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Zusammenfassung

Das Ziel dieser Arbeit ist die numerische Untersuchung eines kausalen Fermionsys-
tems auf R× S3. Kausale Fermionsysteme bezeichnen im Allgemeinen einen abstrak-
ten mathematischen Rahmen, welcher einen potentiellen Kandidaten für eine verein-
heitlichte physikalische Theorie darstellt. Wir formulieren ein Modell innerhalb dieses
Rahmens, welches einerseits numerisch handhabbar ist und andererseits auf interes-
sante physikalische Einblicke hoffen lässt.
Anschließend erklären und vergleichen wir unterschiedliche numerische Methoden

und erläutern die Implementierung sowie Strategie unserer Analyse im Detail. Es fol-
gen numerische Resultate für zwei Spezialfälle, die erste Einblicke in das Verhalten des
Modells liefern. Diese Ergebnisse werden mit Hinblick auf analytische Resultate zu
kausalen Fermionsystemen interpretiert. Wir schließen mit einem Ausblick auf weit-
erführende Fragestellungen und potentielle Schwierigkeiten für zukünftige numerische
Untersuchungen.
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Abstract

The aim of this thesis is to analyze a causal fermion system on R × S3 numerically.
Causal fermion systems generally provide an abstract mathematical framework, which
constitutes a candidate for a unified physical theory. Within this framework we formu-
late a model, which is accessible to numerical treatment on the one hand, and expected
to exhibit sufficient complexity to encompass interesting physical behavior on the other
hand.
Subsequently, we explain and compare various numerical methods and elaborate on

the implementation and strategy of our analysis in detail. We continue with numerical
results for two special cases, which yield first insights into the behavior of the model.
We interpret these findings in view of previous analytic results within the theory of
causal fermion systems. Eventually, we provide an outlook on further questions and
potential difficulties in future numerical analysis.

iii





Contents

1 Introduction 1
1.1 Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A brief introduction to causal fermion systems . . . . . . . . . . . . . . 2
1.3 A step towards contemporary physics . . . . . . . . . . . . . . . . . . . 6

2 The Dirac sphere 9
2.1 Why we chose a model on R× S3 . . . . . . . . . . . . . . . . . . . . . 9
2.2 Mathematical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The underlying space-time . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Dirac spinors and the Dirac equation . . . . . . . . . . . . . . . 12
2.2.3 Ansatz for the kernel of the fermionic operator . . . . . . . . . . 14
2.2.4 Computing the action . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Bearing in mind the constraints . . . . . . . . . . . . . . . . . . 23

2.3 The numerical recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Numerical computations 29
3.1 Which tools should we use? . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 One shell (N = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Necessity of the boundedness constraint . . . . . . . . . . . . . 30
3.2.2 Including the boundedness constraint . . . . . . . . . . . . . . . 32

3.3 Numerical methods I: Integration . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Preliminary considerations . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Why do we need that? . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 The rescaling procedure . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Numerical methods II: Finding a minimum . . . . . . . . . . . . . . . . 43
3.6 Two shells (N = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Outlook: Many shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Conclusion 57

References 59

v





1 Introduction

1.1 Motivation and overview

In this thesis, we discuss a novel numerical approach to the causal action principle
arising in the framework of causal fermion systems . Causal fermion systems provide
a mathematically rigorous candidate for a fundamental theory of physics [12]. The
theory of causal fermion systems was first developed in [10] as a generalization of the
principle of the fermionic projector [5, 9]. We will treat neither the precise setup nor
the numerous results about causal fermion systems in depth. However, to render this
work more self contained by giving the reader a coarse idea of the bigger picture, we
still – very briefly – introduce the general framework of causal fermion systems in
section 1.2.

As we discuss there, from a causal fermion system we can construct an action prin-
ciple. While a causal fermion system encodes all physical structures and objects, a
minimizer of the causal action principle is supposed to single out physical reality.
While the causal action principle has been extensively investigated analytically (see [8]
and recent work by F. Finster et. al) and statements about the existence of minimiz-
ers have been established for certain classes of causal fermion systems, only for a few
examples can we currently write down minimizers explicitly.

