
Capacitive Touch Sensors

Revision C

Augmented Instruments Ltd. (AIL / Bela)

Datasheet Version 1.1 — Revised 2023-11-01

Datasheet V. 1.1 2023-11-01 Page 1 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Contents

1 Overview 4
1.1 Revision history . 4

2 Manufacturer Numbers 4

3 Trill Sensor Types 5

4 Pinout 5
4.1 Additional connections . 5
4.2 Trill Craft . 6
4.3 Trill Hub . 6

5 Electrical specifications 6
5.1 Schematics . 6

6 Functional overview 9
6.1 Operating modes . 9
6.2 Timing characteristics . 10

6.2.1 Scan trigger . 10
6.2.2 Acquisition time . 10
6.2.3 EVT pin . 11
6.2.4 Use cases . 11

7 Communication 13
7.1 I2C addresses . 13
7.2 Writing and reading data . 14
7.3 Memory map . 14
7.4 Commands and acknowledgements . 15
7.5 Command list . 15
7.6 Status byte . 19
7.7 Payload . 19

7.7.1 Centroid mode . 19
7.7.2 Raw, Baseline or Diff mode . 20

7.8 Typical operation . 21
7.8.1 Code listing 1 . 22
7.8.2 Code listing 2 . 23

Datasheet V. 1.1 2023-11-01 Page 2 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

8 Dimensions 24
8.1 Trill Bar . 24
8.2 Trill Square . 25
8.3 Trill Craft . 27
8.4 Trill Ring . 27
8.5 Trill Hex . 28
8.6 Trill Flex . 28
8.7 Trill Hub . 30

9 History 30

10 Source Files and Licenses 30
10.1 Certified Open Source Hardware . 31
10.2 Commercial Licensing . 31
10.3 Trill / Bela Name and Logo . 32
10.4 Disclaimer . 32

Datasheet V. 1.1 2023-11-01 Page 3 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

1 Overview

Trill is a family of touch sensors designed by the team at Bela. Trill sensors are a
convenient way to integrate capacitive touch sensing into interactive projects.
Trill sensors are compatible with any system that supports I²C communication.
Visit the Trill libraries repositories to download libraries and examples for working
with Linux computerbs and microcontrollers 1.
To find the complete Trill documentation as well as a Get Started Guide for multiple
platforms, go to https://bela.io/trill.

1.1 Revision history

This datasheet is for revision C of the hardware, released in 2023. For revisions A and
B refer to the relevant datasheet2.
In Version 1.1 of this document, OSHW UIDs were added in subsection 10.1 and a ref-
erence to Trill Craft symbol and footprint was added to 4.2.

2 Manufacturer Numbers

Table 1 lists the manufacturer number and the Global Trade Item Number (formerly
known as European Article Number) for each sensor.

Table 1: Manufacturer Product Numbers
Name Mfr. No GTIN
Trill Bar 160701-BAR 5060821690137

Trill Square 160702-SQUARE 5060821690144

Trill Craft 160703-CRAFT 5060821690151

Trill Hex 160704-HEX 5060821690168

Trill Ring 160705-RING 5060821690175

Trill Flex 160706-FLEX 5060821690212

Trill Hub 160707-HUB 5060821690205

1Trill Linux library https://github.com/BelaPlatform/Trill-Linux, Trill Arduino library https://github.com/
BelaPlatform/Trill-Arduino

2Trill Rev B datasheet https://github.com/BelaPlatform/Trill/blob/master/datasheet/REV_B/trill_
datasheet.pdf

Datasheet V. 1.1 2023-11-01 Page 4 of 32

https://bela.io/trill
https://github.com/BelaPlatform/Trill-Linux
https://github.com/BelaPlatform/Trill-Arduino
https://github.com/BelaPlatform/Trill-Arduino
https://github.com/BelaPlatform/Trill/blob/master/datasheet/REV_B/trill_datasheet.pdf
https://github.com/BelaPlatform/Trill/blob/master/datasheet/REV_B/trill_datasheet.pdf

AIL / Bela Trill Capacitive Touch Sensors Revision C

3 Trill Sensor Types

There are six Trill sensor types: Bar, Square, Craft, Hex, Ring and Flex. Each Trill type
offers a different combination of physical form factor and sensing affordances:

Table 2: Sensor affordances
Trill Type Sensing Mode Multi-touch? CapSense channels
Bar 1-axis slider Yes 26
Square 2-axis pad No1 30
Craft2 30-channel breakout Yes 30
Hex 2-axis pad No1 30
Ring 1-axis slider Yes 30
Flex3 1-axis slider Yes 30
1 Pseudo-multi-touch is possible on these sensors but due to the matrix arrange-
ment of pads it is not possible to reliably track the position of individual touches
when there is more than one present.

2 Trill Craft is a 30-channel breakout board for creating custom touch interfaces
out of any conductive material.

3 Trill Flex comes with a single-axis, multi-touch sensor printed on a flexible PCB,
which is detachable and can be replaced with a custom flexible PCB sen-
sor. See the tutorial ‘Trill: designing a custom flex sensor’ https://learn.bela.io/
flex-design.

4 Pinout

Table 3 lists the pinout and applies to Trill Bar, Square, Hex, Ring and Flex. Each of
these sensors includes a cable with QWIIC connector3 that attaches to the sensor
and ends in pins that can be plugged into a breadboard or development board.

Table 3: Cable colour code
Pin Signal Colour1 Illustration2

1 GND Black
2 VCC Red
3 SDA (I²C Data) Blue
4 SCL (I²C Clock) Yellow
1 The colour listed is that of wire on the provided QWIIC cable.
2 From left to right facing the receptacle: Pin 1, 2, 3, 4.

4.1 Additional connections

The Event (EVT)andReset (RST) signals are available as unpopulated, labelled solder
pads. When a voltage is applied to the Reset pin the sensor will reset. The Event pin

34-pin JST SH SM04B-SRSS-TB (Pitch 1mm) https://www.sparkfun.com/qwiic

Datasheet V. 1.1 2023-11-01 Page 5 of 32

https://learn.bela.io/flex-design
https://learn.bela.io/flex-design
https://www.sparkfun.com/qwiic

AIL / Bela Trill Capacitive Touch Sensors Revision C

is pulsed by the sensor according to the setting of the EventMode command, as
explained in Section 7.5.
The Address pads can be used to change the I²C address, see Section 7.1.
Additionally, Trill Ring has two pads on its reverse side labelled A and B which can be
used to connect external capacitive pads, such as capacitive buttons. These pads
behave in the sameway as the channels on Trill Craft: solder a wire to the pads and
connect them to any conductive material to create a capacitive touch surface.

4.2 Trill Craft

Trill Craft has a total of 30 capacitive sensing pads, one for each channel of sensing
(15 castellated pads on each side). Trill Craft also has two SMD pads on the front
side labelled ‘G’ which are connected to GND. The power, I²C, RST and EVT signals are
available as through-hole pads along the shorter straight edge. See Figure 1. A
symbol and footprint to use in your own KiCad project is available in the Trill KiCad
library found in the hardware repository. Use it to incorporate a Trill Craft in your own
hardware design.

