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ABSTRACT
In this paper we present an open source Linux autopilot for
drones that implements state of the art algorithms and sup-
ports three kind of vehicles: copters, rovers and planes. We
discuss the historical development of the AutoPilot Multi-
platform (APM) and introduce the changes that have en-
abled APM to become a Linux-based autopilot through the
creation of the new Linux Hardware Abstraction Layer (HAL).

Section 1 introduces APM’s history, code and hardware.
Section 2 discusses the work performed to convert APM into
a fully functional Linux autopilot. Section 3 exposes the re-
sults and section 4 provides an overview of the future work
expected.

1. INTRODUCTION
Over the last years, there has been several projects that

tried to bring up a fully featured Linux autopilot. Among
them the most popular initiative is the Paparazzi[6, 14, 7]
autopilot which was one of the main sources of inspiration
for the Ardupilot project. To the best of our knowledge,
none of these initiatives was widely adopted.

Ardupilot project started officially in 2009 with the contri-
butions of Jordi Muñoz and Chris Anderson [4]. The project
was initially linked to a hardware platform holding the same
name as the software and it used the Arduino development
environment.

As more developers joined the project and new hardware
platforms appeared it seemed obvious the need of creating
an abstaction layer that allowed different boards to be sup-
ported by the code. In August of 2012, Pat Hickey created
the AP HAL abstraction layer that simplified adding sup-
port for new boards. Using this idea, each board would
create its own Hardware Abstraction Layer (HAL) inherit-
ing the general requirements specified in the AP HAL.

The project grew far from the Arduino editor thereby it was
renamed to APM which stands for AutoPilot Multiplatform.
During the last quarter of 2013, Andrew Tridgell1 made a
prototype of AP HAL Linux, an abstraction layer that al-
lowed to run APM’s code in Linux using the BeagleBone
Black as the hardware blueprint. Following this work, the
authors decided to launch BeaglePilot project to continue
with the effort of making APM available for Linux systems.
Currently ardupilot project has about 700.000 lines of
code, more than 150 contributors, 8.4 commits per
day on average (a commit every three hours) and thou-
sands of users worldwide.

1.1 Hardware

Figure 1: Cronological evolution[4] of the hardware
used within the APM project.

1Andrew Tridgell is the head developer of ArduPlane.
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The first hardware platform appeared in 2009 and shared
name with its software side: “ArduPilot”. The board in-
cluded a 16MHz ATMega328 microcontroller (Arduino in-
spired), a 6-pin GPS connector for the 1Hz EM406 GPS
module, six spare analog inputs (with ADC on each) and
six spare digital input/outputs to add additional sensors.
From this initial concept, the hardware has been updated
every year. Figure 1 presents the historical evolution until
2013.

In order to port APM’s effort to Linux we used the Pix-
Hawk Fire Cape (Figure 3) together with the BeagleBone
Black (Figure 2) development board:

Figure 2: The BeagleBone Black development
board.

Figure 3: The PixHawk Fire Cape.

The PixHawk Fire Cape is a daugther board for the Bea-
gleBone Black that includes the following technologies:

• MPU6000: 3-axis gyroscope and 3-axis accelerome-
ter (through SPI bus 1).

• MPU9250: 3-axis gyroscope, 3-axis accelerometer and
3-axis magnetometer (through SPI bus 1).

• LSM9DS0: 3-axis gyroscope, 3-axis accelerometer and
3-axis magnetometer (through SPI bus 0).

• MS5611-01BA03: Barometer (through SPI bus 1).

• MS5611-01BA03: Barometer (I2C).

• BMP250: Barometer (not placed).

1.2 Code structure
APM code[3] can be divided in four sections: vehicles’s

code, core libraries, sensor libraries and other libraries.

Vehicle’s code
APMrover2

ArduCopter

ArduPlane

...

The code for the 3 different vehicles (rover, copter and plane)
are available at the top of the repository and have dedicated
folders where the particularities of each vehicle are imple-
mented.

Core libraries
libraries/

|--- AP_AHRS

|--- AP_Common libraries

|--- AP_Math vector manipulation

|--- AC_PID

|--- AP_InertialNav

|--- AC_AttitudeControl

|--- AP_WPNav

|--- AP_Motors mixing

|--- RC_Channel

|--- AP_HAL, AP_HAL_AVR, AP_HAL_PX4, AP_HAL_Linux,

...

