerations aren’t specific to the sort of supervised
learning that has been the bread and butter of deep learning so far—rather, they’re
applicable to any form of machine learning, including unsupervised, self-supervised,
and reinforcement learning. It isn’t fundamentally important where your labels come
from or what your training loop looks like; these different branches of machine learn-
ing are different facets of the same construct. Let’s dive in.

Models as programs9.3.1

As noted in the previous section, a necessary transformational development that we
can expect in the field of machine learning is a move away from models that perform
purely pattern recognition and can only achieve local generalization, toward models capa-
ble of abstraction and reasoning that can achieve extreme generalization. Current AI pro-
grams that are capable of basic forms of reasoning are all hardcoded by human
programmers: for instance, software that relies on search algorithms, graph manipula-
tion, and formal logic. In DeepMind’s AlphaGo, for example, most of the intelligence
on display is designed and hardcoded by expert programmers (such as Monte Carlo
Tree Search); learning from data happens only in specialized submodules (value net-
works and policy networks). But in the future, such AI systems may be fully learned,
with no human involvement.

 What path could make this happen? Consider a well-known type of network: RNNs.
It’s important to note that RNNs have slightly fewer limitations than feedforward net-
works. That’s because RNNs are a bit more than mere geometric transformations:

331The future of deep learning
they’re geometric transformations repeatedly applied inside a for loop. The temporal for
loop is itself hardcoded by human developers: it’s a built-in assumption of the net-
work. Naturally, RNNs are still extremely limited in what they can represent, primarily
because each step they perform is a differentiable geometric transformation, and they
carry information from step to step via points in a continuous geometric space (state
vectors). Now imagine a neural network that’s augmented in a similar way with pro-
gramming primitives—but instead of a single hardcoded for loop with hardcoded
geometric memory, the network includes a large set of programming primitives that
the model is free to manipulate to expand its processing function, such as if
branches, while statements, variable creation, disk storage for long-term memory,
sorting operators, advanced data structures (such as lists, graphs, and hash tables),
and many more. The space of programs that such a network could represent would be
far broader than what can be represented with current deep-learning models, and
some of these programs could achieve superior generalization power.

 We’ll move away from having, on one hand, hardcoded algorithmic intelligence
(handcrafted software) and, on the other hand, learned geometric intelligence (deep
learning). Instead, we’ll have a blend of formal algorithmic modules that provide rea-
soning and abstraction capabilities, and geometric modules that provide informal
intuition and pattern-recognition capabilities. The entire system will be learned with
little or no human involvement.

 A related subfield of AI that I think may be about to take off in a big way is program
synthesis, in particular neural program synthesis. Program synthesis consists of auto-
matically generating simple programs by using a search algorithm (possibly genetic
search, as in genetic programming) to explore a large space of possible programs.
The search stops when a program is found that matches the required specifications,
often provided as a set of input-output pairs. This is highly reminiscent of machine
learning: given training data provided as input-output pairs, we find a program that
matches inputs to outputs and can generalize to new inputs. The difference is that
instead of learning parameter values in a hardcoded program (a neural network), we
generate source code via a discrete search process.

 I definitely expect this subfield to see a wave of renewed interest in the next few
years. In particular, I expect the emergence of a crossover subfield between deep
learning and program synthesis, where instead of generating programs in a general-
purpose language, we’ll generate neural networks (geometric data-processing flows)
augmented with a rich set of algorithmic primitives, such as for loops and many oth-
ers (see figure 9.5). This should be far more tractable and useful than directly gener-
ating source code, and it will dramatically expand the scope of problems that can be
solved with machine learning—the space of programs that we can generate automati-
cally, given appropriate training data. Contemporary RNNs can be seen as a prehis-
toric ancestor of such hybrid algorithmic-geometric models.

332 CHAPTER 9 Conclusions

Beyond backpropagation and differentiable layers9.3.2

If machine-learning models become more like programs, then they will mostly no lon-
ger be differentiable—these programs will still use continuous geometric layers as sub-
routines, which will be differentiable, but the model as a whole won’t be. As a result,
using backpropagation to adjust weight values in a fixed, hardcoded network can’t be
the method of choice for training models in the future—at least, it can’t be the entire
story. We need to figure out how to train non-differentiable systems efficiently. Cur-
rent approaches include genetic algorithms, evolution strategies, certain reinforce-
ment-learning methods, and alternating direction method of multipliers (ADMM).
Naturally, gradient descent isn’t going anywhere; gradient information will always be
useful for optimizing differentiable parametric functions. But our models will become
increasingly more ambitious than mere differentiable parametric functions, and thus
their automatic development (the learning in machine learning) will require more than
backpropagation.

 In addition, backpropagation is end to end, which is a great thing for learning
good chained transformations but is computationally inefficient because it doesn’t
fully take advantage of the modularity of deep networks. To make something more
efficient, there’s one universal recipe: introduce modularity and hierarchy. So we can
make backpropagation more efficient by introducing decoupled training modules
with a synchronization mechanism between them, organized in a hierarchical fashion.
This strategy is somewhat reflected in DeepMind’s recent work on synthetic gradients.
I expect more along these lines in the near future. I can imagine a future where mod-
els that are globally non-differentiable (but feature differentiable parts) are trained—
grown—using an efficient search process that doesn’t use gradients, whereas the dif-
ferentiable parts are trained even faster by taking advantage of gradients using a more
efficient version of backpropagation.

Automated machine learning9.3.3

In the future, model architectures will be learned rather than be handcrafted by engi-
neer-artisans. Learning architectures goes hand in hand with the use of richer sets of
primitives and program-like machine-learning models.

Modular task-level program
learned on the fly to solve

a specific task Data and
feedback

Actions

Geometric
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Task #002456 Figure 9.5 A learned program relying
on both geometric primitives (pattern
recognition, intuition) and algorithmic
primitives (reasoning, search,
memory)

333The future of deep learning
 Currently, most of the job of a deep-learning engineer consists of munging data
with Python scripts and then tuning the architecture and hyperparameters of a deep
network at length to get a working model—or even to get a state-of-the-art model, if
the engineer is that ambitious. Needless to say, that isn’t an optimal setup. But AI can
help. Unfortunately, the data-munging part is tough to automate, because it often
requires domain knowledge as well as a clear, high-level understanding of what the
engineer wants to achieve. Hyperparameter tuning, however, is a simple search proce-
dure; and in that case we know what the engineer wants to achieve: it’s defined by the
loss function of the network being tuned. It’s already common practice to set up basic
AutoML systems that take care of most model knob tuning. I even set up my own, years
ago, to win Kaggle competitions.

 At the most basic level, such a system would tune the number of layers in a stack,
their order, and the number of units or filters in each layer. This is commonly done
with libraries such as Hyperopt, which we discussed in chapter 7. But we can also be
far more ambitious and attempt to learn an appropriate architecture from scratch,
with as few constraints as possible: for instance, via reinforcement learning or genetic
algorithms.

 Another important AutoML direction involves learning model architecture jointly
with model weights. Because training a new model from scratch every time we try a
slightly different architecture is tremendously inefficient, a truly powerful AutoML
system would evolve architectures at the same time the features of the model were
being tuned via backpropagation on the training data. Such approaches are begin-
ning to emerge as I write these lines.

 When this starts to happen, the jobs of machine-learning engineers won’t disap-
pear—rather, engineers will move up the value-creation chain. They will begin to put
much more effort into crafting complex loss functions that truly reflect business goals
and understanding how their models impact the digital ecosystems in which they’re
deployed (for example, the users who consume the model’s predictions and generate
the model’s training data)—problems that only the largest companies can afford to
consider at present.

9.3.4 Lifelong learning and modular subroutine reuse

If models become more complex and are built on top of richer algorithmic primitives,
then this increased complexity will require higher reuse between tasks, rather than
training a new model from scratch every time we have a new task or a new dataset.
Many datasets don’t contain enough information for us to develop a new, complex
model from scratch, and it will be necessary to use information from previously
encountered datasets (much as you don’t learn English from scratch every time you
open a new book—that would be impossible). Training models from scratch on every
new task is also inefficient due to the large overlap between the current tasks and pre-
viously encountered tasks.

334 CHAPTER 9 Conclusions
 A remarkable observation has been made repeatedly in recent years: training the
same model to do several loosely connected tasks at the same time results in a model
that’s better at each task. For instance, training the same neural machine-translation
model to perform both English-to-German translation and French-to-Italian transla-
tion will result in a model that’s better at each language pair. Similarly, training an
image-classification model jointly with an image-segmentation model, sharing the
same convolutional base, results in a model that’s better at both tasks. This is fairly
intuitive: there’s always some information overlap between seemingly disconnected
tasks, and a joint model has access to a greater amount of information about each
individual task than a model trained on that specific task only.

 Currently, when it comes to model reuse across tasks, we use pretrained weights for
models that perform common functions, such as visual feature extraction. You saw
this in action in chapter 5. In the future, I expect a generalized version of this to be
commonplace: we’ll use not only previously learned features (submodel weights) but
also model architectures and training procedures. As models become more like pro-
grams, we’ll begin to reuse program subroutines like the functions and classes found in
human programming languages.