This is in part due to the generically high computational complexity of the causal
action principle, which can make analytic calculations infeasible. In such a situation,
numerical treatment immediately suggests itself and first attempts in this direction
have been pursued in [14]. This work already elaborates on the numerical difficulties
encountered in the numerical analysis of causal fermion systems. We will repeatedly
come back to those and other related issues. A connection between the mathemati-
cal definitions and some widely used contemporary physical notions will be drawn in
section 1.3 to round off the chapter.

In chapter 2, we introduce a special model of a causal fermion system – we call it
the Dirac sphere – with accessibility to numerical treatment in mind. We state the
causal action principle in section 2.2 and provide detailed step by step instructions
on how to implement the mathematical objects of the Dirac sphere on a computer in
section 2.3. Chapter 3 deals with the results of various simulations. First, we check
the numerics by comparison to analytic computations in a vastly simplified setting,
see section 3.2. We then intermingle just in time excursions on numerical methods
(sections 3.3 and 3.5) with an explanation of the rescaling procedure in section 3.4 and
further results for a less trivial setup in section 3.6.
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1 Introduction

1.2 A brief introduction to causal fermion systems

In this section, we will provide the general definition of causal fermion systems to-
gether with a brief schematic derivation of the causal action principle. This quick
tour merely serves to illustrate the general underlying mathematical setting, in which
our model is immersed. The interested reader is referred to [9] to begin with and we
suggest to continue with references therein. There are also two books in preparation,
one explaining the physical ideas and introducing the mathematical background in a
rather non-technical way [13], while the other primarily establishes a rigorous connec-
tion between causal fermion systems and well known physical systems in Minkowski
space [4].
Drawing this connection between the general framework and the Dirac sphere –

ideally as a formal derivation of the latter from the prior – has not been done rigorously
yet, thus is not part of the thesis. However, such a derivation – although it might
contain some technical challenges – should be straight forward in principle and is
subject of current research.

Definition 1. A causal fermion system with spin dimension n ∈ N is a triple (H,F , ρ),
where

• H is a separable complex Hilbert space with the scalar product 〈·|·〉H,

• F ⊂ L(H,H) ≡ L(H) is the set of all self-adjoint operators on H of finite rank,
which (counting multiplicities) have at most n positive and at most n negative
eigenvalues,

• ρ is a measure defined on a σ-algebra of subsets of F . We call ρ the universal
measure.

Remark. Often times we do not mention the spin dimension n explicitly when talking
about causal fermion systems, but implicitly assume its existence. In the following,
we equip F with the topology induced by the sup-norm on L(H). A causal fermion
system is understood to encode a space-time together with all structures and objects
therein – nothing else is needed in addition.

If we want to describe the universe as we experience it, we need to single out phys-
ically relevant causal fermion systems. It is customary to give conceivable names to
the objects one is dealing with, because proper perception usually helps to understand
mathematical relations. Of course, for a physical theory we also need to provide phys-
ical interpretation, which is done simplest in the usual jargon. In the following, we
will very briefly touch upon the physical notions of several objects and simultaneously
construct an action principle, which can be used to distinguish physically admissible
causal fermion systems.

Definition 2. We call
M := supp ρ ⊂ F (1.1)
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1.2 A brief introduction to causal fermion systems

the space-time of a causal fermion system. With the topology induced by F and the
volume measure ρ|M onM , the space-time is a topological measure space. Accordingly,
the elements of M are called space-time points.

Definition 3. The product xy of two space-time points x, y ∈ F is an operator on H of
rank at most 2n. This is clear from the fact that each of the operators has at most n
positive and at most n negative eigenvalues. We denote the non-trivial eigenvalues
of xy by λxy1 , . . . , λ

xy
2n ∈ C, where we count algebraic multiplicities. The two space-time

points x and y are called

• spacelike separated, if all eigenvalues have the same absolute value, i. e. |λxyi | =∣∣λxyj ∣∣ for all i, j ∈ {1, . . . , 2n}.

• timelike separated, if all eigenvalues are real, but they are not all equal, i. e.
λxyi ∈ R for all i ∈ {1, . . . , 2n} and there exist i, j ∈ {1, . . . , 2n}, such that
λxyi 6= λxyj .

• lightlike separated in all other cases.

Since the space-time M is a subset of F , we can establish a causal structure on our
space-time by restricting the above definition to M .

Definition 4. We define the spectral weight | · | of an operator as the sum of the
absolute values of its eigenvalues.

