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Abstract—The analysis of biomolecular computer simulations has become a
challenge because the amount of output data is now routinely in the terabyte
range. We evaluated if this challenge can be met by a parallel map-reduce
approach with the Dask parallel computing library for task-graph based com-
puting coupled with our MDAnalysis Python library for the analysis of molecular
dynamics (MD) simulations. We performed a representative performance evalu-
ation, taking into account the highly heterogeneous computing environment that
researchers typically work in together with the diversity of existing file formats
for MD trajectory data. We found that the underlying storage system (solid state
drives, parallel file systems, or simple spinning platter disks) can be a deciding
performance factor that leads to data ingestion becoming the primary bottleneck
in the analysis work flow. However, the choice of the data file format can mitigate
the effect of the storage system; in particular, the commonly used Gromacs XTC
trajectory format, which is highly compressed, can exhibit strong scaling close to
ideal due to trading a decrease in global storage access load against an increase
in local per-core CPU-intensive decompression. Scaling was tested on a single
node and multiple nodes on national and local supercomputing resources as well
as typical workstations. Although very good strong scaling could be achieved for
single nodes, good scaling across multiple nodes was hindered by the persistent
occurrence of "stragglers", tasks that take much longer than all other tasks, and
whose ultimate cause could not be completely ascertained. In summary, we
show that, due to the focus on high interoperability in the scientific Python eco
system, it is straightforward to implement map-reduce with Dask in MDAnalysis
and provide an in-depth analysis of the considerations to obtain good parallel
performance on HPC resources.

Index Terms—MDAnalysis, High Performance Computing, Dask, Map-Reduce,
MPI for Python

Introduction

MDAnalysis is a Python library that provides users with access to
raw simulation data and enables structural and temporal analysis
of molecular dynamics (MD) trajectories generated by all major
MD simulation packages [GLB+16], [MADWB11]. MD trajecto-
ries are time series of positions (and sometimes also velocities)
of the simulated atoms or particles; using statistical mechanics
one can calculate experimental observables from these time series
[FS02], [MM14]. The size of these trajectories is growing as the
simulation times are being extended beyond micro-seconds and
larger systems with increasing numbers of atoms are simulated.
The amount of data to be analyzed is growing rapidly into the
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terabyte range and analysis is increasingly becoming a bottleneck
in MD workflows [CR15]. Therefore, there is a need for high
performance computing (HPC) approaches for the analysis of MD
trajectory data [TRB+08], [RCI13].

MDAnalysis does not yet provide a standard interface for
parallel analysis; instead, various existing parallel libraries such as
Python multiprocessing, joblib, and mpi4py [DPS05], [DPKC11]
are currently used to parallelize MDAnalysis-based code on a
case-by-case basis. Here we evaluated performance for parallel
map-reduce [DG08] type analysis with the Dask parallel comput-
ing library [Roc15] for task-graph based distributed computing on
HPC and local computing resources. Although Dask is able to
implement much more complex computations than map-reduce,
we chose Dask for this task because of its ease of use and because
we envisage using this approach for more complicated analysis
applications whose parallelization cannot be easily expressed as a
simple map-reduce algorithm.

As the computational task we performed a common task in
the analysis of the structural dynamics of proteins: we computed
the time series of the root mean squared distance (RMSD) of
the positions of all Cα atoms to their initial coordinates at time
0; for each time step ("frame") in the trajectory, rigid body
degrees of freedom (translations and rotations) have to be removed
through an optimal structural superposition that minimizes the
RMSD [MM14] (Figure 1). A range of commonly used MD file
formats (CHARMM/NAMD DCD [BBIM+09], Gromacs XTC
[AMS+15], Amber NCDF [CCD+05]) and different trajectory
sizes were benchmarked.

We looked at different HPC resources including national
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Fig. 1: Calculation of the root mean square distance (RMSD) of
a protein structure from the starting conformation via map-reduce
with Dask. A RMSD as a function of time, with partial time series
colored by trajectory block. B Dask task graph for splitting the RMSD
calculation into three trajectory blocks.

http://dask.pydata.org
http://mdanalysis.org
http://mdanalysis.org
mailto:obeckste@asu.edu
https://docs.python.org/2/library/multiprocessing.html
https://pypi.python.org/pypi/joblib
https://mpi4py.scipy.org/
http://dask.pydata.org
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supercomputers (XSEDE TACC Stampede and SDSC Comet),
university supercomputers (Arizona State University Research
Computing Saguaro), and local resources (Gigabit networked
multi-core workstations). The tested resources are parallel and het-
erogeneous with different CPUs, file systems, high speed networks
and are suitable for high-performance distributed computing at
various levels of parallelization. Different storage systems such as
solid state drives (SSDs), hard disk drives (HDDs), network file
system (NFS), and the parallel Lustre file system (using HDDs)
were tested to examine the effect of I/O on the performance.
The benchmarks were performed both on a single node and
across multiple nodes using the multiprocessing and distributed
schedulers in the Dask library.