AP AHRS code estimates the attitude using either a DCM
[12] or EKF [10], AP Common includes common utilities
for the code while AP Math implements various math func-
tions useful for vector manipulation. AC PID provides a
library for PID controllers. AP InertialNav blends together
acelerometer data, barometer data and GPS to provide in-
ertial navigation. AC AttitudeControl presents the code in
charge of the attitude control. AP WPNav is the waypoint
navigation library and AP Motors provides an abstraction
for multicopter and traditional helicopter motor dynamics.
RC Channel is a library for Radio Control (RC).

The different Hardware Abstraction Layers (HAL) are
presented in AP HAL, AP HAL AVR, AP HAL Linux, etc.

Sensor libraries
libraries/

|--- AP_InertialSensor

|--- AP_RangeFinder

|--- AP_Baro

|--- AP_GPS

|--- AP_Compass

|--- AP_OpticalFlow

...

AP InertialSensor reads gyro & accelerometer data, per-
forms calibration and provides data in standard units (deg/s,
m/s) to the main code and other libraries.AP RangeFinder
is used for sonar and ir distance sensor interfacing. AP Baro,
AP GPS and AP Compass are barometer, gps and triple
axis compass interface libraries respectively.AP OpticalFlow
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library is utilised to maneouver vehicles indoors using opti-
cal flow [9] where there is very low chances of getting gps
signal and/or substantial accuracy.

Other libraries
|--- AP_Mount, AP_Camera, AP_Relay

|--- AP_Mission

|--- AP_Buffer

...

Miscelaneous parts of codebase that doesn’t belong to the
groups described above are grouped in here. Some examples
are the AP Mount library which takes care of the camera
mount control or AP Mission library that stores and re-
trieves mission commands from the EEPROM2.

1.3 Parameters
APM relies heavily on some configurable parameters3.

These parameters allow the user to configure the autopilot
without the need of recompiling the code. Generally they are
stored in the EEPROM but with the new AP HAL Linux
parameters can be stored either in the file system of Bea-
gleBone Black or in the FRAM4 available in the cape (refer
section 2.6).

2. PORTING APM TO LINUX
Many complex Unmanned Aerial Vehicles (UAVs) have

usually another processing system on-board that contains
an embedded Linux box. This companion computer is gen-
erally used for onboard complex computing tasks such as im-
age processing or data streaming. Having a separate board
makes UAVs larger and usually the wiring complex. We
should also not forget that such system also adds as one of
the heavy consumer of already very limited Power source.

Besides removing the need of a companion computer, we
believe that a Linux port would allow the Linux community
to easily jump into the development of applications using
drones. BeaglePilot project was launched to port APM’s
code to Linux-based systems using the BeagleBone and the
BeagleBone Black as the “hardware blueprint”. The follow-
ing sections will discuss the work done through the project
which contributed mainly to the AP HAL Linux layer.

2.1 Sensor buses: SPI and I2C
One of the most relevant aspects of an autopilot is the

need of predictable timing which is generally needed for sen-
sor sampling. This is traditionally a difficult task to achieve
in general purpose Linux systems where the bus access and
latencies are not constant.

In order to address this matter, good SPI and I2C drivers
are a must. These drivers should comply with the latencies

2EEPROM stands for Electrically Erasable Pro-
grammable Read-Only Memory and is a type of non-volatile
memory used in the hardware autopilots that stores the pa-
rameters and waypoints

3A full list of parameters is available at http://copter.
ardupilot.com/wiki/arducopter-parameters/

4Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a
non-volatile random-access memory similar in construction
to DRAM but that uses a ferroelectric layer instead of a
dielectric layer to achieve non-volatility.

shown in Table 1.

Latency Task

100 ns SPI bus transitions

1 us PWM transitions, PPM-SUM input and
SBUS

1 ms IMU sensor input (gyros and accels)

20 ms Barometer, compass, airspeed, sonar (I2C,
SPI and analog).

