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Abstract—The analysis of biomolecular computer simulations has become a
challenge because the amount of output data is now routinely in the terabyte
range. We evaluated if this challenge can be met by a parallel map-reduce
approach with the Dask parallel computing library for task-graph based com-
puting coupled with our MDAnalysis Python library for the analysis of molecular
dynamics (MD) simulations. We performed a representative performance evalu-
ation, taking into account the highly heterogeneous computing environment that
researchers typically work in together with the diversity of existing file formats
for MD trajectory data. We found that the underlying storage system (solid state
drives, parallel file systems, or simple spinning platter disks) can be a deciding
performance factor that leads to data ingestion becoming the primary bottleneck
in the analysis work flow. However, the choice of the data file format can mitigate
the effect of the storage system; in particular, the commonly used Gromacs XTC
trajectory format, which is highly compressed, can exhibit strong scaling close
to ideal due to trading a decrease in global storage access load against an
increase in local per-core cpu-intensive decompression. Scaling was tested on a
single node and multiple nodes on national and local supercomputing resources
as well as typical workstations. In summary, we show that, due to the focus
on high interoperability in the scientific Python eco system, it is straightforward
to implement map-reduce with Dask in MDAnalysis and provide an in-depth
analysis of the considerations to obtain good parallel performance on HPC
resources.

Index Terms—MDAnalysis, High Performance Computing, Dask, Map-Reduce,
MPI for Python

Introduction

MDAnalysis is a Python library that provides users with access to
raw simulation data and enables structural and temporal analysis
of molecular dynamics (MD) trajectories generated by all major
MD simulation packages [GLB+16], [MADWB11]. MD trajecto-
ries are time series of positions (and sometimes also velocities)
of the simulated atoms or particles; using statistical mechanics
one can calculate experimental observables from these time series
[FS02], [MM14]. The size of these trajectories is growing as the
simulation times are being extended beyond micro-seconds and
larger systems with increasing numbers of atoms are simulated.
The amount of data to be analyzed is growing rapidly into the
terabyte range and analysis is increasingly becoming a bottleneck
in MD workflows [CR15]. Therefore, there is a need for high
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performance computing (HPC) approaches for the analysis of MD
trajectory data [TRB+08], [RCI13].

MDAnalysis does not yet provide a standard interface for
parallel analysis; instead, various existing parallel libraries such as
Python multiprocessing, joblib, and mpi4py [DPS05], [DPKC11]
are currently used to parallelize MDAnalysis-based code on a
case-by-case basis. Here we evaluated performance for parallel
map-reduce [DG08] type analysis with the Dask parallel comput-
ing library [Roc15] for task-graph based distributed computing on
HPC and local computing resources. Although Dask is able to
implement much more complex computations than map-reduce,
we chose Dask for this task because of its ease of use and because
we envisage using this approach for more complicated analysis
applications whose parallelization cannot be easily expressed as a
simple map-reduce algorithm.

As the computational task we performed a common task in
the analysis of the structural dynamics of proteins: we computed
the time series of the root mean squared distance (RMSD) of
the positions of all Cα atoms to their initial coordinates at time
0; for each time step ("frame") in the trajectory, rigid body
degrees of freedom (translations and rotations) have to be removed
through an optimal structural superposition that minimizes the
RMSD [MM14] (Figure 1). A range of commonly used MD file
formats (CHARMM/NAMD DCD [BBIM+09], Gromacs XTC
[AMS+15], Amber NCDF [CCD+05]) and different trajectory
sizes were benchmarked.

We looked at different HPC resources including national
supercomputers (XSEDE TACC Stampede and SDSC Comet),
university supercomputers (Arizona State University Research
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Fig. 1: Calculation of the root mean square distance (RMSD) of
a protein structure from the starting conformation via map-reduce
with Dask. A RMSD as a function of time, with partial time series
colored by trajectory block. B Dask task graph for splitting the RMSD
calculation into three trajectory blocks.

http://dask.pydata.org
http://mdanalysis.org
http://mdanalysis.org
mailto:obeckste@asu.edu
https://docs.python.org/2/library/multiprocessing.html
https://pypi.python.org/pypi/joblib
https://mpi4py.scipy.org/
http://dask.pydata.org
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Computing Saguaro), and local resources (Gigabit networked
multi-core workstations). The tested resources are parallel and het-
erogeneous with different CPUs, file systems, high speed networks
and are suitable for high-performance distributed computing at
various levels of parallelization. Different storage systems such as
solid state drives (SSDs), hard disk drives (HDDs), network file
system (NFS), and the parallel Lustre file system (using HDDs)
were tested to examine the effect of I/O on the performance.
The benchmarks were performed both on a single node and
across multiple nodes using the multiprocessing and distributed
schedulers in the Dask library.

