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Abstract. In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the “ocean
carbon states”, as obtained using a data mining/pattern recognition technique in observation-based as well as
model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in
providing more insights into the regional and temporal variability of the marine carbon cycle. This is important
as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular
in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds
our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major
planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are
based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS)
climate model. Our analysis shows that ocean carbon states are associated with the subtropical–subpolar gyre
during the colder months of the year and the tropics during the warmer season in the North Atlantic basin.
Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic
convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With
respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more
skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than
the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model
error attribution. Model air–sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases
in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are
shown to be most important in the Southern Ocean flux bias. All data and analysis scripts are available at https:
//data.giss.nasa.gov/oceans/carbonstates/ (DOI: https://doi.org/10.5281/zenodo.996891).

1 Introduction

The ocean carbon cycle plays an important role in controlling
the airborne fraction of CO2 in the atmosphere, thereby regu-
lating the rate of global warming, i.e., the rising temperatures
in the Earth’s troposphere. However, the ocean carbon cycle
is controlled by a plethora of physical, biological and bio-
geochemical processes over a broad range of temporal and
spatial scales. In this paper, we seek to present and assess
a data mining/pattern recognition technique, namely cluster
analysis, for the purpose of defining the basic regimes, or
“ocean carbon states”, that describe the oceanic carbon cycle

variability. The goal is to increase our understanding of the
marine carbon cycle by revealing patterns and information
that other techniques do not provide.

For geophysical applications, climate datasets have inher-
ent complexities that are not easily identifiable in the age
of “big” data. Cluster analysis is a highly effective uni- or
multi-variate classification method for large, high frequency
datasets because it can find structure in a body of complex,
geophysical data (Anderberg, 1973; Peron et al., 2014). Clus-
tering seeks to identify the critical modes and natural patterns
of a dataset without any training or predetermined spatial–
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temporal guidelines; therefore, it is an “unsupervised” graph
theory method. The merit of a novel, unsupervised method
such as clustering is that it can recognize connectivity be-
tween multiple variables. This can be understood as connec-
tivity in a temporal sense where cluster analysis can identify
joint interannual or seasonal patterns and in a spatial sense
where clustering has the power to identify patterns that relate
different regions or basins (Jain, 2010; Phillips et al., 2015).

Traditional methods of univariate analysis, such as prin-
cipal component analysis or spectral decomposition, cannot
fully describe important physical states of the climate sys-
tem or adequately detect change (Hoffman et al., 2011) be-
cause these methods neglect interactions between state vari-
ables as well as spatial and temporal co-variability. In con-
trast, cluster analysis has been successfully applied to vari-
ous dynamical systems in order to extract the organized states
and detect change as well as in novel applications of model–
data intercomparison (Hoffman et al, 2008). For example,
this technique has been used to define atmospheric weather
states by identifying cloud regimes (Jakob and Tselioudis,
2003; Rossow et al., 2005; Williams and Webb, 2009; Tse-
lioudis et al., 2013; Bodas-Salcedo et al., 2014; Oreopoulos
et al., 2016). Bankert and Solbrig (2015) were able to extract
a 3-D cloud representation using cluster analysis. This tech-
nique has also been used to characterize water types in lakes
(Trochta et al., 2015), hydraulic habitat composition in rivers
(Hugue et al., 2016), phenology patterns in forests (Trans
Mills et al., 2011), solar variability (Zagouras et al., 2013),
ENSO phenomena (Radebach et al., 2013), and regions with
characteristic hydrological responses (Halverson and Flem-
ing, 2015), among many other applications.

Beyond identifying regimes, cluster analysis can be use-
ful in model assessment applications, like that of Wood et
al. (2015), which used weather states derived from cluster
analysis for process studies, satellite calibration, and model
evaluation. Both regime identification and model evaluation
are the focus of the cluster analysis presented in this paper as
well.

Elsewhere in ocean carbon cycle science, clustering-type
methods (self-organizing maps and neural networks) have
been used to build reconstructions or as regression analysis
alternatives for surface ocean pCO2 (Lefèvre et al., 2005;
Telszewski et al., 2009; Sasse et al., 2013; Landschützer et
al., 2013, 2014; Nakaoka et al., 2013). Unlike these studies,
here we seek to obtain the co-variability maps and conditions
of different ocean-related variables and understand where,
why and how they change.

Other non-statistical studies, but similar in concept to
multivariate regime identification, have focused more on
larger-scale geographic variations (Fay and McKinley, 2014;
Trochta et al., 2015) than on the regional aspects of the ocean
biogeochemistry and its interaction with physical circulation
like in the western boundary current regions, in the upwelling
zones on the eastern boundaries, and in the eddying field.

The structure of the paper is as follows. Section 2 describes
the datasets used in this study, both the observation-based
sources as well as the model experiments. Section 3 presents
the k-means cluster analysis methodology and application,
including discussion of the k-means clustering technique and
sensitivity to number of clusters chosen, to binning, and to
data normalization. The results of the methodology are pro-
vided in Sect. 4. Section 4.1 focuses on how the method-
ology is applied in observations from the North Atlantic
basin. The observed ocean carbon states are then character-
ized temporally and spatially in order to reveal their phys-
ical meaning. Next, the model carbon states are computed
and characterized in a similar way to the observations. Us-
ing the ocean carbon states, model biases are also discussed
and evaluated. Section 4.2 repeats the analysis presented in
Sect. 4.1, but now applied to the Southern Ocean. Finally,
general discussion and conclusions are provided in Sect. 5.
A note about the figures in the paper: some interesting but
non-critical figures are offered in the Supplement and are de-
noted as Fig. S#. All data and analysis scripts are available
at the https://data.giss.nasa.gov/oceans/carbonstates/ website
(DOI: https://doi.org/10.5281/zenodo.996891).

2 Data

2.1 Choice of variables to represent ocean carbon
regimes

One critical question to answer at the onset of any clustering
analysis is what key geophysical variables should be used
to base the analysis on. For the purposes of this study, we
picked sea surface temperature (SST) and partial pressure
of CO2 in the ocean surface water (pCO2 sw). The rationale
for this choice will be explained now. There are two main
pathways that determine the ability of the ocean to take up
CO2 (Sarmiento and Gruber, 2006): the chemical disequilib-
rium, expressed by pCO2, dissolved inorganic carbon (DIC
is the sum of all inorganic carbon species) and nutrients,
and the physical processes, such as air–sea interaction (ex-
pressed by the wind speed) and ocean circulation (expressed
by sea surface temperature and salinity). Greater insight into
the ocean’s biogeochemical processes that control these path-
ways can inform the improved use of field measurements,
the development of better metrics for model evaluation, and
the selection of more suitable parameterizations in climate
models in order to provide more accurate predictions. We se-
lect pCO2 sw and SST because they are able to represent a
broad range of biogeochemical and physical processes. We
use them in cluster analysis to find temporal and spatial pat-
terns in their joint parameter space that can be used to un-
derstand CO2 flux distributions and its fluctuations. Other
variable pairs can be alternatively used here; a comparison
between choices is set aside for future work.