200 ms GPS

Table 1: Usual latencies required in an software au-
topilot

If these latencies are met, the autopilot will be able to
fetch the sensor samples and respond in a good manner.
Generally, for a capable autopilot system following sensors
are necessary:

- 3-axis gyroscope

- 3-axis accelerometer

- 3-axis magnetometer

- barometer

- airspeed

Serial Peripheral Interface (SPI)
The Serial Peripheral Interface or SPI bus is a synchronous
serial data link that operates in full duplex mode. Within
APM, the bus is used for fast sensor data acquisition. The
autopilot uses the SPI bus to fetch information from gyro-
scopes, accelerometers and barometers. Several accelerom-
eters and gyroscopes are supported and their code resides
under the libraries/AP InertialSensor library. Similarly, the
barometers are abstracted under libraries/AP Baro.

The SPI interface for Linux-based systems separates the
logic of the bus into two interfaces5: LinuxSPIDeviceM-
anager which provides an abstraction for APM and Lin-
uxSPIDeviceDriver that allows to represent each one of the
different sensors. A set of LinuxSPIDeviceDriver objects is
enlisted under the static variable device of the LinuxSPI-
DeviceManager class :

LinuxSPIDeviceDriver LinuxSPIDeviceManager::_device

[LINUX_SPI_DEVICE_NUM_DEVICES] = {

// different SPI tables per board subtype

LinuxSPIDeviceDriver(1, AP_HAL::SPIDevice_

LSM9DS0_AM, SPI_MODE_3, 8, BBB_P9_17,

10*MHZ,10*MHZ),

LinuxSPIDeviceDriver(1, AP_HAL::SPIDevice_

5Refer to /libraries/AP HAL Linux/SPIDriver.[h and
cpp] for more details
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LSM9DS0_G, SPI_MODE_3, 8, BBB_P8_9,

10*MHZ,10*MHZ),

...

};

Each one of the SPI buses (the BeagleBone Black has 2) is
separated through a semaphore that avoids two sensor to
take the bus simultaneously.

It is worth mentioning that our tests concluded that with
the current implementation, the BeagleBone Black needed
about 10% of the CPU to run the full set of SPI transactions
for all the sensors (about 4000 SPI transactions per second).

Inter Integrated Circuits (I2C or I2C)
I2C bus has been traditionally used for short distance and
low speed communications between a processing unit and
its sensors. Compared to SPI which uses 3 +n lines of com-
munication where n is the number of devices, I2C only uses
two6. This reduction comes with a protocol that is slower.

Generally, the cabling (external cables) makes I2C less reli-
able however it is actually more robust than SPI. This fact is
because SPI has no system for error checking, whereas I2C
provides a way to confirm that a device is present. This is
the ultimate reason why it is used instead of SPI for external
devices over potentially noisy cables7.

I2C driver for Linux systems is implemented using the ioctl
system call and currently only supports a single bus per
instance. The bus is used to interoperate with several I2C-
capable devices. Some examples are EEPROM memory, air-
speed sensors, external barometers or external magnetome-
ters.

2.2 UART and MAVLink
The UART driver for the AP HAL Linux allows to use

one of the conventional UART ports8 for telemetry using
the MAVLink protocol[11].

In addition to the traditional serial ports used for teleme-
try, the Linux port of APM allows to use either a TCP or a
UDP socket that simulates the serial port over the network.
This functionality was implemented during the development
phase and has proved to be useful in many cases since it al-
lows different Ground Control Stations (GCS) to connect to
the autopilot using a TCP socket connection provided by
Ethernet, Ethernet-over-USB, Wi-Fi, etc. In the TCP case,
this functionality is implemented in the function:

tcp start connection(bool wait for connection)

that receives a parameter wait for connection which if
true, halts the autopilot initialization until it receives an

6Note that some SPI devices have additional data ready
lines per device.

7A better alternative than SPI or I2C would be CAN bus
which has much better integrity checking (eg. CRCs).

8There are 5 UART ports available in the BeagleBone
Black however only 4 of them are breaked out. Additionally
UART0 (mapped as /dev/ttyO0) can be used directly from
the BeagleBone Black Header P6

incoming connection9.

Generally it is not safe to use direct TCP over WiFi for
an autopilot since you are likely to lose control (connection)
of your vehicle and crash it. We would recommend to use
UDP instead. Refer to [3] for the UDP implementation.