 Think of the process of software development today: once an engineer solves a spe-
cific problem (HTTP queries in Python, for instance), they package it as an abstract,
reusable library. Engineers who face a similar problem in the future will be able to
search for existing libraries, download one, and use it in their own project. In a similar
way, in the future, metalearning systems will be able to assemble new programs by sift-
ing through a global library of high-level reusable blocks. When the system finds itself
developing similar program subroutines for several different tasks, it can come up
with an abstract, reusable version of the subroutine and store it in the global library
(see figure 9.6). Such a process will implement abstraction: a necessary component for
achieving extreme generalization. A subroutine that’s useful across different tasks and
domains can be said to abstract some aspect of problem solving. This definition of
abstraction is similar to the notion of abstraction in software engineering. These sub-
routines can be either geometric (deep-learning modules with pretrained representa-
tions) or algorithmic (closer to the libraries that contemporary software engineers
manipulate).

335The future of deep learning

9.3.5 The long-term vision

In short, here’s my long-term vision for machine learning:

 Models will be more like programs and will have capabilities that go far beyond
the continuous geometric transformations of the input data we currently work
with. These programs will arguably be much closer to the abstract mental mod-
els that humans maintain about their surroundings and themselves, and they
will be capable of stronger generalization due to their rich algorithmic nature.

 In particular, models will blend algorithmic modules providing formal reasoning,
search, and abstraction capabilities with geometric modules providing informal
intuition and pattern-recognition capabilities. AlphaGo (a system that required
a lot of manual software engineering and human-made design decisions) pro-
vides an early example of what such a blend of symbolic and geometric AI could
look like.

 Such models will be grown automatically rather than hardcoded by human engi-
neers, using modular parts stored in a global library of reusable subroutines—a
library evolved by learning high-performing models on thousands of previous
tasks and datasets. As frequent problem-solving patterns are identified by the
meta-learning system, they will be turned into reusable subroutines—much like
functions and classes in software engineering—and added to the global library.
This will achieve abstraction.

 This global library and associated model-growing system will be able to achieve
some form of human-like extreme generalization: given a new task or situation,

Modular task-level program
learned on the fly to solve

a specific task Data and
feedback

Actions

Geometric
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Global library of
abstract subroutines

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Geometric
subroutine

Algorithmic
subroutine

Algorithmic
subroutine

Perpetual meta-learner
capable of quickly growing

a task-level model
across a variety of tasks

Push
reusable

subroutines

Data and
feedback

Design
choices

Fetch
relevant

subroutines

Task #002456

Task #002455

Task #002454

Task #002453

Figure 9.6 A meta-learner capable of quickly developing task-specific models using reusable primitives
(both algorithmic and geometric), thus achieving extreme generalization

336 CHAPTER 9 Conclusions
the system will be able to assemble a new working model appropriate for the
task using very little data, thanks to rich program-like primitives that generalize
well, and extensive experience with similar tasks. In the same way, humans can
quickly learn to play a complex new video game if they have experience with
many previous games, because the models derived from this previous experi-
ence are abstract and program-like, rather than a basic mapping between stim-
uli and action.

 As such, this perpetually learning model-growing system can be interpreted as
an artificial general intelligence (AGI). But don’t expect any singularitarian robot
apocalypse to ensue: that’s pure fantasy, coming from a long series of profound
misunderstandings of both intelligence and technology. Such a critique, how-
ever, doesn’t belong in this book.

337Staying up to date in a fast-moving field
Staying up to date9.4 in a fast-moving field
As final parting words, I want to give you some pointers about how to keep learning
and updating your knowledge and skills after you’ve turned the last page of this book.
The field of modern deep learning, as we know it today, is only a few years old, despite
a long, slow prehistory stretching back decades. With an exponential increase in
financial resources and research headcount since 2013, the field as a whole is now
moving at a frenetic pace. What you’ve learned in this book won’t stay relevant for-
ever, and it isn’t all you’ll need for the rest of your career.

 Fortunately, there are plenty of free online resources that you can use to stay up to
date and expand your horizons. Here are a few.

Practice on real-world problems using Kaggle9.4.1

One effective way to acquire real-world experience is to try your hand at machine-
learning competitions on Kaggle (https://kaggle.com). The only real way to learn is
through practice and actual coding—that’s the philosophy of this book, and Kaggle
competitions are the natural continuation of this. On Kaggle, you’ll find an array of
constantly renewed data-science competitions, many of which involve deep learning,
prepared by companies interested in obtaining novel solutions to some of their most
challenging machine-learning problems. Fairly large monetary prizes are offered to
top entrants.

 Most competitions are won using either the XGBoost library (for shallow machine
learning) or Keras (for deep learning). So you’ll fit right in! By participating in a few
competitions, maybe as part of a team, you’ll become more familiar with the practical
side of some of the advanced best practices described in this book, especially hyperpa-
rameter tuning, avoiding validation-set overfitting, and model ensembling.

Read about the latest9.4.2 developments on arXiv

Deep-learning research, in contrast with some other scientific fields, takes places com-
pletely in the open. Papers are made publicly and freely accessible as soon as they’re
finalized, and a lot of related software is open source. arXiv (https://arxiv.org)—pro-
nounced “archive” (the X stands for the Greek chi)—is an open-access preprint server
for physics, mathematics, and computer science research papers. It has become the
de facto way to stay up to date on the bleeding edge of machine learning and deep
learning. The large majority of deep-learning researchers upload any paper they write
to arXiv shortly after completion. This allows them to plant a flag and claim a specific
finding without waiting for a conference acceptance (which takes months), which is
necessary given the fast pace of research and the intense competition in the field. It
also allows the field to move extremely fast: all new findings are immediately available
for all to see and to build on.

 An important downside is that the sheer quantity of new papers posted every day
on arXiv makes it impossible to even skim them all; and the fact that they aren’t peer
reviewed makes it difficult to identify those that are both important and high quality.

338 CHAPTER 9 Conclusions
It’s difficult, and becoming increasingly more so, to find the signal in the noise. Cur-
rently, there isn’t a good solution to this problem. But some tools can help: an auxil-
iary website called arXiv Sanity Preserver (http://arxiv-sanity.com) serves as a
recommendation engine for new papers and can help you keep track of new develop-
ments within a specific narrow vertical of deep learning. Additionally, you can use
Google Scholar (https://scholar.google.com) to keep track of publications by your
favorite authors.

9.4.3 Explore the Keras ecosystem

With about 200,000 users as of November 2017 and growing fast, Keras has a large
ecosystem of tutorials, guides, and related open source projects:

 Your main reference for working with Keras is the online documentation at
https://keras.io. The Keras source code can be found at https://github.com/
fchollet/keras.

 You can ask for help and join deep-learning discussions on the Keras Slack
channel: https://kerasteam.slack.com.

 The Keras blog, https://blog.keras.io, offers Keras tutorials and other articles
related to deep learning.

 You can follow me on Twitter: @fchollet.

339Final words
Final words9.5
This is the end of Deep Learning with Python! I hope you’ve learned a thing or two about
machine learning, deep learning, Keras, and maybe even cognition in general. Learn-
ing is a lifelong journey, especially in the field of AI, where we have far more unknowns
on our hands than certitudes. So please go on learning, questioning, and researching.
Never stop. Because even given the progress made so far, most of the fundamental
questions in AI remain unanswered. Many haven’t even been properly asked yet.

appendix A
Installing Keras and its

dependencies on Ubuntu

The process of setting up a deep-learning workstation is fairly involved and consists
of the following steps, which this appendix will cover in detail:

1 Install the Python scientific suite—Numpy and SciPy—and make sure you
have a Basic Linear Algebra Subprogram (BLAS) library installed so your
models run fast on CPU.

2 Install two extras packages that come in handy when using Keras: HDF5 (for
saving large neural-network files) and Graphviz (for visualizing neural-
network architectures).

3 Make sure your GPU can run deep-learning code, by installing CUDA drivers
and cuDNN.

4 Install a backend for Keras: TensorFlow, CNTK, or Theano.
5 Install Keras.

It may seem like a daunting process. In fact, the only difficult part is setting up GPU
support—otherwise, the entire process can be done with a few commands and
takes only a couple of minutes.

