Errors, Logs and Debugging in BiocParallel

Valerie Obenchain and Martin Morgan

Edited: December 16, 2015; Compiled: August 2, 2022

Contents
1 Introduction 1
2 ErrorHandling 2
2.1 Messages andwarningso 2
2.2 Catchingerrors.o 2
2.3 Identify failures with bpok()o L. 6
2.4 Rerun failed tasks with BPREDO. 7
3 Logging
3.1 Parameters.o L L
3.2 Settingathreshold
3.3 Logfiles L 12
4 Workertimeout 13
5 Debugging. 14
5.1 Accessing the tracebacko 14
5.2 Addingdebugmessages 15
5.3 Local debugging with serialParam. 17
6 sessionInfo(). 18

1 Introduction

This vignette is part of the BiocParallel package and focuses on error handling and logging.
A section at the end demonstrates how the two can be used together as part of an effective
debugging routine.

BiocParallel provides a unified interface to the parallel infrastructure in several packages
including snow, parallel, batchtools and foreach. When implementing error handling in
BiocParallel the primary goals were to enable the return of partial results when an error is
thrown (vs just the error) and to establish logging on the workers. In cases where error
handling existed, such as batchtools and foreach, those behaviors were preserved. Clusters
created with snow and parallel now have flexible error handling and logging available through
SnowParam and MulticoreParam objects.

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=snow
https://CRAN.R-project.org/package=parallel
https://CRAN.R-project.org/package=batchtools
https://CRAN.R-project.org/package=foreach
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=batchtools
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=snow
https://CRAN.R-project.org/package=parallel

Errors, Logs and Debugging in BiocParallel

In this document the term “job” is used to describe a single call to a bp*apply function
(e.g., the X in bplapply). A “job” consists of one or more "tasks”, where each “task” is run
separately on a worker.

The BiocParallel package is available at bioconductor.org and can be downloaded via Bioc
Manager::install:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("BiocParallel")

Load the package:

library(BiocParallel)

Error Handling

2.2

Messages and warnings

BiocParallel captures messages and warnings in each job, returning the output to the manager
and reporting these to the user after the completion of the entire operation. Thus

res <- bplapply(1l:2, function(i) { message(i); Sys.sleep(3) })

reports messages only after the entire bplapply() is complete.

It may be desired to output messages immediatly. Do this using sink(), as in the following
example:

res <- bplapply(1l:2, function(i) {
sink(NULL, type = "message")
message(1i)
Sys.sleep(3)

})

This could be confusing when multiple workers write messages at the same time —the messages
will be interleaved in an arbitrary way — or when the workers are not all running on the same
computer (e.g., with SnowParam() or BatchjobsParaam()) so should not be used in package
code.

Catching errors

By default, BiocParallel attempts all computations and returns any warnings and errors along
with successful results. The stop.on.error field controls if the job is terminated as soon as
one task throws an error. This is useful when debugging or when running large jobs (many
tasks) and you want to be notified of an error before all runs complete.

stop.on.error is TRUE by default.

param <- SnowParam()
param

class: SnowParam

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

#i#t bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: SOCK

The field can be set when constructing the param or modified with the bpstopOnError
accessor.

param <- SnowParam(2, stop.on.error = TRUE)
param

class: SnowParam

bpisup: FALSE; bpnworkers: 2; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

it bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: SOCK

bpstopOnError(param) <- FALSE

In this example X is length 6. By default, the elements of X are divided as evenly as possible
over the number of workers and run in chunks. The number of tasks is set equal to the length
of X which forces each element of X to be executed separately (6 tasks).