This study will focus on two oceanic basins, namely the
North Atlantic (defined as 80◦W to 45◦ E, 0 to 90◦ N) and the
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Southern Ocean (defined as 180◦W to 180◦ E, 90 to 40◦ S),
because of their importance in the global carbon cycle (Taka-
hashi et al., 2009).

2.2 Observation-based data

2.2.1 Air–sea flux of CO2 and pCO2, surface wind
speed, sea surface temperature and salinity

The 12-month climatology of the air–sea flux is obtained
from the Carbon Dioxide Information Analysis Center
(LDEO database, NDP-088; Takahashi et al., 2009). It is
derived from the difference between surface water pCO2
(pCO2 sw), air pCO2, and the air–sea gas transfer rate. Sur-
face water pCO2 climatological mean distribution was ob-
tained from 3 million measurements from 1970 to 2007, and
normalized to a reference year 2000. The pCO2 of the air
is computed from the GlobalView CO2 concentration zonal
mean, NCAR monthly mean barometric pressure, SST, and
salinity. Other variables in the dataset pertinent to this analy-
sis are wind speed (derived from the 1979–2005 climatologi-
cal mean NCEP-DOE AMIP-II Reanalysis wind speed field),
climatological sea surface temperature (from NOAA Cli-
mate Diagnostic Center Objective Interpolation), and salinity
(from the NODC World Ocean Database 1998). All variables
are available as a 12-month climatology at a 4◦× 5◦ resolu-
tion.

2.2.2 Nitrate

The nitrate monthly climatology at 1◦ horizontal resolution is
obtained from the World Ocean Atlas 2013 version 2 (Boyer
et al., 2013). It is collected from in situ measurements at
standard depth levels and is available as annual, seasonal,
and monthly climatologies. Nitrate is an essential nutrient
that limits the growth of phytoplankton, which is responsi-
ble for fixating carbon dioxide from the atmosphere. There-
fore, pCO2 levels in the surface ocean depend partially on
the abundance of nitrate.

2.3 Numerical simulations

The NASA-GISS modelE2.1 output used for this analysis
comes from five ensemble coupled model simulations of the
20th century with realistic greenhouse gas, aerosol, land use
and solar forcing, as used in CMIP5 experiments. The model
physics is somewhat different than the modelE2 used in the
CMIP5 experiments, mostly due to improved representation
of the ocean mesoscale mixing. The physical ocean and the
biogeochemistry modules are described in detail in Romanou
et al. (2013, 2017). Briefly, here we note that the ocean model
is a non-Boussinesq mass-conserving ocean model with 32
vertical levels and 1◦×1.25◦ horizontal resolution. The verti-
cal coordinate is a stretched z-level coordinate and has a free
surface and natural surface boundary fluxes of freshwater and
heat that are obtained by the atmospheric model. In addition

to advection and turbulent mixing, it also includes a scheme
for isopycnal eddy fluxes and isopycnal thickness diffusion.
The interactive ocean carbon cycle model consists of a bio-
geochemical model (NASA Ocean Biogeochemistry Model,
NOBM; Gregg and Casey, 2007) and a gas exchange param-
eterization for the computation of the CO2 flux between the
ocean and the atmosphere (Romanou et al., 2013). Specifi-
cally, the air–sea exchange of CO2 (Sarmiento and Gruber,
2006; Takahashi et al., 2009) is described by Eq. (1):

F = kwK0 (pCO2 atm−pCO2 sw) , (1)

where kw is the piston velocity for CO2 (in m s−1) that de-
pends on the wind speed, K0 is the solubility coefficient –
dependent on sea surface temperature (SST) and sea sur-
face salinity (SSS) (expressed in mole, CO2 kg−1 atm−1) –
and pCO2 is the partial pressure of CO2 (Wanninkhof et
al., 2013) in the atmosphere (atm) and the surface ocean (sw).
Equation (1) describes the chemical disequilibrium of CO2 in
the oceanic and atmospheric reservoirs due to the solubility
and biological pumps. As discussed in Sarmiento and Gru-
ber (2006), the pCO2 sw in Eq. (1) is a function of tempera-
ture and salinity, wind speed, DIC, nutrients, and alkalinity
(a measure of the excess of bases over acids) which can be
expressed as follows:

pCO2 sw = f (SST, SSS, DIC, windspeed, nutrients, alkalinity) . (2)

NOBM utilizes ocean temperature and salinity, mixed layer
depth and the ocean circulation fields, and the horizontal ad-
vection and vertical mixing schemes obtained from the host
ocean model as well as shortwave radiation (direct and dif-
fuse) and surface wind speed obtained from the atmospheric
model to produce horizontal and vertical distributions of sev-
eral biogeochemical constituents. The carbon submodel pa-
rameterizes the cycling of carbon through the phytoplankton,
herbivore and detrital components, affecting the dissolved in-
organic and organic carbon in the ocean and interacting with
the atmosphere. Alkalinity is assumed analogous to surface
salinity, which is an acceptable approximation for the sea sur-
face but does not take into account changes in the carbonate
pump. Temperature and salinity are affected only by phys-
ical processes such as circulation, advection, eddy mixing
and stirring, and local upwelling/downwelling, while DIC
distributions are influenced by all these physical processes
and also several biogeochemical processes such as air–sea
gas exchange, production by organisms, biological export to
depth and remineralization there and nutrient availability in
the water column. Atmospheric pCO2 (pCO2 atm) is the sat-
uration concentration of CO2 in equilibrium with a water-
vapor-saturated atmosphere at a total atmospheric pressure
P and a given atmospheric pCO2 level:

pCO2 atm =
P

P 0 CO0
2 , (3)

where P0 = 1 atm and [CO2]0 is the saturation concentration
at 1 atm total pressure.
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The gas transfer velocity is given by

kw= c

(
Sc

660

)−1/2

u2 , (4)

where u is the surface wind speed and c is the piston velocity
coefficient taken here equal to 0.337/(3.6× 105). The value
of c has been agreed upon by the Ocean Carbon Model Inter-
comparison Project, phase II (OCMIP-II) so that the global,
annual mean gas transfer coefficient for carbon dioxide (kw,
K0) is equal to 0.061 mol m−2 yr−1 (µatm)−1 for preindus-
trial times. Sc, the Schmidt number, is computed using the
temperature of the host ocean model following Wanninkhof
(1992). The gas transfer velocity kw is computed only over
open water. The solubility of CO2 in the water K0 is also pa-
rameterized based on OCMIP using prognostic temperature,
salinity and sea level pressure. In these model runs, the global
average of the atmospheric concentration of CO2 follows the
Mauna Loa measurements (Dlugokencky and Tans, 2014),
although regionally atmospheric CO2 is allowed to vary due
to the distributions of the ocean sources and sinks.