 We’ll assume you have a fresh installation of Ubuntu, with an NVIDIA GPU avail-
able. Before you start, make sure you have pip installed and that your package man-
ager is up to date:

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install python-pip python-dev
340

341Installing the Python scientific suite
Installing the Python scientific suiteA.1
If you use a Mac, we recommend that you install the Python scientific suite via Ana-
conda, which you can get at www.continuum.io/downloads. Note that this won’t
include HDF5 and Graphviz, which you have to install manually. Following are the
steps for a manual installation of the Python scientific suite on Ubuntu:

1 Install a BLAS library (OpenBLAS, in this case), to ensure that you can run fast
tensor operations on your CPU:
$ sudo apt-get install build-essential cmake git unzip \

pkg-config libopenblas-dev liblapack-dev

2 Install the Python scientific suite: Numpy, SciPy and Matplotlib. This is neces-
sary in order to perform any kind of machine learning or scientific computing
in Python, regardless of whether you’re doing deep learning:
$ sudo apt-get install python-numpy python-scipy python- matplotlib
 ➥python-yaml

3 Install HDF5. This library, originally developed by NASA, stores large files of
numeric data in an efficient binary format. It will allow you to save your Keras
models to disk quickly and efficiently:
$ sudo apt-get install libhdf5-serial-dev python-h5py

4 Install Graphviz and pydot-ng, two packages that will let you visualize Keras
models. They aren’t necessary to run Keras, so you could skip this step and
install these packages when you need them. Here are the commands:
$ sudo apt-get install graphviz
$ sudo pip install pydot-ng

5 Install additional packages that are used in some of our code examples:
$ sudo apt-get install python-opencv

Python 2 vs. Python 3
By default, Ubuntu uses Python 2 when it installs Python packages such as python-
pip. If you wish to use Python 3 instead, you should use the python3 prefix instead
of python. For instance:

$ sudo apt-get install python3-pip python3-dev

When you’re installing packages using pip, keep in mind that by default, it targets
Python 2. To target Python 3, you should use pip3:

$ sudo pip3 install tensorflow-gpu

342 APPENDIX A Installing Keras and its dependencies on Ubuntu
A.2 Setting up GPU support
Using a GPU isn’t strictly necessary, but it’s strongly recommended. All the code exam-
ples found in this book can be run on a laptop CPU, but you may sometimes have to wait
for several hours for a model to train, instead of mere minutes on a good GPU. If you
don’t have a modern NVIDIA GPU, you can skip this step and go directly to section A.3.

 To use your NVIDIA GPU for deep learning, you need to install two things:

 CUDA—A set of drivers for your GPU that allows it to run a low-level program-
ming language for parallel computing.

 cuDNN—A library of highly optimized primitives for deep learning. When using
cuDNN and running on a GPU, you can typically increase the training speed of
your models by 50% to 100%.

TensorFlow depends on particular versions of CUDA and the cuDNN library. At the
time of writing, it uses CUDA version 8 and cuDNN version 6. Please consult the
TensorFlow website for detailed instructions about which versions are currently rec-
ommended: www.tensorflow.org/install/install_linux.

 Follow these steps:

1 Download CUDA. For Ubuntu (and other Linux flavors), NVIDIA provides a
ready-to-use package that you can download from https://developer
.nvidia.com/cuda-downloads:
$ wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/
➥x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

2 Install CUDA. The easiest way to do so is to use Ubuntu’s apt on this package.
This will allow you to easily install updates via apt as they become available:
$ sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-key adv --fetch-keys

➥http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/

➥x86_64/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install cuda-8-0

3 Install cuDNN:
a Register for a free NVIDIA developer account (unfortunately, this is necessary

in order to gain access to the cuDNN download), and download cuDNN at
https://developer.NVIDIA.com/cudnn (select the version of cuDNN compati-
ble with TensorFlow). Like CUDA, NVIDIA provides packages for different
Linux flavors—we’ll use the version for Ubuntu 16.04. Note that if you’re
working with an EC2 install, you won’t be able to download the cuDNN
archive directly to your instance; instead, download it to your local machine
and then upload it to your EC2 instance (via scp).

b Install cuDNN:
$ sudo dpkg -i dpkg -i libcudnn6*.deb

343Installing Keras
4 Install TensorFlow:
a TensorFlow with or without GPU support can be installed from PyPI using

Pip. Here’s the command without GPU support:
$ sudo pip install tensorflow

b Here’s the command to install TensorFlow with GPU support:
$ sudo pip install tensorflow-gpu

A.3 Installing Theano (optional)
Because you’ve already installed TensorFlow, you don’t have to install Theano in order
to run Keras code. But it can sometimes be useful to switch back and forth from
TensorFlow to Theano when building Keras models.

 Theano can also be installed from PyPI:

$ sudo pip install theano

If you’re using a GPU, then you should configure Theano to use your GPU. You can
create a Theano configuration file with this command:

nano ~/.theanorc

Then, fill in the file with the following configuration:

[global]
floatX = float32
device = gpu0

[nvcc]
fastmath = True

A.4 Installing Keras
You can install Keras from PyPI:

$ sudo pip install keras

Alternatively, you can install Keras from GitHub. Doing so will allow you to access the
keras/examples folder, which contains many example scripts for you to learn from:

$ git clone https://github.com/fchollet/keras
$ cd keras
$ sudo python setup.py install

You can now try to run a Keras script, such as this MNIST example:

python examples/mnist_cnn.py

Note that running this example to completion may take a few minutes, so feel free to
force-quit it (Ctrl-C) once you’ve verified that it’s working normally.

 After you’ve run Keras at least once, the Keras configuration file can be found at
~/.keras/keras.json. You can edit it to select the backend that Keras runs on: tensorflow,
theano, or cntk. Your configuration file should like this:

344 APPENDIX A Installing Keras and its dependencies on Ubuntu
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"

}

While the Keras script examples/mnist_cnn.py is running, you can monitor GPU utili-
zation in a different shell window:

$ watch -n 5 NVIDIA-smi -a --display=utilization

You’re all set! Congratulations—you can now begin building deep-learning applications.

appendix B
Running Jupyter notebooks
on an EC2 GPU instance

This appendix provides a step-by-step guide to running deep-learning Jupyter note-
books on an AWS GPU instance and editing the notebooks from anywhere in your
browser. This is the perfect setup for deep-learning research if you don’t have a
GPU on your local machine. The original (and up-to-date) version of this guide can
be found at https://blog.keras.io.

B.1 What are Jupyter notebooks?
Why run Jupyter notebooks on AWS GPUs?
A Jupyter notebook is a web app that allows you to write and annotate Python code
interactively. It’s a great way to experiment, do research, and share what you’re
working on.

 Many deep-learning applications are very computationally intensive and can take
hours or even days when running on a laptop’s CPU cores. Running on a GPU can
speed up training and inference by a considerable factor (often 5 to 10 times, when
going from a modern CPU to a single modern GPU). But you may not have access to
a GPU on your local machine. Running Jupyter notebooks on AWS gives you the same
experience as running on your local machine, while allowing you to use one or sev-
eral GPUs on AWS. And you only pay for what you use, which can compare favorably
to investing in your own GPU(s) if you use deep learning only occasionally.
345

346 APPENDIX B Running Jupyter notebooks on an EC2 GPU instance
Why would you not want to use JupyterB.2
on AWS for deep learning?
AWS GPU instances can quickly become expensive. The one we suggest using costs
$0.90 per hour. This is fine for occasional use; but if you’re going to run experiments
for several hours per day every day, then you’re better off building your own deep-
learning machine with a TITAN X or GTX 1080 Ti.

 In summary, use the Jupyter-on-EC2 setup if you don’t have access to a local GPU or
if you don’t want to deal with installing Keras dependencies, in particular GPU
drivers. If you have a access to a local GPU, we recommend running your models
locally, instead. In that case, use the installation guide in appendix A.

NOTE You’ll need an active AWS account. Some familiarity with AWS EC2 will
help, but it isn’t mandatory.

Setting up an AWS GPU instanceB.3
The following setup process will take 5 to 10 minutes:

1 Navigate to the EC2 control panel at https://console.aws.amazon.com/ec2/v2,
and click the Launch Instance link (see figure B.1).

2 Select AWS Marketplace (see figure B.2), and search for “deep learning” in the
search box. Scroll down until you find the AMI named Deep Learning AMI
Ubuntu Version (see figure B.3); select it.

Figure B.1 The EC2
control panel

The EC2 AMI MarketplaceFigure B.2

347Setting up an AWS GPU instance
3 Select the p2.xlarge instance (see figure B.4). This instance type provides access
to a single GPU and costs $0.90 per hour of usage (as of March 2017).

4 You can keep the default configuration for the steps Configure Instance, Add
Storage, and Add Tags, but you’ll customize the Configure Security Group step.
Create a custom TCP rule to allow port 8888 (see figure B.5): this rule can be
allowed either for your current public IP (such as that of your laptop) or for any
IP (such as 0.0.0.0/0) if the former isn’t possible. Note that if you allow port
8888 for any IP, then literally anyone will be able to listen to that port on your
instance (which is where you’ll run IPython notebooks). You’ll add password
protection to the notebooks to mitigate the risk of random strangers modifying
them, but that may be pretty weak protection. If at all possible, you should con-
sider restricting access to a specific IP. But if your IP address changes constantly,
then that isn’t a practical choice. If you’re going to leave access open to any IP,
then remember not to leave sensitive data on the instance.

The EC2 Deep Learning AMIFigure B.3

The p2.xlarge instanceFigure B.4

348 APPENDIX B Running Jupyter notebooks on an EC2 GPU instance
NOTE At the end of the launch process, you’ll be asked if you want to create
new connection keys or if you want to reuse existing keys. If you’ve never used
EC2 before, create new keys and download them.

