

AppScan on Cloud
Scan Security Report
Name: audit-persistence_20200316_11_53_58

Created by: HCL Application Security on Cloud, Version 8.0.1357

Scan name: audit-persistence

Scan file name: audit-persistence.irx

Scan started: Monday, March 16, 2020 10:34:07 AM (UTC)

Operating system: SAST

Summary of security issues
High severity issues: 3
_____________________ ____
Total security issues: 3

1

High Medium Low

Critical High Medium Low Informational

Summary
Total security issues: 3

Fix Groups: 2

Number of Issues

Fix Group #1: SslConfig.buildSslContextFromPem() (Validation.Required) 2

Ungrouped File() (PathTraversal) 1

Issue Types: 2
Number of Issues

PathTraversal 1

Validation.Required 2

2

Issues

Fix Group #1: SslConfig.buildSslContextFromPem()
This section groups 2 issues of type Validation.Required with significant commonality in the their traces.

These issues are grouped together to try to help you find a common fix that resolves them all.

Fix:
com.bettercloud.vault.SslConfig.buildSslContextFromPem():SSLContext

This method is a part of the application code and appears in each of the grouped issue's traces. You should begin
investigating a possible fix in the implementation of the method.

Alternate Fix Suggestions
com.bettercloud.vault.SslConfig.buildSsl():void
com.bettercloud.vault.SslConfig.inputStreamToUTF8(InputStream):String
java.io.ByteArrayInputStream(byte[]):void
java.lang.String.getBytes(String):byte[]
java.security.cert.CertificateFactory.generateCertificate(InputStream):Certificate

These method calls are also common to the traces of the issues in this group. They represent other possible These
method calls are also common to the traces of the issues in this group. They represent other possible locations to
investigate a fix.

H Validation.Required

Issue 1 of 2

3

Issue ID: 27b6072d-4465-ea11-a94c-00155d550e89

Severity: High

Status New

Classification Definitive

Fix Group ID: 5a73b037-ba58-ea11-a94c-00155d55408c

Location java.security.cert.CertificateFactory.generateCertificate(InputStream):Certificate SslConfig:542

Source File SslConfig

Line 542

Source File SslConfig

Availability Impact Partial

Confidentiality Impact Partial

Integrity Impact Partial

Date Created Friday, March 13, 2020

Last Updated Monday, March 16, 2020

CWE: 20

Source: java.io.BufferedReader.readLine():String via SslConfig:619

Sink: java.security.cert.CertificateFactory.generateCertificate(InputStream):Certificate via SslConfig:5
42

Issue 1 of 2 - Details

Issue 2 of 2

Trace
com.bettercloud.vault.SslConfig.build():SslConfig

com.bettercloud.vault.SslConfig:457
inputStreamToUTF8(input)

com.bettercloud.vault.SslConfig:619
str = in.readLine()

com.bettercloud.vault.SslConfig:622
utf8 = utf8.append(str)

com.bettercloud.vault.SslConfig:625
return utf8.toString()

com.bettercloud.vault.SslConfig:462
this.buildSsl()

com.bettercloud.vault.SslConfig:483
this.buildSslContextFromPem()

com.bettercloud.vault.SslConfig:541
this.pemUTF8.getBytes("UTF-8")

com.bettercloud.vault.SslConfig:541
pem = new ByteArrayInputStream(this.pemUTF8.getBytes("UTF-8"))

com.bettercloud.vault.SslConfig:542
certificate = certificateFactory.generateCertificate(pem)

4

Issue ID: 28b6072d-4465-ea11-a94c-00155d550e89

Severity: High

Status New

Classification Definitive

Fix Group ID: 5a73b037-ba58-ea11-a94c-00155d55408c

Location java.security.cert.CertificateFactory.generateCertificate(InputStream):Certificate SslConfig:542

Source File SslConfig

Line 542

Source File SslConfig

Availability Impact Partial

Confidentiality Impact Partial

Integrity Impact Partial

Date Created Friday, March 13, 2020

Last Updated Monday, March 16, 2020

CWE: 20

Source: java.nio.file.Files.readAllBytes(Path):byte[] via EnvironmentLoader:26

Sink: java.security.cert.CertificateFactory.generateCertificate(InputStream):Certificate via SslConfig:5
42