We previously showed that the overall computational cost
scales directly with the length of the trajectory, i.e., the weak
scaling is close to ideal and is fairly independent from other factors
[KB17]. Here we focus on the strong scaling behavior, i.e., the
dependence of overall run time on the number of CPU cores used.
Competition for access to the same file from multiple processes
appears to be a bottleneck and therefore the storage system is an
important determinant of performance. But because the trajectory
file format dictates the data access pattern, overall performance
also depends on the actual data format, with some formats being
more robust against storage system specifics than others. Overall,
good strong scaling performance could be obtained for a single
node but robust across-node performance remained challenging.
In order to identify performance bottlenecks we examined sev-
eral other factors including the effect of striping in the parallel
Lustre file system, over-subscribing (using more tasks than Dask
workers), the performance of the Dask scheduler itself, and we
also benchmarked an MPI-based implementation in contrast to the
Dask approach. From these tests we tentatively conclude that poor
across-nodes performance is rooted in contention on the shared
network that may slow down individual tasks and lead to poor
load balancing. Nevertheless, Dask with MDAnalysis appears to
be a promising approach for high-level parallelization for analysis
of MD trajectories, especially at moderate CPU core numbers.

Methods

We implemented a simple map-reduce scheme to parallelize pro-
cessing of trajectories over contiguous blocks. We tested libraries
in the following versions: MDAnalysis 0.15.0, Dask 0.12.0 (also
0.13.0), distributed 1.14.3 (also 1.15.1), and NumPy 1.11.2 (also
1.12.0) [VCV11].
import numpy as np
import MDAnalysis as mda
from MDAnalysis.analysis.rms import rmsd

The trajectory is split into n_blocks blocks with inital frame
start and final frame stop set for each block. The calculation
on each block (function block_rmsd(), corresponding to the
map step) is delayed with the delayed() function in Dask:
from dask.delayed import delayed

def analyze_rmsd(ag, n_blocks):
"""RMSD of AtomGroup ag, parallelized n_blocks"""
ref0 = ag.positions.copy()
bsize = int(np.ceil(

ag.universe.trajectory.n_frames \
/ float(n_blocks)))

blocks = []
for iblock in range(n_blocks):

start, stop = iblock*bsize, (iblock+1)*bsize

out = delayed(block_rmsd, pure=True)(
ag.indices, ag.universe.filename,
ag.universe.trajectory.filename,
ref0, start, stop)

blocks.append(out)
return delayed(np.vstack)(blocks)

In the reduce step, the partial time series from each block are
concatenated in the correct order (np.vstack, see Figure 1 A);
because results from delayed objects are used, this step also has to
be delayed.

As computational load we implement the calculation of the
root mean square distance (RMSD) of the Cα atoms of the protein
adenylate kinase [SB14] when fitted to a reference structure using
an optimal rigid body superposition [MM14], using the qcprot
implementation [LAT10] in MDAnalysis [GLB+16]. The RMSD
is calculated for each trajectory frame in each block by iterating
over u.trajectory[start:stop]:

def block_rmsd(index, topology, trajectory, ref0,
start, stop):

u = mda.Universe(topology, trajectory)
ag = u.atoms[index]
out = np.zeros([stop-start, 2])
for i, ts in enumerate(

u.trajectory[start:stop]):
out[i, :] = ts.time, rmsd(ag.positions, ref0,

center=True, superposition=True)
return out

Dask produces a task graph (Figure 1 B) and the computation of
the graph is executed in parallel through a Dask scheduler such as
dask.multiprocessing (or dask.distributed):

from dask.multiprocessing import get

u = mda.Universe(PSF, DCD)
ag = u.select_atoms("protein and name CA")
result = analyze_rmsd(ag, n_blocks)
timeseries = result.compute(get=get)

The complete code for benchmarking as well as an
alternative implementation based on mpi4py is available
from https://github.com/Becksteinlab/Parallel-analysis-in-the-
MDAnalysis-Library under the MIT License.