RST (Reset)
EVT (Event)
GND (Ground)
VCC (Power)
SDA (I2C Data)
SCL (I2C Clock)

Figure 1: Trill Craft Pinout

4.3 Trill Hub

Trill Hub is a passive breakout board for connecting multiple I²C devices together. It
features 10 QWIIC connectors, 2 Grove connectors and 6 sets of 2.54mm through-
hole pads connected in series, in addition to 2.2 kΩ pull-up resistors on the SDA and
SCL data lines.

5 Electrical specifications

The Trill family of touch sensors uses the Infineon Semiconductor PSoCCY8C20XX6A
IC.4

5.1 Schematics
4CY8C20XX6A/S datasheet, Infineon Semiconductor company, Document number: 001-54459

https://www.infineon.com/dgdl/Infineon-CY8C20XX6A_S_1.8_V_Programmable_CapSense_Controller_
with_SmartSense_Auto-tuning_1-33_Buttons_0-6_Sliders-DataSheet-v26_00-EN.pdf?fileId=
8ac78c8c7d0d8da4017d0ecc6dc04671

Datasheet V. 1.1 2023-11-01 Page 6 of 32

https://www.infineon.com/dgdl/Infineon-CY8C20XX6A_S_1.8_V_Programmable_CapSense_Controller_with_SmartSense_Auto-tuning_1-33_Buttons_0-6_Sliders-DataSheet-v26_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ecc6dc04671
https://www.infineon.com/dgdl/Infineon-CY8C20XX6A_S_1.8_V_Programmable_CapSense_Controller_with_SmartSense_Auto-tuning_1-33_Buttons_0-6_Sliders-DataSheet-v26_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ecc6dc04671
https://www.infineon.com/dgdl/Infineon-CY8C20XX6A_S_1.8_V_Programmable_CapSense_Controller_with_SmartSense_Auto-tuning_1-33_Buttons_0-6_Sliders-DataSheet-v26_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0ecc6dc04671

AIL / Bela Trill Capacitive Touch Sensors Revision C

Table 4: Power and data specifications
Unit Value Condition

Operating voltage (VCC) V 1.71 V to 5.5V1

Operating current mA 4 3.3V, 5V
I²C bus speed kHz 50/100/400
1 These are the values reported in the CY8C20XX6A/S datasheet. Trill devices have
been tested with VCC = 3.3V and VCC = 5V.

Figure 2: Trill Schematic (Bar), for other sensors see table 6

Table 5: CY8C20XX6A common pinout and usage on all Trill sensors
Pin number Name Usage on Trill Sensors
1, 14, 15, 42, 43, 19, 20 NC (Not connected)
17 P1[1] I²C SCL
18, 47, Center pad VSS GND
21, 41 VDD VCC

22 P1[0] I²C SDA
23 P1[2] ADDR0
24 P1[4] ADDR1
26 XRES RESET
48 P0[1] CapSense internal1
1 CapSense Integrating Capacitor.

Datasheet V. 1.1 2023-11-01 Page 7 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Table 6: CY8C20XX6A pinout and usage on Trill sensors
Pin # Name Bar Square1 Craft2 Ring Hex1 Flex
2 P2[7]

NC

R8 EVENT 1 R8 18
3 P2[5] C12 18 2 C11 19
4 P2[3] C13 19 3 C12 20
5 P2[1] C14 20 4 C13 21
6 P4[3] 20 C1 21 5 C14 22
7 P4[1] 21 R7 22 6 R7 23
8 P3[7] 22 R8 23 7 R6 24
9 P3[5] 23 R5 24 8 R5 25
10 P3[3] 24 R4 25 9 R4 26
11 P3[1] 25 R3 26 10 R3 27
12 P1[7] 26 R2 27 11 R2 28
13 P1[5] 12 C8 28 Button B C8 29
16 P1[3] 11 R1 29 ButtonA R1 30
25 P1[6] EVENT 0 EVENT
27 P3[0] 1 C1 1 12 C1 1
28 P3[2] 2 C2 2 13 C2 2
29 P3[4] 3 C3 3 14 C3 3
30 P3[6] 4 C4 4 15 C4 4
31 P4[0] 5 C5 5 16 C5 5
32 P4[2] 6 C6 6 17 C6 6
33 P2[0] 7 C7 7 18 C7 7
34 P2[2] 8 R9 8 19 R10 8
35 P2[4] 9 R10 9 20 R11 9
36 P2[6] 10 R11 10 21 R12 10
37 P0[0] 13 R12 11 22 R13 11
38 P0[2] 14 R13 12 23 R14 12
39 P0[4] 15 R14 13 24 R15 13
40 P0[6] 16 R15 14 25 R16 14
44 P0[7] 17 C9 15 26 C9 15
45 P0[5] 18 C10 16 27 C10 16
46 P0[3] 19 C11 17 28 R9 17
1 The two-dimensional sensors Square and Hex have rows and columns.
2 Craft pins are labelled on the silkscreen and start at index 0.

Datasheet V. 1.1 2023-11-01 Page 8 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

6 Functional overview

The PSoC runs a custom firmware which can be found online5 andwhose behaviour
is described in the remainder of this section. This firmware uses the EZ I²C Slave li-
brary6 for I²C communication and the CapSense Sigma-Delta library7 for capacitive
sensing.
The PSoC firmware’s main procedure processes incoming messages received via
I²C from the host processor, scans the enabled capacitive channels, processes and
formats the scan results. A host processor (a processor which can control the I²C
bus, such as amicrocontroller, single board computer, or any other compatible sys-
tem) sends commands, retrieves responses and accesses the scan data via the I²C
bus, accessing 64 bytes of the PSoC’s RAM. The layout and contents of this shared
RAM buffer are described in Section 7.3.
There are up to 30 capacitive channels on each sensor, as listed in Table 2. The
firmware uses the CSD library to scan the capacitive sensing channels. Any time a
function or variable name prefixed with CSD_ is mentioned in the remainder of this
document, we refer the reader to the CSD library documentation for further details.

6.1 Operating modes

A Trill sensor can operate in any of the following modes:

Centroid mode processes the readings of the individual capacitive sensing
channels taking into account the geometry and layout of the sensing pads
on the circuit board in order to compute the position and size of discrete touch
points via a Trill-specific moving average algorithm. The reported size of a
touch is a measure of the total activation measured on the sensing channels
that contribute to the touch. This mode uses the differential capacitive read-
ings stored in CSD_waSnsDiff but it does not use any of the CSD library’s centroid
or slider features.
Raw mode the sensor transmits the raw capacitance values from CSD_waSns
Result

Baselinemode the sensor transmits the baseline capacitance values from CSD_
waSnsBaseline. The baseline is used as a reference value for when the device is
in Differential or Centroid mode.
Differential mode the sensor transmits the difference between the raw and
baseline capacitive readings after applying a noise threshold, as given by CSD_
waSnsDiff.