We previously showed that the overall computational cost
scales directly with the length of the trajectory, i.e., the weak
scaling is close to ideal and is fairly independent from other factors
[KB17]. Here we focus on the strong scaling behavior, i.e., the
dependence of overall run time on the number of CPU cores used.
Competition for access to the same file from multiple processes
appears to be a bootleneck and thefore the storage system is an
important determinant of performance. But because the trajectory
file format dictates the data access pattern, overall performance
also depends on the actual data format, with some formats being
more robust against storage system specifics than others. Overall,
good strong scaling performance could be obtained for a single
node but robust across-node performance remained challenging.
In order to identify performance bottlenecks we examined sev-
eral other factors including the effect of striping in the parallel
Lustre file system, oversubscribing (using more tasks than Dask
workers), the performance of the Dask scheduler itself, and we
also benchmarked an MPI-based implementation in contrast to the
Dask approach. From these tests we tentatively conclude that poor
across-nodes performance is rooted in contention on the shared
network that may slow down individual tasks and lead to poor
load balancing. Nevertheless, Dask with MDAnalysis appears to
be a promising approach for high-level parallelization for analysis
of MD trajectories, especially at moderate CPU core numbers.

Methods

We implemented a simple map-reduce scheme to parallelize pro-
cessing of trajectories over contiguous blocks. We tested libraries
in the following versions: MDAnalysis 0.15.0, Dask 0.12.0 (also
0.13.0), distributed 1.14.3 (also 1.15.1), and NumPy 1.11.2 (also
1.12.0) [VCV11].
import numpy as np
import MDAnalysis as mda
from MDAnalysis.analysis.rms import rmsd

The trajectory is split into n_blocks blocks with inital frame
start and final frame stop set for each block. The calculation
on each block (function block_rmsd(), corresponding to the
map step) is delayed with the delayed() function in Dask:
from dask.delayed import delayed

def analyze_rmsd(ag, n_blocks):
"""RMSD of AtomGroup ag, parallelized n_blocks"""
ref0 = ag.positions.copy()
bsize = int(np.ceil(

ag.universe.trajectory.n_frames \
/ float(n_blocks)))

blocks = []
for iblock in range(n_blocks):

start, stop = iblock*bsize, (iblock+1)*bsize
out = delayed(block_rmsd, pure=True)(

ag.indices, ag.universe.filename,
ag.universe.trajectory.filename,

ref0, start, stop)
blocks.append(out)

return delayed(np.vstack)(blocks)

In the reduce step, the partial time series from each block are
concatenated in the correct order (np.vstack, see Figure 1 A);
because results from delayed objects are used, this step also has to
be delayed.

As computational load we implement the calculation of the
root mean square distance (RMSD) of the Cα atoms of the protein
adenylate kinase [SB14] when fitted to a reference structure using
an optimal rigid body superposition [MM14], using the qcprot
implementation [LAT10] in MDAnalysis [GLB+16]. The RMSD
is calculated for each trajectory frame in each block by iterating
over u.trajectory[start:stop]:
def block_rmsd(index, topology, trajectory, ref0,

start, stop):
u = mda.Universe(topology, trajectory)
ag = u.atoms[index]
out = np.zeros([stop-start, 2])
for i, ts in enumerate(

u.trajectory[start:stop]):
out[i, :] = ts.time, rmsd(ag.positions, ref0,

center=True, superposition=True)
return out

Dask produces a task graph (Figure 1 B) and the computation of
the graph is executed in parallel through a Dask scheduler such as
dask.multiprocessing (or dask.distributed):
from dask.multiprocessing import get

u = mda.Universe(PSF, DCD)
ag = u.select_atoms("protein and name CA")
result = analyze_rmsd(ag, n_blocks)
timeseries = result.compute(get=get)

The complete code for benchmarking is available from
https://github.com/Becksteinlab/Parallel-analysis-in-the-
MDAnalysis-Library under the MIT License.

The data files consist of a topology file adk4AKE.psf
(in CHARMM PSF format; N = 3341 atoms) and a trajectory
1ake_007-nowater-core-dt240ps.dcd (DCD format)
of length 1.004 µs with 4187 frames; both are freely available
from figshare at DOI 10.6084/m9.figshare.5108170 [SB17]. Files
in XTC and NCDF formats are generated from the DCD on the
fly using MDAnalysis. To avoid operating system caching, files
were copied and only used once for each benchmark. All results
for Dask distributed were obtained across three nodes on different
clusters.

