Bharath Chowdhary Nagam n.bharath.chowdhary@gmail.com (+31) 644640182

CURRENT RESEARCH	PhD Topic: Searching for extremely rare objects in the Universe.
ILESLARCH	Description: To research and develop novel image classification algorithm to find strong gravitational lenses from KiDS and Euclid (upcoming) data.
EMPLOYMENT	PhD student Rijks Universiteit Groningen, Data Science and Systems Complexity, Dec 2020 - current
EXPERIENCE	ASML,The Netherlands Design Engineer, Metrology Department Jan 2018 - Dec 2020
	Master Thesis- Constraining Orbital Parameters of J1407b Leiden University, The Netherlands Dec 2016 - Aug 2017
	Internship - Optimal Energy solution for earth bound and interplanetary trajectories University of La Rioja, Spain July 2016- Sep 2016
EDUCATION	TU Delft , Delft, The Netherlands Master of Science (M.Sc), Aerospace Engineering(Space Exploration) 2015- July, 2017 CGPA: 8.00/10.00
	CIT, TN,India Bachelor of Engineering,(Mechanical Engineering) 2011-May, 2015 CGPA: 9.0/10.0
TECHNICAL SKILLS	 Languages : Python (4+ years) , Matlab (5+ years). Tools/Libraries : Numpy, Astropy, Scikit-Learn, PyTorch, TensorFlow(Python), Keras, OpenCV. Familiar : C, C++, Git, SVN.
Experience in ML/AI	\bullet [2020] Solving the problem of classifying unbalanced dataset using CNN
	\bullet [2021] Rank ordering the images based on information content in images with CNN regression

	• [2022] Implementing semantic segmentation for finding gravitational lenses with Fully Convolutional DenseNet .
Past Experience in Astronomy	• Removal of stellar noise in RV signal using Gaussian Process
	• Created a sample project using Generative Adversarial Networks (GAN) along with CNN to detect exoplanet in Direct Imaging data
	\bullet Characterization of J1407b (exoplanet with giant ring system) using Transit, RV and Direct Imaging data
CERTIFICATION	 Machine Learning by Stanford University on Coursera
	• Neural Networks and Deep Learning on Coursera (Logistic Regression with Deep Learning, Deep Neural Nets)
	• Hyper Parameter tuning, Regularization and Optimization on Coursera
	• Convolutional Neural Networks on Coursera (Deep Convolutions, Residual Networks, YOLO, Face Recognition)
	• Sequence Models on Coursera (RNN, LSTM, GRU, Machine Translation)
	• TensorFlow in practice specialization on Coursera
FAMILIAR TOPICS	 Computer Vision Semi-supervised learning Clustering Linear and Logistic Regression Support Vector Machines Anomaly Detection Deep Neural Networks Bias and Variance Regularisation Natural Language Processing
HOBBIES	

Star GazingPlaying Tennis