Example. For a product of space-time points x, y ∈M and the square thereof we find
the spectral weights

|xy| =
2n∑
i=1

|λxyi | and
∣∣(xy)2∣∣ = 2n∑

i=1

|λxyi |2 . (1.2)

Definition 5. The Lagrangian L and the action S are defined by

L : F × F → R+
0 , L(x, y) :=

∣∣(xy)2∣∣− 1

2n
|xy|2 (1.3)

and

S : M+
0 → R+

0 , S(ρ) :=
∫∫

F×F
L(x, y) dρ(x) dρ(y) (1.4)

respectively. Here, M+
0 denotes the set of positive regular Borel measures on F . For a

motivation of this definition see [5, 13] and [6] for a mathematical point of view.

Definition 6. The causal action principle is to minimize S by varying the universal
measure ρ in M+

0 under the following constraints:

volume constraint ρ(F) = const (1.5)

trace constraint

∫
F
tr(x) dρ(x) = const (1.6)

boundedness constraint T :=

∫∫
F×F

|xy|2 dρ(x) dρ(y) ≤ C (1.7)

Here, C ∈ R+ is a constant and tr denotes the trace of a linear operator on H.

3



1 Introduction

Remark. While it is easily shown that the volume and the trace constraints are needed
to avoid trivial minimizers, it is not obvious, whether the boundedness constraint is
truly necessary. While it is used in current versions of existence proves, it was not
clear for a while, whether one could also find a proof that does not rely on it. In
section 3.2, we will show with a specific example that the boundedness constraint is
indeed necessary for the existence of minimizers.
Beware that the terminology at work here can be deceiving. It is all too common

in physics to minimize the action, which is obtained by integrating a Lagrangian.
While some parallels between these settings can definitely be drawn, they also differ
vastly in other aspects. One is easily fooled into believing that “as usual” the only
task left, is to choose a suitable Lagrangian and the rest is only a matter of simple
number crunching. This is not the case here: The Lagrangian is fixed once and for
all. We minimize by variation of the universal measure. Space-time, at this point, is
of a fundamentally different nature with a different structure than the usual (smooth)
Lorentzian manifold. We will encounter both, similarities and differences later.

All further physical objects and properties are now encoded in the causal fermion
system together with the causal action principle. The particle content, their inter-
action, the geometry of space-time, all those contemporary physical notions can be
extracted from the established setting.
However, by now one has probably realized that it is still far from obvious, how

to do specific computations and obtain quantitative results that could be compared
to experiments. Let us examine potential difficulties. First of all, to compute the
Lagrangian, we find the eigenvalues of products of operators xy for x, y ∈ M . Since
the Hilbert space H could be infinite-dimensional, it will come in handy to simplify
this task by restricting our attention to finite-dimensional subspaces of H.

Definition 7. We define Sx := x(H) for every x ∈ F and call Sx the spin space (at x).
Because every x ∈ F has at most n positive and at most n negative eigenvalues, Sx ⊂ H
is a subspace of dimension at most 2n.
A map ψ on M that takes a space-time point x ∈ M to ψ(x) ∈ Sx, is called a

one-particle wave function.

Definition 8. For all x, y ∈ F we call

P (x, y) := πxy|Sy : Sy → Sx (1.8)

the kernel of the fermionic operator, where πx is the orthogonal projection in H to
the spin space Sx.

The kernel of the fermionic operator is now a map between finite-dimensional sub-
spaces of H (of dimension at most 2n respectively). Therefore P (x, y) is easier to
handle in computations than the elements of F themselves. In the following, we will
express all necessary quantities in terms of the kernel of the fermionic operator. Most
importantly, let us address the eigenvalues of products of space-time points.
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1.2 A brief introduction to causal fermion systems

Definition 9. For all x, y ∈ F we call

Axy := P (x, y)P (y, x) : Sx → Sx (1.9)

the closed chain.

The closed chain again is a map between finite-dimensional spaces and the eigen-
values of Axy coincide with the non-trivial eigenvalues of xy for all x, y ∈ F . To
construct the Lagrangian – and thus the action – we now only have to compute the
eigenvalues of a complex 2n× 2n matrix instead of operator products on a potentially
infinite-dimensional Hilbert space.
Next, let us add some further structure to the spin space, because it has just moved

in the focus of our attention.