Trajectories with different number of frames per trajectory
were analyzed to assess the effect of trajectory file size. These tra-
jectories were generated by concatenating the base trajectory 50,
100, 300, and 600 times and are referred to as, e.g., "DCD300x"
or "XTC600x". Run time was analyzed on single nodes (1–24
CPU cores) and up to three nodes (1–72 cores) as function of
the number of cores (strong scaling behavior) and trajectory sizes
(weak scaling). However, here we only present strong scaling data
for the 300x and 600x trajectory sizes, which represent typical
medium size results. For an analysis of the full data including
weak scaling results set see the Technical Report [KB17].

The DCD file format is a binary representation for 32-bit
floating point numbers (accuracy of positions about 10−6 Å) and
the DCD300x trajectory has a file size of 47 GB (DCD600x is
twice as much); XTC is a lossy compressed format that effectively
rounds floats to the second decimal (accuracy about 10−2 Å, which
is sufficient for typical analysis) and XTC300x is only 15 GB.

https://distributed.readthedocs.io/
https://distributed.readthedocs.io/
https://github.com/Becksteinlab/Parallel-analysis-in-the-MDAnalysis-Library
https://github.com/Becksteinlab/Parallel-analysis-in-the-MDAnalysis-Library
https://doi.org/10.6084/m9.figshare.5108170
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Amber NCDF is implemented with netCDF classic format version
3.6.0 (same accuracy as DCD) and trajectories are about the same
size as DCD. DCD and NCDF natively allow fast random access to
frames or blocks of frames, which is critical to implement the map-
reduce algorithm. XTC does not natively support frame seeking
but MDAnalysis implements a fast frame scanning algorithm for
XTC files that caches all frame offsets and so enables random
access for the XTC format, too [GLB+16].

Performance was quantified by measuring the average time
per trajectory frame to load data from storage into memory (I/O
time per frame, tI/O), the average time to complete the RMSD
calculation (compute time per frame, tcomp), and the total wall
time for job execution tN when using N CPU cores. Strong scaling
was assessed by calculating the speed up S(N) = t1/tN and the
efficiency E(N) = S(N)/N.

Results and Discussion

Trajectories from MD simulations record snapshots of the posi-
tions of all particles are regular time intervals. A snapshot at a
specified time point is called a frame. MDAnalysis only loads a
single frame into memory at any time [GLB+16], [MADWB11]
to allow the analysis of large trajectories that may contain, for
example, nframes = 107 frames in total. In a map-reduce approach,
N processes will iterate in parallel over N chunks of the trajectory,
each containing nframes/N frames. Because frames are loaded
serially, the run time scales directly with nframes and the weak
scaling behavior (as a function of trajectory length) is trivially
close to ideal as seen from the data in [KB17]. Weak scaling
with the system size also appears to be fairly linear, according to
preliminary data (not shown). Therefore, in the following we focus
exclusively on the harder problem of strong scaling, i.e., reducing
the run time by employing parallelism.

Effect of File Format on I/O

We first sought to quantify the effect of the trajectory format on the
analysis performance. The overall run time depends strongly on
the trajectory file format as well as the underlying storage system
as shown for the 300x trajectories in Figure 2; results for other
trajectory sizes are similar (see [KB17]) except for the smallest
50x trajectories where possibly caching effects tend to improve
overall performance. Using DCD files with SSDs on a single node
(Figure 2 A) is about one order of magnitude faster than the other
formats (Figure 2 B, C) and scales near linearly for small CPU
core counts (N ≤ 12). However, DCD does not scale at all with
other storage systems such as HDD of NFS and run time only
improves up to N = 4 on the Lustre file system. On the other hand,
the run time with NCDF and especially with XTC trajectories
improves linearly with increasing N, with XTC on Lustre and
N = 24 cores almost obtaining the best DCD run time of about 30
s (SSD, N = 12); at the highest single node core count N = 24,
XTC on SSD performs even better (run time about 25 s). For larger
N on multiple nodes, only a shared file system (Lustre or NFS)
based on HDD was available. All three file formats only show
small improvements in run time at higher core counts (N > 24) on
the Lustre file system on supercomputers with fast interconnects
and no improvements on NFS over Gigabit (Figure 2 D–F).