X <- list(1, "2", 3, 4, 5, 6)
param <- SnowParam(3, tasks = length(X), stop.on.error = TRUE)

Tasks 1, 2, and 3 are assigned to the three workers, and are evaluated. Task 2 fails, stopping
further computation. All successfully completed tasks are returned and can be accessed by
‘bpresult’. Usually, this means that the results of tasks 1, 2, and 3 will be returned.

result <- tryCatch({

bplapply(X, sqrt, BPPARAM = param)
}, error=identity)
result

<bplist_error: BiocParallel errors

1 remote errors, element index: 2

2 unevaluated and other errors

first remote error:

Error in FUN(...): non-numeric argument to mathematical function
>

results and errors available as 'bpresult(x)'

bpresult(result)

[[1]]
[1] 1
##

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

[[2]]

<remote_error in FUN(...): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'

##

[[3]]

[1] 1.732051

##

[[4]]

[1] 2

##

[[5]]

<unevaluated_error: not evaluated due to previous error>
##

[[6]]

<unevaluated_error: not evaluated due to previous error>
##

attr(,"REDOENV")

<environment: 0x556293662490>

Using stop.on.error=FALSE, all tasks are evaluated.

X <- list("1", 2, 3, 4, 5, 6)
param <- SnowParam(3, tasks = length(X), stop.on.error = FALSE)
result <- tryCatch({
bplapply(X, sqrt, BPPARAM = param)
}, error=identity)
result

<bplist_error: BiocParallel errors

1 remote errors, element index: 1

0 unevaluated and other errors

At first remote error:

Error in FUN(...): non-numeric argument to mathematical function
>

results and errors available as 'bpresult(x)'

bpresult(result)

[[1]]

<remote_error in FUN(...): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'
#i#t

[[2]]

[1] 1.414214

#t

[[31]

[1] 1.732051

#i#t

[[4]]

[1] 2

#it

[[5]]

[1] 2.236068

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

##

[[6]]

[1] 2.44949

##

attr(,"REDOENV")

<environment: 0x556290eb70c0>

bptry() is a convenient way of trying to evaluate a bpapply-like expression, returning the
evaluated results without signalling an error.

bptry ({
bplapply(X, sqrt, BPPARAM=param)
})

[[11]

<remote_error in FUN(...): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'
##

[[2]1]

[1] 1.414214

#it

[[3]1]

[1] 1.732051

#it

[[4]1]

[1] 2

#it

[[5]]

[1] 2.236068

#it

[[6]1]

[1] 2.44949

##

attr(,"REDOENV")

<environment: 0x5562910e77f0>

In the next example the elements of X are grouped instead of run separately. The default
value for tasks is 0 which means "X’ is split as evenly as possible across the number of
workers. There are 3 workers so the first task consists of list(1, 2), the second is list("3", 4)
and the third is list(5, 6).

X <- list(1, 2, "3", 4, 5, 6)
param <- SnowParam(3, stop.on.error = TRUE)

The output shows an error in when evaluating the third element, but also that the fourth
element, in the same chunk as 3, was not evaluated. All elements are evaluated because they
were assigned to workers before the first error occurred.

bptry(bplapply(X, sqrt, BPPARAM = param))

[[1]]
[1] 1
#i#

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

2.3

[[2]]

[1] 1.414214

##

[[3]]

<remote_error in FUN(...): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'

##

[[4]]

<unevaluated_error: not evaluated due to previous error>
##

[[5]]

[1] 2.236068

##

[[6]]

[1] 2.44949

##

attr(,"REDOENV")

<environment: 0x556293ba5f78>

Side Note: Results are collected from workers as they finish which is not necessarily the same
order in which they were loaded. Depending on how tasks are divided it is possible that the
task with the error completes after all others so essentially all workers complete before the
job is stopped. In this situation the output includes all results along with the error message
and it may appear that stop.on.error=TRUE did not stop the job soon enough. This is just a
heads up that the usefulness of stop.on.error=TRUE may vary with run time and distribution
of tasks over workers.

Identify failures with bpok()

The bpok() function is a quick way to determine which (if any) tasks failed. In this example
we use bptry() to retrieve the partially evaluated expression, including the failed elements.

param <- SnowParam(2, stop.on.error=FALSE)
result <- bptry(bplapply(list(1, "2", 3), sqrt, BPPARAM=param))

bpok returns TRUE if the task was successful.
bpok(result)

[1] TRUE FALSE TRUE

Once errors are identified with bpok the traceback can be retrieved with the attr function.
This is possible because errors are returned as condition objects with the traceback as an
attribute.

tail(attr(result[[which(!'bpok(result))]], "traceback"))

[1] "4: tryCatch({"

[2] " FUN(...)"