Differential mode is the default on Trill Craft and is themode that would normally be
used to sense activity on individual capacitive pads. Centroid mode is the default
mode for all other sensor types and it is the mode that is used to sense touch lo-
cation and size on these devices. Raw and Baseline modes are normally used only
for testing and debugging. For Trill Craft and for Trill Flex, when the sensor is set in

5https://github.com/BelaPlatform/Trill
6Cypress Semiconductor Corporation, EZ I²C Slave v1.20 https://www.infineon.com/

dgdl/Infineon-Component_EZI2C_Slave_V1.20-Software+Module+Datasheets-v02_00-EN.pdf?fileId=
8ac78c8c7d0d8da4017d0e7f54ef111e

7Cypress Semiconductor Corporation, CapSense® Sigma-Delta Datasheet CSD v2.20 https://www.
infineon.com/dgdl/Infineon-CapSense_Sigma-Delta_Datasheet_CSD-Software%20Module%20Datasheets-v02_
02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f9f5d9b0e82

Datasheet V. 1.1 2023-11-01 Page 9 of 32

https://github.com/BelaPlatform/Trill
https://www.infineon.com/dgdl/Infineon-Component_EZI2C_Slave_V1.20-Software+Module+Datasheets-v02_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e7f54ef111e
https://www.infineon.com/dgdl/Infineon-Component_EZI2C_Slave_V1.20-Software+Module+Datasheets-v02_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e7f54ef111e
https://www.infineon.com/dgdl/Infineon-Component_EZI2C_Slave_V1.20-Software+Module+Datasheets-v02_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e7f54ef111e
https://www.infineon.com/dgdl/Infineon-CapSense_Sigma-Delta_Datasheet_CSD-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f9f5d9b0e82
https://www.infineon.com/dgdl/Infineon-CapSense_Sigma-Delta_Datasheet_CSD-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f9f5d9b0e82
https://www.infineon.com/dgdl/Infineon-CapSense_Sigma-Delta_Datasheet_CSD-Software%20Module%20Datasheets-v02_02-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f9f5d9b0e82

AIL / Bela Trill Capacitive Touch Sensors Revision C

Centroid mode it expects the capacitive channels to be connected in sequential
order to sensing pads placed in a linear fashion, similar to the sensing pads on Trill
Bar or on the flexible PCB that comes with Trill Flex. If using a different geometry for
the sensing surface, the Differential mode should be used and the host processor
should read the scan data for each channel and perform any further processing
itself.

6.2 Timing characteristics

Once the scanning of the sensor channels is triggered, the scan is performed, an op-
eration that can take several milliseconds. Once completed, the results are atom-
ically placed into the shared memory buffer and the EVT pin may be set high de-
pending on the current settings.

6.2.1 Scan trigger

A full scan of all enabled sensor channels can be triggered when an I²C read trans-
action takes place or when a customisable timer expires. The ScanTrigger command
is used to set whether either, neither or both of these conditions are enabled, while
the AutoScanTimer command is used to set the period of the timer.
When the scan trigger on I²C is enabled, a new scan is started as soon as a new I²C
read transaction starts. When the scan trigger on a timer is enabled, the timer is
restarted at the beginning of each scan and a new scan is started when the timer
expires. If the timer expires while a scan is still ongoing, a new scan will be started
as soon as the processing of the current one is completed.

6.2.2 Acquisition time

Table 7: Scan times for each capacitive channel for different scan settings.
Times in µs.

Scan speed setting1

Bits2 CSD_ULTRA_FAST_SPEED CSD_FAST_SPEED CSD_NORMAL_SPEED CSD_SLOW_SPEED

9 57 78 125 205
10 78 125 205 380
11 125 205 380 720
12 205 380 720 1400
13 380 720 1400 2800
14 720 1400 2800 5600
15 1400 2800 5600 11000
16 2800 5600 11000 22000
1 These are the values available to the ScanSettings command and the
CSD_SetScanMode() function.

2 Resolution.
The time it takes to perform a scan of all enabled channels on the device depends
on the number of enabled channels, the bit resolution and scanning speed. Table
7 details the scan duration for each combination of speed and resolution settings

Datasheet V. 1.1 2023-11-01 Page 10 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

for each of the capacitive sensing channels on your device. To calculate the overall
scan time, find the scan time relative to the current settings in the table andmultiply
it by the number of enabled channels on the sensor.
Each sensing channel can be enabled or disabled via dedicated commands. Dis-
abling scanning for unused channels is recommended in order to reduce overall
scanning and required data transfer time. Channels should not be disabled when
the device is in Centroid mode, as this will disrupt the touch detection routine.
The minimum achievable sampling period for a Trill sensor is largely limited by the
scan time, with the addition of the additional time required by the PSoC firmware
to handle the logic and formatting of data. The actual additional time depends on
the number of enabled channels and data format settings, but it is normally below
1 ms.

6.2.3 EVT pin

For each completed scan the sensor evaluates whether any activity is present in
the data. In Centroid mode, activity is present any time a touch is detected. In the
other modes, activity is present if any of the channel data is non-zero. If activity
was detected in a given set of scan data, the corresponding bit in the Status byte
will also be set (see Section 7.6).
The EventMode command allows to set under what condition the EVT pin should go
highwhen a scan has completed. When set to EventModeTouch, the EVTpin goes high if
activity is detected in the current scan. When set to EventModeChange, the EVT pin goes
high if activity is detected in the current or past scan. When set to EventModeAlways,
the EVT pin goes high after every scan, regardless of whether activity is detected or
not.
Once the data froma new scan has been placed into thememory buffer, the EVT pin
will go high if the conditions above are met. The host processor canmonitor the EVT
pin and start a new I²C read transaction to access the scan data upon detecting a
positive edge on the pin. The EVTpin stays high until the next scan has completed. As
soon as the scanning routine has completed and just before performing any post-
processing or formatting on the data, the EVT pin goes low. If a new scan is triggered
to start immediately after the previous one, then the EVT pin will spend less than 1ms
in the low state before going high again.

6.2.4 Use cases

We highlight here possible use cases that illustrate how the flexibility of the Trill sen-
sor can be leveraged in applications with one or more sensors, allowing to prioritise
latency, sampling rate, I²C bus use, host processor pin use, power usage.
A typical use case is reading one or more Trill sensors on the I²C bus using the min-
imal number of connections. As many sensors as permitted by the combinations
of address pins can be used on the same bus by only using the SDA and SCL lines.
The host processor should set each sensor’s ScanTrigger command to scan on I²C
transaction only, and then start reading all connected sensors periodically based
on an internal timer. When the host processor starts a read, it will simultaneously
trigger a new scan on the sensor and for any transaction the data being readwill be
the data from the scan that started when the previous read started and continued
while the previous read was in progress. Typically, a read of the full data takes less
than the acquisition time, so in order to avoid reading duplicated frames, the host
controller’s timer should be set so that the same sensor is not readmore often than
its acquisition time. If set too low, this may result in duplicated reads of the scan