2.3 GPIO
The General Purpose Input Output (GPIO) driver takes

care of digital I/Os. Some tasks doesn’t require much faster
responses for example, the status LED control is a pretty
straighforward task and it does not have strict timing con-
straints. On the contrary, the SPI CS control and even for
serving the purpose of enable pin GPIO is required to change
states with accurate timing. Even a minor overlap between
the states of two CS pins, for example, can result into failure
in grabbing correct sensor values.
There is a GPIO kernel driver for BeagleBone Black accesi-
ble through the sysfs10 interface however, interactions with
sysfs require read and write system calls which proved to
be slow for our interests (approximately 500us). In order
to obtain a GPIO driver with a quick response, the GPIO
registers of BeagleBone Black are directly accessed using the
mmap11 system call. This technique to change GPIO states
provides reponses that can be very accurate compared to
sysfs method.

2.4 Output generation

2.4.1 Radio Control (RC) Output using the PRU
RC Output driver for the AP HAL Linux layer of the

APM is divided into two execution spaces: one is the ARM
userspace (as a part of Ardupilot executable) and the second
one is in the Programmable Real-Time Unit (PRU) space.

The ARM side makes APM to write all the requisites for
the PWM output in a block of RAM shared with the PRUs.
These requisites are represented through 3 values: chan mask,
period and hi time. chan mask contains information about
the PWM channels that need to be enabled, period repre-
sents the period in micro-seconds of the PWM signal and
hi time represents the micro-seconds for which signal has
a digital high value. Although, period and hi time are ab-
stracted in micro-seconds by the driver functions, physically,
they are written to shared memory in the form of PRU timer
ticks.

It should be noted that PRU’s clock frequency is 200MHz
which is greater than 168MHz in STM32F4 used inside Pix-
Hawk and 16MHz in ATMega32U2 used inside APM autopi-
lot board. Furthermore, there are two such systems inside
TI’s AM335x microprocessor included in BeagleBone Black.
With all this processing power some may wonder why not

9There is a work in progress implementation
for a non-blocking way of connection available at
https://github.com/erlerobot/ardupilot/tree/
uart-tcp-nonblocking-wip

10sysfs is a virtual file system provided by the Linux kernel
to interface with kernel drivers

11mmap is a system call used to map registers into mem-
ory
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build most of the autopilot system within the PRU subsys-
tems. The reason is simple: although these processing units
have a reasonably fast instruction cycle, they have only 8KB
of data RAM (DRAM) and instruction RAM (IRAM) each.
With such a small quantity of data and instruction RAM, it
is easy to conclude that the PRU subsystems are not meant
for full fledged system development but as hard real-time
task handlers for applications running inside of the ARM
processor (both userspace and kernelspace). PRUs are be-
ing utilised to do exactly that: generate 12 PWM signals
(on 12 different pins) with independently variable(wrt other
channels) frequency and High time i.e. the time for which
the state of PWM pulse is high. The resolution of this PWM
output is just a couple of microseconds. Such accuracy and
resolution is very difficult and complicated to reach while
doing the same tasks inside Linux running on BeagleBone
Black.

The software running over PRU constantly polls the data
inside the shared RAM and puts polled values into a linked
list. There is no separate timer peripheral available inside
the PRU but each PRU has got Industrial Ethernet Periph-
eral (IEP) with timer as part of this system. IEP timer has
a resolution of 5ns and a 32bit register to store the value.
This timer is used to serve all the timing related purposes
inside PRU space. PRU-ICSS12 is one of the main reasons
why the Beaglebone Black was selected as the first Linux
platform to which APM is ported.

2.4.2 Tone Alarm
The Tone Alarm library for the AP HAL Linux allows to

create different acoustic tones. It makes use of the Enhanced
High-Resolution Pulse-Width Modulator (EHRPWM) periph-
eral inside the AM335x. The driver for using this peripheral
is already built inside the kernel and the user just needs to
interact with the sysfs interface provided by the driver. The
tone format supported by the developed library is Ring Tone
Text Transfer Language (RTTTL). RTTTL format was for-
merly used by old cell phone technology. The tones are
similar to the ones played by Pixhawk although the format
used by pixhawk is that used by PLAY function inside QBA-
SIC.Also, with the autopilot installed inside Linux it gives
us the advantage of being able to easily play natural voice
audios with higher level formats like .mp3. Currently these
more advanced compression mechanisms are not supported
and is considered as one of the future enhancements.