In order to explain the differences in performance and scaling
of the file formats, we analyzed the time to load the coordinates
of a single frame from storage into memory (tI/O) and the time to
perform the computation on a single frame using the in-memory
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Fig. 2: Comparison of total job execution time tN for different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (1–24 CPU cores, A – C) and Dask distributed on up to three
nodes (1–72 CPU cores, D – F). The trajectory was split into M
blocks and computations were performed using N = M CPU cores.
The runs were performed on different resources (ASU RC Saguaro,
SDSC Comet, TACC Stampede, local workstations with different
storage systems (locally attached HDD, remote HDD (via network
file system, NFS), locally attached SSD, Lustre parallel file system
with a single stripe). A, D CHARMM/NAMD DCD. B, E Gromacs
XTC. C, F Amber NetCDF.
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Fig. 3: Comparison of I/O time tI/O per frame between different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (A – C) and Dask distributed on multiple nodes (D – F). A, D
CHARMM/NAMD DCD. B, E Gromacs XTC. C, F Amber NetCDF.
All parameters as in Fig. 2.

data (tcomp). As expected, tcomp is independent from the file format,
nframes, and N and only depends on the CPU type itself (mean
and standard deviation on SDSC Comet 0.098±0.004 ms, TACC
Stampede 0.133 ± 0.000 ms, ASU RC Saguaro 0.174 ± 0.000
ms, local workstations 0.225± 0.022 ms, see [KB17]). Figure 3,
however shows how tI/O (for the 300x trajectories) varies widely
and in most cases, is at least an order of magnitude larger than
tcomp. The exception is tI/O for the DCD file format using SSDs,
which remains small (0.06±0.04 ms on SDSC Comet) and almost

https://www.unidata.ucar.edu/netcdf/docs
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Fig. 4: I/O pattern for reading frames in parallel from com-
monly used MD trajectory formats. A Gromacs XTC file format. B
CHARMM/NAMD DCD file format and Amber NCDF format.

constant with N ≤ 12 (Figure 3 A) and as a result, the DCD
file format shows good scaling and the best performance on a
single node. For HDD-based storage, the time to read data from
a DCD frame increases with the number of processes that are
simultaneously trying to access the DCD file. XTC and NCDF
show flat tI/O with N on a single node (Figure 3 B, C) and even
for multiple nodes, the time to ingest a frame of a XTC trajectory
is almost constant, except for NFS, which broadly shows poor
performance (Figure 3 E, F).

Depending on the file format the loading time of frames into
memory will be different, as illustrated in Figure 4. The XTC file
format is compressed and has a smaller file size when compared
to the other formats. When a compressed XTC frame is loaded
into memory, it is immediately decompressed (see Figure 4 A).
During decompression by one process, the file system allows the
next process to load its requested frame into memory. As a result,
competition for file access between processes and overall wait time
is reduced and tI/O remains almost constant, even for large number
of parallel processes (Figure 3 B, E). Neither DCD nor NCDF
files are compressed and multiple processes compete for access to
the file (Figure 4 B) although NCDF files is a more complicated
file format than DCD and has additional computational overhead.
Therefore, for DCD the I/O time per frame is very small as
compared to other formats when the number of processes is small
(and the storage is fast), but even at low levels of parallelization,
tI/O increases due to the overlapping of per frame trajectory data
access (Figure 3 A, D). Data access with NCDF is slower but due
to the additional computational overhead, is amenable to some
level of parallelization (Figure 3 C, F).

Performance Comparison between Different File Format

Figure 5 shows speed up comparison for 300x trajectories between
multiprocessing and distributed schedulers. The DCD file format
does not scale at all by increasing parallelism across different
cores (Figure 5 A, D). This is due to the fact that IO time does not
remain level by increasing the number of processes as discussed
in the previous section. Our study showed that SSDs can be very
helpful and can lead to better performance for all file formats
especially DCD file format (Figure 5 A, D). XTC file format
expresses reasonably well scaling with the increase in parallelism
up to the limit of 24 (single node) for both multiprocessing and
distributed scheduler. The NCDF file format scales very well up
to 8 cores for all trajectory sizes. As the number of prcocesses
increases the IO time also increases for NCDF file format and as
a result the scaling is limited up to 8 CPU cores. For XTC file
format, the I/O time is leveled up to 50 cores and compute time
also remains level across parallelism up to 72 cores. Therefore, it
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Fig. 5: Speed-up S for the analysis of the 300x trajectory on HPC
resources using Dask multiprocessing (single node, A – C) and
distributed (up to three nodes, D – F). The dashed line shows the
ideal limit of strong scaling. All other parameters as in Fig. 3.

is expected to achieve speed up, across parallelism up to 50 cores.
However, based on Figure 5 E, XTC format only scales well up to
20 cores. Based on the present result, there is a difference between
job execution time, and total compute and I/O time averaged over
all processes (Figure 6 A). This difference increases with increase
in trajectory size for all file formats for all machines (For details
refer to the Technical Report [KB17]). This time difference is
much smaller for Comet and Stampede as compared to other
machines. The difference between job execution time and total
compute and I/O time measured inside our code is very small for
the results obtained using multiprocessing scheduler; however, it
is considerable for the results obtained using distributed scheduler.