[3] " }, error = handle_error)"

[4] "3: tryCatchList(expr, classes, parentenv, handlers)"
[5] "2: tryCatchOne(expr, names, parentenv, handlers[[1L]])"
[6] "1: value[[3L]](cond)"

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

2.4

Rerun failed tasks with BPREDO

Tasks can fail due to hardware problems or bugs in the input data. The BiocParallel functions
support a BPREDO (re-do) argument for recomputing only the tasks that failed. A list of partial
results and errors is supplied to BPREDO in a second call to the function. The failed elements
are identified, recomputed and inserted into the original results.

The bug in this example is the second element of 'X' which is a character when it should be
numeric.

X <- list(1, "2", 3)

param <- SnowParam(2, stop.on.error=FALSE)

result <- bptry(bplapply(X, sqrt, BPPARAM=param))
result

[[1]]

[1] 1

#i#t

[[2]1]

<remote_error in FUN(...): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'

#i#t

[[3]]

[1] 1.732051
##

attr(,"REDOENV")
<environment: 0x55629587el160>

First fix the input data.

X.redo <- list(1, 2, 3)

Repeat the call to bplapply this time supplying the partial results as BPREDO. Only the failed
calculations are computed, in the present case requiring only one worker.

bplapply(X.redo, sqrt, BPREDO=result, BPPARAM=param)

[[1]]

[1] 1

##

[[2]]

[1] 1.414214
#i#

[[3]]

[1] 1.732051

Logging

NOTE: Logging as described in this section is supported for SnowParam, MulticoreParam
and SerialParam.

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

3.1

3.2

Parameters

Logging in BiocParallel is controlled by 3 fields in the BiocParallelParam:

log: TRUE or FALSE
logdir: location to write log file
threshold: one of "TRACE", "DEBUG", "INFO", "WARN", "ERROR", "FATAL"

When log = TRUE the futile.logger package is loaded on each worker. BiocParallel uses a
custom script on the workers to collect log messages as well as additional statistics such as
gc, runtime and node information. Output to stderr and stdout is also captured.

By default log is FALSE and threshold is INFO.

param <- SnowParam(stop.on.error=FALSE)
param

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: FALSE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

#i#t bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback:

bplogdir: NA
bpresultdir: NA
cluster type: SOCK

Turn logging on and set the threshold to TRACE.

bplog(param) <- TRUE
bpthreshold(param) <- "TRACE"
param

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
bplog: TRUE; bpthreshold: TRACE; bpstopOnError: FALSE

bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

H#i# bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback:

bplogdir: NA
bpresultdir: NA
cluster type: SOCK

Setting a threshold

All thresholds defined in futile.logger are supported: FATAL, ERROR, WARN, INFO, DEBUG
and TRACE. All messages greater than or equal to the severity of the threshold are shown.
For example, a threshold of INFO will print all messages tagged as FATAL, ERROR, WARN
and INFO.

Because the default threshold is INFO it catches the ERROR-level message thrown when
attempting the square root of a character ("2").

tryCatch({
bplapply(list(1, "2", 3), sqrt, BPPARAM = param)
}, error=function(e) invisible(e))

TRUE

TRUE

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=futile.logger
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=futile.logger

Errors, Logs and Debugging in BiocParallel

#H ###RHHH A LOG OUTPUT ####H#H##
Task: 3

Node: 2

Timestamp: 2022-08-02 15:57:02

Success: TRUE

##

Task duration:

user system elapsed

0.058 0.003 0.062

##

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1017535 54.4 2017951 107.8 2017951 107.8

Vcells 1851303 14.2 8388608 64.0 6846564 52.3

##

Log messages:

INFO [2022-08-02 15:57:02] loading futile.logger package
##

stderr and stdout:

A LOG OUTPUT #HHHHHHAHAAAAAH
Task: 2

Node: 3

Timestamp: 2022-08-02 15:57:02

Success: FALSE

#i#

Task duration:

user system elapsed

0.064 0.004 0.068

##

Memory used:

#i#t used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1017604 54.4 2017951 107.8 2017951 1607.8

Vcells 1851514 14.2 8388608 64.0 6846564 52.3

##

Log messages:

INFO [2022-08-02 15:57:02] loading futile.logger package

ERROR [2022-08-02 15:57:02] non-numeric argument to mathematical function
##t

stderr and stdout:

#Ht A LOG OUTPUT ###HHH#H##HEHH
Task: 1

Node: 4

Timestamp: 2022-08-02 15:57:02

Success: TRUE

##

Task duration:

user system elapsed
0.055 0.008 0.063
##

Memory used:

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1017624 54.4 2017951 107.8 2017951 107.8

Vcells 1851568 14.2 8388608 64.0 6846564 52.3

#i#t

Log messages:

INFO [2022-08-02 15:57:02] loading futile.logger package
##

stderr and stdout:

All user-supplied messages written in the futile.logger syntax are also captured. This function
performs argument checking and includes a couple of WARN and DEBUG-level messages.

FUN <- function(i) {
futile.logger::flog.debug(paste("value of 'i':", 1i))

if (!length(i)) {
futile.logger::flog.warn("'i' has length 0")
NA

} else if (!is(i, "numeric")) {
futile.logger::flog.debug("coercing
as.numeric(i)

} else {
i

i' to numeric")

}

Turn logging on and set the threshold to WARN.

param <- SnowParam(2, log = TRUE, threshold = "WARN", stop.on.error=FALSE)
result <- bplapply(list(1l, "2", integer()), FUN, BPPARAM = param)

#H ###HS A LOG OUTPUT ####H#### 1
Task: 1

Node: 2

Timestamp: 2022-08-02 15:57:04

Success: TRUE

##

Task duration:

user system elapsed

0.078 0.001 0.077

##

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1019281 54.5 2017951 107.8 2017951 107.8
Vcells 1856281 14.2 8388608 64.0 6846564 52.3
#t

Log messages:

##

##

stderr and stdout:

10

http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=futile.logger

Errors, Logs and Debugging in BiocParallel

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

HitHH# S L0G OUTPUT #####HHH#H# 3
Task: 2

Node: 1

Timestamp: 2022-08-02 15:57:04

Success: TRUE

Task duration:
user system elapsed
0.122 0.001 0.122

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1019304 54.5 2017951 107.8 2017951 107.8
Vcells 1856339 14.2 8388608 64.0 6846564 52.3

Log messages:
WARN [2022-08-02 15:57:04] ‘i’ has length 0

stderr and stdout:

simplify2array(result)

##

[1] 1 2 NA

Changing the threshold to DEBUG catches both WARN and DEBUG messages.

param <- SnowParam(2, log = TRUE, threshold = "DEBUG", stop.on.error=FALSE)
result <- bplapply(list(1, "2", integer()), FUN, BPPARAM = param)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

HIHHHHR A LOG OUTPUT #####HHHHIHHH#
Task: 2

Node: 1

Timestamp: 2022-08-02 15:57:05

Success: TRUE

Task duration:
user system elapsed
0.108 0.000 0.107

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1019202 54.5 2017951 107.8 2017951 107.8
Vcells 1856368 14.2 8388608 64.0 6846564 52.3

Log messages:

INFO [2022-08-02 15:57:05] loading futile.logger package
DEBUG [2022-08-02 15:57:05] value of ’'i’:

WARN [2022-08-02 15:57:05] ’i’ has length 0

stderr and stdout:

11

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

#H ###RHHH A LOG OUTPUT ####H#H##
Task: 1

Node: 2

Timestamp: 2022-08-02 15:57:05

Success: TRUE

##

Task duration:

user system elapsed

0.105 0.008 0.113

##

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1019227 54.5 2017951 107.8 2017951 1607.8

Vcells 1856447 14.2 8388608 64.0 6846564 52.3

##t

Log messages:

INFO [2022-08-02 15:57:05] loading futile.logger package
DEBUG [2022-08-02 15:57:05] value of ’i’: 1