2.5 Input processing

PPM using PRU
Pulse Position Modulation (PPM) is one of the most com-
mon protocols used to transfer actuator setpoint values to
vehicle autopilot. Generally, RC receivers use this protocol
(either several PPM signals or a single PPM-SUM signal)
to send the commands received from the operator to the
autopilot. The problem of implementing PPM on Linux
machines is similar to the problem in the case of RC Out-
put 13: the system needs to be hard real-time.
Collecting information from PPM signals requires constant

12Programmable Real-Time Unit and Industrial Commu-
nication Subsystem

13refer to section 2.4.1

polling of the pins and accurately notifying these changes
which is quite difficult to accomplish in the linux userspace.
The availability of a second PRU makes it possible to do
very minimal but time intensive task of processing the level
changes of incoming PPM inputs. It should be noted that
the PRU only handles the timing task, no decoding is done
by software running on the PRU. Data sharing is done over a
ring buffer contained in shared memory and the communica-
tion is uni-directional: from the PRU to the ARM userspace.
Level changes of the PPM signal are pushed into the ring
buffer as per their time of occurences with a head pointer
incrementing and reseting after an overflow. The data in-
side the ring buffer is read and decoded by RCInput PPM
driver with a tail pointer incrementing until it touches the
head.

SBus and Spektrum DSMX using PRU
SBus and Spektrum DSMX protocols are proprietary RC
protocols from Futabar and Spektrumr respectively. Nowa-
days both of these protocols are supported by many third
party transceivers. The major motivation of using these
technology is that unlike PPM (refer 2.5) they support two
way communication and other than solely communicating
RC values designated by the user, they can also be trans-
mit telemetry data. The communication on the controller
and onboard transceiver happens over serial communication
with baud rates of about 100,000 bps for Futabar SBus and
115,200 bps for Spektrumr DSMX. In Beaglebone Black se-
rial’s kernel driver the option of selecting 100,000 bps bau-
drate is not available. So it was decided to build a serial
decoder as a part of ardupilot codebase. PRU’s purpose
in this case is same as in PPM-SUM method explained in
the last section i.e. to collect High time and Low times of
the signal and pass it over to userspace via shared RAM.
These times are then decoded and stored inside buffer to
be available to other parts of ardupilot. Since, the decoder
built right inside ardupilot proved to be very efficient, it
was decided to do the same with DSMX, even though the
baudrate 115200 is supported by Beaglebone Black, so as to
save Serial port for other purposes. It should be noted that
all three RC inputs(PPM-SUM, SBUS, DSMX) are mapped
to a single pin on PXF cape.

2.6 Storage
Parameters as discussed in section 1.3 require a non-volatile

storage location and also need to be accessed and changed
by the APM system. As we mentioned previously, the stor-
age area of the Parameters has been traditionally EEPROM
or FRAM but in the Linux port they can also be stored in-
side the file system and/or FRAM depending on the user
preferences.

Storage process is part of the IO thread (refer to section
2.7) which runs at the lowest priority within all threads.
The Storage driver serves two main purposes: 1) keep the
load parameter buffer with the corresponding values inside
the FRAM/File-System and 2) update FRAM/File-System
storage with the changes demanded by the user. Other than
that, parameters other non-volatile storage values includ-
ing waypoints, fence points and rally points required during
autonomous and semiautonomous missions. Although the
knowledge of which kind of value being stored is abstracted
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from the storage driver, it needs to keep both buffer and
storage updated with coherent values.

2.7 Real-time assessment
In order to address the maximum latencies described in

Table 1, the system should be designed with real-time14 as-
pects in mind. Most of the time constraints come from get-
ting sensor values. If these are not fetched at the right time
it will impact on the Attitude and Heading Reference Sys-
tem (AHRS) calculations and generate a set of wrong control
outputs that will cause the vehicles to misbehave.

