Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

oudyk_vihar2019

This repository contains code and a sample of the data used in the following paper:

Oudyk, K., Lostanlen, V., Salamon, J., Farnsworth, A., and Bello, J. (2019). Matching human vocal imitations to birdsong: An exploratory analysis. In Proc. 2 nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, England.

Paper abstract:

We explore computational strategies for matching human vocal imitations of birdsong to actual birdsong recordings. We recorded human vocal imitations of birdsong and subsequently analysed these data using three categories of audio features for matching imitations to original birdsong: spectral, temporal, and spectrotemporal. These exploratory analyses suggest that spectral features can help distinguish imitation strategies (e.g. whistling vs. singing) but are insufficient for distinguishing species. Similarly, whereas temporal features are correlated between human imitations and natural birdsong, they are also insufficient. Spectrotemporal features showed the greatest promise, in particular when used to extract a representation of the pitch contour of birdsong and human imitations. This finding suggests a link between the task of matching human imitations to birdsong to retrieval tasks in the music domain such as query-by-humming and cover song retrieval; we borrow from such existing methodologies to outline directions for future research.

Please acknowledge BirdVox-imitation in academic research

@INPROCEEDINGS{oudyk2019matching,

author = {Oudyk, Kendra and Vincent Lostanlen and Justin Salamon and Andrew Farnsworth and Juan Bello},

title = {Matching human vocal imitations to birdsong: An exploratory analysis},

booktitle = {Proc. 2 nd Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), London, England},

year = {2019},

}

Feedback

Please help us improve BirdVox-imitation by sending your feedback to:

kendra.oudyk@gmail.com and vincent.lostanlen@nyu.edu

In case of a problem, please include as many details as possible.

Acknowledgements

We thank all the participants who anonymously volunteered to make these imitations. We also thank all contributors to the Xeno-Canto community, and in particular the authors of the recordings which are featured in BirdVox-imitation under the form of short excerpts.

This project was supported by the Leon Levy Foundation, the National Science Foundation’s Big Data grant 1633206, and a travel grant from the University of Jyväskylä (KO).

About

Computational similarity measures between human imitations of birdsong

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published