DEBUG [2022-08-02 15:57:05] value of 'i’: 2

DEBUG [2022-08-02 15:57:05] coercing ‘i’ to numeric

##t

stderr and stdout:

simplify2array(result)

[1] 1 2 NA

3.3 Logfiles

When log == TRUE, log messages are written to the console by default. If logdir is given
the output is written out to files, one per task. File names are prefixed with the name in
bpjobname (BPPARAM); default is 'BPJOB'.

param <- SnowParam(2, log = TRUE, threshold = "DEBUG", logdir = tempdir())
res <- bplapply(list(1l, "2", integer()), FUN, BPPARAM = param)

loading futile.logger on workers

list.files(bplogdir(param))

[1] "BPJOB.taskl.log" "BPJOB.task2.log"

Read in BPJOB.task2.log:

readLines (paste0(bplogdir(param), "/BPJOB.task2.log"))

[1] " L0G OUTPUT ###############"

[2] "Task: 2"

[3] "Node: 2"

[4] "Timestamp: 2015-07-08 09:03:59"

[5] "Success: TRUE"

[6] "Task duration: "

[7] " user system elapsed "

[8] " 0.009 0.000 ©0.011 "

[9] "Memory use (gc): "

[10] " used (Mb) gc trigger (Mb) max used (Mb)"

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

[11] "Ncells 325664 17.4 592000 31.7 393522 21.1"
[12] "Vcells 436181 3.4 1023718 7.9 530425 4.1"
[13] "Log messages:"

[14] "DEBUG [2015-07-08 09:03:59] value of 'i': 2"

[15] "INFO [2015-07-08 09:03:59] coercing to numeric"
[16] "DEBUG [2015-07-08 09:03:59] value of 'i': "

[17] "WARN [2015-07-08 09:03:59] 'i' is missing"

[18] ""

[19] "stderr and stdout:"

[20] "character(0)"

Worker timeout

NOTE: timeout is supported for SnowParam and MulticoreParam.

For long running jobs or untested code it can be useful to set a time limit. The timeout field
is the time, in seconds, allowed for each worker to complete a task; default is Inf. If the task
takes longer than timeout a timeout error is returned.

Time can be changed during param construction with the timeout arg,

param <- SnowParam(timeout = 20, stop.on.error=FALSE)
param

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: FALSE

DbpRNGseed: ; bptimeout: 20; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback:

bplogdir: NA
bpresultdir: NA
cluster type: SOCK

or with the bptimeout setter:

param <- SnowParam(timeout = 2, stop.on.error=FALSE)
fun <- function(i) {

Sys.sleep(1i)

i

h
bptry(bplapply(1:3, fun, BPPARAM = param))

[[1]]
[1] 1
##

[[2]]
[1] 2
#i#

[[3]]
[1] 3

TRUE

13

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

5

Debugging

5.1

Effective debugging strategies vary by problem and often involve a combination of error han-
dling and logging techniques. In general, when debugging R-generated errors the traceback
is often the best place to start followed by adding debug messages to the worker function.
When trouble shooting unexpected behavior (i.e., not a formal error or warning) adding debug
messages or switching to SerialParam are good approaches. Below is an overview of these
different strategies.

Accessing the traceback

The traceback is a good place to start when tracking down R-generated errors. Because the
function is executed on the workers it’s not accessible for interactive debugging with functions
such as trace or debug. The traceback provides a snapshot of the state of the worker at the
time the error was thrown.

This function takes the square root of the absolute value of a vector.

funl <- function(x) {
v <- abs(x)
sapply(1l:length(v), function(i) sqrt(v[i]))

Calling “funl” with a character throws an error:

param <- SnowParam(stop.on.error=FALSE)
result <- bptry({
bplapply(list(c(1,3), 5, "6"), funl, BPPARAM = param)
}, error=identity)
result

[[1]]

[1] 1.000000 1.732051

##

[[2]1]

[1] 2.236068

##

[[3]]

<remote_error in abs(x): non-numeric argument to mathematical function>
traceback() available as 'attr(x, "traceback")'

Identify which elements failed with bpok:

bpok(result)

[1] TRUE TRUE FALSE
The error (i.e., third element of “res”) is a condition object:

is(result[[3]], "condition")

[1] TRUE

The traceback is an attribute of the condition and can be accessed with the attr function.