In order to obtain more insight on the underlying network
behavior both at the worker level and communication level and
in order to be able to see where this difference originates from
we have used the web-interface of the Dask library. This web-
interface is launched whenever Dask scheduler is launched. Figure
7 B, shows the comparison between timing measurements from
instrumentation inside the Python code and Dask web-interface
(average nframes/N(tcomp + tI/O), max[nframes/N(tcomp + tI/O)], and
tN) for XTC600x on SDSC Comet for two different CPU
cores (Ncores = 30, Ncores = 54). For Ncores = 54, the measured
max[nframes/N(tcomp + tI/O)] through our instrumentation inside
the Python code and web-interface shows two different values.
max[nframes/N(tcomp + tI/O)] measured using Dask web-interface
is closer to the measured job execution time. The reason why
max[nframes/N(tcomp + tI/O)] measured using Dask web-interface
and our instrumentation are different is open to question. Based
on task stream plot shown in Figure 7 A, the "straggler" task (#32)
is much slower as compared to others and as a result slows down
the whole process. But, the reason why the "straggler" task (#32)
is delayed is not clear. The next sections in the present study aim
to find the reason for which we are seeing these delayed tasks (so
called "stragglers").

Challenges for Good HPC Performance

It should be noted that all the present results were obtained during
normal, multi-user, production periods on all machines. In fact,



DRAFT

PARALLEL ANALYSIS IN MDANALYSIS USING THE DASK PARALLEL COMPUTING LIBRARY 5

A B C

100 101

Number of CPU Cores

101

102

103

104

t c
om

pu
te

+
t I
O
(s
)

XTC600x

10 20 30 40 50 60 70
Number of CPU Cores

0

100

200

300

400

500

T
im

e 
di

ffe
re

nc
e 

(s
)

XTC600x

100 101

Number of CPU Cores

101

102

103

104

T
ot

al
 ti

m
e 

(s
)

XTC600x

Fig. 6: Detailed analysis of timings for the 600x XTC trajectory on
HPC resources using Dask distributed. All other parameters as in
Fig. 3. A Total time to solution (wall clock), tN for N trajectory blocks
using Ncores = N CPU cores. B Sum of the I/O time per frame tI/O
and the (constant) time for the RMSD computation tcomp (data not
shown). C Difference tN −nframes(tI/O + tcomp), accounting for the cost
of communications and other overheads.
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Fig. 7: Evidence for uneven distribution of task execution times,
shown for the XTC600x trajectory on SDSC Comet on the Lustre
file system. A Task stream plot showing the fraction of time spent on
different parts of the task by each worker, obtained using the Dask
web-interface. (54 tasks for 54 workers that used N = 54 cores).
Green bars ("Compute") represent time spent on RMSD calculations,
including trajectory I/O, red bars show data transfer. A "straggler"
task (#32) takes much longer than any other task and thus determines
the total execution time. B Comparison between timing measurements
from instrumentation inside the Python code (average compute and
I/O time per task nframes/N (tcomp + tI/O), max[nframes/N (tcomp + tI/O)],
and tN) and Dask web-interface for N = 30 and N = 54 cores.

the time the jobs take to run is affected by the other jobs on the
system. This is true even when the job is the only one using a
particular node, which was the case in the present study. There
are shared resources such as network file systems that all the
nodes use. The high speed interconnect that enables parallel jobs
to run is also a shared resource. The more jobs are running
on the cluster, the more contention there is for these resources.
As a result, the same job runs at different times will take a
different amount of time to complete. In addition, remarkable
fluctuations in task completion time across different processes
is observed through monitoring network behavior using Dask
web-interface. These fluctuations differ in each repeat and are
dependent on the hardware and network. These factors further
complicate any attempts at benchmarking. Therefore, this makes
it really hard to optimize codes, since it is hard to determine
whether any changes in the code are having a positive effect.
This is because the margin of error introduced by the non-
deterministic aspects of the cluster’s environment is greater than
the performance improvements the changes might produce. There
is also variability in network latency, in addition to the variability
in underlying hardware in each machine. This causes the results to
vary significantly across different machines. Since our Map-reduce
job is pleasantly parallel, each or a subset of computations can be
executed independently on each process. Also, the claculations
are load balanced which means that all of our processes have the
same amount of work to do (One block per process). Therefore,
observing these stragglers shown in Figure 7 A is unexpected and
the following sections in the present study aim to identify the
reason for which we are seeing these stragglers.