5 To connect to your instance, select it on the EC2 control panel, click the Con-
nect button, and follow the instructions (see figure B.6). Note that it may take a
few minutes for the instance to boot up. If you can’t connect at first, wait a bit
and try again.

6 Once you’re logged in to the instance via SSH, create an ssl directory at the root
of the instance, and cd to it (not mandatory, but cleaner):
$ mkdir ssl
$ cd ssl

Configure a new security group.Figure B.5

Connection instructionsFigure B.6

349Setting up an AWS GPU instance
7 Create a new SSL certificate using OpenSSL, and create cert.key and cert.pem
files in the current ssl directory:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout "cert.key" -out
➥"cert.pem" -batch

2.3.1 Configuring Jupyter

Before you use Jupyter, you need to touch up its default configuration. Follow these
steps:

1 Generate a new Jupyter config file (still on the remote instance):
$ jupyter notebook --generate-config

2 Optionally, you can generate a Jupyter password for your notebooks. Because
your instance may be configured to be accessible from any IP (depending on
the choice you made when configuring the security group), it’s better to restrict
access to Jupyter via a password. To generate a password, open an IPython shell
(ipython command) and run the following:
from IPython.lib import passwd
passwd()
exit

3 The passwd() command will ask you to enter and verify a password. After you
do, it will display a hash of your password. Copy that hash—you’ll need it soon.
It looks something like this:

sha1:b592a9cf2ec6:b99edb2fd3d0727e336185a0b0eab561aa533a43

Note that this is a hash of the word password, which isn’t a password you should
be using.

4 Use vi (or your favorite available text editor) to edit the Jupyter config file:
$ vi ~/.jupyter/jupyter_notebook_config.py

5 The config file is a Python file with all lines commented out. Insert the follow-
ing lines of Python code at the beginning of the file:

c = get_config()
c.NotebookApp.certfile = u'/home/ubuntu/ssl/cert.pem'
c.NotebookApp.keyfile = u'/home/ubuntu/ssl/cert.key'
c.IPKernelApp.pylab = 'inline'
c.NotebookApp.ip = '*'

c.NotebookApp.open_browser = False
c.NotebookApp.password =
➥'sha1:b592a9cf2ec6:b99edb2fd3d0727e336185a0b0eab561aa533a43'

Path to the private key you
generated for the certificate

Path to the certificate
you generated

Serves the
notebooks locally

Inline figure when
using MatplotlibGets the config object

Don’t open a browser window by
default when using notebooks.

Password hash you
generated earlier

350 APPENDIX B Running Jupyter notebooks on an EC2 GPU instance
NOTE In case you aren’t accustomed to using vi, remember that you need to
press I to begin inserting content. When you’re finished, press Esc, enter :wq,
and press Enter to quit vi and save your changes (:wq stands for write-quit).

Installing KerasB.4
You’re almost ready to start using Jupyter. But first, you need to update Keras. A ver-
sion of Keras is preinstalled on the AMI, but it may not necessarily be up to date. On
the remote instance, run this command:

$ sudo pip install keras --upgrade

Because you’ll probably use Python 3 (the notebooks provided with this book use
Python 3), you should also update Keras using pip3:

$ sudo pip3 install keras --upgrade

If there’s an existing Keras configuration file on the instance (there shouldn’t be, but
the AMI may have changed since I wrote this), you should delete it, just in case. Keras
will re-create a standard configuration file when it’s launched for the first time.

 If the following code snippet returns an error saying that the file doesn’t exist, you
can ignore it:

$ rm -f ~/.keras/keras.json

Setting up local port forwardingB.5
In a shell on your local machine (not the remote instance), start forwarding your local
port 443 (the HTTPS port) to port 8888 of the remote instance:

$ sudo ssh -i awsKeys.pem -L local_port:local_machine:remote_port remote_machine

In my case, it would look like the following:

$ sudo ssh -i awsKeys.pem -L
➥ 443:127.0.0.1:8888 ubuntu@ec2-54-147-126-214.compute-1.amazonaws.com

Using Jupyter fromB.6 your local browser
On the remote instance, clone the GitHub repository containing the Jupyter note-
books associated with this book:

$ git clone https://github.com/fchollet/deep-learning-with-python-notebooks.git
cd deep-learning-with-python-notebooks

Start Jupyter Notebook by running this command, still on the remote instance:

$ jupyter notebook

Then, in your local browser, navigate to the local address you’re forwarding to the
remote notebook process (https://127.0.0.1). Be sure you use HTTPS in the address,
or you’ll get an SSL error.

351Using Jupyter from your local browser
 You should see the safety warning shown in figure B.7. This warning is due to the
fact that the SSL certificate you generated isn’t verified by a trusted authority (obvi-
ously—you generated your own). Click Advanced, and proceed to navigate.

You should be prompted to enter your Jupyter password. You’ll then arrive at the Jupy-
ter dashboard (see figure B.8).

Choose New > Notebook to get started (see fig-
ure B.9). You can use the Python version of your
choice. All set!

A safety warning you can ignoreFigure B.7

The Jupyter dashboardFigure B.8

Create a new notebook.Figure B.9

index

Symbols

* operator 40
+ operator 99

Numerics

0D tensors. See scalars
1D convolutions 225–227
1D pooling, for sequence

data 226
1D tensors. See vectors
2D tensors. See matrices
3D embeddings 253

A

activation 160
activation functions 22
ad targeting 12
add_loss method 302
ADMM (alternating direction

method of
multipliers) 332

adversarial networks 310
See also generative deep

learning; generative
adversarial networks

adversary network 305
affine transformations 72
Amazon Web Services. See AWS
AMD 20
Analytical Engine 4
annotations 94, 96
application program interfaces.

See functional APIs

architecture of networks
319–322

convnets 321
densely connected networks

319–320
recurrent neural networks

321–322
architecture patterns of

models 260–263
batch normalization

260–261
depthwise separable

convolution 261–263
residual connections

235–236, 244–246
arrow of time 100
artificial intelligence 3–13,

270
expectations for 13
history of 12–13

arXiv preprint server 271,
337–338

assembling datasets 111–112
augmented intelligence 270
augmenting data 138–142

feature extraction with
149–152

feature extraction without
147–149

autoencoders. See VAEs (varia-
tional autoencoders)

AutoML systems 333
autonomous driving 12
AWS (Amazon Web Services)

GPU instances
running Jupyter on 350
setting up 346–350

using Jupyter on 346

B

Babbage, Charles 4
backend engine, Keras 62
backpropagation algorithm

11, 51–52, 246
backward pass 49
bag-of-2-grams 181
bag-of-3-grams 181
bag-of-words 181
Baidu 22
batch axis 35
batch normalization 22
BatchNormalization layer 260
batch_size 211
Bengio, Yoshua 17, 188, 202
bidirectional layers 207
binary classifications 68–77,

96
binary crossentropy 60, 72
black boxes 160
BLAS (Basic Linear Algebra

Subprograms) 39, 340
border effects 125–126
broadcasting operations

39–40
browsers, local, using Jupyter

from 350–351

C

callbacks, writing 251–252
CAM (class activation map)

172
categorical encoding 79
categorical_crossentropy

function 53, 80, 83
353

354 INDEX
CERN 17
channels axis 123
channels-first convention 36
channels-last convention 36
character-level neural language

model 272
Ciresan, Dan 17, 20
class activation, visualizing heat-

maps of 172–176
classes 27, 96
classification 60
cloud, running jobs in 66
clustering 94
CNNs. See convnets (convolu-

tional neural networks)
CNTK (Microsoft Cognitive

Toolkit) 62
compilation step 29
concept vectors, for editing

images 297–298
conditioning data 272
Connect button, EC2 control

panel 348
connections, residual 244–246
content loss 288
Conv1D layer 226
Conv2D layer 120, 122, 124
convnets (convolutional neural

networks) 321
1D 226–227
combining with recurrent

neural networks
228–231

overview 120–129
convolution operations

122–127
max-pooling operations

127–129
processing sequences with

225–231
training on small datasets

130–142
building networks

133–135
data preprocessing

135–138
relevance for small-data

problems 130–131
using data augmentation

138–142
using pretrained convnets

143–159
feature extraction

143–152
fine-tuning 152–158

visualizing convnet learning
160–176

convnet filters 167–172
heatmaps of class

activation 172–176
intermediate activations

160–166
convnets filters 160
convolution base 143–144
convolution operations

122–127
border effects 125–126
convolution strides 127
paddling 125–126

convolution strides 127
convolutions

1D 225–226
depthwise separable

261–263
Cortes, Corinna 15
crossentropy 73
CUDA drivers 20, 340, 342
cuDNN library 62, 340, 342
curvature 48

D

data
augmenting 138–142

feature extraction with
149–152

feature extraction without
147–149

batches of 34–35
generating sequence data

272
heterogeneous 101
homogenous 101
learning representations

from 6–8
missing 102
preparing 112–113

for character-level LSTM
text generation 274

for recurrent neural
networks 210–212

preprocessing 101–103,
135–138

redundancy 100
representations for neural

networks 31–37
3D tensors 32
data batches 34–35
examples of data tensors

35

higher-dimensional
tensors 32

image data 36–37
key attributes of tensors

32–33
manipulating tensors in

Numpy 34
matrices (2D tensors)