The five ensemble member runs were averaged into one
ensemble mean to account for the intrinsic climate variabil-
ity that is not adequately resolved in climate models of low
spatial resolution. The model output for the years 1995–2005
was then averaged again to produce a 12-month climatology
for the purpose of direct comparison with the observationally
based data in the Takahashi database.

The model output and the observational data were interpo-
lated onto the same grid, which is the Takahashi ocean grid at
4◦×5◦ resolution, with no Arctic Ocean, and the ocean mask
was conformed across all observational and model datasets.

In the rest of the paper, some conventions with regards to
nomenclature should be noted. Firstly, the Takahashi carbon
flux, pCO2 and ancillary data as well as the nitrate climatol-
ogy will be referred to as “observations”, for brevity, keeping
in mind that they are really observation-based estimates and
not direct observations. Secondly, “model” will exclusively
refer to the numerical simulations using the NASA-GISS cli-
mate model, and by “algorithm”, “method” or “technique”
we will refer to the clustering technique.

All data products are available in the Ocean Carbon States
Database (https://data.giss.nasa.gov/oceans/carbonstates/).

3 Methodology

A schematic diagram of the methodology is presented in
Fig. 1. First, the 2-D histograms pCO2-SST are computed
from the climatological data, then the histograms are clus-
tered using a statistical method, the k-means clustering
method, and finally the regimes or “ocean carbon states” are
obtained. The methodology steps will be explained in detail
below, using as an example the North Atlantic basin data.

3.1 pCO2-SST 2-D histograms

pCO2 sw values in the North Atlantic span the range 50–
450 uatm, while sea surface temperatures range between −2
and 30 ◦C. The 2-D histograms (Fig. 2) show the highest fre-
quency of occurrence for pCO2 sw values in the range of 300–
400 uatm and temperatures in the range of 10 to 30 ◦C. Cer-
tain months (December, January, February and March) show
a higher frequency of occurrence of cold temperatures (−2
to 2 ◦C) and low pCO2 sw (50–300 uatm) than others. Fig-
ure 2 also reveals that certain histograms appear similar in
shape; for example, January–April exhibit an S-shaped curve
and no tilt, while June–September exhibit a diagonal tilt that
reflects a tendency for higher temperatures to co-locate with
higher pCO2 sw values. This being a small dataset of only
12 2-D histograms, one could easily sort them into groups
of similar shape just by visual inspection only. The method-
ology presented in this paper seeks to more mechanistically
identify these groups, so that it can be confidently applied to
larger and more complex datasets. We will call those orga-
nized groups, clusters or regimes or “ocean carbon states”.

It is noted here that despite the broad range of values for
both variables, the 2-D histograms are very similar regardless
of the number of bins chosen for each of the variables.

3.2 k-means clustering

The k-means clustering algorithm (Anderberg, 1973; Jakob
and Tselioudis, 2003) partitions the 2-D histograms of
pCO2-SST shown in Fig. 2 into a predefined number k of
groups, called clusters. In the first step of the algorithm, k

histograms are randomly selected and are considered the cen-
troid of each of the k clusters. Each other histogram in the in-
put dataset is then assigned to its nearest centroid by comput-
ing the Euclidean distance of each bin of the 2-D histogram
from the same bin of the centroid. The procedure is repeated
an N number of iterations, each time the centroid of the re-
sulting group is recalculated, if doing so reduces the sum of
the distances of each histogram to the centroid. This iterative
procedure stops when the squared distance between the mean
of each cluster and all the 2-D histograms assigned per clus-
ter is minimized (Jain, 2010). More than one iteration (N ) is
necessary to have convergent clustering results because each
analysis initializes at a random cluster centroid. In this pa-
per, convergence is reached after 10 iterations, if not fewer
(Fig. S1 shows how this is determined for the example of the
North Atlantic basin).

3.3 Sensitivity to predefined number of clusters

To ensure that the chosen number of clusters, k, is represen-
tative of the system, typically one needs to repeat the tech-
nique for various values of k, and, using visual inspection,
select the optimal value for k when the resulting clusters be-
come repetitive or contain no additional information. Objec-
tive methods have been proposed (e.g., Bankert and Solbrig,
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Figure 1. Schematic diagram of the clustering methodology used in this paper: (a) 12-monthly mean climatological year data of two
variables, pCO2 and SST, (b) monthly 2-D histograms, (c) clustering of the 2-D histograms into groups by similarity in the bivariate
distributions, and (d) clusters resulting when k = 3 is assumed.

Figure 2. Monthly 2-D histograms of partial pressure of CO2 in the surface water (pCO2 sw) and sea surface temperature (SST) in the North
Atlantic (defined as 80◦W to 45◦ E, 0 to 90◦ N) from the Takahashi observational dataset. The horizontal axis is pCO2 sw (uatm) and the
vertical axis is SST (◦C). The bin interval is 15 uatm and 1.6 ◦C. The color bar describes the actual frequency of occurrence of each bin.
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Figure 3. (a) Scores for each cluster analysis of observational data in the North Atlantic for k = 2, k = 3, k = 4, where cluster k is the
predetermined number of clusters and each bar represents the score per 2-D histogram. (b) Average scores for each cluster analysis with
increasing k, from k = 2, . . .,12, normalized by the number of clusters k.

2015), where the average radius of each cluster (the distance
from the centroid to the most distant member within a clus-
ter) is computed for decreasing k. Bankert and Solbrig (2015)
found that when the number of clusters falls below the opti-
mal k, the average radius grows rapidly. We employ a simi-
lar methodology here. First, we use a scoring algorithm that
computes the distance of each 2-D histogram from the cen-
troid of its cluster. The higher the score is, the closer the 2-
D histograms are to the centroid. The maximum score is 1,
which indicates a perfect match. Negative or low values indi-
cate poorly matched histograms that are the farthest from the
centroid in the cluster. We run the scoring algorithm for k = 2
through k = 12, since we have 12 2-D histograms, and there-
fore there can be up to 12 clusters. Figure 3a shows the scores
only for k = 2, k = 3, and k = 4 as examples of the output of
the scoring algorithm. We find that for k = 2 and k = 3 all
2-D histograms are well matched within a cluster (i.e., all
scores are high), whereas for k = 4 there is 1 month with a
negative score. To further summarize the scoring results, we
introduce a “sensitivity criterion” to the predetermined num-
ber of clusters, k, in which we average all scores for each k

and normalize by k. The results are shown in Fig. 3b, where
we note that the averaged normalized score for k = 2 is 0.4,
and it then quickly drops to 0.2 for k = 3 and to 0.1 for k = 4,
and it plateaus after that. We choose as the optimal number of
clusters the k with the highest score and no significant change
in the normalized averaged score thereafter. This choice im-
plies that any reorganization of the 2-D histograms within
more than three clusters will not produce any “tighter” clus-
ters, i.e., clusters where the members are closer together. We
must note here that the method is not entirely objective, as
one always needs to visually inspect the clusters themselves
and ensure that the choice of k is indeed the best one.