Performance Optimization

In the present section, we have tested different features of our
computing environment to see if we can identify the reason
for those stragglers and improve performance by avoiding the
stragglers. Lustre striping, oversubscribing, scheduler throughput
are tested to examine their effect on the performance. In addition,
scheduler plugin is also used to validate our observations from
Dask web-interface. In fact, we create a plugin that performs
logging whenever a task changes state. Through the scheduler
plugin we will be able to get lots of information about a task
whenever it finishes computing.

Effect of Lustre Striping: As discussed before, the over-
lapping of data requests from different processes can lead to
higher I/O time and as a result poor performance. This is strongly
affecting our results since our compute per frame is not heavy and
therefore the overlapping of data requests will be more frequent
depending on the file format. The effect on the performance is
strongly dependent on file format and some formats like XTC file
formats which take advantage of in-built decompression are less
affected by the contention from many data requests from many
processes. However, when extending to multiple nodes, even XTC
files are affected by this, as is also shown in Figure 3 B, E. In
Lustre, a copy of the shared file can be in different physical storage
devices (OSTs). Single shared files can have a stripe count equal
to the number of nodes or processes which access the file. In the
present study, we set the stripe count equal to three which is equal
to the number of nodes used for our benchmark using distributed
scheduler. This may be helpful to improve performance, since all
the processes from each node will have a copy of the file and as
a result the contention due to many data requests will decrease.
Figure 8 show the speed up and I/O time per frame plots obtained
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Fig. 8: Effect of striping with the Lustre distributed file system.
The XTC600x trajectory was analyzed on HPC resources (ASU RC
Saguaro, SDSC Comet) with Dask distributed and a Lustre stripe
count of three, i.e., data were replicated across three servers. One
trajectory block was assigned to each worker, i.e., the number of tasks
equaled the number of CPU cores. A Speed-up. B Average I/O time
per frame, tI/O.
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Fig. 9: Detailed timings for three-fold Lustre striping (see Fig. 8 for
other parameters). A Total time to solution (wall clock), tN for M
trajectory blocks using N = M CPU cores. B tcomp + tI/O, average sum
of the I/O time (tI/O, Fig. 8 B) and the (constant) time for the RMSD
computation tcomp (data not shown). C Difference tN − nframes(tI/O +
tcomp), accounting for communications and overheads that are not
directly measured.

for XTC file format (600X) when striping is activated. As can
be seen, IO time is level across parallelism up to 72 cores which
means that striping is helpful for leveling IO time per frame across
all cores. However, based on the timing plots shown in Figure 9,
there is a time difference between average total compute and I/O
time and job execution time which is due to the stragglers and as
a result the overall speed-up is not improved.

Effect of Oversubscribing: One useful way to robust our
code to uncertainty in computations is to submit much more tasks
than the number of cores. This may allow Dask to load balance
appropriately, and as a result cover the extra time when there are
some stragglers. In order for this, we set the number M of tasks to
be three times the number of workers, M = 3N, where the number
of workers N = Ncores equals the number of CPU cores. Lustre-
striping is also activated and is set to three which is also equal to
number of nodes. Figures 10 show the speed up, and I/O time per
frame plots obtained for XTC file format (XTC600x). As can be
seen, IO time is level across parallelism up to 72 cores because of
striping. However, based on the timing plots shown in Figure 11,
there is a time difference between average total compute and I/O
time and job execution time which reveals that oversubscribing
does not help to remove the stragglers and as a result the overall
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Fig. 10: Effect of three-fold oversubscribing distributed workers.
The XTC600x trajectory was analyzed on HPC resources (Lustre
stripe count of three) and local NFS using Dask distributed where
M number of trajectory blocks (tasks) is three times the number of
worker processes, M = 3N, and there is one worker per CPU core. A
Speed-up S. B I/O time tI/O per frame.
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Fig. 11: Detailed timings for three-fold oversubscribing distributed
workers. A Total time to solution (wall clock), tN . B tcomp + tI/O, aver-
age sum of tI/O (Fig. 10 B) and the (constant) computation time tcomp
(data not shown) per frame. C Difference tN − nframes(tI/O + tcomp),
accounting for communications and overheads that are not directly
measured. Other parameters as in Fig. 10.