Definition 10. We equip the spin space Sx with an inner product to turn it into an
indefinite inner product space of signature (p, q) with p, q ≤ n. We choose the so called
spin scalar product

≺· | ·�x : Sx × Sx → C , ≺u | v�x := −〈u|xv〉H , (1.10)

such that the kernel of the fermionic operator is symmetric with respect to the spin
scalar product in the sense that

P (x, y)∗ = P (y, x) . (1.11)

Remark. Note that despite its name the spin scalar product is not positive definite,
hence (Sx,≺ · | ·�x) is an indefinite inner product space for all x ∈ M , not a Hilbert
space.

To finish this section, we introduce the notion of time direction in causal fermion
systems.

Definition 11. We define the anti-symmetric functional

C : M ×M → R , C(x, y) := i Tr(y x πy πx − x y πz πy) , (1.12)

where we use the symbol Tr (as opposed to tr) to denote the trace over the finite-
dimensional spinor space instead of the whole Hilbert space H. We say

• y lies in the future of x, if C(x, y) > 0.

• y lies in the past of x, if C(x, y) < 0.

This definition distinguishes a direction of time. Note that this time ordering need not
be transitive, which has curious implications. On the fundamental level, while we do
have a causal structure, there is still no notion of causation, i. e. we cannot formulate
statements like “something at x caused something later in time at y”. There is no
“global clock” allowing us to capture the system at one certain well-defined time.

5



1 Introduction

1.3 A step towards contemporary physics

This section serves two purposes. For one, it demonstrates how the abstract formu-
lation of causal fermion systems relates to the “usual” setting of contemporary field
theories. Moreover, it also serves as an illustrative example to resort back to and draw
parallels later, when we explore the Dirac sphere in chapter 2. Again, we try to keep
this brief and leave out a whole lot of detail. Instead, we focus on the important
concepts and relations.
For readers with a background in physics, this section will help understand and

interpret the physical content. For all others, it can provide a hint towards the physical
relevance of causal fermion systems. However, since the analysis in later chapters does
not necessarily depend on any physical interpretation or prerequisites – which are to
some extent assumed in this section – it might be skipped entirely. Keep in mind that
all the symbols and definitions showing up shortly are a-priori independent from those
we have encountered in section 1.2. Of course, we are using the same symbols for a
reason. The respective relations will be made explicit by the end of the section.
Let (M, dµ) be Minkowski space with the standard metric and signature (+,−,−,−).

On M we consider Dirac spinors ψ satisfying the Dirac equation

(iγk∂k −m)ψ = 0 , (1.13)

where m is a mass parameter. We define the following inner products on the solution
space:

spin scalar product: For two spin one half Dirac spinors ψ, φ we define the spin scalar
product pointwise as

≺ψ |φ� (x) := ψ(x)φ(x) , (1.14)

where ψ = ψ†γ0 is the usual adjoint spinor. The spin scalar product has signa-
ture (p, q) with p, q ≤ 2.

Hilbert space inner product: The inner product

〈ψ|φ〉 :=
∫
t=const

(ψγ0φ)(t, x) dx (1.15)

is positive-definite, i. e. a scalar product and thereby turns the solution space
into a Hilbert space, which we denote by (H, 〈·|·〉). (The fact that the scalar
product is well-defined, i. e. independent of the time hypersurface, follows from
the existence and uniqueness theory for Cauchy initial value problems of partial
differential equations.)

For each space-time point x one finds a linear operator Fx such that

〈ψ|Fxφ〉H = − ≺ψ |φ� (x) . (1.16)

One easily verifies in a direct calculation that Fx is self-adjoint with respect to the
Hilbert space scalar product. Because of the signatures of the two inner products,
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1.3 A step towards contemporary physics

contemporary physics causal fermion systems

solution space
of the Dirac equation

abstract Hilbert space,
not a-priori known

Minkowski space M supp(ρ) = {Fx |x ∈ M} ⊂ F

x ∈ M Fx ∈ F

Dirac spinor ψ ψ : M 3 x 7→ ψ(x) ∈ Sx

ψ(x)φ(x)
≺· | ·�x : Sx × Sx → C ,

≺u | v�x:= −〈u|Fxv〉H

Table 1.1: An illustration of the correspondence between contemporary physics and
causal fermion systems. The objects on the left hand side, which we are
mostly familiar with, are reinterpreted as parts of a causal fermion systems.
Hence, we show by “reverse engineering”, that the contemporary model can
be captured in the abstract framework.

we conclude that the operator Fx has at most two positive and at most two negative
eigenvalues (counting multiplicities).