3.4 Data normalization

As noted earlier, pCO2 and SST have a broad range of val-
ues. Specifically, pCO2 values vary by about 2 orders of
magnitude between 50 and 450 uatm, and SST by 1 order
of magnitude between −2 and 30 ◦C. It is customary in ap-
plications of statistical techniques such as clustering to nor-
malize the data (subtract the mean and divide by the standard
deviation) in order to force both datasets to be in the same
range of values. However, this is not always necessary (An-
derberg, 1973, p. 13; Kaufman and Rousseauw, 2005, p. 11).
In our case, we are not clustering each variable separately in
order to determine regression coefficients (as in Lefèvre et
al., 2005). Rather, we are clustering the 2-D histograms and
comparing them, in order to obtain groups of similar patterns.
In addition, clusters represented in normalized data are not as
easily understood physically and as well represented on ge-
ographical maps. Therefore we choose not to normalize the
data for the purposes of this study.

4 Results

4.1 The North Atlantic Ocean carbon states

Figure 4 depicts the regimes for k = 2, k = 3, and k = 4.
When only two clusters are predefined, i.e., for k = 2, the
first cluster (Regime 2A, Fig. 4a) is dominated (30 % of the
time) by pCO2-SST pairs in the ranges of 350–400 uatm
and 25–30 ◦C. The second cluster (Regime 2B) is dominated
(20 %) by pCO2 sw values within 300–350 uatm and SST val-
ues in the range −2 to 20 ◦C. When we choose more clus-
ters initially, i.e., for k = 3, Regime 3B is very similar to
Regime 2A and Regime 3C is analogous to Regime 2B, in
the sense that the regimes have analogous bins of the highest
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Figure 4. Cluster analysis output (regimes) for (a) k = 2, (b) k = 3, and (c) k = 4 for the North Atlantic, from the Takahashi observational
dataset. The color bar represents the relative frequencies of occurrence of each value-pair interval; i.e., the frequencies are divided by the
total number of frequencies per regime.

frequencies. Regime 3A is a new state that was unresolved in
k = 2, but is not similar to 3B or 3C. For k = 4, Regimes 4B
and 4C appear to be almost equivalent, and both derived from
Regime 3B, which probably indicates that there is no new in-
formation gained by requiring four clusters. Similar visual
inspection of the results for k > 4 confirms our more objec-
tive analysis result that k = 3 is the optimal number of clus-
ters in the pCO2-SST space in the North Atlantic basin. It
should be noted here that because we implement k clustering
in the 2-D histograms and not the raw data, there is really no
change in the results if we use a different number of bins in
the histograms or if we use normalized data.

4.2 Temporal attribution for the North Atlantic carbon
states

In order to characterize the ocean carbon states obtained in
the previous section, we perform a temporal attribution anal-
ysis by determining when each cluster occurs. This is possi-
ble because for each cluster (regime), the k-means analysis
routine computes the distance of every 2-D histogram in that
cluster to the cluster’s centroid. Since each 2-D histogram
is associated with a certain month in the climatology, we
are able to associate each cluster with certain months. Fig-
ure 5b shows that in the North Atlantic basin, regime 1 is
represented by months January, February, March, and April
and we call this the “winter regime”; regime 2 occurs dur-
ing June, July, August, September and October and we will
thus call it the “summer regime”; regime 3 occurs in May,
November, and December and we will call this the “transi-

tion regime” because it reflects a mixed season in between
the winter and summer regimes. Not surprisingly, these re-
sulting regimes align themselves fairly well with the boreal
winter and summer seasons in the North Atlantic. The cold
season (winter regime) includes March and April but not
November–December, which are included, rather, in the tran-
sition regime. The warm season (summer regime) includes
the months between June and October, again broader than the
typical boreal summer. It is not surprising that we recover the
seasonal cycle from the 12-month climatology, and probably
because our domain is the entire North Atlantic, from the
Equator to the subpolar regions, these seasons are broader
including months from the spring and fall, since the length
of each season is different at different latitudes.

4.3 Spatial attribution of the North Atlantic carbon states

Next, we describe the geographical distribution of each
regime (Fig. 5c). To do so, the frequencies of occurrence as-
sociated with each pCO2-SST bin in Fig. 5a are averaged
over the months in each regime and mapped on the North At-
lantic basin. We find that in the winter regime, the dominant
value pairs (300–350 uatm and 10–20 ◦C) are found in the
subtropical North Atlantic. In contrast, the dominant range of
pCO2-SST pairs in the summer regime occurs in the tropics
(values 350–400 uatm and 25–30 ◦C). The transition regime
shows a mix of the winter and summer regimes.

We conclude that the ocean carbon states determined by a
12-month climatology of surface ocean pCO2 and SST are
characterized by a cold season where most persistent value
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Figure 5. (a) Ocean carbon states (regimes) in observation-based data of the North Atlantic. (b) Monthly attribution of each ocean carbon
regime in the Takahashi observational dataset. Temporal attribution is based on the distance of each monthly 2-D histogram to the centroid of
each cluster. Each color represents a different regime: blue denotes the cold months’ regime (winter regime), red the warm months (summer
regime) and green the May/November–December transition regime, since this is more a mix of the other two. (c) Regional attribution of each
regime depicted in (a). The colors in (c) correspond to the ones in (a), i.e., to the frequencies of occurrence of each bin (value pair) in the
clusters of (a).

pairs occur in the subtropical North Atlantic and the subpo-
lar region. In the warm season, however, the most persistent
value pairs occur in the tropical Atlantic. For more complex
datasets, e.g., when interannual variability is included, we ex-
pect to be able to detect regimes that correspond to processes
controlled by the El Nino–Southern Oscillation (ENSO) or
the North Atlantic Oscillation, for example.

4.4 The NASA-GISS climate model North Atlantic
carbon states

Next we obtain the ocean carbon states from the GISS model
simulations, following here the same methodology as for the
observations. We are interested in understanding how similar
the model regimes are to the observed ones we found earlier.
As described in Sect. 2.3, we construct the ensemble mean
climatologies for pCO2 sw and SST for the period 1995–2005
from five simulations of Earth’s historical climate of the 20th
century performed with the NASA-GISS climate model. We
then obtain the 12-monthly 2-D histograms from the model
climatology and, using the same binning groups as in the ob-
servations, we obtain the model clusters. It should be noted
here again that because we are actually clustering the 2-D
histograms and not the raw data, our clusters are not sensi-
tive to the number of bins or to normalization of the datasets
prior to cluster analysis.