The data files consist of a topology file adk4AKE.psf
(in CHARMM PSF format; N = 3341 atoms) and a trajectory
1ake_007-nowater-core-dt240ps.dcd (DCD format)
of length 1.004 µs with 4187 frames; both are freely available
from figshare at DOI 10.6084/m9.figshare.5108170 [SB17]. Files
in XTC and NCDF formats are generated from the DCD on the
fly using MDAnalysis. To avoid operating system caching, files
were copied and only used once for each benchmark. All results
for Dask distributed were obtained across three nodes on different
clusters.

Trajectories with different number of frames per trajectory
were analyzed to assess the effect of trajectory file size. These tra-
jectories were generated by concatenating the base trajectory 50,
100, 300, and 600 times and are referred to as, e.g., "DCD300x"
or "XTC600x". Run time was analyzed on single nodes (1–24
CPU cores) and up to three nodes (1–72 cores) as function of
the number of cores (strong scaling behavior) and trajectory sizes
(weak scaling). However, here we only present strong scaling data
for the 300x and 600x trajectory sizes, which represent typical
medium size results. For an analysis of the full data including
weak scaling results set see the Technical Report [KB17].

The DCD file format is a binary representation for 32-bit
floating point numbers (accuracy of positions about 10−6 Å) and

https://distributed.readthedocs.io/
https://distributed.readthedocs.io/
https://mpi4py.scipy.org/
https://github.com/Becksteinlab/Parallel-analysis-in-the-MDAnalysis-Library
https://github.com/Becksteinlab/Parallel-analysis-in-the-MDAnalysis-Library
https://doi.org/10.6084/m9.figshare.5108170
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the DCD300x trajectory has a file size of 47 GB (DCD600x is
twice as much); XTC is a lossy compressed format that effectively
rounds floats to the second decimal (accuracy about 10−2 Å,
which is sufficient for typical analysis) and XTC300x is only 15
GB. Amber NCDF is implemented with netCDF classic format
version 3.6.0 (same accuracy as DCD) and trajectories are about
the same size as DCD. DCD and NCDF natively allow fast
random access to frames or blocks of frames, which is critical
to implement the map-reduce algorithm. XTC does not natively
support frame seeking but MDAnalysis implements a fast frame
scanning algorithm for XTC files that caches all frame offsets and
so enables random access for the XTC format, too [GLB+16]. In
MDAnalysis 0.15.0, Amber NCDF files are read with the Python
netCDF4 module that wraps the netcdf C library; in the upcoming
MDAnalysis 0.17.0, netCDF v3 files are read with the pure Python
scipy.io.netcdf module, which tends to read netCDF v3
files about five times faster than netCDF4, and hence results for
NCDF presented here might change with more recent versions of
MDAnalysis.

Performance was quantified by measuring the average time
per trajectory frame to load data from storage into memory (I/O
time per frame, tI/O), the average time to complete the RMSD
calculation (compute time per frame, tcomp), and the total wall
time for job execution tN when using N CPU cores. Strong scaling
was assessed by calculating the speed up S(N) = t1/tN and the
efficiency E(N) = S(N)/N.

Results and Discussion

Trajectories from MD simulations record snapshots of the posi-
tions of all particles are regular time intervals. A snapshot at a
specified time point is called a frame. MDAnalysis only loads a
single frame into memory at any time [GLB+16], [MADWB11]
to allow the analysis of large trajectories that may contain, for
example, nframes = 107 frames in total. In a map-reduce approach,
N processes will iterate in parallel over N chunks of the trajectory,
each containing nframes/N frames. Because frames are loaded
serially, the run time scales directly with nframes and the weak
scaling behavior (as a function of trajectory length) is trivially
close to ideal as seen from the data in [KB17]. Weak scaling
with the system size also appears to be fairly linear, according to
preliminary data (not shown). Therefore, in the following we focus
exclusively on the harder problem of strong scaling, i.e., reducing
the run time by employing parallelism.