Datasheet V. 1.1 2023-11-01 Page 11 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

data, which can be detected by reading and monitoring the Status byte. This is the
only approach that guarantees that several sensors will be scanned at the same
interval, with no drifting between them.
If the highest possible sampling rate and lowest possible latency is desired and the
host processor has the capability to monitor the EVT pin and and to quickly start
an I²C read transaction as soon as it detects a rising edge, then the host should set
ScanTrigger to scanon I²C transactiononly and the EVTpin togohighafter every scan.
The host controller would then start by reading the data from the sensor once. This
will trigger a scan which in turn will trigger the EVT pin. The host controller should
monitor the EVT pin and start a new read every time it detects a rising edge. The
sampling rate here is set by the sensor’s acquisition time combined with the host
processor’s response time, as the new scan is triggered by the start of the I²C read
transaction. Because of these constrains it is complicated to extend this approach
to multiple sensors.
A similarly high sampling rate, but with variable latency and support for multiple
sensors can be achieved without the need for monitoring the EVT pin, or by mon-
itoring it without needing to respond quickly. Set the ScanTrigger to timer and set
AutoScanTimer to the minimum value, if the maximum sampling rate is desirable, or
to a larger value suitable for the application. If the host controller can monitor the
EVT pin for each sensor, it should read data from each sensor after detecting a rising
edge on the respective pin. This time, how fast it responds will not affect the sam-
pling rate of the scanning data, and it can read the data at any point before the next
rising edge of the EVTpin. If the host processor only cares about whether activity was
detected in a scan before reading it, it can use the EventMode command accordingly.
If the host processor cannot monitor the EVT pin for each sensor, it should periodi-
cally read data from each sensor to verify whether new scan data is available. This
polling will have to take place more often than the acquisition time of the sensor in
order to avoid missing frames, however it should not occur too often or it will slow
down the sensor during acquisition. This is best achieved by only reading the Status
byte, evaluating its content to verify whether this is a new scan and whether ac-
tivity was detected, in which case the host can proceed with a new read of the full
Payload. Note that each sensor will have a slightly different scan time, so the host
should be prepared to handle drifting timing. This case can extend to applications
wheremany sensors are in use and reading the full scan data from them at the de-
sired sampling rate at all times would be limited by the bandwidth available on the
I²C bus rather than by the acquisition time, using either polling of the Status byte or
monitoring of the EVT pin. As long as not all sensors show activity at the same time,
the host may be able to scan only the active ones while keeping a high sampling
rate.
When the host processor expects long waits between bursts of activity on one or
more sensors and wants to limit its own, or the sensor’s, power consumption, and
it can tolerate a slight delay when activity starts being detected, the user can con-
nect the EVT pin to a wake-up capable pin of the host controller. The host controller
would then set EventMode to EventModeChange, ScanTrigger to timer and a timer interval
compatible with its latency requirements before entering low-power mode. Once
activity is detected by the sensor, it will set the EVT pin high, waking up the host pro-
cessor. This will continue scanning and processing incoming data on each rising
edge of the EVT pin. Because of EventModeChange, the last rising edge will occur when
no activity was detected in the scan data, at which point the host processor can go
back into low-power mode, waiting for the next burst of activity.

Datasheet V. 1.1 2023-11-01 Page 12 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

7 Communication

A host processor can communicate with the Trill sensor using the I²C protocol, over
the SDA and SCL lines. These lines are connected directly to the SDA and SCL pins of
the Infineon CY8C20XX6A PSoC (Programmable System on Chip) IC located on the
Trill sensor, so for the rest of this section we will refer to the PSoC directly. More
details about the I²C protocol, including timing information, can be found in the
CYBC20XX6A datasheet (see Footnote 4).
No pull up resistors for the SDA or SCL lines are installed on the sensors themselves.
When using Trill sensors without Trill Hub (which uses 2.2 kΩ resistors) it is the user’s
responsibility that pull ups on these lines are provided where required. More in-
formation on dimensioning pullup resistors can be found in the Texas Instruments
Application Report SLVA689.8

7.1 I2C addresses

Theaddress of a Trill sensor on the I²C bus is determinedby the default base address
(which is different for each Trill sensor type) andby the state of the two address pins.
These can be either left floating or connected to one of GND or VCC.
The addresses available for each device type are listed in Table 8.

Setting the I2C address

In order to use more than 1 of any single sensor type on a single I²C bus, you’ll have
to change the address of each additional sensor so they can be unequivocally ad-
dressed on the bus. Each Trill sensor has six solder pads which can be bridged to-
gether with solder in various configurations to change the sensor’s address.

VCC

ADR0

GNDGND
ADR1

VCC

Figure 3: Address setting solder jumpers. Notice the thicker and separated line
indicating the side with the GND pads.

+0 +1 +2 +3 +4 +5 +6 +7 +8

Figure 4: Setting the solder pad addresses

By connectingwith a solder joint each of the ADR0 and ADR1 to GND or VCC, or leaving it
unconnected, you can set the address of the sensor. The six solder pads are divided
into two groups of three, labelled ADR0 and ADR1. The three pads in each group
are unconnected by default, but the middle pad of the group can be connected
to one of the adjacent pads to change the I²C address. Do not connect all three
pads together. The connections required to obtain the addresses available for each
sensor type are shown in Table 8.

8Texas Instruments Application Report SLVA689 I2C Bus Pullup Resistor Calculation https://www.ti.com/
lit/an/slva689/slva689.pdf

Datasheet V. 1.1 2023-11-01 Page 13 of 32

https://www.ti.com/lit/an/slva689/slva689.pdf
https://www.ti.com/lit/an/slva689/slva689.pdf

AIL / Bela Trill Capacitive Touch Sensors Revision C

Table 8: Address pad connections and resulting addresses.
NC: not connected; L: connected to GND; H: connected to VCC

ADR1 ADR0 Offset Trill
Bar

Trill
Square

Trill
Craft

Trill
Ring

Trill
Hex

Trill
Flex

NC1 +0 0x20 0x28 0x30 0x38 0x40 0x48

NC L +1 0x21 0x29 0x31 0x39 0x41 0x49

NC H +2 0x22 0x2A 0x32 0x3A 0x42 0X4A

L NC +3 0x23 0x2B 0x33 0x3B 0x43 0X4B

L L +4 0x24 0x2C 0x34 0x3C 0x44 0X4C

L H +5 0x25 0x2D 0x35 0x3D 0x45 0X4D

H NC +6 0x26 0x2E 0x36 0x3E 0x46 0X4E

L H +7 0x27 0x2F 0x37 0x3F 0x47 0X4F

H H +8 0x28 0x30 0x38 0x40 0x48 0X50

1 No solder jumper bridged (+0 offset) is the default address for the sensors.

7.2 Writing and reading data

Whenwriting to the PSoC, the first byte written by the host processor in a transaction
is thememory offset atwhich thewrite of the followingbytes in the same transaction
starts; it is also the memory offset from which future read transactions will start. A
write transaction consisting of a single byte can be used to set the offset fromwhich
future read transactions will start. If the host processor tries to write to an offset
outside the R/W section of the memory or read from an offset outside the available
memory, the PSoCwill trigger aNot Acknowledge condition on the I²Cbusand ignore
the rest of the transaction until the host processor issues a new start condition.

7.3 Memory map

Table 9: Map of the PSoC’s memory that is accessible by the host processor over
the I²C bus

Offset 0 1 2 3 4 5 ... 63
Access
Mode R/W R/W R/W R/O R/O R/O ... R/O

Host
Writes

Cmd
code

Cmd
arg0

Cmd
arg1 x x x x x

Host
Reads

Ack
code

Ack
arg0

Ack
arg1 Status Payload

0
Payload
1 ... Payload

59

The shared RAM buffer exposed by the PSoC to the host processor over I²C is or-
ganised as follows: Bytes 0 to 2 is the command and acknowledgement region and
it support both reads and writes (R/W) from the host processor. Byte 3 is the sta-
tus byte and is read-only (R/O) for the host processor. Bytes 4 to 63 is the payload
region of the memory and are R/O for the host processor.