14

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

5.2

noquote(tail(attr(result[[3]], "traceback")))

[1] call <- sapply(sys.calls(), deparse)

[2] e <- structure(e, class = c("remote_error", "condition"),

[3] traceback = capture.output(traceback(call)))

[4] invokeRestart("abort", e)

[5] }, "non-numeric argument to mathematical function", quote(abs(x)))

[6] 1: h(simpleError(msg, call))

Adding debug messages

When a numeric() is passed to “funl” no formal error is thrown but the length of the second
list element is 2 when it should be 1.

bplapply(list(c(1,3), numeric(), 6), funl, BPPARAM = param)

[[1]]

[1] 1.000000 1.732051
##

[[2]]

[[2]101[1]]
[1] NA

##

[[2]11012]1]
numeric(0)
##

[[3]]

[1] 2.44949

Without a formal error we have no traceback so we'll add a few debug messages. The
futile.logger syntax tags messages with different levels of severity. A message created with
flog.debug will only print if the threshold is DEBUG or lower. So in this case it will catch
both INFO and DEBUG messages.

“fun2" has debug statements that show the value of ‘x’, length of ‘v’ and the index i'.

fun2 <- function(x) {

v <- abs(x)

futile.logger: :flog.debug(
paste® ("'

)

sapply(1l:length(v), function(i) {
futile.logger::flog.info(paste@("'i' =", 1i))
sqrt(v[i])

1)

x' =", paste(x, collapse=","), ": length(v) =", length(v))

Create a param that logs at a threshold level of DEBUG.

param <- SnowParam(3, log = TRUE, threshold = "DEBUG")

The debug messages reveal the problem occurs when ‘X’ is numeric(). The index for sapply
is along ‘v" which in this case has length 0. This forces ‘i’ to take values of ‘1’ and ‘0’ giving
an output of length 2 for the second element (i.e., NA and numeric(0)).

15

http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=futile.logger

Errors, Logs and Debugging in BiocParallel

res <- bplapply(list(c(1,3), numeric(), 6), fun2, BPPARAM = param)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##

Hi#HHH R L0G OUTPUT #########H##HH

Task: 1
Node: 3
Timestamp: 2022-08-02 15:57:11

Success: TRUE

Task duration:
user system elapsed
0.131 0.000 0.131

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1019984 54.5 2017951 107.8 2017951 107.8
Vcells 1859838 14.2 8388608 64.0 6846564 52.3

Log messages:
INFO [2022-08-02 15:57:11] loading futile.logger package
DEBUG [2022-08-02 15:57:11] 'x’ = 1,3: length(v) = 2
INFO [2022-08-02 15:57:11] ’'i’ =1

INFO [2022-08-02 15:57:11] 'i’

stderr and stdout:

Hi#H#HHR R LO0G OUTPUT #########H1H###HH

Task: 3
Node: 1
Timestamp: 2022-08-02 15:57:11

Success: TRUE

Task duration:
user system elapsed
0.171 0.004 0.174

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1020010 54.5 2017951 107.8 2017951 107.8
Vcells 1859904 14.2 8388608 64.0 6846564 52.3

Log messages:

INFO [2022-08-02 15:57:11] loading futile.logger package
DEBUG [2022-08-02 15:57:11] 'x’ = 6: length(v) =1

INFO [2022-08-02 15:57:11] ’'i’ =1

stderr and stdout:

#it##H## R LOG OUTPUT #############

Task: 2
Node: 2
Timestamp: 2022-08-02 15:57:11

Success: TRUE

16

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

5.3

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

res

“fun2” can be fixed by using seq_along(v) to create the index instead of 1:length(v).