31–32
scalars (0D tensors) 31
sequence data 35–36
timeseries data 35–36
vector data 35
vectors (1D tensors) 31
video data 37

shuffling 98, 100
splitting 98
tokenizing 189–190
transformations 10
transforming 6
vectorization 101

data augmentation 130
data distillation 28
data points 27, 220
data representativeness 100
data tensors, examples of 35
datasets, assembling 111–112
DCGANs (deep convolutional

GANs)
overview 307
training 310–312

decision boundaries 15
decision trees 16–17
deep convnets 266
deep learning 3, 6–13

accomplishments of 11–12
achievements of 315–316
democratization of 23
enabling technologies

317–318
future of 23–24, 330–336

automated machine
learning 332–333

lifelong learning 333–335
long-term vision 335–336
models as programs

330–332
modular subroutine reuse

333–335
geometric interpretation of

44–45
hardware and 20–21
investment in 22–23
limitations of 325–329

local generalization vs.
extreme generalization
327–329

355INDEX
deep learning, limitations of
(continued)

risk of anthropomorphiz-
ing machine-learning
models 325–327

overview 9–11, 316–317
possible uses of 322–324
reasons for interest in 20–24
See also generative deep

learning
Deep Learning AMI, EC2 66
DeepDream technique

280–286
overview 280
implementing in Keras

281–286
DeepMind, Google 22, 95
Dense layers 28, 38, 53, 69–70,

122, 187, 213, 321
dense sampling 328
densely connected networks

319–320
depthwise separable

convolution 321
derivatives, defined 47–48
developer account, NVIDIA

342
digital assistants 12
dimension 31
dimensionality 31, 94
directed acyclic graphs of

layers 242–246
inception modules 242–244
residual connections

244–246
discriminator networks

overview 305
implementing 307–309

distance function 288
dot operations 40–42
dot product 38
downloading

GloVe word embeddings 190
raw text 189

Dropout layer 140
dtype attribute 32–33

E

EarlyStopping callbacks 250
Eck, Douglas 271
editing images, concept vectors

for 297–298
Eigen 62

element-wise operations 38–39
embedding layers, learning

word embeddings
with 185–187

engineering features 101–103
ensembling models 264–266
epochs 53, 74, 76, 82
epsilon 300
evaluating models 192–195
evaluation protocols, choosing

100, 112
expert systems 4
extreme generalization, local

generalization vs.
327–329

extreme inception 244

F

feature engineering 16, 18
feature learning 101–103
feature maps 123, 129
features

engineering 101–103
extracting 143–152

with data augmentation
149–152

without data augmentation
147–149

features axis 35
feedforward networks 196, 202
Feynman, Richard 316
fill_mode 139
filter visualizations 172
filters

overview 124
convnets, visualizing 167–172

fine-tuning 152–158
fit method 29
fit_generator method 136
Flatten layer 133
Flickr 21
float32 29, 101, 173
for loop 38, 197, 331
forward pass 46
freezing layers 150
fully connected layers 58
functional APIs, Keras 234–248

directed acyclic graphs of
layers 242–246

layer weight sharing 246–247
models as layers 247–248
multi-input models 238–240
multi-output models 240–242

G

Gal, Yarin 216
GANs (generative adversarial

networks) 296, 305
gated recurrent unit layers.

See GRU layers
Gatys, Leon 287
Gaussian distribution 307
generalization 104, 327–329
generative deep learning

generating images with varia-
tional autoencoders
296–304

concept vectors for image
editing 297–298

sampling from latent
spaces of images
296–297

generating text with LSTM
271–279

generating sequence data
272

history of generative recur-
rent networks 271

implementing character-
level LSTM text
generation 274–279

sampling strategy 272–274
generative adversarial

networks 305–313
adversarial networks 310
discriminator networks

307–309
generator networks

307–308
schematic implementa-

tion of 307
training DCGANs 310–312

neural style transfer 287–295
content loss 288
in Keras 289–295
style loss 288–289

generative deep learning,
DeepDream 280–286

generative recurrent networks,
history of 271

generator function 211, 230
generator networks,

implementing 307–308
geometric interpretation

of deep learning 44–45
of tensor operations 43–44

geometric space 316

356 INDEX
GloVe (Global Vectors for Word
Representation)

downloading word
embeddings 190

loading embeddings in
models 191

Goodfellow, Ian 305
GPUs (graphics processing

units)
installing on AWS 350
instances, on AWS 346–350
overview 20
selecting 66–67
support, setting up on

Ubuntu 342–343
gradient boosting machines

16–17
gradient descent 167
gradient propagation 22
gradient-based optimization

46–52
backpropagation algorithm

51–52
derivatives, defined 47–48
gradients 48
stochastic gradient descent

48–51
gradients 48
Gram matrix 288
graphs, directed acyclic of

layers 242–246
Graphviz 257, 340–341
Graves, Alex 271
greedy sampling 272
ground-truth 96
GRU (gated recurrent unit)

layers 202–204, 215

H

handwriting transcription 11
hardware 20–21
hash collisions 183
HDF5 340
heatmaps

of class activation, visualizing
172–176

overview 160
height_shift range 139
heterogeneous data 101
hidden layers 77
hidden unit 70
hierarchical representation

learning 8

Hinton, Geoffrey 17, 109
Hochreiter, Sepp 202
hold-out validation 98–99
homogenous data 101
horizontal_flip 139
HSV (hue-saturation-value)

format 6
Hyperas library 264
Hyperopt 264
hyperparameters

optimizing 263–264
overview 98
tuning 114–115

hyperplanes 15
hypothesis space 59, 72, 319

I

IDSIA 17
ILSVRC (ImageNet Large Scale

Visual Recognition
Challenge) 21

image classification 11
image data 36–37, 319
image segmentation 94
image-classification task 262
ImageDataGenerator class 135,

139, 147
ImageNet class 17, 145, 281
images

editing concept vectors for
297–298

flipping 139
generating with variational

autoencoders 296–304
concept vectors for image

editing 297–298
overview 296

sampling from latent spaces
of 296–297

inception blocks 59
Inception modules 235,

242–244, 281
include_top argument 145
information bottlenecks 80, 84
information distillation

pipeline 166
information leaks 97
initial state 196
input data 6–7, 58, 95
input_shape argument 145
input_tensor 237
installing

CUDA 342
cuDNN 342

Keras 343–344, 350
OpenBLAS 341
OpenCV 341
Python scientific suite on

Ubuntu 341
TensorFLow 343
Theano on Ubuntu 343

Intel 22
intermediate activations,

visualizing 160–166
investments in deep learning

22–23
ipython command 349

J

joint feature learning 18
Jupyter notebooks 65

configuring 349–350
overview 345
running on AWS GPU

instances
installing Keras 350
setting up AWS GPU

instances 346–350
setting up local port

forwarding 350
using from local browsers

350–351
using on AWS 346

K

K80, NVIDIA 21
Kaggle platform

overview 16, 19, 266
-practice on real-world prob

lems using 337
Keras API 234–248

directed acyclic graphs of
layers 242–246

exploring 338
functional APIs 236–238
implementing DeepDream

in 281–286
installing 343–344, 350
layer weight sharing 246–247
models as layers 247–248
multi-input models 238–240
multi-output models

240–242
neural style transfer in

289–295
recurrent layers in 198–202
using callbacks 249–259

357INDEX
Keras framework 61–64
CNTK 62
developing with 62–64
running 66
TensorFlow 62
Theano 62

Keras library 27
keras.applications module 145
keras.callbacks module 249,

251
keras.preprocessing.image 135
kernel methods 15–16
kernel trick 15
K-fold validation, iterated with

shuffling 99–100
Kingma, Diederik P. 298
Krizhevsky, Alex 20

L

L1 regularization 107
L2 regularization 107
label 27, 96
Lambda layer 301
language models

sampling from 276–278
training 276–278

last-layer activation 113
latent spaces

of images, sampling from
296–297

overview 270
layer compatibility 59
layered representations

learning 8
layers

differentiable 332
directed acyclic graphs of

242–246
inception modules

242–244
residual connections

244–246
freezing 150
models as 247–248
overview 8, 58–59
recurrent

in Keras 198–202
stacking 217–219

unfreezing 154
weight sharing 246–247

layer-wise pretraining 22
LeakyReLU layer 308
LeCun, Yann 15, 17

LeNet network 15
LHC (Large Hadron Collider)