Effect of File Format on I/O Performance

We first sought to quantify the effect of the trajectory format on the
analysis performance. The overall run time depends strongly on
the trajectory file format as well as the underlying storage system
as shown for the 300x trajectories in Figure 2; results for other
trajectory sizes are similar (see [KB17]) except for the smallest
50x trajectories where possibly caching effects tend to improve
overall performance. Using DCD files with SSDs on a single node
(Figure 2 A) is about one order of magnitude faster than the other
formats (Figure 2 B, C) and scales near linearly for small CPU
core counts (N ≤ 12). However, DCD does not scale at all with
other storage systems such as HDD of NFS and run time only
improves up to N = 4 on the Lustre file system. On the other hand,
the run time with NCDF and especially with XTC trajectories
improves linearly with increasing N, with XTC on Lustre and
N = 24 cores almost obtaining the best DCD run time of about 30
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Fig. 2: Comparison of total job execution time tN for different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (1–24 CPU cores, A – C) and Dask distributed on up to three
nodes (1–72 CPU cores, D – F). The trajectory was split into M
blocks and computations were performed using N = M CPU cores.
The runs were performed on different resources (ASU RC Saguaro,
SDSC Comet, TACC Stampede, local workstations with different
storage systems (locally attached HDD, remote HDD (via network
file system, NFS), locally attached SSD, Lustre parallel file system
with a single stripe). A, D CHARMM/NAMD DCD. B, E Gromacs
XTC. C, F Amber NetCDF.
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Fig. 3: Comparison of I/O time tI/O per frame between different file
formats (300x trajectory size) using Dask multiprocessing on a single
node (A – C) and Dask distributed on multiple nodes (D – F). A, D
CHARMM/NAMD DCD. B, E Gromacs XTC. C, F Amber NetCDF.
All parameters as in Fig. 2.

s (SSD, N = 12); at the highest single node core count N = 24,
XTC on SSD performs even better (run time about 25 s). For larger
N on multiple nodes, only a shared file system (Lustre or NFS)
based on HDD was available. All three file formats only show
small improvements in run time at higher core counts (N > 24) on
the Lustre file system on supercomputers with fast interconnects
and no improvements on NFS over Gigabit (Figure 2 D–F).

In order to explain the differences in performance and scaling
of the file formats, we analyzed the time to load the coordinates

https://www.unidata.ucar.edu/netcdf/docs
https://unidata.github.io/netcdf4-python/
https://www.unidata.ucar.edu/netcdf/docs
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Fig. 4: I/O pattern for reading frames in parallel from com-
monly used MD trajectory formats. A Gromacs XTC file format. B
CHARMM/NAMD DCD file format and Amber NCDF format.

of a single frame from storage into memory (tI/O) and the time to
perform the computation on a single frame using the in-memory
data (tcomp). As expected, tcomp is independent from the file format,
nframes, and N and only depends on the CPU type itself (mean
and standard deviation on SDSC Comet 0.098±0.004 ms, TACC
Stampede 0.133 ± 0.000 ms, ASU RC Saguaro 0.174 ± 0.000
ms, local workstations 0.225± 0.022 ms, see [KB17]). Figure 3,
however shows how tI/O (for the 300x trajectories) varies widely
and in most cases, is at least an order of magnitude larger than
tcomp. The exception is tI/O for the DCD file format using SSDs,
which remains small (0.06±0.04 ms on SDSC Comet) and almost
constant with N ≤ 12 (Figure 3 A) and as a result, the DCD
file format shows good scaling and the best performance on a
single node. For HDD-based storage, the time to read data from
a DCD frame increases with the number of processes that are
simultaneously trying to access the DCD file. XTC and NCDF
show flat tI/O with N on a single node (Figure 3 B, C) and even
for multiple nodes, the time to ingest a frame of a XTC trajectory
is almost constant, except for NFS, which broadly shows poor
performance (Figure 3 E, F).

Depending on the file format the loading time of frames into
memory will be different, as illustrated in Figure 4. The XTC file
format is compressed and has a smaller file size when compared
to the other formats. When a compressed XTC frame is loaded
into memory, it is immediately decompressed (see Figure 4 A).
During decompression by one process, the file system allows the
next process to load its requested frame into memory. As a result,
competition for file access between processes and overall wait time
is reduced and tI/O remains almost constant, even for large number
of parallel processes (Figure 3 B, E). Neither DCD nor NCDF
files are compressed and multiple processes compete for access to
the file (Figure 4 B) although NCDF files is a more complicated
file format than DCD and has additional computational overhead.
Therefore, for DCD the I/O time per frame is very small as
compared to other formats when the number of processes is small
(and the storage is fast), but even at low levels of parallelization,
tI/O increases due to the overlapping of per frame trajectory data
access (Figure 3 A, D). Data access with NCDF is slower but due
to the additional computational overhead, is amenable to some
level of parallelization (Figure 3 C, F).

