
OPEN SOURCE DECLARATIVE DATA ORCHESTRATION

Hello ! 👋

Loïc Mathieu
Lead Software Engineer at
Kestra | GCP GDE | Quarkus

contributor | Book Author
@loicmathieu

What’s Kestra?

?

?
?

Powerful
Orchestration Logic
Workflow can start simple and then evolve
with complex branching, parallel or dynamic
tasks, error management, retry, timeout, ...

Sequential
—

Parallel
—

Loop
—

Pause
—

Switch & if
—

Subflow
—

Scheduling at Scale
Keep complete control over how you want to
automate your data pipelines, making
integrating with your existing systems and
streamlining your workflow easy

Schedule
—

File System
Detection

—
Database Query

—

Messaging
—

Flow
Dependencies

—
API Webhook

—

Data at Heart
Kestra is built with data at heart and
integrates directly with your sources &
destinations

Abstract File
System

—
Strong Typing

—
ETL & ELT

—

Polyglot
—

Docker Support
—

Declarative
Orchestration
Avoid getting a data-engineering PhD

Easy setup
—

YAML based
flow definition

—

Low-code
features

—

Github Action &
Gitlab CI/CD

support
—

VS Code extension
—

Terraform
provider

—

A Complete Platform
Do it your way

Data Ops & CI/CDRich User Interface

Endless Possibilities
400+ plugins available or bring your own.

Get started with the Blueprints library

1200+
Members

—

5300+ ⭐
—

Open Source Project
The core of Kestra and all its plugins are open source

 👉Without any limitation
👉Without vendor lock-in
👉Used by large corporations all over the world

🔗 github.com/kestra-io/kestra

http://github.com/kestra-io/kestra

Enterprise Edition
Security & High Availability

✨

High availability
with no single
point of failure

—

Single sign-on &
Service account

—

Full role-based
management

—

Integration with
secret managers

—

Audit logs
—

Worker Group
—

Leading companies
orchestrate their
Data with Kestra.

From Legacy
Systems

—
to Modern Data

Stack

—

 👉250 users
 👉+4.000 flows created
 👉+5.000.000 Tasks
executed/month

Demo Time!

A Fault-tolerant & Performant
Architecture

A Fault-tolerant & Performant
Architecture

Server components
communicate via

asynchronous queues.
—

The server access to
the database directly

via repositories.
—

The internal storage
stores flow data of

arbitrary size out of
the database.

—

A Flexible Architecture

Two deployment modes:
● Standalone (all-in-one)
● Microservices (one server

component per process)
—

Two runners:
● Database (H2, MySQL,

PostgreSQL)
● Kafka & Elasticsearch (EE

only)

 Small-sized deployment

 Medium-sized deployment

 HA with no SPOF deployment

An Extensible Platform

● Almost everything is a plugin
● Plugins are written in Java with Gradle.
● Small learning curve: vanilla Java
● All the monitoring features out of the box

(errors, logging, metrics, output, …)

Local Storage
—

Task
—

Trigger
—

Condition
—

Secrets
—

Even the API
can be

enhanced!
—

Runners
—

An Extensible Platform

Start from the Plugin template:
https://github.com/kestra-io/plugin-templateClone

—

Code
—

Run
—

Then follow the Plugin Developer Guide:
https://kestra.io/docs/plugin-developer-guide

Finally, build your plugin and add it to the plugin path
using KESTRA_PLUGIN_PATH

https://github.com/kestra-io/plugin-template
https://kestra.io/docs/plugin-developer-guide

Written in Java

Most Data orchestrators are
written in Python.

Most Data orchestrators
mandate that you write

Python code.

Kestra is declarative, so you
don’t need to use a

programming language to
use Kestra so that it can be
written in a language other

than Python.

Written in Java

Kestra takes advantage of the Java language:

● Inputs and outputs are strongly typed.
● Java dynamicity makes it easy to create a

plugin system.
● ScriptEngine allows scripting language to

be run inside the JVM. Useful for efficient
row-to-row transformations.

Written in Java

Kestra takes advantage of the Java ecosystem:

● Huge ecosystem of libraries that support
almost everything related to data.

● Java libraries and drivers are often the
reference implementation.

● JDBC: so easy to support tens of databases.
● Docker, Kubernetes, Cloud libraries
● Data format: JSON, AVRO, Parquet, …

Written in Java

Kestra takes advantage of the JVM:

● High performance
● Leverage multi-threads
● Highly scalable
● Java Security for worker task isolation
● Robust platform, widely known by

operational teams.

Written in Java

Kestra EE leverage Kafka Stream:

● No SPOF
● Distributed scheduling of tasks
● Blazing-fast task orchestration
● Kafka under steroid:

○ Transactional stream processing
○ Global State store
○ Punctuation (to process distributed

timely events)
○ Fault tolerance

Demo Time!

Thank you !