The sensitivity criterion (discussed in Sect. 3) for the
model clusters is not as clear as in the case of the observa-
tions (Fig. 6). Note that there is a plateau after k = 5 and thus
it appears that 5 would be a more suitable choice for k. How-
ever, as seen in Fig. 6a, some of the additional regimes in-
clude only one monthly 2-D histogram. We therefore chose
here k = 3, recognizing that the model clusters have larger
uncertainty. In a larger dataset that includes interannual vari-
ability, more than a single 2-D histogram would potentially
be assigned to a regime, reducing that uncertainty.

Figure 7a shows the ocean carbon states for k = 3, while
Fig. 7b characterizes their temporal occurrence: the model
winter regime corresponds to the months December, January,
February, March, April, and May; the summer regime corre-
sponds to the months July, August, September, October, and
November; the transition regime corresponds only to June.
There is therefore good agreement with the regimes from
observations (Fig. 5b). The model winter regime is some-
what broader than that observed by 2 months (December
and May), while the model summer regime lags by 1 month
(starts in July, while in the observations it starts in June).

The regimes (clusters) themselves are similar to the obser-
vations (comparing Figs. 5a and 7a) in that the same bins of
most likely values are identified but with somewhat different
frequencies of occurrence. As an example of comparison be-
tween the temporal regimes, for the winter regime both the
model and the observations show that the dominant pairs are
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Figure 6. (a) Scores for each cluster analysis of the GISS model data in the North Atlantic for k = 2, k = 3, k = 4, k = 5, where cluster k is
the predetermined number of clusters and each bar represents the score per 2-D histogram. (b) Average scores for each cluster analysis with
increasing k, normalized by the number of clusters k.

Figure 7. (a) Ocean carbon states (regimes) in the North Atlantic from the GISS model output. (b) Monthly attribution of each ocean carbon
regime. Temporal attribution is based on the distance of each monthly 2-D histogram to the centroid of each cluster. Blue denotes the cold
month regime (winter regime), red the warm months (summer regime) and green the transition regime (only June), since this is more a mix
of the other two. (c) Regional attribution of each regime depicted in (a). The frequencies of occurrence of each bin (value pair) in the clusters
of (a) are mapped onto the North Atlantic grid.

in the range of 300–350 uatm and 20–25 ◦C, at 30 and 25%
relative frequency. However, other weaker pairs are not well
represented in the model, e.g., the range 50–200 uatm and−2
to 10 ◦C. During the winter regimes, the highest frequency
of occurrence (25 %) is for the pair of values 300–350 uatm
and 10–20 ◦C, whereas in the model the same pair of values
is found 30 % of the time. Similarly, the summer and tran-
sition regime highest frequency pairs are well simulated. In

contrast, the value pairs 200–350 uatm for very cold temper-
atures are not well represented in the model.

We also find (Fig. 7c) that in the winter regime, the domi-
nant value pairs (300–350 uatm and 10–20◦C, identified in
Fig. S2) are found in the subtropical North Atlantic, with
higher frequency in the model (darker shading) than in the
observations. The GISS model however underestimates the
frequency of occurrence of the value pairs in the subpolar
region (values 50–350 uatm and −2 to 10 ◦C, identified in
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Figure 8. Composites of the CO2 flux field over the observed regimes for (a) the observations and (b) the model. The composite fields are
computed as averages of the field over the months included in each regime. Both the observations and the model data are composited over
the same months as determined by the temporal attribution of the observations dataset, shown in Fig. 5b. Blue shades indicate outgassing,
and red shades indicate uptake.

Fig. S2). In contrast, the dominant range of pCO2-SST pairs
in the summer regime occurs in the tropics (values 350–
400 uatm and 25–30 ◦C; Fig. 7c) and is of higher frequency
in the observations than the model. In other words, the model
underestimates the extent of the tropical summer regime but
reproduces well the other parts of the summer regime. The
transition regime shows a mix of the winter and summer
regimes for both observations and model. The model results
in this regime indicate higher frequency in the subpolar re-
gion than in the observations.

4.5 Model North Atlantic air–sea flux of CO2 error
analysis and bias attribution

The ocean carbon states can provide a framework for model
assessment against the observations. In this section we seek
to identify biases in the simulated flux of CO2 and attribute
them to leading biases in physical and biogeochemical pro-
cesses.

In the previous section we used the same methodology
as in the observations to obtain independently the model
regimes and assess how different they are. However, when
we want to identify the causes of the model biases, we have to
use the observed regimes as the basis of the comparison and
assign the model data to the observed regimes, by averaging
the model data over those months that the observed regimes
occur (Fig. 5b). This approach was highlighted in Williams
and Webb (2009) for general circulation model evaluations
of the cloud regimes.

Figure 8 depicts the air–sea flux of CO2 composited over
the observed temporal regimes in both observations (Fig. 8a)
and model output (Fig. 8b). In the winter regime, model out-

gassing (in shades of blue) is confined only to the tropics,
whereas in the observations there is also a tongue of out-
gassing at about 60◦ N. Similarly, in the transition regime,
the model has a more extended uptake region in the subpolar
North Atlantic than in the observations. While the summer
regime is better represented in the model than the other two
regimes, all three regimes show that model uptake is stronger
than in observations at mid and high latitudes and that out-
gassing is also stronger in the model at mid to low latitudes.

To trace the source of model biases in the air–sea flux of
CO2 we need a better understanding of the physical or bio-
geochemical processes that control the air–sea flux of CO2
in the model. Using the clustering analysis results from the
previous section, we can investigate the underlying processes
that might be responsible for the bias.

The process attribution is performed using a Taylor expan-
sion of the model bias as shown in Eq. (5). The model flux
bias, 1F , depends on the biases of pCO2 sw, SST, salinity
(SSS) and wind speed (wspd) such that

1F ∼
∂F

∂pCO2 sw
1pCO2 sw+

∂F

∂SST
1SST

+
∂F

∂SSS
1SSS+

∂F

∂wspd
1wspd , (5)

where 1q is the bias of the variable q, defined as the
root mean squared error (RMSE) between the observa-
tions and the model, and q is any of the variables
{pCO2 sw,SST,SSS,wspd}. ∂F

∂q
is a weight term that repre-

sents dependence of the flux on that variable and is deter-
mined by the slope of a linear fit in the scatter plot of the flux
F with each variable q for each carbon state. Since the North
Atlantic basin is a very broad basin, both zonally and merid-
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Figure 9. Contributions of each of the variables pCO2, SST, SSS,
and WSPD to the overall air–sea flux 1F bias. The contributions
are computed as the products of the weights and the RMSEs of each
variable q as described in Eq. (5). See the text for a detailed expla-
nation.

ionally, and because the carbon states’ regional distribution
(Fig. 5c) is quite complex, we identify areas where the linear
fits will be more appropriate approximations of the {F,q}

relationships. The subpolar region where the value pairs are
−2 to 10 ◦C and 50 to 350 uatm, a subtropical region (10 to
20 ◦C, 300 to 350 uatm), and a tropical region (20 to 30 ◦C,
300 to 400 uatm) are demarcated in Fig. S2. Results of the
regional scatter plots and the linear fit for each regime are
shown in Fig. S3 and are synthesized in Fig. 9. Each contribu-
tion term (each term on the right-hand side of Eq. 5) is calcu-
lated from the multiplication of the weights and the RMSEs.
Figure 9 then shows that over most of the North Atlantic,
the flux biases are attributed mainly to errors in the pCO2 sw,
although in subpolar regions other terms such as salinity bi-
ases and wind speed biases become important. It therefore
makes sense to further investigate biases in pCO2 sw and the
processes these are attributed to, as presented in Eq. (2).