Issue 2 of 2 - Details

Trace
com.bettercloud.vault.SslConfig.build():SslConfig

com.bettercloud.vault.SslConfig:455
this.environmentLoader.loadVariable("VAULT_SSL_CERT")

com.bettercloud.vault.EnvironmentLoader:26
bytes = readAllBytes(get(getProperty("user.home"), new String()[][0]).resolve(".vault-token"))

com.bettercloud.vault.EnvironmentLoader:28
new String(bytes, "UTF-8")

com.bettercloud.vault.EnvironmentLoader:28
value = new String().trim()

com.bettercloud.vault.SslConfig:455
pemFile = new File(this.environmentLoader.loadVariable("VAULT_SSL_CERT"))

com.bettercloud.vault.SslConfig:456
input = new FileInputStream(pemFile)

com.bettercloud.vault.SslConfig:457
inputStreamToUTF8(input)

com.bettercloud.vault.SslConfig:462
this.buildSsl()

com.bettercloud.vault.SslConfig:483
this.buildSslContextFromPem()

com.bettercloud.vault.SslConfig:541
this.pemUTF8.getBytes("UTF-8")

com.bettercloud.vault.SslConfig:541
pem = new ByteArrayInputStream(this.pemUTF8.getBytes("UTF-8"))

com.bettercloud.vault.SslConfig:542
certificate = certificateFactory.generateCertificate(pem)

5

Ungrouped File()
This section lists the remaining 1 issues that could not be included in any other fix groups.

H PathTraversal

Issue 1 of 1
Issue ID: 26b6072d-4465-ea11-a94c-00155d550e89

Severity: High

Status New

Classification Definitive

Fix Group ID: 5b73b037-ba58-ea11-a94c-00155d55408c

Location java.io.File(String):void SslConfig:455

Source File SslConfig

Line 455

Source File SslConfig

Availability Impact Partial

Confidentiality Impact Partial

Integrity Impact Partial

Date Created Friday, March 13, 2020

Last Updated Monday, March 16, 2020

CWE: 73

Source: java.nio.file.Files.readAllBytes(Path):byte[] via EnvironmentLoader:26

Sink: java.io.File(String):void via SslConfig:455

Issue 1 of 1 - Details

Trace
com.bettercloud.vault.SslConfig.build():SslConfig

com.bettercloud.vault.SslConfig:455
this.environmentLoader.loadVariable("VAULT_SSL_CERT")

com.bettercloud.vault.EnvironmentLoader:26
bytes = readAllBytes(get(getProperty("user.home"), new String()[][0]).resolve(".vault-token"))

com.bettercloud.vault.EnvironmentLoader:28
new String(bytes, "UTF-8")

com.bettercloud.vault.EnvironmentLoader:28
value = new String().trim()

com.bettercloud.vault.SslConfig:455
pemFile = new File(this.environmentLoader.loadVariable("VAULT_SSL_CERT"))

6

Advisories

H SAST: PathTraversal

Description
This API accepts a directory, a filename, or both. If user supplied data is used to create the file path, the path can be
manipulated to point to directories and files which should not be allowed access or which may contain malicious data or
code.

Path traversal attacks usually involve modifying the path to a file and/or the file name itself. Consider the following PHP
code:

 <?php
 $file_data = file("/Users/{$_POST['UserName']}.php");
 ?>

This code attempts to open a file based on a path created from user supplied data. This data could contain text such as "../"
to manipulate the final path to point to a totally different path higher up in the directory tree. In addition, on some platforms,
you can add a final string terminating null character (%00) to the end of the user supplied string to truncate the file
extension (in this example, the extension is .data). If an attacker entered the following for the UserName POST parameter:

http://www.example.com/MyPage.php?UserName=../../../../../../../../../etc/passwd%00

They could possibly access the password file on this computer.

This is especially dangerous when file contents are written to the browser in the HTTP response message. In this case an
attacker could attempt to inject a Cross-Site Scripting (XSS) attack into the file whose contents will be written to the
browser. When a legitimate user views this file's data in their browser, the injected script will be executed on their computer.

If a user supplied path is passed as an argument to an API that deletes a file, an attacker may try to remove critical files
used by the operating system to function correctly. This effectively causes a Denial-of-Service (DoS) attack. Alternately, an
attacker may try to delete files that are critical for other users to be able to login and use this web application. This
effectively causes a localized DoS attack against one or more users of this web application. If an attacker wants to cover
their tracks, this attack vector can also be used to delete log files containing information that could be used to track down
an attacker.

If a user supplied path is passed as an argument to an API that writes data to a file, an attacker may try to corrupt a file to
cause a DoS attack or add information to a file. By adding massive amounts of information to a file, such as a log file, the
attacker may be able to hide their tracks within the sheer amount of information in the log file or by having their tracks
removed after the log file is automatically truncated when it grows beyond a specified size.

Allowing users to create files on the server based on their user input can be exploited by an attacker. All the attacker has to
do is simply cause files (large or small) to be created on the server in significant number as to use up all the free disk
space. This will not only slow the server to a crawl, but also prevent other legitimate users from being able to use the
website.