The following subsections treat three different aspects that
address the real-time constraints: kernel latencies, thread
priority and the Programmable Real-Time Units (PRUs).

Kernel latencies
The Linux kernel has not been designed to meet real-time
constraints however there are some techniques that can help
tune the kernel to meeting certain deadlines. In this subsec-
tion we discuss the experiments performed with the different
kernels:

• vanilla kernel (userspace)

• vanilla kernel compiled with the PREEMPT option
(userspace)

• RT PREEMPT patches applied (userspace)

• Xenomai patches applied (userspace)

It is important to note that the tests were performed in the
userspace level. This is specially relevant for the Xenomai
case where previous work[2] have proved that this scenario
outperforms the rest of the kernels when the applications
run in kernel space.

In order to generate an intensive computational task the
stress linux command has been used. This command gen-
erates about 100% of computational load which is ideal for
testing the different kernels reaction. The tests have been
done using cyclictests, a benchmarking utility that measures
the latency of response to a stimulus. This utility imple-
ments the following pseudo-code:

c l o c k g e t t i m e ((&now ) )
next = now + par−>i n t e r v a l
while ( ! shutdown ) {

c l o c k na no s l e ep ((& next ) )
c l o c k g e t t i m e ((&now ) )
d i f f = c a l c d i f f (now , next )

# update s t a t−> min , max , t o t a l l a t ency , c y c l e s
# update the his togram data
next += i n t e r v a l

}

Results are presented in Figure 4 and show that the ker-
nel obtaining the lowest minimum and average latencies is
the vanilla (red) one. This result can be understood by the
fact that the rest of the kernels include an overhead. This

14A system’s real-time performance is assessed by the time
in which it completes the task and the time in which it
should have actually completed the task.

overhead allows them to control the timing in a more pre-
cise way however it results in a slightly bigger minimum and
average latencies.

Figure 4: Histogram showing performance tests of
different flavours of the Linux kernel v3.8.13: vanilla
(red), vanilla compiled with the PREEMPT option
(green), PREEMPT RT patches applied(blue) and
a kernel with the Xenomai patches (magenta). The
x-axis is measured in micro-seconds (us).

Table 2: Kernel benchmarking results
Kernel type Min (us) Avg (us) Max (us)
vanilla 14 19 193
PREEMPT 16 21 68
RT PREEMPT 20 27 91
Xenomai 15 23 630

More interesting than looking at the minimum and aver-
age latencies is to review the maximum ones presented in
Table 2. These values show that the kernel obtaining the
lowest maximum latencies is the PREEMPT kernel (green).

Besides the previous results obtained uniquely benchmark-
ing the kernels, we also produced a set of tests using the
APM implementation in Linux with the three best perform-
ing kernels. Results of this second benchmark test are shown
in Table 3. Each kernel is tested under three different loads:

• minimal load15

• CPU+I/O+Memory load

• only CPU load

Similarly to the previous case, to overload the Linux OS,
the stress16 command was used. It should also be noted
that there were other background application consuming re-
sources but were low enough to be ignored.

For each kernel three parameters were registered: %CPU,
%MEM and PERF. %CPU and %MEM are self-explanatory,
while PERF results can be understood by the following for-
mat:

15By load we mean the additional processes run over OS
to consume variety of resources like memory, I/Os and CPU

16Refer http://people.seas.harvard.edu/~apw/
stress/
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Table 3: APM PERF results

Kernel minimal load
2 CPU-bound processes,

1 I/O-bound process,
1 memory allocator process.

7 CPU-bound processes

PREEMPT RT %CPU %MEM PERF %CPU %MEM PERF %CPU %MEM PERF
General 11.7 7.1 3/4000 4692 17 7.1 9/4000 3075 12.7 7.1 0/4000 2748

Max observed 12.4 7.1 5/4000 5420 17.5 7.1 20/4000 3139 13 7.1 0/4000 2976
vanilla %CPU %MEM PERF %CPU %MEM PERF %CPU %MEM PERF

General 10.2 7.1 0/4000 2653 17.4 7.1 93/4000 4573 10.6 7.1 0/4000 2652
Max observed 10.5 7.1 0/4000 2766 18.7 7.1 119/4000 4386 11.2 7.1 0/4000 2748