Similarly to Eq. (5),

1pCO2 sw ∼
∂pCO2 sw

∂SST
1SST+

∂pCO2 sw

∂SSS
1SSS

+
∂pCO2 sw

∂WSPD
1WSPD+

∂pCO2 sw

∂NITRATE
1NIT. (6)

We perform the Taylor expansion of the bias for each of the
regimes that we computed, calculating the weights and RM-
SEs in the same way as described for CO2 flux biases. The
estimates of the linear fit slopes of the scatter plots are shown
in Fig. S4 and the composites of the contributions in Fig. 10.

Figure 10. Contributions to the pCO2 sw bias in the model from
SST, SSS, wind speed (WSPD) and nitrate (NIT) in the winter,
summer, and transitional regimes. Contributions are computed as
in Fig. 9 (see details in the text). The entire North Atlantic is dif-
ferentiated into subpolar, subtropical, and tropical regions to better
account for regional differences in the model biases and obtain a
better linear fit for the computation of the weights in Eq. (6).

Overall Fig. 10 shows that the biases in the subpolar region
are larger than anywhere else in the North Atlantic basin, as
the contributions to the bias in pCO2 sw are an order of mag-
nitude larger there. Specifically, in the subpolar region, wind
speed biases emerge as responsible for the winter and tran-
sition regime biases in pCO2 sw, while salinity biases dom-
inate the summer bias in pCO2 sw. In the winter and tran-
sitional months, the quasi-cyclonic subpolar gyre, driven by
energetic winds and wind outbreaks, leads to Ekman diver-
gence in the surface layer that controls the pCO2 sw biases
near the coast. At the same time, winter-time convective mix-
ing is responsible for biases in the strength of the Merid-
ional Overturning Circulation that are known to influence
open ocean pCO2 sw (Romanou et al,. 2017). In the summer
regime, GISS model sea-ice concentration is higher than ob-
served; hence, melting will lead to significant surface salin-
ity biases. Inaccurate model representation of the magnitude
and fluctuations of the cyclonic wind stress curl as well as
the sea-ice retreat and associated salinity changes are proba-
bly responsible for deficient physical characterization of the
model ocean circulation, which would result in misrepresen-
tations of the pCO2 sw and thus the CO2 flux in the model.

In the subtropics, nitrate is found to be the largest contribu-
tor for the winter regime biases, wind speed is the main con-
tributor in the summer, and salinity is the main contributor
for the transition regime. The subtropics are characterized at
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Figure 11. (a) Scores for each cluster analysis for k = 2, k = 3, k = 4 for the observational data in the Southern Ocean where cluster k is
the predetermined number of clusters and each bar represents the score per 2-D histogram. (b) Average scores of each clustering analysis
for increasing k, from k = 1 to k = 12. (c) Scores for each cluster analysis for k = 2, k = 3, k = 4 for the model data in the Southern Ocean.
(d) Average scores of each clustering analysis for increasing k.

the surface by anticyclonic circulation and a strong western
boundary current, the Gulf Stream. Gyre subduction supports
downwelling which brings nutrients and pCO2 to depth. Ni-
trate utilization by ocean biology during the winter regime
is probably inaccurate in the model, while wind speed biases
are known to be larger in the summer than the winter regime
in the model.

In the tropics, biases in wind speed, nitrate and salinity
are again found to be important. Here, nitrate biases, which
are relatively higher in oligotrophic regions (Arteaga et al,.
2015), are probably due to misrepresentation of nitrogen fix-
ation in the GISS climate model. Wind speed and salinity
biases are associated with well-known biases in the intensity
and position of the Inter Tropical Convergence Zone (ITCZ)
that controls cloudiness, temperature gradient, and rainfall.
The ITCZ moves north in the summer and south in the win-
ter; therefore, a wind speed bias in the transition regime in the
model could be explained by an inaccurate model reproduc-
tion of how the ITCZ affects the wind during its transitional

movement. The ITCZ increases precipitation, thus decreas-
ing salinity; therefore, how salinity changes by season as a
result of the shifting ITCZ could explain the winter regime
bias.

4.6 The Southern Ocean carbon states

The application of cluster analysis in the Southern Ocean is
presented here similarly to in the North Atlantic, with the
purpose of examining whether the technique will also be
able to identify some known aspects of the Southern Ocean
carbon cycle. For brevity, though, the observation-based and
model regimes will be presented alongside one another and
will be followed by the model-error attribution analysis.

As done for the North Atlantic basin, we look at proba-
bility density distributions of observations in the Southern
Ocean which show that both SST and pCO2 sw exhibit a
broad range of values. Temperatures range between −3 and
20 ◦C, whereas pCO2 sw values span 20 to 400 uatm. The 12-
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monthly 2-D histograms of pCO2 sw and SST in the Taka-
hashi dataset are shown in Fig. S5.

Figure 11a shows the scores of each regime for k = 2, 3,
and 4 and Fig. 11b the results of the sensitivity criterion to
the choice of k. Following the criterion established in Sect. 3,
the largest score change is for k = 3 and k = 4. However,
Fig. 11a shows that the overall score is better for k = 3, be-
cause more months have larger individual scores, with the
exception of 1 month (November) which has a slightly neg-
ative score. Additionally, visual inspection of apparent pat-
terns in the 12-monthly 2-D histograms (Fig. S5) also cor-
roborates the choice of k = 3 as the optimal value for the
number of clusters. Again, the small climatological dataset
leads to some uncertainty in determining k.

A value of k = 3 is also chosen for the model analysis
based on Fig. 11c and 11d, which show that this is also the
optimal number of clusters. There is added ambiguity in the
choice of k here, in addition to that due to the small dataset,
which arises from the fact that the Southern Ocean is a very
broad basin zonally and different processes become impor-
tant in different regions more so than in the narrow North
Atlantic basin, which make the choice of k not as clear as it
was in the North Atlantic.