Strong Scaling Analysis for Different File Formats

We quantified the strong scaling behavior by analyzing the speed-
up S(N); as an example, the 300x trajectories for multiprocessing
and distributed schedulers are show in Figure 5. The DCD format
exhibits poor scaling, except for N ≤ 12 on a single node and
SSDs (Figure 5 A, D) and is due to the increase in tI/O with
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Fig. 5: Speed-up S for the analysis of the 300x trajectory on HPC
resources using Dask multiprocessing (single node, A – C) and
distributed (up to three nodes, D – F). The dashed line shows the
ideal limit of strong scaling. All other parameters as in Fig. 2.
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Fig. 6: Detailed analysis of timings for the 600x XTC trajectory on
HPC resources using Dask distributed. All other parameters as in
Fig. 2. A Total time to solution (wall clock), tN for N trajectory blocks
using Ncores = N CPU cores. B Sum of the I/O time per frame tI/O
and the (constant) time for the RMSD computation tcomp (data not
shown). C Difference tN −nframes(tI/O + tcomp), accounting for the cost
of communications and other overheads.

N, as discussed in the previous section. XTC file format scale
close to ideal up N = 24 (single node) for both multiprocessing
and distributed scheduler, almost independent from the underlying
storage system. The NCDF file format only scales well up to 8
cores (Figure 5 C, F) as expected from tI/O in Figure 3 C, F.

For the XTC file format, tI/O is is nearly constant up to N = 50
cores (Figure 3 E) and tcomp also remains constant up to 72 cores.
Therefore, close to ideal scaling would be expected for up to 50
cores, assuming that average processing time per frame tcomp+tI/O
dominates the computation. However, based on Figure 5 E, the
XTC format only scales well up to about 24 cores, which suggests
that this assumption is wrong and there are other computational
overheads.

To identify and quantify these additional overheads, we ana-
lyzed the performance of the XTC600x trajectory in more detail
(Figure 6); results for other trajectory sizes are qualitatively
similar. The total job execution time tN differs from the total
compute and I/O time, N (tcomp + tI/O). This difference measures
additional overheads that we did not consider so far. It increases
with trajectory size for all file formats and for all machines (for
details refer to [KB17]) but is smaller for SDSC Comet and TACC
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shown for the XTC600x trajectory on SDSC Comet on the Lustre
file system. A Task stream plot showing the fraction of time spent on
different parts of the task by each worker, obtained using the Dask
web-interface. (54 tasks for 54 workers that used N = 54 cores).
Green bars ("Compute") represent time spent on RMSD calculations,
including trajectory I/O, red bars show data transfer. A "straggler"
task (#32) takes much longer than any other task and thus determines
the total execution time. B Comparison between timing measurements
from instrumentation inside the Python code (average compute and
I/O time per task nframes/N (tcomp + tI/O), max[nframes/N (tcomp + tI/O)],
and tN) and Dask web-interface for N = 30 and N = 54 cores.

Stampede than compared to other machines. The difference is
small for the results obtained using multiprocessing scheduler on
a single node but it is substantial for the results obtained using
distributed scheduler on multiple nodes.

In order to obtain more insight into the underlying network
behavior both at the Dask worker level and communication level
and in order to pinpoint the origin of the overheads, we used the
web-interface of the Dask library, which is launched together with
the Dask scheduler. Dask task stream plots such as the example
shown in Figure 7 A typically show one or more straggler tasks
that take much more time than the other tasks and as a result slow
down the whole run. Stragglers do not actually spend more time
on the RMSD computation and trajectory I/O than other tasks, as
shown by comparing the average compute and I/O time for a single
task i, nframes/N(tcomp,i + tI/O,i), with the maximum over all tasks
maxi[nframes/N(tcomp,i + tI/O,i)] (Figure 7 B). However, for larger
core numbers, for instance, N = 54, the maximum compute and
I/O time as measured inside the Python code is smaller than the
maximum value extracted from the web-interface (and the Dask
scheduler) (Figure 7 B). The maximum compute and I/O value
from the scheduler matches the total measured run time, indicating
that stragglers limit the overall performance of the run. The timing
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Fig. 8: Effect of striping with the Lustre distributed file system.
The XTC600x trajectory was analyzed on HPC resources (ASU RC
Saguaro, SDSC Comet) with Dask distributed and a Lustre stripe
count of three, i.e., data were replicated across three servers. One
trajectory block was assigned to each worker, i.e., the number of tasks
equaled the number of CPU cores. A Speed-up. B Average I/O time
per frame, tI/O.

of the scheduler includes waiting due to network effects, which
would explain why the difference is only visible when using
multiple nodes where the node interconnect must be used.