Datasheet V. 1.1 2023-11-01 Page 14 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

7.4 Commands and acknowledgements

To send commands to the PSoC, the host processor writes between one and three
bytes to offset 0 in a single I²C transaction. The first byte of a command is the com-
mand’s code, to which 0, 1 or 2 command-specific bytes follow depending on the
command, as detailed in Section 7.5.
When the PSoC has processed the command, it writes an acknowledgement mes-
sage to offset 0 so that the host processor can read it back. The time it takes for
the PSoC to process the command and prepare the acknowledgement message
depends on the command and the scanning settings.
Afterwritingacommand, in order to ensure that it hasbeen receivedandprocessed,
the host processor should repeatedly poll the PSoCmemory by reading 3 bytes from
offset 0, waiting for a valid acknowledgement message to appear, which signals
that the PSoC is ready to receive the next command.
The acknowledgementmessage is comprised of three bytes: [ACK BYTE0 BYTE1]. The
ACK byte is 254 (0xFE). When a command requires a response, BYTE0 and BYTE1 are
the payload of the response. When a command doesn’t require a response, BYTE0
is the command code that was written by the host to offset 0 in the command that
this acknowledgement refers to, and BYTE1 is an 8-bit counter that is incremented by
one for each command that the PSoC receives (regardless of whether a response
is required or not), and is reset to 0 when the PSoC is reset or when the counter
wraps around. By monitoring and keeping track of the value of the counter byte,
the host processor can detect unexpected resets of the PSoC. The acknowledge-
ment message only notifies the host processor that the command was received
and processed, but it does not provide any information regarding the command’s
validity or that of its arguments. It is the host processor’s responsibility to validate
that.

7.5 Command list

The commands supported by the revision C of the Trill sensor family are listed in
Table 10 and explained below. The processing of some of these commands results
in a function call to the CSD API of the CapSense Sigma-Delta library which is used
on the Trill sensor to scan the capacitive sensing channels on board the PSoC.

Mode command: 1 (0x01) Sets themode in which the sensor processes and trans-
mits the data read from its capacitive sensing channels. A detailed description of
the available modes is available in Section 6.1.
The argument byte can assume one of the following values:

0 (0x00): Centroid. This is the default for all sensors except Trill Craft.
1 (0x01): Raw
2 (0x02): Baseline
3 (0x03): Differential. This is the default for Trill Craft.

ScanSettings command: 2 (0x02) Sets scanning speed and resolution.
The first argument byte is speed and can assume one of the following values:

0 (0x00): CSD_ULTRA_FAST_SPEED

Datasheet V. 1.1 2023-11-01 Page 15 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Table 10: Command list

Name Command
code

Number of
argument bytes

Requires
response

Mode 1 (0x01) 1 no
ScanSettings 2 (0x02) 2 no
Prescaler 3 (0x03) 1 no
NoiseThreshold 4 (0x04) 1 no
Idac 5 (0x05) 1 no
UpdateBaseline 6 (0x06) 0 no
MinimumSize 7 (0x07) 2 no
AdjacentCentroidNoiseThreshold 8 (0x08) 2 no
EventMode 9 (0x09) 1 no
ChannelMaskLow 10 (0x0A) 2 no
ChannelMaskHigh 11 (0x0B) 2 no
Reset 12 (0x0C) 0 no
Format 13 (0x0D) 2 no
AutoScanTimer 14 (0x0E) 2 no
ScanTrigger 15 (0x0F) 1 no
Identify 255 (0xFF) 0 yes

1 (0x01): CSD_FAST_SPEED
2 (0x02): CSD_NORMAL_SPEED
3 (0x03): CSD_SLOW_SPEED

The second argument byte is the resolution in bits and can be any integer value
between 9 and 16.
Theargumentsarepassed to CSD_SetScanMode(). Defaults are 0 (CSD_ULTRA_FAST_SPEED)
for speed and 12 for resolution.

Prescaler command: 3 (0x03) Sets the prescaler value.
The argument byte is passed to CSD_SetPrescaler() and it can assume one of the
following values:

0 (0x00): CSD_PRESCALER_1 sets prescaler to 1
1 (0x01): CSD_PRESCALER_2 sets prescaler to 2
2 (0x02): CSD_PRESCALER_4 sets prescaler to 4
3 (0x03): CSD_PRESCALER_8 sets prescaler to 8
4 (0x04): CSD_PRESCALER_16 sets prescaler to 16
5 (0x05): CSD_PRESCALER_32 sets prescaler to 32
6 (0x06): CSD_PRESCALER_64 sets prescaler to 64
7 (0x07): CSD_PRESCALER_128 sets prescaler to 128
8 (0x08): CSD_PRESCALER_256 sets prescaler to 256

Default value is 4 on Trill Bar and 2 on all other sensors.

Datasheet V. 1.1 2023-11-01 Page 16 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

NoiseThreshold command: 4 (0x05) Sets the noise threshold for the sensing chan-
nels.
The argument byte is used to set CSD_bNoiseThreshold. Default value is 40.

Idac command: 5 (0x05) Sets the iDAC value.
The argument byte is passed to CSD_SetIdacValue(). Default value is 20.

UpdateBaseline command: 6 (0x06) Updates the baseline values. It results in a
complete sensor scan followed by a call to CSD_InitializeBaselines().

MinimumSize command: 7 (0x07) When the sensor is in Centroid mode, this com-
mand sets the minimum size that a centroid has to have in order to be considered
a valid touch.
The two argument bytes are interpreted as a 16-bit Big-Endian word representing
the centroid size. Default value is 0.

AdjacentCentroidNoiseThreshold command: 8 (0x08) When the sensor is in Cen-
troid mode, this command sets the noise threshold to detect a through between
two adjacent touches.
The two argument bytes are interpreted as a 16-bit Big-Endian word representing
the noise threshold. Default value is 400.

EventMode command: 9 (0x09) This command sets under what conditions the EVT
pin should be pulsed high after the data from a new scan is ready.
The argument byte can assume one of the following values:

0 (0x00): EventModeTouch, the EVT pin goes high every time activity is detected in
the data of the current scan (default)
1 (0x01): EventModeChange, the EVT pin goes high every time activity is detected in
the data of the current or previous scan
2 (0x02): EventModeAlways, the EVT pin goes high after every scan, regardless of
whether activity is detected or not

ChannelMaskLowcommand: 10 (0x0A) Each capacitive channel on the sensor can
be individually enabled or disabled by setting the respective bits in a 32-bit channel
mask. If a bit is 1 the corresponding channel will be scanned and its data made
available for the host processor to read. If a bit is 0 the channel will not be scanned
and its data will not be made available for the host processor to read. There are
always fewer than 32 channels on each sensor, as shown in Table 2 and any bit
indexes higher than the number of available channels will be ignored. By default
the channel mask is set to 0xFFFFFFFF (all channels enabled). When the device is in
Centroid mode, the channel mask should be set to its default value. See section 7.7
for more details on how disabling a channel affects the data stored in the Payload
region.
The ChannelMaskLow command sets the channel mask for the lowest 16 channels. See
Table 11 for more details.
The first argument byte is the mask for sensing channels 8 through 15.
The second argument byte is the mask for sensing channels 0 through 7.