The observed and model ocean carbon states are shown
in Fig. 12. In the summer regime, which includes January,
February and March (see Fig. 13 and the explanation below),
the highest frequency pair values (i.e., the most persistent
pairs) are found around 20 % of the time in the observations
and 25 % of the time in the model for the ranges of 250–
350 uatm and 0–5 ◦C. Another range of pair values which
also shows a high frequency of occurrence (25 %) is found
for warmer temperatures (10–20 ◦C) and the same range of
pCO2, but the GISS model misplaces it towards higher val-
ues of pCO2 (350–400 uatm). The winter regime comparison
shows that the model captures the low pCO2, low tempera-
ture state (20–150 uatm,−3 to 0 ◦C) well (30 % of the time in
observations and in the model). The mid-range pCO2, high
temperature state (250–350 uatm, 10–20 ◦C) is not as well
represented in the model. The observations there show the
highest frequencies of occurrence for higher pCO2 (350–
400 uatm), in contrast to the model for lower pCO2 (250–
350 uatm). Comparison between the transition regimes re-
veals much less correspondence between observations and
the GISS model, considering the high frequency states in ob-
servations are quite different than in the model (e.g., obser-
vations of high frequency states: 20–150 uatm, −3 to 0 ◦C;
250–350 uatm, 10–20 ◦C; 350–400 uatm, 0–5 ◦C; model high
frequency state: 250–350 uatm, 0–10 ◦C).

4.6.1 Temporal attribution for the Southern Ocean
carbon states

Temporal attribution, which is estimated using the method
described in Sect. 4.1, is shown for both the model and the
observations in Fig. 13. Note that all subsequent analysis

considers the austral seasons when referring to “winter” and
“summer”. The temporal attribution shows that the obser-
vations and model data are clustered in regimes that corre-
spond to almost the same months. The only difference is that
November is accounted for in the transition regime for the
observations as opposed to the winter regime for the model.
It is noted, however, that November is technically a “poorly
matched” 2-D histogram in the observation cluster routine,
as discussed earlier.

4.6.2 Spatial attribution of the Southern Ocean carbon
states

In order to further explain the model and observed Southern
Ocean regimes shown in Fig. 12, the frequencies of occur-
rence of each bin in the cluster are mapped onto the South-
ern Ocean regions (Fig. 14), where geographic nomenclature
similar to that in Orsi et al. (1995) is used. In the coastal
Antarctic divergence zone, SST varies within −3 to 3 ◦C
and pCO2 20–250 uatm, in the Antarctic convergence zone
SST ranges within 3–10 ◦C and pCO2 250–400 uatm, and in
the subtropical convergence zone SST lies within 10–20 ◦C
and pCO2 250–400 uatm. Despite the strong temporal attri-
bution agreement between the model and the observations,
the regional attributions show much less correspondence. For
example, in the summer regime, the observations show the
highest frequency of occurrence between 250–350 uatm and
10–20 ◦C along the subtropical convergence zone (roughly
along 40◦ S), while the highest frequency of occurrence for
the model is for the pair 250–350 uatm and 0–5 ◦C, occur-
ring in the coastal region (poleward of the divergence zone
along 60◦ S). In the winter regime, both observations and
the GISS model show the highest frequency of occurrence
for the value pairs nearest to the coast where the pCO2 is
low and the temperatures coldest (20–150 uatm and −3 to
10 ◦C). Further offshore, the model highest frequency val-
ues occur for lower pCO2 (250–350 uatm) than in the ob-
servations (350–400 uatm). Lastly, in the transition regime,
the model shows a much higher persistency of values in the
range (250–350 uatm and 0–10 ◦C) than in the observations.

It is therefore evident that the GISS model does not re-
produce well the observed ocean carbon states in the South-
ern Ocean. There is a tendency to persistently underestimate
pCO2-SST values closer to the coast and overestimate it near
the subtropical convergence zone, during the warm season,
whereas, during the cold season, the model captures well
the divergence zone regime but the errors further offshore
switch: the model now overestimates pCO2-SST value-pair
frequency of occurrence in the Antarctic convergence zone
but is performing better in the subtropical convergence zone.
The transition regime is not well represented, indicating that
not enough regimes are chosen to adequately describe ocean
carbon states in this small dataset.
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Figure 12. Comparison between the regimes in (a) the observations and (b) the model output.

Figure 13. Monthly attribution of each ocean carbon regime in
observations and the GISS climate model. Temporal attribution is
based on the distance of each monthly 2-D histogram to the cen-
troid of each cluster. Referring to austral seasons, blue denotes the
cold month regime (winter regime), red the warm months (summer
regime) and green the transition regime, since this is more a mix of
the other two.

4.6.3 Model Southern Ocean air–sea flux of CO2 error
analysis and bias attribution

Comparing the CO2 flux composites on the observed regimes
(Fig. 15) shows significant discrepancies between observa-
tions (Fig. 15a) and model (Fig. 15b). To better understand
where these discrepancies come from, we perform an error
attribution analysis, as in Sect. 4.1 above. In the summer
regime (January through March), outgassing in the model is
restricted to the subtropical convergence zone, whereas in the
observations it is more localized and closer to Antarctica. At
the same time, model uptake is stronger, confined to the coast
and over a broader area than in the observations. This is con-
sistent with the result from the previous section, where the
model underestimates pCO2 and SST in the Antarctic con-
vergence zone. In the winter regime (June through October),
the entire model basin is a sink for CO2, whereas in the ob-
servations there is a zonally confined outgassing belt south of
50◦ S and an uptake belt north of it. Again, this result is con-
sistent with the earlier finding that the model winter regime
is closer to the observed near the Antarctic coast. The transi-

tion regime shares a mix of the same discrepancies as in the
summer and winter regimes.

Bias attribution is computed for the three zonally defined
regions indicated in Fig. S6. Based on the bias computations
in Eq. (5) for pCO2 sw, SST, salinity, and wind speed with
respect to CO2 flux, pCO2 sw is again shown to be the driv-
ing variable in most of the flux biases in the Southern Ocean
(Fig. S7; Fig. S8 for scatter plots). We therefore seek to un-
derstand the processes that control the pCO2 biases in the
model, using the Taylor expansion in Eq. (6) (Fig. 16; Fig. S9
for scatter plots).