Mitigation:

7

Go to Table of Contents

To prevent this type of attack you should first sanitize all user supplied data that will be used to build the path. The best way
to do this is to use a whitelist. A whitelist is an accepted list of values that the application will accept. For example, the
whitelist for user supplied data to be inserted into a path string would be only alpha-numeric characters with possibly the
underscore (_) and dash (-) characters allowed.

In addition to using the whitelisting technique, the server should disallow access to all areas of the file system except those
used specifically for the web application. This will prevent users from attempting to break out of the web application
directory and access files in other areas of the file system.

H SAST: Validation.Required

8

#toc

Description
Input validation is necessary to ensure the integrity of the dynamic data of the application. Validation is useful to protect
against cross-site scripting, SQL and command injection, and corrupt application data fields. Even if there are no directly
vulnerable uses of a piece of data inside one application, data that is being passed to other applications should be validated
to ensure that those applications are not given bad data. Validation, especially for size and metacharacters that might
cause string expansion, is even more important when dealing with fixed size, overflowable buffers.

You should validate input from untrusted sources before using it. The untrusted data sources can be HTTP requests or
other network traffic, file systems, databases, and any external systems that provide data to the application. In the case of
HTTP requests, validate all parts of the request, including headers, form fields, cookies, and URL components that transfer
information from the browser to the server side application.

Attackers use unvalidated parameters to target the application's security mechanisms such as authentication and
authorization or business logic, and as the primary vector for exercising many other kinds of error, including buffer
overflows. If the unvalidated parameters are stored in log files, used in dynamically generated database queries or shell
commands, and/or stored in database tables, attackers may also target the server operating system, a database, back-end
processing systems, or even log viewing tools.

For example, if the application looks up products from the database using an unvalidated productID from HTTP request.
This productID can be manipulated using readily available tools to submit SQL injection attacks to the backend database.

Example Java

final String productID = request.getParameter("productID");
final String sql = "Select * from Product Where productID = '" + productID + "'";
final Statement statement = connection.createStatement();
final boolean rsReturned = statement.execute(sql);

Example C++

char productID[28];
fscanf(fd, "%28s", productIDproductID);
char sql[71] = "Select * from Product Where productID = '";
strncat(sql, productIDproductID, 28);
strncat(sql, "'", 1);
SQLPrepare(handle, sql, 71);
SQLRETURN ret = SQLExecute(handle);

Note that using dynamically generated SQL queries is another bad practice. Refer to vulnerability type for more detail.

Example Java

// This class would simply associate parameter names with a data type, plus bounds for
// numeric data or a regular expression for text.
Validator validator = Validator.getInstance(this.getServletContext);
Boolean valid = false;
try
{
 validator.validate(request);
 valid = true;
}
catch (ValidationException e)
{
 request.getSession().invalidate();
 out.println("Invalid HTTP request");
 out.close();
}
if (valid)
{
 final String productId = request.getParameter("productID");
 final String sql = "Select * from Product where productID= ?");
 final PreparedStatement ps = con.prepareStatement(sql);
 ps.setString(1,productID);
 ps.execute();
}

9

Go to Table of Contents

Example C++

char productID[28];
fscanf(fd, "%.28s", productIDproductID);
regex_t * productIDValidator;
regcomp(productIDValidator, "[^a-z]*", REG_EXTENDED);
int matchCount;
regmatch_t * matches;
regexec(productIDValidator, productIDproductID, matches, matchCount, 0);
if(0 == matches)
{
 char sql[70] = "Select * from Product Where productID = '?'";
 int sqlLen = 70;
 SQLPrepare(handle, sql, 70);
 SQLBindParameter(handle, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 28, 0, productIDproductID, *sqlLe
n)
 SQLRETURN ret = SQLExecute(handle);
}
else
{
 HandleBadProductID();HandleBadProductID();
}

In this instance, a regular expression constrained input to a known set of characters, through a whitelist (rejecting inputs
containing anything not in that set), and of a known and limited length. Using a whitelist instead of a blacklist is important,
because it can be difficult to anticipate which characters (especially when Unicode is involved) may cause problems, while
it is normally easy to determine which characters are legal in a given input field.

Mitigation:
The primary recommendation is to validate each input value against a detailed specification of the expectation for that
value. This specification should detail characteristics like the character set allowed, length, whether to allow null, minimum
value, maximum value, enumerated values, or a specific regular expression. For example, make sure all email fields have
the same format. Also, limit name fields and other text fields to an appropriate character set, no special characters, and with
expected minimum and maximum sizes. A input pattern violation can be evidence of an attack and should be logged and
responded to appropriately.

There are several possible approaches to input validation in an application. The recommendation is to implement the
features in a single component that is invoked in a central location. If this is not possible, then enforce a strong policy for
the use of a common set of input validation functions.

10

#toc