Task duration:
user system elapsed
0.129 0.004 0.133

Memory used:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1020034 54.5 2017951 107.8 2017951 107.8
Vcells 1859985 14.2 8388608 64.0 6846564 52.3

Log messages:

INFO [2022-08-02 15:57:11] loading futile.logger package
DEBUG [2022-08-02 15:57:11] 'x’ = : length(v) = 0

INFO [2022-08-02 15:57:11] 'i’ =1

INFO [2022-08-02 15:57:11] ’'i’ =0

stderr and stdout:

Local debugging with SerialParam

Errors that occur on parallel workers can be difficult to debug. Often the traceback sent back
from the workers is too much to parse or not informative. We are also limited in that our

interactive strategies of browser and trace are not available.

One option for further debugging is to run the code in serial with SerialParam. This removes
the “parallel” component and is the same as running a straight xapply function. This ap-
proach may not help if the problem was hardware related but can be very useful when the

bug is in the R code.

We use the now familiar square root example with a bug in the second element of X.

res <- bptry({

bplapply(list(1, "2", 3), sqrt,
BPPARAM = SnowParam(3, stop.on.error=FALSE))

17

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

result

[[11]
[1] 1
##

[[2]]
[1] 2
##

[[3]]
[1] NA

sqrt is an internal function. The problem is likely with our data going into the function and
not the sqrt function itself. We can write a small wrapper around sqrt so we can see the
input.

fun3 <- function(i) sqrt(i)

Debug the new function:
debug(fun3)

We want to recompute only elements that failed and for that we use the BPREDO argument.
The BPPARAM has been changed to SerialParam so the job is run in the local workspace
in serial.

> bplapply(list(1, "2", 3), fun3, BPREDO = result, BPPARAM = SerialParam())
Resuming previous calculation ...

debugging in: FUN(...)

debug: sqrt(i)

Browse[2]> objects()

[1] "i"

Browse[2]> i

[1] 2"

Browse[2]>

The local browsing allowed us to see the problem input was the character "2".

sessionInfo()

toLatex(sessionInfo())

= R version 4.2.1 (2022-06-23), x86_64-pc-1linux-gnu

= lLocale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

= Running under: Ubuntu 20.04.4 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so

= LAPACK: /home/biocbuild/bbs-3.16-bioc/R/1ib/1libRlapack.so

18

http://bioconductor.org/packages/BiocParallel

Errors, Logs and Debugging in BiocParallel

= Base packages: base, datasets, grDevices, graphics, methods, stats, utils
= Other packages: BiocParallel 1.31.12, BiocStyle 2.25.0

= Loaded via a namespace (and not attached): BiocManager 1.30.18, R6 2.5.1,
backports 1.4.1, base64url 1.4, batchtools 0.9.15, bookdown 0.27, brew 1.0-7,
bslib 0.4.0, cachem 1.0.6, checkmate 2.1.0, cli 3.3.0, codetools 0.2-18, compiler 4.2.1,
crayon 1.5.1, data.table 1.14.2, debugme 1.1.0, digest 0.6.29, ellipsis 0.3.2,
evaluate 0.15, fansi 1.0.3, fastmap 1.1.0, fs 1.5.2, glue 1.6.2, highr 0.9, hms 1.1.1,
htmltools 0.5.3, jquerylib 0.1.4, jsonlite 1.8.0, knitr 1.39, lifecycle 1.0.1,
magrittr 2.0.3, parallel 4.2.1, pillar 1.8.0, pkgconfig 2.0.3, prettyunits 1.1.1,
progress 1.2.2, rappdirs 0.3.3, rlang 1.0.4, rmarkdown 2.14, sass 0.4.2, snow 0.4-4,
stringi 1.7.8, stringr 1.4.0, tibble 3.1.8, tools 4.2.1, utf8 1.2.2, vctrs 0.4.1, withr 2.5.0,
xfun 0.31, yaml 2.3.5

19

http://bioconductor.org/packages/BiocParallel

	1 Introduction
	2 Error Handling
	2.1 Messages and warnings
	2.2 Catching errors
	2.3 Identify failures with bpok()
	2.4 Rerun failed tasks with BPREDO

	3 Logging
	3.1 Parameters
	3.2 Setting a threshold
	3.3 Log files

	4 Worker timeout
	5 Debugging
	5.1 Accessing the traceback
	5.2 Adding debug messages
	5.3 Local debugging with SerialParam

	6 sessionInfo()