Challenges for Good HPC Performance

All results were obtained during normal, multi-user, production
periods on all machines, which means that jobs run times are
affected by other jobs on the system. This is true even when the
job is the only one using a particular node, which was the case in
the present study. There are shared resources such as network file
systems that all the nodes use. The high speed interconnect that
enables parallel jobs to run is also a shared resource. The more
jobs are running on the cluster, the more contention there is for
these resources. As a result, the same job run at different times
may take a different amount of time to complete, as seen in the
fluctuations in task completion time across different processes.
These fluctuations differ in each repeat and are dependent on
the hardware and network. There is also variability in network
latency, in addition to the variability in underlying hardware in
each machine, which may also cause the results to vary across
different machines. Since our map-reduce problem is pleasantly
parallel, each or a subset of computations can be executed by
independent processes. Furthermore, all of our processes have
the same amount of work to do, namely one trajectory block
per process, and therefore our problem should exhibit good load
balancing. Therefore, observing the stragglers shown in Figure 7
A is unexpected and the following sections aim to identify possible
causes for their occurrence.

Performance Optimization

We tested different features of the computing environment to
identify causes of stragglers and to improve performance and
robustness, focusing on the XTC file format as the most promising
candidate so far. We tested the hypothesis that waiting for file ac-
cess might lead to stalled tasks by increasing the effective number
of accessible files through "striping" in the Lustre parallel file
system. We investigated the hypothesis that the Dask distributed
scheduler might be too slow to schedule the tasks and we looked
at improved load balancing by over-subscribing Dask workers.
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Fig. 9: Detailed timings for three-fold Lustre striping (see Fig. 8 for
other parameters). A Total time to solution (wall clock), tN for M
trajectory blocks using N = M CPU cores. B tcomp + tI/O, average sum
of the I/O time (tI/O, Fig. 8 B) and the (constant) time for the RMSD
computation tcomp (data not shown). C Difference tN − nframes(tI/O +
tcomp), accounting for communications and overheads that are not
directly measured.
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Fig. 10: Benchmark of Dask scheduler throughput on TACC Stam-
pede. Performance is measured by the number of empty pass tasks
that were executed in a second. The scheduler had to launch 100,000
tasks and the run ended when all tasks had been run. A single
node with different schedulers; multithreading and multiprocessing
are almost indistinguishable from each other. B multiple nodes with
the distributed scheduler and 1 worker process per node. C multiple
nodes with the distributed scheduler and 16 worker processes per
node.

Effect of Lustre Striping: As discussed before, the overlap-
ping of data requests from different processes can lead to higher
I/O time and as a result poor performance. tI/O strongly affects
performance since it is much larger than tcomp in all multi-node
scenarios. Although the XTC format showed the best performance,
for multiple nodes tI/O increased for it, too (Figure 3 E). In Lustre,
a copy of the shared file can be in different physical storage
devices (object storage targets, OSTs). Single shared files can
have a stripe count equal to the number of nodes or processes
which access the file. We set the stripe count equal to three, which
is equal to the number of nodes used for our benchmark using the
distributed scheduler. This might improve performance, since all
the processes from each node will have a copy of the file and as
a result the contention due to many data requests should decrease.
Figure 8 show the speed up and I/O time per frame plots obtained
for XTC file format (XTC600x) when striping is activated. I/O
time remains constant for up to 72 cores. Thus, striping improves
tI/O and makes file access more robust. However, the timing plots
in Figure 9 still show a time difference between average total
compute and I/O time and job execution time that remains due to
stragglers and as a result the overall speed-up is not improved.

Scheduler Throughput: In order to test the hypothesis
that straggler tasks were due to limitations in the speed of the
Dask scheduler, we performed scheduling experiments with all
Dask schedulers (multithreaded, multiprocessing and distributed)
on TACC Stampede (16 CPU cores per node). In each run, a total
of 100,000 zero workload (pass) tasks were executed in order to
measure the maximum scheduling throughput; each run itself was

repeated and mean values together with standard deviations were
reported. Figure 10 A shows the throughput of each scheduler over
time on a single Stampede node, with Dask scheduler and worker
being located on the same node. The most efficient scheduler is
the distributed scheduler, which manages to schedule 20,000 tasks
per second when there is one worker process for each available
core. The distributed scheduler with just one worker process and a
number of threads equal to the number of available cores has lower
peak performance of about 2000 tasks/s and is able to schedule
and execute these 100,000 tasks in 50 s. The multiprocessing and
multithreading schedulers behave similarly, but need much more
time (about 200 s) to finish compared to distributed.