Let F be the set of all self-adjoint operators on H with at most two positive and at
most two negative eigenvalues. Then we can push forward the measure µ on M along
the map

F : M → F , x 7→ Fx , (1.17)

obtaining a measure F∗µ on F . Going back to Definition 1, we realize that we have
found all ingredients for a causal fermion system. The connection between the abstract
framework and the “usual” concepts and notions of contemporary physics now becomes
obvious. We summarize the findings of this example in Table 1.1, where we link the
corresponding objects in tabular form. We reinterpret the “usual” notions on the left
as part of the abstract framework on the right.

In this fashion, one can resume to define causality or time ordering and will not be
surprised that they coincide with the “usual” notions and definitions. There is also a
neat correspondence and formalism to construct wave functions in the abstract setting
of causal fermion systems, which can be found in [9] and references therein.

Let us finally move on to the definition of the model we want to analyze numerically,
the Dirac sphere. This time we start with the “usual” objects right away and –

7



1 Introduction

as already mentioned – do not provide a one to one correspondence to the abstract
framework like we did here. However, after this example, one will understand the basic
idea of the connection anyway.

8



2 The Dirac sphere

The abstract formulation of causal fermion systems as in section 1.2 does not seem to
allow for numerical treatment in a canonical way. Although the causal action principle
in the end boils down to a constrained optimization problem and could hence be
expected to be found among the class of problems extensively treated in the numerics
literature, our setting is rather different from most optimization problems one usually
encounters in computational physics and applied mathematics.
First of all, we vary the action with respect to a positive regular Borel measure on an

operator space. The implementation of those objects on the computer is not straight
forward. Moreover the integral in our objective function – the action S – is potentially
difficult to carry out.
Thus the subject of this chapter is to find a model, which can be implemented

numerically, but still exhibits enough complexity to encode interesting physics. After
some motivational remarks in section 2.1, we will introduce our model in section 2.2,
which contains the major results of this chapter. In section 2.3, we conclude with step
by step instructions for an implementation of the model. This serves as the starting
point for the simulations discussed in chapter 3.

2.1 Why we chose a model on R× S3

The only mathematical objects computers can handle well inherently, are (finite preci-
sion) real numbers and the four fundamental arithmetic operations on them. Hence our
goal is to basically parameterize complicated mathematical objects by a finite number
of real parameters, thereby enabling us to use common minimization techniques. Re-
call that number representations on realistic computers are restricted in several ways.
First, numbers can only be represented with finite precision and accuracy, i. e. their ab-
solute values can neither be arbitrarily large nor arbitrarily small. Second, only finitely
many different numbers can be represented, which is of course connected to the first
restriction. Finally, one has to take into account round off errors and that even some
of the most fundamental rules of calculus break down. For example, the addition of
real numbers is not a transitive operation on computers. For further reading, number
representations on computers and the pitfalls or issues related to them are treated in
most introductory numerics textbooks.
Most contemporary models of physical reality – at least on experienceable scales –

usually assume a Lorentzian four-dimensional space-time manifold. Due to the natu-
ral restrictions of computers mentioned above, numerically, we can only handle finite
domains. Note that for example even quadrature schemes for unbounded intervals in-

9



2 The Dirac sphere

ternally shrink the interval to a bounded domain by a suitable coordinate transforma-
tion. Common choices are rectangular or circular regions and their higher-dimensional
equivalents. Whenever an originally unbounded domain is replaced by a bounded part
of it for numerical treatment, one has to worry about boundary effects.
There are several possibilities to avoid those perturbing effects. For domains which

are a direct product of intervals, the most famous one is probably the implementation
of periodic boundary conditions in each dimension separately. In order for this to work
properly, one either has to confine oneself to periodic phenomena only, or one has to
choose the computing domain sufficiently large and have functions fall off to zero well
inside the domain. The determination of an appropriate size is a difficult task and
heavily depends on the specifics of the problem. Heuristically, we need to make sure
that “everything stays far away from the boundary”. Thereby we already assume the
observed phenomena to be local, meaning that we can determine, whether they behave
differently in the finite region as compared to the originally unbounded region.
Causal fermion systems do not necessarily allow for such a localization. The integral