PREEMPT %CPU %MEM PERF %CPU %MEM PERF %CPU %MEM PERF
General 11.2 7 0/4000 2655 17 7 0/4000 2939 11.7 7 0/4000 2666

Max observed 11.8 7 1/4000 3643 17.3 7 1/4000 3127 12 7 0/4000 2825

[NS ]/[NA] [TM ]

NS = Number of Slow Main Loops
NA = Number of Assessed Main Loops
TM = Maximum time taken out of all assessed Main Loops

These results confirm the previous benchmark results and
allow us to claim that: while using the version 3.8.13 of the
Linux kernel in the BeagleBone Black, the PREEMPT ker-
nel works best when it comes to minimum latencies.

It is interesting to note that the PREEMPT kernel17 outper-
forms the PREEMPT RT one18 regardless of what previous
work afirms [5]:

The 2.6 Linux kernel has an additional configura-
tion option, CONFIG PREEMPT, which causes
all kernel code outside of spinlock-protected re-
gions and interrupt handlers to be eligible for
non-voluntary preemption by higher priority ker-
nel threads. With this option, worst case latency
drops to (around) single digit milliseconds, al-
though some device drivers can have interrupt
handlers that will introduce latency much worse
than that. If a real-time Linux application re-
quires latencies smaller than single-digit millisec-
onds, use of the CONFIG PREEMPT RT patch
is highly recommended.

Thread priorities
Having a kernel with a controlled maximum latency is not
enough for an autopilot. It could be case that one thread
streaming the video takes the processor and makes the au-
topilot software miss several deadlines. This might easily
lead to a possible drift in the attitude of the vehicle and is
indeed not desired thereby we need the operating system to
be able to priorize the tasks that are most relevant for the
autopilot.

Since the Linux kernel schedules threads (the concept of
a process is an artificial construct seen mostly by things
outside the kernel) we should make sure that the threads
running in APM have the right set of priorities. All Linux
threads have one of the scheduling policies presented in Ta-
ble 4.

17CONFIG PREEMPT=y
18CONFIG PREEMPT=y and CON-

FIG PREEMPT RT=y

Table 4: Scheduling policies of the Linux threads
Policy Description

SCHED OTHER Also known as SCHED NORMAL,
is the default policy

SCHED BATCH Similar to SCHED OTHER but
with a throughput orientation

SCHED IDLE A lower priority than
SCHED OTHER

SCHED FIFO A first in/first out realtime policy

SCHED RR A round-robin realtime policy

SCHED OTHER or SCHED NORMAL are the default
scheduling policies for the Linux threads. These threads
have a dynamic priority that is changed by the system based
on the characteristics of the thread.The threads with a pol-
icy SCHED FIFO will run ahead of SCHED OTHER tasks19

in a first-in-first-out series. SCHED FIFO uses a fixed pri-
ority between 1 (lowest) and 99 (highest). The SCHED RR
policy is very similar to the SCHED FIFO policy. In the
SCHED RR policy, threads of equal priority are scheduled
in a round-robin fashion.

APM application threads are configured with with the schedul-
ing policy SCHED FIFO and with the priorities shown in
Table 5. This configuration has proved to be sufficient for
stable flights.

Table 5: APM priorities
Name Priority
APM LINUX TIMER PRIORITY 15
APM LINUX UART PRIORITY 14
APM LINUX RCIN PRIORITY 13
APM LINUX MAIN PRIORITY 12
APM LINUX TONEALARM PRIORITY 11
APM LINUX IO PRIORITY 10

2.8 ROS integration
19A SCHED FIFO thread with a priority of 1 will always

be scheduled ahead of any SCHED OTHER thread.
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The Robot Operative System (ROS)[13] is a framework
that provides libraries and tools that help software devel-
opers create robot applications20. As APM transitions to
Linux computers, it seems reasonable to provide integration
with middlewares such as ROS that would simplify the cre-
ation of robotic applications and behaviors.

Besides providing a unifying interface for developing robotics,
ROS is based on the the publish-susbsribe paradigm[1]. Cur-
rently, while using APM, if one wants to control a gimbal
camera using computer vision in Linux we generally set up
MAVProxy21 [15] and write a module for it (for example us-
ing the droneapi[8]). This method clearly introduces an un-
necessary intermediary: MAVProxy. We believe that remov-
ing this intermediary and taking inspiration from the the
publish-subscribe paradigm would bring considerable bene-
fits to the autopilot.