17
lifelong learning 333–335
linear transformations 72
local generalization, extreme

generalization vs.
327–329

local port forwarding, setting
up 350

logistic regression algorithm
85

logreg (logistic regression) 14
logs argument 251
lookback parameter 230
lookback timesteps 210
loss function 10, 29, 58, 60, 113
loss plateau 250
loss value 96
Lovelace, Ada 5
LSTM (long short-term

memory) 58, 202–204
generating text with 271–279

generating sequence data
272

history of generative recur-
rent networks 271

implementing character-
level text generation
274–279

sampling strategy 272–274
overview 20, 269

M

machine learning
automated 332–333
basic approaches 213–215
branches of 94–96

reinforcement learning
95–96

self-supervised learning
94–95

supervised learning 94
unsupervised learning 94

data preprocessing 101–103
deep learning vs. 17–18
evaluating models of 97–100

choosing evaluation
protocols 100

test sets 97–100
training sets 97–100
validation sets 97–100

feature engineering 101–103
feature learning 101–103

history of 14–19
decision trees 16–17
gradient boosting

machines 16–17
kernel methods 15–16
neural networks 14–15, 17
probabilistic modeling 14
random forests 16–17

learning representations
from data 6–8

models, risk of anthropo-
morphizing 325–327

overfitting and underfitting
104–110

adding dropout 109–110
adding weight

regularization 107–108
reducing network size

104–107
workflow of 111–115,

318–319
assembling datasets

111–112
choosing evaluation

protocol 112
choosing measure of

success 112
defining problems

111–112
developing models

113–114
preparing data 112–113
regularizing models

114–115
tuning hyperparameters

114–115
See also non-machine learn-

ing
MAE (mean absolute error)

87, 91, 212, 320
Matplotlib library 33, 74, 349
matrices (2D tensors) 31–32
maximum operation 40
max-pooling operations

127–129
MaxPooling1D layer 226, 231
MaxPooling2D layer 120, 122,

127
mean_squared_error 73
memorization capacity 104
metrics 29
metrics, logging 249
Microsoft Cognitive Toolkit.

See CNTK
Mikolov, Tomas 188

358 INDEX
mini-batch 96
mini-batch SGD (mini-batch

stochastic gradient
descent) 49

Minsky, Marvin 12
MNIST dataset 27, 68
model checkpointing 249
Model class 162
model depth 8
model plot 258

() function 249del.fitmo
model.fit_generator() function

249
ModelCheckpoint callbacks

250
models

architecture patterns
260–263

batch normalization
260–261

depthwise separable
convolution 261–263

residual connections
235–236, 244–246

as layers 247–248
as programs 330–332
defining 191
developing

achieving statistical power
113–114

determining capacity 114
ensembling 264–266
evaluating 192–195
hyperparameter optimization

263–264
language

sampling from 276–278
training 276–278

loading GloVe embeddings
in 191

machine learning, risk of
anthropomorphizing 3
25–327

multi-input 238–240
multi-output 240–242
regularizing 114–115
training 192–195
using Keras callbacks

249–259
using TensorBoard 249–259

modular subroutines, reusing
333–335

modules, inception 242–244
momentum 50
Moore’s law 21, 317

MSE (mean squared error) 77,
87, 91, 241, 320

multiclass classifications 78–84
multihead networks 59
multi-input models 238–240
multilabel classification 78, 96,

320
multimodal inputs 234
multi-output models 240–242

N

N classes 84
Naive Bayes algorithm 14
naive_add 39
National Institute of Standards

and Technology.
See NIST

ndim attribute 31
Nervana Systems 22
neural layers 22
neural networks

anatomy of 58–60
layers 58–59
loss functions 60
models 59–60
optimizers 60

binary classifications 68–77
breakthroughs in 17
data preprocessing for

101–102
handling missing values

102
value normalization

101–102
vectorization 101

data representations for
31–37

3D tensors 32
data batches 34–35
examples of data tensors

35
higher-dimensional

tensors 32
image data 36–37
key attributes of tensors

32–33
manipulating tensors in

Numpy 34
matrices (2D tensors)

31–32
scalars (0D tensors) 31
sequence data 35–36
timeseries data 35–36

vector data 35
vectors (1D tensors) 31
video data 37

gradient-based optimization
46–52

backpropagation
algorithm 51–52

derivatives 47–48
gradients 48
stochastic gradient

descent 48–51
Keras 61–64

CNTK 62
developing with 62–64
TensorFlow 62
Theano 62

multiclass classifications
78–84

regression 85–91
setting up workstations

65–67
GPUs for deep learning

66–67
Jupyter notebooks 65
running jobs in cloud 66
running Keras 66

tensor operations 38–45
broadcasting 39–40
dot 40–42
element-wise 38–39
geometric interpretation

of 43–44
geometric interpretation

of deep learning 44–45
reshaping 42–43

neural style transfer 287–295
content loss 288
in Keras 289–295
style loss 288–289

N-grams 180
NIST (National Institute of

Standards and
Technology) 27

non-linearity function 72
non-machine learning,

baselines 212–213
nonstationary problems 111
normalizing batches 260–261
normalizing values 101–102
Numpy arrays 28, 31
Numpy library, manipulating

tensors in 34
Numpy matrix 31
Numpy tensors 53
NVIDIA 20, 66

359INDEX
O

object detection 94
objective function 10, 60
Occam’s razor principle 107
octaves 281–282
one-hot encoding

of characters 181–183
of words 181–183
overview 79, 84, 101

online documentation, Keras
338

optimization 22, 50, 104, 113,
263–264

optimizer argument 11, 29, 58,
73

optimizers 60
output

classes 77
overview 95
tensor 237

overfitting
adding dropout 109–110
adding weight regularization

107–108
reducing network size

104–107
using recurrent dropout to

fight 216–217

P

padding 125–126
parameterized layers 10
parameters

adjusting 249
overview 97

partitions 99
passwd() command 349
PCA (principal component

analysis) 255
Pichai, Sundar 22
pip 350
plot_model 258
plotting code 156
pointwise convolutions 243
pooling 1D, for sequence data

226
predict method 76, 83, 147
prediction error 95–96
predictions 83
preparing data 112–113
preprocessing

data 101–103, 135–138
for neural networks

101–102

overview 135–138
embeddings 190–191

pretrained convnets 143–159
feature extraction 143–152

with data augmentation
149–152

without data augmentation
147–149

fine-tuning 152–158
with small datasets 159

pretrained networks 130, 143
pretrained word embeddings

184
probabilistic modeling 14
probability distribution 80
problems, defining 111–112
processing sequences with

convnets 225–231
1D convolution for sequence

data 225–226
1D pooling for sequence data

226
combining with recurrent

neural networks to pro-
cess long sequences
228–231

implementing 1D convnets
226–227

program subroutines 334
program synthesis 331
PyCharm 65
pydot library 257
pydot-ng 341
Python

installing scientific suite on
Ubuntu 341

overview 19
python-pip package 341

Q

question-answering model 238

R

random forests 16–17
randomly shuffle data 100
randomness 272
rank 31
recurrent dropout 207, 216
recurrent layers, bidirectional

207

recurrent neural networks
196–224, 319, 321–322

basic machine-learning
approach 213–215

bidirectional 219–222
combining with

convnets 228–231
first recurrent baseline

215–216
generative, history of 271
GRU layers 202–204
LSTM layers 202–204
non-machine-learning

baselines 212–213
preparing data for 210–212
recurrent layers in Keras

198–202
stacking recurrent layers

217–219
using recurrent dropout to

fight overfitting
216–217

ReduceLROnPlateau callbacks
250–251

regression 60, 85–91, 320
regularization loss function

300
regularizing models 114–115
reinforcement learning 95–96
relu (rectified linear unit) 71
representations

extracting 28
overview 6

reshaping tensors 42–43
residual connections 235
response map 124
return_sequences argument

198
reusability 23
reverse-mode differentiation

52
RGB (red-green-blue) format 6
RMSProp optimizer 53, 73, 77,

135, 155, 222
RNN (recurrent neural

network) 196
rotation_range 139

S

samples axis 34
samples dimension 34
sampling

from language models
276–278

360 INDEX
sampling (continued)
from latent spaces of images

296–297
strategies 272–274

Sanity Preserver, arXiv 338
scalar regression 86, 96
scalar tensor 31
scalars (0D tensors) 31
schematic implementation, of

GAN 307
Schmidhuber, Jürgen 202
Scikit-Learn 63
SciPy 284, 341
self-supervised learning 94–95
selu function 261
SeparableConv2D layer 261,

321
separation hyperplane 15
sequence data

generating 272
overview 35–36

sequence generation 94
sequence prediction 60
sequences, processing with

convnets 225–231
1D convolution for sequence

data 225–226
1D pooling for sequence

data 226
combining with recurrent

neural networks
228–231

implementing 1D convnets
226–227

Sequential class 63, 248
Sequential model 150, 234
SGD (stochastic gradient

descent) 48–51, 60
shallow learning 8
shared LSTM 247
shear_range 139
show_shapes option 258

-shuffling, iterated K-fold valida
tion with 100

Siamese LSTM model 247
sigmoid function 71, 86, 320
Simonyan, Karen 143
SimpleRNN layer 198, 322
single-label

categorical classification 320
multiclass classification 78

sliding windows 124
Smart Reply feature, Google

271
smile vector 297

softmax 28, 80, 84, 273, 320
sound data 319
sparse_categorical_crossentropy

83–84
spatially hierarchical patterns

123
speech recognition 11
ssl directory 348
stacking recurrent layers

217–219
statistical power, developing

models with 113–114
steps_per_epoch 136
stochastic gradient descent.