Datasheet V. 1.1 2023-11-01 Page 17 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Table 11: Map of the channel mask
Command Code ChannelMaskHigh 11 (0x0B) ChannelMaskLow 10 (0x0A)

Argument Byte 0 1 0 1
Mask Bits 31:24 23:16 15:8 7:0
Default Value 0xFF 0xFF 0xFF 0xFF

ChannelMaskHigh command: 11 (0x0B) Sets sensing channel mask for the highest
16 channels. See Table 11 for more details.
The first argument byte is the mask for sensing channels 24 through 31.
The second argument byte is the mask for sensing channels 16 through 23.

Reset command: 12 (0x0C) Performs a reset of the PSoC by restoring the CPU to the
power-on reset state.

Format command: 13 (0x0D) Sets the format in which the data for individual sens-
ing channels ismadeavailable to the host processor. This does not affect the format
of data in Centroid mode.
The first argument byte sets the data width (in bits) and can assume one of the val-
ues: 8, 12, 16 (defaults to 16).
The second argument sets the amount of positions to right shift the value by before
storing it in the allocated data width (defaults to 0). See Section 7.7 for more details.

AutoScanTimer command: 14 (0x0E) Sets the period of an internal timer that can
be used to automatically scan and process the capacitive sensing channels. The
effective minimum scanning period will be limited by the scanning speed, bit depth
and any computation happening on the device. The interval set with this command
are only used if the ScanTrigger command is set to 2 or 3.
The values of the two argument bytes, whenmultiplied together, give the number of
periods of an internal 32 kHz clock after which a new scan is triggered; if either is set
to 0, the timer is disabled. The nominal scanning period, expressed in seconds, is
therefore given by byte0 * byte1 / 32000. Note that the 32 kHz clock (the ILO clock of
the PSoC) can deviate more than 10% from its nominal frequency, correspondingly
affecting the accuracy of the period set here.

ScanTrigger command: 15 (0x0F) Set how the sensor triggers a new scan of its
capacitive channels.
The argument byte can assume one of the following values:

0 (0x00): scanning is disabled

1 (0x01): start a new scan after every I²C transaction (default)
2 (0x02): start a new scan when the time interval specified with the AutoScanT-
imer command has elapsed since the last scan.
3 (0x03): start a new scan after every I²C transaction or when the time interval
specified with the AutoScanTimer command has elapsed since the last scan.

Datasheet V. 1.1 2023-11-01 Page 18 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Identify command: 255 (0xFF) Ask the sensor to return its type and firmware ver-
sion. This command requires a response, therefore once the command has been
processed, the command buffer will contain the following bytes: [ACK SENSOR_TYPE
FW_VERSION] where ACK is 254 (0xFE), FW_VERSION is 3 (0x03) and SENSOR_TYPE is one of
the following:

1 (0x01): Bar
2 (0x02): Square
3 (0x03): Craft
4 (0x04): Ring
5 (0x05): Hex
6 (0x06): Flex

7.6 Status byte

The byte at offset 3 is the status byte which contains details about the scan data
currently present in the Payload region and the state of the device.
Bits 5:0 contain the frameId, a counter which is incremented every time the results
of a new scan are made available on the I²C bus. By reading the frameId, the host
processor can detect duplicated or dropped scans.
Bit 6 of the status byte is set to 1 if any activity was detected in the current scan, or
0 otherwise. See Section 6.2.3 for more information about detected activity.
Bit 7 is a bit that is set to 0 upon reset and set to 1 after an Identify message is re-
ceived. The host processor canmonitor this bit to detect an unexpected reset of the
PSoC.

7.7 Payload

The memory region starting at offset 4 contains the payload data obtained from
scanning and processing the capacitive channels on the PSoC. The format and
length of this section depend on the Trill sensor type, the mode the sensor is in (as
set by the Mode command), the number of active sensing channels (as set by the
SensorMaskLow and SensorMaskHigh commands) and the transmission width (as set by
the Format command).

7.7.1 Centroid mode

The data in the Payload region represents the touch location and size for each of the
touches that the device can detect. Each touch is described by 4 bytes, where the
first 2-byte word represents the touch location and the second 2-byte word rep-
resents the touch size. Each word represents a 16-bit unsigned integer in Big En-
dian format. Touch location and size values for each touch are stored in contiguous
memory, starting from the beginning of the Payload region, ordered from the first to
the last touch for each sensing axis. Devices with two axes of sensing (Trill Square,
Trill Hex) store vertical touches first, followed by horizontal touches. The readings
of the two exposed pads on Trill Ring are stored after the touch values as a 16-bit
unsigned integers in Big Endian format.

Datasheet V. 1.1 2023-11-01 Page 19 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

The memory offset for the start of the location data for a given touch n is p + 4n,
where p = 4 is the offset of the Payload region. Table 12 details the memory map for
the first two touches.
The size of valid data (in bytes) in the Payload memory region for a sensor which
provides a total of N touches across the two axes and E extra pads isM = 4N + 2E.
The host processor should readM bytes starting at offset 4 to retrieve the full touch
data. The number of available touches and the corresponding data size (M) for
each sensor type in Centroid mode is shown in Table 13.

Table 12: Map of the payloadmemory when the sensor is in Centroidmode
Offset 4 5 6 7 8 9 10 11 ...
Touch 0 1 ...
Value Location Size Location Size ...
Bits 15:8 7:0 15:8 7:0 15:8 7:0 15:8 7:0 ...

Table 13: Content of the Payload buffer in Centroidmode for each Trill sensor
Trill type Vertical

touches
Horizontal
touches

Extra
pads

Data
length (M)

Bar 5 0 0 20
Square 4 4 0 32
Craft 5 0 0 20
Ring 5 0 2 24
Hex 4 4 0 32
Flex 5 0 0 20

The touch location value ranges between 0 and 128 ∗ (n− 1), where n is the number
of capacitive pads on the sensing axis. The touch size value is the sum of the differ-
ential readings for all pads assigned to the touch. The special value 65535 (0xFFFF)
is used to denote the location and size values of inactive touches.

7.7.2 Raw, Baseline or Diff mode

The data in the Payload region represents the amount of capacitive activation on
the corresponding sensing channel. Values of all enabled channels are stored con-
tiguously in thememory buffer. If a channel is disabled in the channelmask, its value
is removed from the buffer and following channels are brought forward so that no
gap is present in the buffer.
Each channel reading is stored using a data width (8, 12, or 16 bits) as set by the
first argument of the Format command (default is 16). A right shift operation by the
number of bits specified via the second argument of the Format command (default
is 0) is applied to the value before it is stored in the available bits. The value for a
given channel prior to the right shift ranges between 0 and 2n − 1, where n is the bit
resolution set via the ScanSettings command (defaults to 12). If the result of the right
shift would overflow if stored in the available bits, it is saturated to the maximum
value that can be stored.
For a data width of 8 bits each channel’s data is stored in one byte. For a data width
of 12 bits the data from a pair of sensing channels occupies a total of 3 bytes:

Datasheet V. 1.1 2023-11-01 Page 20 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Bits 7:0 of the first byte represent bits 11:4 of the 12-bit value of the first channel
in the pair.
Bits 3:0 of the second byte represent bits 3:0 of the 12-bit value of the first chan-
nel in the pair.
Bits 7:4 of the second byte represent bits 11:8 of the 12-bit value of the second
channel in the pair.
Bits 7:0 of the third byte represent bits 7:0 of the 12-bit value of the second chan-
nel in the pair.