With the changes described in section 2.2, APM is now ac-
cesible through TCP sockets however the communication
with the autopilot is performed using the MAVLink pro-
tocol. This means that external programs (such as ROS
packages) that wish to speak with the autopilot, should do
it using the MAVLink protocol.

We evaluated different available ROS packages22 that use
MAVLink and allow ROS and APM’s code to interoperate.
The following subsections present this results23:

mavlink ros
The mavlink ros ROS package is a serial-MAVLink-to-ROS
bridge. The package creates a node that allows to send and
receive MAVLink packets through a serial interface.

The following listing shows a the nodes and topics created
by the mavlink ros package:

roo t@er l e robot : ˜# rosnode l i s t
/ m a v l i n k r o s s e r i a l
roo t@er l e robot : ˜# r o s t o p i c l i s t
/ fcu /imu
/ fcu /mag
/ fcu /raw/imu
/mavlink/ from
/mavlink/ to
/ rosout
/ rosout agg

roscopter
roscopter is a ROS package that implements a ROS interface
for APM using Mavlink 1.0 interface. It supports controlling
the autopilot by overriding the RC input commands, and it

20For more information about ROS refer to http://www.
ros.org/

21MAVProxy is a fully-functioning GCS for UAV’s. The
intent is for a minimalist, portable and extendable GCS for
any UAV supporting the MAVLink protocol.

22Refer to http://wiki.ros.org/Packages for a defini-
tion and a better understanding of the concept of ROS pack-
age

23For a more detailed analysis refer to http:
//erlerobotics.gitbooks.io/erlerobot/en/mavlink/
mavlinkros.html

publishes all the sensor data. Figure 5 shows the nodes and
topics created when working with roscopter.

Figure 5: roscopter topics and nodes pictured with
rosgraph

autopilot bridge
The autopilot bridge ROS package aims to create a bridge
for different autopilot protocols. For now it supports only
MAVLink. Figure 6 shows a use case.

Figure 6: autopilot bridge topics and nodes pictured
with rosgraph

mavros
mavros is a MAVLink extendable communication node for
ROS with a UDP proxy for different Ground Control Sta-
tions. This package implemments a MAVLink extendable
communication node for ROS that includes the following
features:

- Communication with autopilot via serial port, UDP or
TCP

- UDP proxy for Ground Control Station

- mavlink ros compatible ROS topics (Mavlink.msg)

- Plugin system for ROS-MAVLink translation

- Parameter manipulation tool

- Mission manipulation tool

- Waypoint manipulation tool

- Safety tool

Figure 7 pictures some of the topics and nodes created
when using the package.
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Figure 7: mavros topics and nodes pictured with
rosgraph

3. RESULTS
At the time of writing, the three drone platforms sup-

ported by APM (copter, plane and rover) have proved to
work reliably for simple flights using the Linux port. Still,
when compared to the performance obtained by the Pix-
hawk we perceive that there is room for improvement.

Some have expressed their concerns about whether Linux
can meet the real-time requirements while others argue that
an embedded microcontroller-based solution will be provide
an easier path to certification and at the same time will keep
the door open to use the latest available embedded board
(as a companion computer).

Although the Linux port needs to mature, we believe that
using this approach provides a unifying and well known fu-
ture for drones and their applications. Our work here has
proved that with some tuning, Linux can perfectly be used
to meet the real-time requirements needed by an autopilot
requiring only about 25% of the processor in the BeagleBone
Black. The remaining cycles could be used for other tasks
as well as to interoperate with other technologies.

4. FUTURE WORK

Back/front-end interfaces
The the back/front-end separation work is primarily moti-
vated by wanting to allow multiple sensors of the same type
on a Linux based board (eg. multiple gyros, multiple com-
passes etc).

ROS integration
For now we are using a serial port and MAVLink-capable
ROS packages to interoperate with APM. We also envision
the integration of ROS in a deeper level within the autopilot

having a separate thread using the ROS API to publish and
subscribe directly.
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