See SGD
stochastic sampling 272
stochasticity 272, 308
strided convolutions 127
strides 125
style function 288
style loss 288–289
subroutines, reusing modular

333–335
supervised learning 94
SVM (support vector machine)

15
symbolic AI 4, 12
symbolic differentiation 52
syntax tree prediction 94
Szegedy, Christian 235

T

tanh activation 77
target 95
temporal leak 100
temporally supervised learning

95
TensorBoard applications 233,

249–259
TensorFlow visualization

framework 252–258
tensors

higher-dimensional 32
key attributes of 32–33
manipulating in Numpy 34
operations of 38–45

broadcasting 39–40
dot 40–42
element-wise 38–39
geometric interpretation

of 43–44
geometric interpretation

of deep learning 44–45
reshaping 42–43

reshaping 42
slicing 34
See also data tensors

test sets 97–100
hold-out validation 98–99
iterated K-fold validation

with shuffling 100
K-fold validation 99

text data 180–195, 319
downloading raw text

188–195
one-hot encoding of words

and characters
181–183

word embeddings 184–195
defining models 191
downloading GloVe word

embeddings 190
learning with embedding

layers 185–187
loading GloVe embeddings

in models 191
preprocessing 190–191
pretrained 188
tokenizing data 189–190
training and evaluating

models 192–195
text, generating with LSTM

271–279
generating sequence data

272
history of generative recur-

rent networks 271
implementing character-level

text generation 274–279
sampling strategy 272–274

text-to-speech conversion 12
Theano

installing on Ubuntu 343
overview 23, 62

timeseries data 35–36, 319
timesteps 210
TITAN X, NVIDIA 21
token embedding 180
tokenizing data, word

embeddings 189–190
total variation loss 291
TPU (tensor processing unit)

21
trainable attribute 150
training

convnets on small datasets
130–142

building networks
133–135

361INDEX
training, convnets on small
datasets (continued)

data preprocessing
135–138

downloading data
131–133

relevance for small-data
problems 130–131

using data augmentation
138–142

interrupting 249
language models 276–278
models 192–195

training loop 11, 46
training sets 97–100

hold-out validation 98–99
iterated K-fold validation

with shuffling 100
K-fold validation 99

train_labels variable 27, 68
translation-invariant patterns

123, 321
transposition 43
Turing test 5
Turing, Alan 5
two-branch networks 59
Tyka, Mike 280, 306

U

Ubuntu
installing Keras on 343–344
installing Python scientific

suite on 341
installing Theano on 343
setting up GPU support

342–343
underfitting 104–110

adding dropout 109–110
adding weight regularization

107–108
reducing network size

104–107
unfreezing layers 154
Unix workstation 65
unsupervised learning 94

V

VAEs (variational autoencod-
ers), generating images
with 296–304

concept vectors for image

editing 297–298
sampling from latent spaces

of images 296–297
validation scores 100
validation sets 97–100

hold-out validation 98–99
iterated K-fold validation

with shuffling 100
K-fold validation 99
overfitting 97
overview 73

validation_data argument 74,
137

validation_steps argument 137
values

handling missing 102
normalizing 101–102

vanishing gradient problem
202

Vapnik, Vladimir 15
vector data 35, 319
vector regression 96
vectorization 101
vectorized data 69
vectorized implementations 38
vectorizing text 180
vectors (1D tensors) 31
versatility 23
vi 350
video data 37, 319
visual concepts 160
visualizing

convnet filters 167–172
convnet learning 160–176
heatmaps of class activation

172–176
intermediate activations

160–166
volumetric data 319

W

weight decay 107
weight regularization,

adding 107–108
weight sharing of layers

246–247
weight-initialization schemes

22
weights argument, VGG16 58,

145
weights, layers 10
Welling, Max 298
width_shift range 139

word embeddings 184–195
defining models 191
downloading GloVe word

embeddings 190
evaluating models 192–195
learning embedding layers

185–187
loading GloVe embeddings

in models 191
preprocessing embeddings

190–191
tokenizing data 189–190
training models 192–195
using pretrained word

embeddings 188
word vectors 184
Word2vec algorithm 188
word-embedding space 185
word_index 69
workflow of machine learning

111–115, 318–319
assembling datasets 111–112
choosing evaluation protocol

112
choosing measure of success

112
defining problems 111–112
developing models 113–114
preparing data 112–113
regularizing models 114–115
tuning hyperparameters

114–115
workflows 18
workstations, setting up 65–67

Jupyter notebooks 65
running jobs in cloud 66
running Keras 66
selecting GPUs 66–67

writing callbacks 251–252

X

Xception 244, 248
XGBoost library 19, 337

Y

yield operator 136

Z

Zisserman, Andrew 143
zoom_range 139

Machine Learning with TensorFlow
by Nishant Shukla

ISBN: 9781617293870
325 pages, $44.99
December 2017

The Quick Python Book, Third Edition
by Naomi Ceder

ISBN: 9781617294037
400 pages, $39.99
December 2017

R in Action, Second Edition
Data analysis and graphics with R
by Robert I. Kabacoff

ISBN: 9781617291388
608 pages, $59.99
May 2015

Practical Data Science with R
by Nina Zumel and John Mount

ISBN: 9781617291562
416 pages, $49.99
March 2014

RELATED MANNING TITLES

For ordering information go to www.manning.com

François Chollet

M
achine learning has made remarkable progress in recent
years. We went from near-unusable speech and image
recognition, to near-human accuracy. We went from

machines that couldn’t beat a serious Go player, to defeating
a world champion. Behind this progress is deep learning—
a combination of engineering advances, best practices, and
theory that enables a wealth of previously impossible smart
applications.

Deep Learning with Python introduces the fi eld of deep learn-
ing using the Python language and the powerful Keras library.
Written by Keras creator and Google AI researcher François
Chollet, this book builds your understanding through intuitive
explanations and practical examples. You’ll explore challenging
concepts and practice with applications in computer vision,
natural-language processing, and generative models. By the
time you fi nish, you’ll have the knowledge and hands-on skills
to apply deep learning in your own projects.

What’s Inside
● Deep learning from fi rst principles
● Setting up your own deep-learning environment
● Image-classifi cation models
● Deep learning for text and sequences
● Neural style transfer, text generation, and image generation

Readers need intermediate Python skills. No previous experi-
ence with Keras, TensorFlow, or machine learning is required.

François Chollet is an AI researcher on the Google Brain Team
and author of the Keras deep-learning library.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/deep-learning-with-python

$49.99 / Can $65.99 [INCLUDING eBOOK]

Deep Learning with Python

PYTHON/MACHINE LEARNING

M A N N I N G

“The clearest explanation
of deep learning I have come

across ... it was a joy to read.”
—Richard Tobias, Cephasonics

“An excellent hands-on
introductory title, with

 great depth and breadth.”—David Blumenthal-Barby
Babbel

“Bridges the gap between
 the hype and a functioning

deep-learning system.”—Peter Rabinovitch, Akamai

“The best resource for
becoming a master of

 Keras and deep learning.”
—Claudio Rodriguez

Cox Media Group

SEE INSERT

	Deep Learning with Python
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Software/hardware requirements
	Source code
	Book forum

	about the author
	about the cover
	Part 1 Fundamentals of deep learning
	1 What is deep learning?
	1.1 Artificial intelligence, machine learning, and deep learning
	1.1.1 Artificial intelligence
	1.1.2 Machine learning
	1.1.3 Learning representations from data
	1.1.4 The “deep” in deep learning
	1.1.5 Understanding how deep learning works, in three figures
	1.1.6 What deep learning has achieved so far
	1.1.7 Don’t believe the short-term hype
	1.1.8 The promise of AI

	1.2 Before deep learning: a brief history of machine learning
	1.2.1 Probabilistic modeling
	1.2.2 Early neural networks
	1.2.3 Kernel methods
	1.2.4 Decision trees, random forests, and gradient boosting machines
	1.2.5 Back to neural networks
	1.2.6 What makes deep learning different
	1.2.7 The modern machine-learning landscape

	1.3 Why deep learning? Why now?
	1.3.1 Hardware
	1.3.2 Data
	1.3.3 Algorithms
	1.3.4 A new wave of investment
	1.3.5 The democratization of deep learning
	1.3.6 Will it last?