For a data width of 16 bits each sensing channel’s data occupies 2 bytes and is
stored as an unsigned integer in Big Endian format.

Table 14: Map of the payloadmemory when the sensor is in Raw, Baseline or Diff
mode and the data width is 8 bits.

Memory Offset 4 5 6 7 ...
Memory Bits 7:0 7:0 7:0 7:0 ...
Sensing Channel 0 1 2 3 ...
Bits in word 7:0 7:0 7:0 7:0 ...

Table 15: Map of the payloadmemory when the sensor is in Raw, Baseline or Diff
mode and the data width is 12 bits.

Source Offset 4 5 6 ...
Source Bits 7:0 7:4 3:0 7:0 ...
Sensing Channel 0 1 0 1 ...
Bits in word 11:4 11:8 3:0 7:0 ...

Table 16: Map of the payloadmemory when the sensor is in Raw, Baseline or Diff
mode and the data width is 16 bits.

Memory Offset 4 5 6 7 ...
Memory Bits 7:0 7:0 7:0 7:0 ...
Sensing Channel 0 1 ...
Bits in word 15:8 7:0 15:8 7:0 ...

7.8 Typical operation

Examples of host processor libraries for usingwith Trill are available online (see Foot-
note 1). These take care of the low-level communication detail and expose a user-
friendly C++ API which allows to send the commands from 7.5, retrieves scan and
touch data and parses them into C++ data types. Users of these libraries should not
need to worry about the details of the communication or the examples in this sec-
tion and should refer to the documentation and examples provided with the library.
This section is meant for those users intending to communicate with Trill sensors
without using the provided libraries. It includes examples of barebones I²C commu-
nication written in pseudo-code to be used as a reference for implementing com-
munication.

Datasheet V. 1.1 2023-11-01 Page 21 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

We briefly summarise the salient characteristics of I²C communication between a
host processor and a Trill sensor:

in each write transaction, the first byte is the offset at which the following bytes
are written or successive reads start from.
Commands are written to offset 0 (0x00) and have length 1, 2 or 3
Acknowledgements are read from offset 0 (0x00) and have length 3
Status byte is read from offset 3 (0x03) and has length 1
Payload data starts from offset 4 (0x04) and has variable length

A typical interaction of a host processor with a Trill sensor involves writing com-
mands to the command region to set up the sensor’s scanning properties, reading
back acknowledgements to verify commands have been processed and ascertain
the device type and its firmware revision number.
After this initial setup, the sensor must be prepared for reading scan data by writing
a single byte with the value of 3 or 4, corresponding to the offsets of the Status byte
and Payload region, respectively, depending on whether the host processor intends
to read the status byte while reading data or not. From that point on, successive
reads of the appropriate length will return the content of the data region.

7.8.1 Code listing 1

Communication between a host processor and a Trill Bar at default address 0x20.
Default values are used, so the sensor is already in Centroid mode. The host pro-
cessor reads data for up to 5 touches and ignores the status byte.

// pseudo-code
// write() and read() calls should perform a write or read transaction
// on the I2C bus at address 0x20.

// Write the identify command
write([0, 0xFF])

uint8 arr[3]
// Poll and wait to read the identify acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)
sensor_type = arr[1] // should verify that it is 0x01: Trill Bar
fw_revision = arr[2] // should verify that it is 3

// To start reading data, write the offset from which we want to read from.
// This is 4 as we start from the Payload memory region
write([4])

// Repeatedly read the touch data for 5 touches (4 byte each, 20 bytes total)
while(1) {

uint8 data[20]
read(data, 20)
// here, parse and handle touches
// wait before the next read to allow
// the sensor to perform a new scan
sleepMs(10)

}

Datasheet V. 1.1 2023-11-01 Page 22 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

7.8.2 Code listing 2

Communication between a host processor and a Trill Craft at default address 0x30.
The sensor is set into Differential mode, the prescaler value is adjusted and the bit
resolution increased to 16. Only capacitive channels 7 through 20 are enabled, all
other channels are disabled in the channel mask. The sensor is then set to scan
automatically every 50 ms. The host processor polls the status byte every 30 ms
to verify whether the current scan is a new scan and has detected activity, in which
case it performs a full read of the Status byte and the Payload. The Payload contains
the 14 channels that are enabled, each occupying two bytes. So the total size of the
read including the Status byte is 29.

// pseudo-code
// write() and read() calls should perform a write or read transaction
// on the I2C bus at address 0x30.

// Write the identify command
write([0, 0xFF])

uint8 arr[3]
// Poll and wait to read the identify acknowledgement
do { read(arr, 3) } while (arr[0] != 0xFE)
sensor_type = arr[1] // should verify that it is 0x03: Trill Craft
fw_revision = arr[2] // should verify that it is 3

// disable scanning altogether with the ScanTrigger command:
write([0, 0x0F, 0x00])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// ScanSettings command to set 16 bit and CSD_ULTRA_FAST_SPEED (0x00)
write([0, 0x02, 0x00, 16])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// Set the prescaler to CSD_PRESCALER_1 (0x01) with the Prescaler command:
write([0, 0x03, 0x01])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// Manipulate the channel mask so that only channels 7 through 20 are enabled
// The desired content of the channel mask is thus 0x001FFF80
// Using the ChannelMaskLow command we set the lowest bytes
write([0, 0x0A, 0xFF, 0x80])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// Using the ChannelMaskHigh command we set the highest bytes
write([0, 0x0B, 0x00, 0x1F])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// Set the internal timer to 50ms with the AutoScanTimer command.
// The timer duration is expressed in periods of a 32kHz clock.
// 50ms is equivalent to 1600 periods.
// The two argument bytes multiplied together should give 1600.

Datasheet V. 1.1 2023-11-01 Page 23 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

// We use 200 and 8.
write([0, 0x0E, 200, 8])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// the sensor is all set up. Enable scanning on timer with the ScanTrigger command
write([0, 0x0F, 0x02])
// wait for acknowledgement
do { read(arr, 1) } while (arr[0] != 0xFE)

// To start reading data, write the offset from which we want to read from.
// This is 3 as we start from the Status byte
write([3])

while(1) {
uint8 data[29]
// Repeatedly read the Status byte until activity on a new frame is detected.
oldFrameId = -1
do {

// we read faster than the period in order not to miss any frames
sleepMs(30)
read(data, 1)
status = data[0]
// bit six of the status bits is set if activity was detected
activityDetected = status & (1 << 6)
// lowest five bits are the frameId
frameId = status & 0x1F
newData = frameId != oldFrameId
oldFrameId = frameId

} while (!(newData && activity))

// once we get here, we should read the full payload
// we re-read the status byte we just read above,
// but that's faster than performing a write to change the read offset
read(data, 29)
// here, parse and handle data. Note that the
// first byte is the status byte and can be discarded

}

8 Dimensions

8.1 Trill Bar

4-layer PCB with 0.8mm thickness. The marked rectangular area shows the mini-
mum size (32x14mm) the sensor can be cut to. Don’t cut inside this area.