in the action is over all of space-time. If we consider an open universe, we might run
into problems, because we have no a-priori knowledge, whether and how the Lagrangian
falls off approaching infinity. Choosing a closed universe with a finite volume frees us
of these troubles and implicitly satisfies the volume constraint in Definition 6.
Along these lines it seems reasonable to choose a closed universe, so instead of the

canonical choice R4, we will be working on R× S3. In this way, we can parameterize
the spatial domain S3 in the standard way with spherical coordinates in the direct
product of finite intervals. How we handle the currently unbounded temporal domain
will be explained later.
To sum up, because numerical artifacts at the boundary were an issue in the first

attempts of treating causal fermion systems numerically in [14], we have now switched
to a three-dimensional sphere for the spatial domain and furthermore allow time to be
unbounded. Moreover, we relax the strict space-time grid by allowing for more flexible
discretizations. While these changes definitely resolve some issues – as always – they
also introduce new ones, as we will discuss in chapter 3.

2.2 Mathematical setup

2.2.1 The underlying space-time

Let us now come to the specific setup. We decided to work with the space-time M =
R×S3, where S3 – as a closed manifold – represents space and R represents the infinite
lifetime of the universe. For later convenience, we introduce spherical coordinates on S3

(r, ϑ, ϕ) ∈ [0, π]× [0, π]× [0, 2π) , (2.1)

where ϑ and ϕ are the polar and azimuthal angle coordinates on S2 respectively. We
think about r as the geodesic distance from the north pole n, as illustrated in Figure 2.1.
Whenever necessary, we will implicitly assume the coordinate domain to be open, i. e.

10



2.2 Mathematical setup

n

r S2

each circle rep-

resents S2 with

coordinates (ϑ, ϕ)

S3

Figure 2.1: We illustrate the coordinates on S3. The r coordinate can be interpreted
as the geodesic distance from the north pole n, because S3 has unit radius.

we exclude the end points in the intervals of (2.1). Embedding S3 into R4, gives the
coordinate transformations

x1 = R cos(r)

x2 = R sin(r) cos(ϑ)

x3 = R sin(r) sin(ϑ) cos(ϕ)

x4 = R sin(r) sin(ϑ) sin(ϕ) .

(2.2)

We can now define a metric on M by the line element

ds2 = dt2 −R2 dσ2
S3 , (2.3)

where we inherit the line element

dσ2
S3 = dr2 + sin(r)2 dϑ2 + sin(r)2 sin(ϑ)2 dϕ2 (2.4)

on the three-dimensional unit sphere from the standard metric on R4. The param-
eter R ∈ R+ represents the “size” or “radius” of the spatial part of our space-time.
The volume element on S3 is given by the absolute value of the determinant of the
Jacobian for the coordinate transformations in equation (2.2) and can also be read off
directly from (2.4):

dµS3 = sin(r)2 sin(θ) . (2.5)

Note that we start out with a smooth, four-dimensional, metric manifold from the
very beginning. This should be compared to the Minkowski space example in sec-
tion 1.3, where we explicitly point out the connection to the general definition of
causal fermion systems.
A natural first goal is to model interacting spin one half particles in our space-

time M , which is the subject of the following section.
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2 The Dirac sphere

2.2.2 Dirac spinors and the Dirac equation

Let us spend a few words on how four-component complex Dirac spinors are introduced
in general, since especially among physicists this is often a point of great confusion.
While we handle them with ease just like vectors in specific computations, it is still
strictly forbidden to actually call them “vectors”. They are spinors, not vectors or
vector fields. We intend to show in a very short outline, at which level they differ from
usual tensor fields. Details can be found in [19, 16].
To this end, we first have to construct a spin structure for M , e. g. a Spin(1, 3)

principal bundle Q overM together with a map F from Q to the oriented orthonormal
frame bundle SO(M), which is itself a SO(1, 3) principal bundle, such that the following
compatibility criteria are satisfied. The projection of the principal bundle SO(M)
after F is the same as the projection on P as maps from P toM , i. e. πSO(M) ◦F = πP .
Second, we require that F (pu) = F (p)χ(u) for all p ∈ P and all u ∈ Spin(1, 3). Here χ
is the universal two-fold covering map of SO(1, 3) by Spin(1, 3) and the multiplications
are the group actions by Spin(1, 3) and SO(1, 3) respectively. The spin group Spin(1, 3)
is isomorphic to SL(2,C) as a Lie group.
Next, we define the spinor bundle. The spinor bundle is the associated complex