	2 Before we begin: the mathematical building blocks of neural networks
	2.1 A first look at a neural network
	2.2 Data representations for neural networks
	2.2.1 Scalars (0D tensors)
	2.2.2 Vectors (1D tensors)
	2.2.3 Matrices (2D tensors)
	2.2.4 3D tensors and higher-dimensional tensors
	2.2.5 Key attributes
	2.2.6 Manipulating tensors in Numpy
	2.2.7 The notion of data batches
	2.2.8 Real-world examples of data tensors
	2.2.9 Vector data
	2.2.10 Timeseries data or sequence data
	2.2.11 Image data
	2.2.12 Video data

	2.3 The gears of neural networks: tensor operations
	2.3.1 Element-wise operations
	2.3.2 Broadcasting
	2.3.3 Tensor dot
	2.3.4 Tensor reshaping
	2.3.5 Geometric interpretation of tensor operations
	2.3.6 A geometric interpretation of deep learning

	2.4 The engine of neural networks: gradient-based optimization
	2.4.1 What’s a derivative?
	2.4.2 Derivative of a tensor operation: the gradient
	2.4.3 Stochastic gradient descent
	2.4.4 Chaining derivatives: the Backpropagation algorithm

	2.5 Looking back at our first example
	Chapter summary

	3 Getting started with neural networks
	3.1 Anatomy of a neural network
	3.1.1 Layers: the building blocks of deep learning
	3.1.2 Models: networks of layers
	3.1.3 Loss functions and optimizers: keys to configuring the learning process

	3.2 Introduction to Keras
	3.2.1 Keras, TensorFlow, Theano, and CNTK
	3.2.2 Developing with Keras: a quick overview

	3.3 Setting up a deep-learning workstation
	3.3.1 Jupyter notebooks: the preferred way to run deep-learning experiments
	3.3.2 Getting Keras running: two options
	3.3.3 Running deep-learning jobs in the cloud: pros and cons
	3.3.4 What is the best GPU for deep learning?

	3.4 Classifying movie reviews: a binary classification example
	3.4.1 The IMDB dataset
	3.4.2 Preparing the data
	3.4.3 Building your network
	3.4.4 Validating your approach
	3.4.5 Using a trained network to generate predictions on new data
	3.4.6 Further experiments
	3.4.7 Wrapping up

	3.5 Classifying newswires: a multiclass classification example
	3.5.1 The Reuters dataset
	3.5.2 Preparing the data
	3.5.3 Building your network
	3.5.4 Validating your approach
	3.5.5 Generating predictions on new data
	3.5.6 A different way to handle the labels and the loss
	3.5.7 The importance of having sufficiently large intermediate layers
	3.5.8 Further experiments
	3.5.9 Wrapping up

	3.6 Predicting house prices: a regression example
	3.6.1 The Boston Housing Price dataset
	3.6.2 Preparing the data
	3.6.3 Building your network
	3.6.4 Validating your approach using K-fold validation
	3.6.5 Wrapping up

	Chapter summary

	4 Fundamentals of machine learning
	4.1 Four branches of machine learning
	4.1.1 Supervised learning
	4.1.2 Unsupervised learning
	4.1.3 Self-supervised learning
	4.1.4 Reinforcement learning

	4.2 Evaluating machine-learning models
	4.2.1 Training, validation, and test sets
	4.2.2 Things to keep in mind

	4.3 Data preprocessing, feature engineering, and feature learning
	4.3.1 Data preprocessing for neural networks
	4.3.2 Feature engineering

	4.4 Overfitting and underfitting
	4.4.1 Reducing the network’s size
	4.4.2 Adding weight regularization
	4.4.3 Adding dropout

	4.5 The universal workflow of machine learning
	4.5.1 Defining the problem and assembling a dataset
	4.5.2 Choosing a measure of success
	4.5.3 Deciding on an evaluation protocol
	4.5.4 Preparing your data
	4.5.5 Developing a model that does better than a baseline
	4.5.6 Scaling up: developing a model that overfits
	4.5.7 Regularizing your model and tuning your hyperparameters

	Chapter summary

	Part 2 Deep learning in practice
	5 Deep learning for computer vision
	5.1 Introduction to convnets
	5.1.1 The convolution operation
	5.1.2 The max-pooling operation

	5.2 Training a convnet from scratch on a small dataset
	5.2.1 The relevance of deep learning for small-data problems
	5.2.2 Downloading the data
	5.2.3 Building your network
	5.2.4 Data preprocessing
	5.2.5 Using data augmentation

	5.3 Using a pretrained convnet
	5.3.1 Feature extraction
	5.3.2 Fine-tuning
	5.3.3 Wrapping up

	5.4 Visualizing what convnets learn
	5.4.1 Visualizing intermediate activations
	5.4.2 Visualizing convnet filters
	5.4.3 Visualizing heatmaps of class activation

	Chapter summary

	6 Deep learning for text and sequences
	6.1 Working with text data
	6.1.1 One-hot encoding of words and characters
	6.1.2 Using word embeddings
	6.1.3 Putting it all together: from raw text to word embeddings
	6.1.4 Wrapping up

	6.2 Understanding recurrent neural networks
	6.2.1 A recurrent layer in Keras
	6.2.2 Understanding the LSTM and GRU layers
	6.2.3 A concrete LSTM example in Keras
	6.2.4 Wrapping up

	6.3 Advanced use of recurrent neural networks
	6.3.1 A temperature-forecasting problem
	6.3.2 Preparing the data
	6.3.3 A common-sense, non-machine-learning baseline
	6.3.4 A basic machine-learning approach
	6.3.5 A first recurrent baseline
	6.3.6 Using recurrent dropout to fight overfitting
	6.3.7 Stacking recurrent layers
	6.3.8 Using bidirectional RNNs
	6.3.9 Going even further
	6.3.10 Wrapping up

	6.4 Sequence processing with convnets
	6.4.1 Understanding 1D convolution for sequence data
	6.4.2 1D pooling for sequence data
	6.4.3 Implementing a 1D convnet
	6.4.4 Combining CNNs and RNNs to process long sequences
	6.4.5 Wrapping up

	Chapter summary

	7 Advanced deep-learning best practices
	7.1 Going beyond the Sequential model: the Keras functional API
	7.1.1 Introduction to the functional API
	7.1.2 Multi-input models
	7.1.3 Multi-output models
	7.1.4 Directed acyclic graphs of layers
	7.1.5 Layer weight sharing
	7.1.6 Models as layers
	7.1.7 Wrapping up

	7.2 Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
	7.2.1 Using callbacks to act on a model during training
	7.2.2 Introduction to TensorBoard: the TensorFlow visualization framework
	7.2.3 Wrapping up

	7.3 Getting the most out of your models
	7.3.1 Advanced architecture patterns
	7.3.2 Hyperparameter optimization
	7.3.3 Model ensembling
	7.3.4 Wrapping up

	Chapter summary

	8 Generative deep learning
	8.1 Text generation with LSTM
	8.1.1 A brief history of generative recurrent networks
	8.1.2 How do you generate sequence data?
	8.1.3 The importance of the sampling strategy
	8.1.4 Implementing character-level LSTM text generation
	8.1.5 Wrapping up

	8.2 DeepDream
	8.2.1 Implementing DeepDream in Keras
	8.2.2 Wrapping up

	8.3 Neural style transfer
	8.3.1 The content loss
	8.3.2 The style loss
	8.3.3 Neural style transfer in Keras
	8.3.4 Wrapping up

	8.4 Generating images with variational autoencoders
	8.4.1 Sampling from latent spaces of images
	8.4.2 Concept vectors for image editing
	8.4.3 Variational autoencoders
	8.4.4 Wrapping up

	8.5 Introduction to generative adversarial networks
	8.5.1 A schematic GAN implementation
	8.5.2 A bag of tricks
	8.5.3 The generator
	8.5.4 The discriminator
	8.5.5 The adversarial network
	8.5.6 How to train your DCGAN
	8.5.7 Wrapping up

	Chapter summary

	9 Conclusions
	9.1 Key concepts in review
	9.1.1 Various approaches to AI
	9.1.2 What makes deep learning special within the field of machine learning
	9.1.3 How to think about deep learning
	9.1.4 Key enabling technologies
	9.1.5 The universal machine-learning workflow
	9.1.6 Key network architectures
	9.1.7 The space of possibilities

	9.2 The limitations of deep learning
	9.2.1 The risk of anthropomorphizing machine-learning models
	9.2.2 Local generalization vs. extreme generalization
	9.2.3 Wrapping up

	9.3 The future of deep learning
	9.3.1 Models as programs
	9.3.2 Beyond backpropagation and differentiable layers
	9.3.3 Automated machine learning
	9.3.4 Lifelong learning and modular subroutine reuse
	9.3.5 The long-term vision

	9.4 Staying up to date in a fast-moving field
	9.4.1 Practice on real-world problems using Kaggle
	9.4.2 Read about the latest developments on arXiv
	9.4.3 Explore the Keras ecosystem

	9.5 Final words

	Appendix A Installing Keras and its dependencies on Ubuntu
	A.1 Installing the Python scientific suite
	A.2 Setting up GPU support
	A.3 Installing Theano (optional)
	A.4 Installing Keras

	Appendix B Running Jupyter notebooks on an EC2 GPU instance
	B.1 What are Jupyter notebooks? Why run Jupyter notebooks on AWS GPUs?
	B.2 Why would you not want to use Jupyter on AWS for deep learning?
	B.3 Setting up an AWS GPU instance
	2.3.1 Configuring Jupyter

	B.4 Installing Keras
	B.5 Setting up local port forwarding
	B.6 Using Jupyter from your local browser

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