speed-up is not improved. Figure 12 shows time comparison on
different parts of the calculations. Bars are subdivided into the
contribution of overhead in the calculations, communication time
and RMSD calculation across parallelism from 1 to 72. RMSD
calculation is the time spent on RMSD tasks, and communication
time is the time spent for gathering RMSD arrays calculated by
each processor rank. As can be seen in Figure 12, the overhead in
the calculations is small up to 24 cores (Single node). The largest
fraction of the calculations is spent on the calculation of RMSD
arrays (computation time) which decreases pretty well as the
number of cores increases from 1 to 72. However, when extending
to multiple nodes the time due to overhead and communication
increases which affects the overall performance.

Examining Scheduler Throughput

An experiment were executed with Dask schedulers (multi-
threaded, multiprocessing and distributed) on Stampede. In each
run a total of 100000 zero workload tasks were executed. Figure
13 A shows the Throughput of each scheduler over time on a
single Stampede node - Dask scheduler and worker are on the
same node. Each value is the mean throughput value of several
runs for each scheduler.

Our understanding is that the most efficient scheduler is the
distributed scheduler, especially when there is one worker process
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Fig. 12: Time comparison for three-fold oversubscribing distributed
workers (XTC600x on SDSC Comet on Lustre with stripe count three).
Bars indicate the mean total execution time tN (averaged over five
repeats) as a function of available worker processes, with one worker
per CPU core. Time for compute + I/O (red, see Fig. 11 B) dominates
for smaller core counts (up to one node, 24) but is swamped by
communication and overheads (blue, see see Fig. 11 C) beyond a
single node.
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Fig. 13: Benchmark of Dask scheduler throughput on TACC Stam-
pede. Performance is measured by the number of empty pass tasks
that were executed in a second. The scheduler had to lauch 100,000
tasks and the run ended when all tasks had been run. A single
node with different schedulers; multithreading and multiprocessing
are almost indistinguishable from each other. B multiple nodes with
the distributed scheduler and 1 worker process per node. C multiple
nodes with the distributed scheduler and 16 worker processes per
node.

for each available core. Also, the distributed with just one worker
process and a number of threads equal to the number of available
cores are still able to schedule and execute these 100,000 tasks.
The multiprocessing and multithreading schedulers have similar
behavior again, but need significantly more time to finish com-
pared to the distributed.

Figure 13 B shows the distributed scheduler’s throughput over
time when the number of Nodes increases. Each node has a single
worker process and each worker launches a thread to execute a
task (maximum 16 threads per worker). By increasing the number
of nodes we can see that Dask’s throughput increases by the
same factor. Figure 13 C shows the same execution with the
Dask cluster being setup to have one worker process per core.
In this figure, the scheduler does not reach its steady throughput
state, compared to 13 B, thus it is not clear what is the effect of
the extra nodes. Another interesting aspect is that when a worker
process is assigned to each core, Dask’s Throughput is an order
of magnitude larger allowing for even faster scheduling decisions
and task execution.

Scheduler Plugin Results

In addition to Dask web-interface, we implemented a Dask
scheduler plugin. This plugin captures task execution events from
the scheduler and their respective timestamps. These captured
profiles were later used to analyze the execution of XTC 300x
on Stampede. In all the previous benchmarks in the present study,

RMSD
Blocks

Run 1 Run 2 Run 3 Run 4 Run 5

1 0 0 1 0 0
2 8 5 7 7 2
3 48 54 56 50 60
4 8 5 0 7 2

TABLE 1: Summary of the number of worker processes per submitted
RMSD blocks. Each column shows the total number of Worker process
that executed a number of RMSD blocks per run. Executed on TACC
Stampede utilizing 64 cores
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Fig. 14: Task Histogram of RMSD with MDAnalysis and Dask with
XTC 300x over 64 cores on Stampede with 192 blocks. Each histogram
is a different run of the same execution. The X axis is worker process
ID and the Y axis the number of tasks submitted to that process.

number of blocks is equal to the number of processes (N = Ncores).
However, when extended to multiple nodes the whole calculation
is delayed due to the stragglers and as a result the overall
performance was affected. In the present section, we repeated
the benchmark where the number of blocks is three times the
number of processes (N = 3∗Ncores). We were able to measure how
many tasks are submitted per worker process. This exexutions are
performed to see why oversubscribing introduced in the previous
section was not helpful. Table 1 summarizes the results and Figure
14 shows in detail how RMSD blocks were submitted per worker
process in each run. As it is shown the execution is not balanced
between worker processes. Although, most workers are calculating
three RMSD blocks, as it is expected by oversubscribing, there are
a few workers that are receiving a smaller number of blocks and
workers that receive more than three. Therefore, we can conclude
that over-subscription does not necessarily lead to a balanced
execution, adding additional execution time.