Figure 10 B shows the distributed scheduler’s throughput over
time for increasing number of nodes when each node has a single
worker process and each worker launches a thread to execute a
task (maximum 16 threads per worker). No clear pattern for the
throughput emerges, with values between 2000 and 8000 tasks/s.
Figure 10 C shows the same execution with Dask distributed set
up to have one worker process per core, i.e., 16 workers per node.
The scheduler never reaches its steady throughput state, compared
to Figure 10 B so that it is difficult to quantify the effect of the
additional nodes. Although a peak throughput between 10,000 to
30,000 tasks/s is reported, overall scheduling is erratic and the
total 100,000 tasks are not completed sooner than for the case
with 1 worker per node with 16 threads. It appears that assigning
one worker process to each core will speed up Dask’s throughput
but more work would need to be done to assess if the burst-like
behavior seen in this case is an artifact of the zero workload test.

Either way, the distributed and even the multiprocessing sched-
uler are sufficiently fast as to not cause a bottleneck in our map-
reduce problem and are probably not responsible for the stragglers.

Effect of Over-Subscribing: In order to make our code
more robust against uncertainty in computation times we explored
over-subscribing the workers, i.e., to submit many more tasks than
the number of available workers (and CPU cores, using one worker
per core). Over-Subscription might allow Dask to balance the load
appropriately and as a result cover the extra time when there are
some stragglers. We set the number M of tasks to be three times
the number of workers, M = 3N, where the number of workers
N = Ncores equaled the number of CPU cores. Lustre-striping was
also activated and set to three, which is also to the number of
nodes used.

For XTC600x, no substantial speed-up is observed due to over-
subscribing (compare Figure 11 A to 8 A). As before, the I/O time
is constant up to 72 cores due to striping (Figure 11 B). However,
a time difference between average total compute and I/O time
and job execution time (Figure 12) reveals that over-subscribing
does not help to remove the stragglers and as a result the overall
speed-up is not improved. Figure 13 shows a time comparison for
different parts of the calculations. The overhead in the calculations
is small up to 24 cores (single node). For lower N, the largest
fraction of time is spent on the calculation of RMSD arrays and
I/) (computation time) which decreases as the number of cores
increases from 1 to 72. However, when extending to multiple
nodes the time for overheads and communication increases, which
reduces the overall performance.

In order to better quantify the scheduling decisions and to have
verification of stragglers independent from the Dask web interface,
we implemented a Dask scheduler reporter plugin (freely available
from https://github.com/radical-cybertools/midas), which captures
task execution events from the scheduler and their respective

https://github.com/radical-cybertools/midas/blob/master/Dask/schedulerPlugin.py
https://github.com/radical-cybertools/midas
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Fig. 11: Effect of three-fold over-subscribing distributed workers.
The XTC600x trajectory was analyzed on HPC resources (Lustre
stripe count of three) and local NFS using Dask distributed where
M number of trajectory blocks (tasks) is three times the number of
worker processes, M = 3N, and there is one worker per CPU core. A
Speed-up S. B I/O time tI/O per frame.
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Fig. 12: Detailed timings for three-fold over-subscribing distributed
workers. A Total time to solution (wall clock), tN . B tcomp + tI/O, aver-
age sum of tI/O (Fig. 11 B) and the (constant) computation time tcomp
(data not shown) per frame. C Difference tN − nframes(tI/O + tcomp),
accounting for communications and overheads that are not directly
measured. Other parameters as in Fig. 11.
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Fig. 13: Time comparison for three-fold over-subscribing distributed
workers (XTC600x on SDSC Comet on Lustre with stripe count three).
Bars indicate the mean total execution time tN (averaged over five
repeats) as a function of available worker processes, with one worker
per CPU core. Time for compute + I/O (red, see Fig. 12 B) dominates
for smaller core counts (up to one node, 24) but is swamped by
communication (time to gather the RMSD arrays computed by each
worker for the reduction) and overheads (blue, see see Fig. 12 C)
beyond a single node.

RMSD
Blocks

Run 1 Run 2 Run 3 Run 4 Run 5

1 0 0 1 0 0
2 8 5 7 7 2
3 48 54 47 50 60
4 8 5 9 7 2

TABLE 1: Number of worker processes that executed 1, 2, 3, or 4 of
tasks (RMSD calculation over one trajectory block) per run. Executed
on TACC Stampede utilizing 64 cores
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Fig. 14: Task Histogram of RMSD with MDAnalysis and Dask with
XTC 300x over 64 cores on Stampede with 192 trajectory blocks.
Each histogram corresponds to an independent repeat of the same
computational experiment. For each worker process ID, the number
of tasks submitted to that process is shown.

timestamps. We analyzed the execution of XTC300x on TACC
Stampede with three-fold over-subscription (M = 3Ncores) and
measured how many tasks were submitted per worker process.
Table 1 shows that although most workers executed three tasks
as would be expected for three-fold over-subscription, between
0 and 17% executed four tasks and others only one or two.
This variability is also borne out in detail by Figure 14, which
shows how RMSD blocks were submitted per worker process in
each run. Therefore, over-subscription does not necessarily lead
to a balanced execution and might add additional execution time;
unfortunately, over-subscription does not get rid of the straggler
tasks.