For almost all regimes and regions, biases in nitrate are
large partly because of a lack of a closed, state-of-the-art
nitrogen cycle representation in the climate model. On the
other hand, observations are too scarce in the region, due to
inclement weather and biases to specific seasons, so there is
large observational uncertainty associated with the Takahashi
climatology in the Southern Ocean. The model skill would be
more adequately assessed as more in situ measurements are
made (e.g., from the Southern Ocean Carbon and Climate
Observations and Modeling, SOCCOM, experiment; John-
son et al., 2017). Nevertheless, the model underestimates sur-
face nitrates in the Southern Ocean in particular because of a
large nitrate deficit in the subsurface ocean which upwells in
the subantarctic zone and flows into the Antarctic Circumpo-
lar Current region. This is related to processes such as den-
itrification and accurate remineralization in the deep ocean.
SST is the second-most dominating variable for biases in the
coastal Antarctic. Inspection of the model biases shows that
south of 70◦ S the model water column is colder than in ob-
servations; hence, upwelling there will bring colder waters
near the surface. Interestingly, surface salinity biases are rel-
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Figure 14. Regional attribution of each regime for k = 3 in the Southern Ocean in (a) the observations and (b) the GISS model simulations.
Each spatial grid point for every month is associated with its relative frequency of occurrence in the cluster output, and then the months are
averaged per regime to output the average frequency of occurrence in each regime. Model regimes are calculated using the monthly groups
identified by the observations’ temporal attribution.

Figure 15. Composites of the CO2 flux field over the regimes in the Southern Ocean for (a) the observations and (b) the GISS model. Both
the observations and the model data are composited over the same months as determined by the temporal attribution of the observed regimes.
Blue shades indicate outgassing, and red shades indicate uptake.

atively very important in the region south of the subtropical
convergence zone, which suggests that a study of water mass
formation in that region in the model and the observations
would better explain the biases.

5 Data availability

Data and analysis scripts can be accessed at https://data.giss.
nasa.gov/oceans/carbonstates.

6 Conclusions

This proof-of-concept study presents the k-means cluster
analysis and the determination of the regimes called “ocean

carbon states” in observation-based data of the ocean car-
bon cycle. A method is described here to determine the op-
timal number of clusters for the cluster analysis. The study
also explores how to characterize the ocean carbon states
temporally and spatially in order to determine the physical–
biogeochemical processes related to each carbon state. Com-
posites of the CO2 flux and a quantitative exploration of the
effect of each field on pCO2 sw bias are also demonstrated.

In this study, pCO2 and SST were chosen as the two vari-
ables that co-determine the carbon states, based on the fact
that they both play critical roles in the biogeochemistry and
the physics of the ocean system and control the flux of CO2.
One may choose different variables and it would be interest-
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Figure 16. Contributions to the pCO2 sw bias in the model from
SST, SSS, wind speed (WSPD) and nitrate (NIT) in the winter, sum-
mer, and transitional regimes. The Southern Ocean is differentiated
into the coastal Antarctic divergence zone (roughly polewards of
60◦ S), Antarctic convergence zone (roughly 60–50◦ S), and sub-
tropical convergence zone (roughly 50–40◦ S) to better account for
regional differences in the model biases and obtain better linear fit
for the computation of the weights in Eq. (6) (see Fig. S9).

ing to see whether and how the regimes depend on the choice
of variables.

We have also tested the importance of the choice of k. A
main caveat of k-means cluster analysis is that k must be
predetermined through reasoning that is subject to personal
bias. However, we show that by assessing the clusters from
multiple angles (i.e., the score plots, the sensitivity criterion
visual inspection, analysing cluster outputs with increasing k,
temporal attribution), it is possible to determine an optimal k

that is semi-objective. Even so, in this proof of concept study,
we acknowledge the uncertainty in our choice of k as a result
of the small dataset of 12-monthly 2-D histograms, which
occasionally results in there being only a small number of
histograms per cluster.

The ocean carbon states we obtain from this climatolog-
ical year dataset are interesting. We found that the subtrop-
ical North Atlantic is the dominant feature in the cold sea-
son regime (the months January through April). In the same
regime, the subpolar North Atlantic also features promi-
nently, which is associated with the high variability in this
area due to sea ice retreat, the spring bloom and the winter–
spring convection. In contrast, the tropical Atlantic domi-
nates the warm months June through October, while the sub-
tropical and subpolar regions play a smaller role. The tran-
sition regime, which is comprised of months that do not en-
tirely fall into the winter or summer regimes, shows again

the lower tropics and the subtropical gyre to be more active.
We would expect that a longer dataset that includes natural
variability as well as the effects of longer-term climate and
anthropogenic trends would result in more carbon states and
hence that it would be an interesting extension of the present
study.

The NASA-GISS model carbon states in the North At-
lantic are similar, both in temporal as well as spatial char-
acterization, to the observed ones, with better model skill in
the summer than in the winter. Specifically, the model over-
estimates the importance of the subtropical gyre and under-
estimates the subpolar gyre during the cold months. During
summer, the model underestimates the tropics, but not signif-
icantly. The transition months are found to behave differently
in the model, although that might be a result of the small size
of our input datasets.

In the Southern Ocean, during the warmer months
(January–March), the observational states are more persis-
tent along 40◦ S, the subtropical convergence zone, while
the colder season has prominent states (higher persistency)
mostly along the Antarctic coast. The transition regime
shows a similar degree of variability across the entire South-
ern Ocean.

While the GISS model agrees in the temporal characteri-
zation of the ocean carbon states, it diverges from the obser-
vational spatial attribution, particularly in the summer and
the transition regimes. It is of note here, however, that the
Takahashi climatology is far more uncertain in the Southern
Ocean (Takahashi et al., 2009) than it is in the North Atlantic,
and therefore the model’s lack of skill might not be as alarm-
ing. New observations in the area (e.g., from SOCCOM) will
greatly benefit studies such as this.

Error analysis of the model response helps explain the
GISS model biases. Applying k-means clustering analysis
in the two main regions of the world that are known to be
critical for the global ocean carbon cycle, namely the North
Atlantic region and the Southern Ocean, defines the priorities
for model improvement: in the North Atlantic biases in sur-
face salinity, wind speed and surface temperature, whereas in
the Southern Ocean priorities are nitrate and surface salinity.
Clearly the GISS climate model would benefit from more re-
alistic representation of the nitrogen cycle in the ocean as a
whole.

The goal of this study is to enable us to apply this k-means
clustering to “big” data, in order to find the interannual and
regional patterns in larger, higher frequency climate datasets.
This extended application will allow researchers to gain a
much more comprehensive insight and intuition for physical
systems by mechanistically and impartially grouping multi-
ple variables that form the prominent features of these net-
works. Other variable pairs besides pCO2 and SST will also
be explored, such as CO2 flux and chlorophyll, in order to
assess other drivers in Eq. (1). Finally, higher order cluster-
ing and classification techniques will be analyzed in order to
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determine the most efficient and successful method for un-
derstanding the ocean carbon cycle.

All routines and datasets used in this study are freely avail-
able on the Ocean Carbon States page of the NASA Goddard
Institute for Space Studies web portal (https://data.giss.nasa.
gov/oceans/carbonstates).

The Supplement related to this article is available online
at https://doi.org/10.5194/essd-10-609-2018-supplement.
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