Comparison of Performance of Map-Reduce Job Between MPI for
Python and Dask Frameworks

Based on the results presented in previous sections, it turned out
that the stragglers are not because of the scheduler throughput.
Lustre striping improves I/O time; however, the job computation
is still delayed due to stragglers and as a result performance is
not improved. In order to make sure if the stragglers are created
because of scheduler overhead in Dask framework we have tried
to measure the performance of our Map-Reduce job using an
MPI-based implementation, which makes use of mpi4py [DPS05],
[DPKC11]. This will let us figure out whether the stragglers
observed in the present benchmark using Dask parallel library are
as a result of scheduler overhead or any other factor than scheduler.
The comparison is performed on XTC 600x using SDSC Comet.
Figure 15 A shows time comparison on different parts of the

https://github.com/radical-cybertools/midas/blob/master/Dask/schedulerPlugin.py
https://mpi4py.scipy.org/
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Fig. 15: A Time comparison on different parts of the calculations
obtained using MPI for python. In this aggregate view, the time spent
on different parts of the calculation are combined for different number
of processes tested. The bars are subdivided into the contributions
of each time spent on different parts. Reported values are the mean
values across 5 repeats. A inset Total job execution time along with
the mean and standard deviations across 5 repeats across parallelism
from 1 to 72 obtained using MPI for python. The calculations are
performed on XTC 600x using SDSC Comet. B Comparison of job
execution time across processor ranks for 72 CPU cores obtained
using MPI for python. There are several stragglers which slow down
the whole process.

calculations. Bars are subdivided into the contribution of overhead
in the calculations, communication time and RMSD calculation
across parallelism from 1 to 72. Computation time is the time spent
on RMSD tasks, and communication time is the time spent for
gathering RMSD arrays calculated by each processor rank. Total
time is the summation of communication time, computation time
and the overhead in the calculations. As can be seen in Figure 15
A, the overhead in the calculations is small up to 24 cores (Single
node). Based on Figure 15, the communication time is very small
up to a single node and increases as the calculations are extended
to multiple nodes. Overall, only a small fraction of total time is
spent on communications. Overhead in the calculations is also
very small. The largest fraction of the calculations is spent on the
calculation of RMSD arrays (computation time) which decreases
pretty well as the number of cores increases for a sigle node.
However, when extending to multiple nodes computation time also
increases. We believe that this is caused due to stragglers which is
also confirmed based on Figure 15 A.

Figure 15 B, shows comparison of job execution time across
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Fig. 16: A Speed-up and B efficiency plots for benchmark performed
on XTC 600x on SDSC Comet across parallelism from 1 to 72 using
MPI for python. Five repeats are run for each block size to collect
statistics and the reported values are the mean values across 5 repeats.

all ranks tested with 72 cores. As seen in Figure 15 B, there are
several slow processes as compared to others which slow down
the whole process and as a result affect the overall performance.
These stragglers are observed in all cases when number of cores
is more than 24 (extended to multiple cores). However, they are
only shown for N = 72 CPU cores for the sake of brevity.

Overall speed-up along with the efficiency plots are shown
in Figure 16. As seen the overall performance is affected when
extended to multiple nodes (more than 24 CPU cores).

Based on the results from MPI for python the reason for
stragglers is not the Dask scheduler overhead. In order to make
sure that the reason for stragglers is not the qcprot RMSD calcu-
lation we tested the performance of our code using another metric
MDAnalysis.lib.distances.distance_array. This metric calculates
all distances between a reference set and another configuration.
Even with the new metric the same behavior observed and hence
we can conclude that qcprot RMSD calculation is not the reason
why we are seeing the stragglers. Further studies are necessary to
identify the underlying reason for the stragglers observed in the
present benchmark.

Conclusions

In summary, Dask together with MDAnalysis makes it straight-
forward to implement parallel analysis of MD trajectories within
a map-reduce scheme. We show that obtaining good parallel
performance depends on multiple factors such as storage system
and trajectory file format and provide guidelines for how to
optimize trajectory analysis throughput within the constraints of
a heterogeneous research computing environment. Nevertheless,
implementing robust parallel trajectory analysis that scales over
many nodes remains a challenge.
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