Datasheet V. 1.1 2023-11-01 Page 24 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Figure 5: Trill Bar dimensions

8.2 Trill Square

4-layer PCB with 0.8mm thickness. The marked rectangular area shows the mini-
mum size (32x19mm) the sensor can be cut to. Don’t cut inside this area.

Datasheet V. 1.1 2023-11-01 Page 25 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Figure 6: Trill Square dimensions

Datasheet V. 1.1 2023-11-01 Page 26 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

8.3 Trill Craft

Figure 7: Trill Craft dimensions

2-layer PCB with 1.6mm thickness. Castellated pads with 2.54mm pitch. The two
rows of holes on each side are 18mmapart. Trill Craft has twomounting holes fitting
for M3 screws 37mm apart. They are not connected to ground.

8.4 Trill Ring

Figure 8: Trill Ring dimensions

4-layer PCB with 0.8mm thickness. Two buttons can be connected using the pads
labelled ‘A’ and ‘B’.

Datasheet V. 1.1 2023-11-01 Page 27 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

8.5 Trill Hex

Figure 9: Trill Hex dimensions

4-layer PCB with 0.8mm thickness. The marked rectangular area shows the mini-
mum size (31x18mm) the sensor can be cut to. Don’t cut inside this area.

8.6 Trill Flex

Figure 10: Trill Flex Base dimensions

Base: 2-layer PCBwith 1.6mm thickness. Flat Flexible Connector (FFC): 32 pin, 0.5mm
pitch. Slider: 2-layer Flex-PCB.

Datasheet V. 1.1 2023-11-01 Page 28 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

Figure 11: Trill Flex Slider dimensions

Datasheet V. 1.1 2023-11-01 Page 29 of 32

AIL / Bela Trill Capacitive Touch Sensors Revision C

8.7 Trill Hub

Figure 12: Trill Flex Hub dimensions

2-layer PCB with 1.6mm thickness.

9 History

The original Trill sensors (Revisions A and B) were funded on Kickstarter in autumn
2019. They feature GROVE connectors, were designed in Eagle and have their own
datasheet9. This datasheet is for revision C of the Trill sensors, for which we used the
open source KiCad schematic capture and PCB design software suite and switched
tomorecompact horizontalQWIICconnector. Additionally, Trill Craft nowhascastel-
lated pads.

10 Source Files and Licenses

Trill hardware designs and this datasheet are available under a Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License, meaning they can

9https://github.com/BelaPlatform/Trill/blob/master/datasheet/REV_B/trill_datasheet.pdf

Datasheet V. 1.1 2023-11-01 Page 30 of 32

https://github.com/BelaPlatform/Trill/blob/master/datasheet/REV_B/trill_datasheet.pdf

AIL / Bela Trill Capacitive Touch Sensors Revision C

be freely reused and remixed with attribution, provided modifications remain open
source. Trill firmware is licensed under GNU General Public License 3, meaning that
you can freely use, remix, change and extend the code, but you are obligated to
make the modified source code available alongside any binaries (flashed, or as
files) that you release.
Source files can be found here: https://github.com/BelaPlatform/Trill

10.1 Certified Open Source Hardware

We strongly believe in the power of Open Source Hardware. All Trill sensors, and Trill
Hub are certified as open source hardware by OSHWA.10

Table 17: OSHWA UIDs
Name OSHWA UID Certification page

Trill Bar UK000052 https://certification.oshwa.org/uk000052.html

Trill Square UK000051 https://certification.oshwa.org/uk000051.html

Trill Craft UK000053 https://certification.oshwa.org/uk000053.html

Trill Hex UK000055 https://certification.oshwa.org/uk000055.html

Trill Ring UK000054 https://certification.oshwa.org/uk000054.html

Trill Flex UK000056 https://certification.oshwa.org/uk000056.html

Trill Hub UK000057 https://certification.oshwa.org/uk000057.html

10.2 Commercial Licensing

It’s possible to use Trill design files and firmware for commercial projects free of
charge under CC-BY-SA 4.0 (hardware) and GPL 3 (firmware). Both licenses allow
you to use these assets yourself under the license requirements, which include pub-
licly releasing any changes you make to the designs under the same license.
If you want to use Trill design files but not provide attribution and/or not release your
source code — for example, because you want to create something to sell using
these files but don’t want to make your source files public — this is still possible, but
requires a commercial license. Augmented Instruments Ltd. can provide you with a
commercial license that fits your project and its scope. Get in touch at info@bela.io
to discuss your product and the license that’s right for you.11
Please note: The above commercial licensing applies only to modifications to our
provided firmware code and PCB designs. You can buy Trill sensors and use them
in any commercial or personal project without any additional licensing costs.

10Open Source Hardware Association https://oshwa.org
11More information may be found at https://learn.bela.io/products/products-overview/

open-source-licenses/#using-trill-in-commercial-products

Datasheet V. 1.1 2023-11-01 Page 31 of 32

https://github.com/BelaPlatform/Trill
https://certification.oshwa.org/uk000052.html
https://certification.oshwa.org/uk000051.html
https://certification.oshwa.org/uk000053.html
https://certification.oshwa.org/uk000055.html
https://certification.oshwa.org/uk000054.html
https://certification.oshwa.org/uk000056.html
https://certification.oshwa.org/uk000057.html
https://oshwa.org
https://learn.bela.io/products/products-overview/open-source-licenses/#using-trill-in-commercial-products
https://learn.bela.io/products/products-overview/open-source-licenses/#using-trill-in-commercial-products

AIL / Bela Trill Capacitive Touch Sensors Revision C

10.3 Trill/Bela Name and Logo

Trill and Bela names and logos are copyright Augmented Instruments Ltd. Any de-
signs that you release or produce should not use the Trill name or logo and/or the
Bela name and logo, whether modified or exact copies.

10.4 Disclaimer

All trademarks, logos and brand names including, but not limited to Infineon, Kick-
starter, Eagle, KiCad, Texas Instruments, CapSense or Arduino are the property of
their respective owners. All company, product and service names used in this
datasheet are for identification purposes only. Use of these names, trademarks and
brands does not imply affiliation or endorsement. All information in this datasheet
is subject to change without notice.

Datasheet V. 1.1 2023-11-01 Page 32 of 32

	Overview
	Revision history

	Manufacturer Numbers
	Trill Sensor Types
	Pinout
	Additional connections
	Trill Craft
	Trill Hub

	Electrical specifications
	Schematics

	Functional overview
	Operating modes
	Timing characteristics
	Scan trigger
	Acquisition time
	EVT pin
	Use cases

	Communication
	I2C addresses
	Writing and reading data
	Memory map
	Commands and acknowledgements
	Command list
	Status byte
	Payload
	Centroid mode
	Raw, Baseline or Diff mode

	Typical operation
	Code listing 1
	Code listing 2

	Dimensions
	Trill Bar
	Trill Square
	Trill Craft
	Trill Ring
	Trill Hex
	Trill Flex
	Trill Hub

	History
	Source Files and Licenses
	Certified Open Source Hardware
	Commercial Licensing
	Trill/Bela Name and Logo
	Disclaimer