Comparison of Performance of Map-Reduce Job Between MPI for
Python and Dask Frameworks

The investigations so far indicated that stragglers are responsible
for poor scaling beyond a single node. These delayed processes
were observed on three different HPC systems and on different
days, so they are unlikely to be infrastructure specific. In order
to rule out the hypothesis that Dask is inherently limited in
its applicability to our problem we re-implemented our map-
reduce problem with MPI based on the Python mpi4py [DPS05],
[DPKC11] module. The comparison was performed with the
XTC600x trajectory on SDSC Comet.

The overall performance is very similar to the Dask implemen-
tation: it scales almost ideally up to 24 CPU cores (a single node)
but then drops to a very low efficiency (Figure 15). A detailed
analysis of the time spent on computation versus communication
(Figure 16 A) shows that the communication and overheads are
negligible up to 24 cores (single node) and only moderately
increases for larger N. The largest fraction of the calculations
is always spent on the calculation of RMSD arrays with I/O
(computation time). Although the computation time decreases

https://mpi4py.scipy.org/
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Fig. 15: A Speed-up and B efficiency plots for benchmark performed
on XTC600x on SDSC Comet using MPI for Python. Five repeats are
run for each block size and the reported values are the mean values
and standard deviations.

with increasing number of cores for a single node, it increases
again when increasing N further, in a pattern similar to what we
saw earlier for Dask.

Figure 16 B compares the execution times across all MPI ranks
for 72 cores. There are several processes that are about ten times
slower than the majority of processes. These stragglers reduce the
overall performance and are always observed when the number of
cores is more than 24 and the ranks span multiple nodes. Based on
the results from MPI for Python, Dask is probably no responsible
for the occurrence of the stragglers.

We finally also wanted to ascertain that variable execution time
is not a property of the computational task itself and replaced the
RMSD calculation with optimal superposition (based on the itera-
tive qcprot algorithm [LAT10]) with a completely different, fully
deterministic metric, namely a simple all-versus-all distance cal-
culation based on MDAnalysis.lib.distances.distance_array. The
distance array calculates all distances between the reference co-
ordinates at time 0 and the coordinates of the current frame and
provides a comparable computational load. Even with the new
metric the same behavior was observed in the MPI implementation
(data not shown) and hence we can conclude that the qcprot
RMSD calculation is not the reason why we are seeing the
stragglers.

Conclusions

Dask together with MDAnalysis makes it straightforward to
implement parallel analysis of MD trajectories within a map-
reduce scheme. We show that obtaining good parallel performance
depends on multiple factors such as storage system and trajectory
file format and provide guidelines for how to optimize trajectory
analysis throughput within the constraints of a heterogeneous
research computing environment. Performance on a single node
can be close to ideal, especially when using the XTC trajectory
format that trades I/O for CPU cycles through aggressive compres-
sion, or when using SSDs with any format. However, obtaining
good strong scaling beyond a single node was hindered by the
occurrence of stragglers, one or few tasks that would take much
longer than all the other tasks. Further studies are necessary to
identify the underlying reason for the stragglers observed here;
they are not due to Dask or the specific computational test
case, and they cannot be circumvented by over-subscribing. Thus,
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Fig. 16: A Time comparison on different parts of the calculations
obtained using MPI for Python. In this aggregate view, the time
spent on different parts of the calculation are combined for different
number of processes tested. The bars are subdivided into different
contributions (compute (RMSD computation and I/O), communica-
tion, remaining overheads), with the total reflecting the overall run
time. Reported values are the mean values across 5 repeats. A inset
Total job execution time along with the mean and standard deviations
across 5 repeats. The calculations are performed on XTC 600x using
SDSC Comet. B Comparison of job execution time across processor
ranks for 72 CPU cores obtained using MPI for python. There are
several stragglers that slow down the whole process.

implementing robust parallel trajectory analysis that scales over
many nodes remains a challenge.
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