bundle P×κC4 to Q with respect to the spin representation κ : Spin(1, 3) → Aut(C4).
The sections of the spinor bundle eventually are the four-component complex Dirac
spinors on M . Now we recognize, how transformations such as rotations (SO(1, 3))
make way for transformations according to the spin representation. The common,
somewhat mysterious and definitely unsatisfying physical explanation that “spinors
simply transform differently”, is now understood through the fact that we do not
consider tensor products of the (co-)tangent bundle, but an associated bundle with
respect to the spin representation, a two-fold cover of the special orthogonal group.
In the following, we will not need the details of the construction, but treat the Dirac

spinors more like physicists for computational simplicity. This includes denoting (and
for most purposes also treating) spinors like four-dimensional vectors and the insertion
of gamma (or Dirac) matrices in the Dirac representation

γ0 =

(
11C2 0
0 −11C2

)
, γk =

(
0 σk

−σk 0

)
for k ∈ {1, 2, 3} , (2.6)

with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.7)

The gamma matrices fulfill the (defining) property

γjγk + γkγj = 2ηjk (2.8)

for ηjk = diag(1,−1,−1,−1).
The space of complex four-component Dirac spinors can be endowed with an inner

product of signature (2, 2), which we denote by ψφ, where ψ := ψ†γ0 is the usual
adjoint spinor.
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ti tf
0

1

t

η
(t
)

Figure 2.2: This is a possible cutoff function η for the lifetime of the universe from
some initial time ti to some final time tf . As a Schwartz function it has to
be smooth, so we cannot simply choose the indicator function χ[ti,tf ].

Integrating this inner product over space-time gives a bilinear form 〈·|·〉, which
follows directly from the linearity of the multiplication by γ0, the complex conjugation
and the integral. In order to ensure that the temporal integral is finite, we choose a
positive Schwartz function η ∈ S(R) and set

〈ψ|φ〉 :=
∫
R
dt η
( t
T

)
R3

∫
S3

ψφdµS3 , (2.9)

where dµS3 is the volume element on S3 from equation (2.5) and the parameter T >
0 describes the lifetime of the universe. Note that η is merely used to render the
integration finite and is of no physical relevance. For practical purposes it is best to
think of η as a smooth cutoff function, see Figure 2.2.
Let us now move on to the definition of the Dirac operator. Given the Levi-Civita

connection on the tangent bundle of M , we can construct a connection on the spinor
bundle Q ×κ C4. This allows us to construct the Dirac operator as a linear, first
order differential operator. For an extensive discussion of the general construction
see [19, 16]. In [15, Section 2], it is shown that in our case the Dirac operator can be
written as

D =

(
1 0
0 −1

)
⊗ 11C2 i ∂t +

1

R

(
0 1
−1 0

)
⊗DS3 , (2.10)

where DS3 denotes the Dirac operator on S3. Its explicit form is not relevant at the
moment. We can then write down the Dirac equation in the vacuum

(D −m)ψ = 0 . (2.11)

On the solution space of the Dirac equation, the probability integral gives rise to
the scalar product

(ψ|φ) := R3

∫
S3

ψ†φ dµS3 . (2.12)

13



2 The Dirac sphere

This is well-defined, i. e. independent of t, for the same reasons as in the argument
after (1.15).
Let us step back for a moment and see, where we are heading. We are looking for a

simple, but non-trivial model that can be evaluated numerically to gain first insights
about how minimizers of the causal action principle look like. In the beginning, we do
not expect to be able to compute the action for the whole solution space of the Dirac
equation, not even if we restrict ourselves to negative energy solutions. The latter case
corresponds to the completely filled Dirac sea. The notion of the Dirac sea is that in
the vacuum only the states with negative energy are populated – a sea of particles, as
illustrated in Figure 2.3.
To model particles and anti-particles, a negative state can “jump out of the sea”

and occupy a positive state, thereby creating a particle anti-particle pair. A detailed
discussion of the meaning and the interpretation of the Dirac sea and its relation to
the principle of the fermionic projector can be found in [5].
We rather want to restrict ourselves even more to a finite-dimensional subspace, so

that we eventually end up with finitely many degrees of freedom.
A somewhat natural starting point to pick a finite subspace of the solution space of

the Dirac equation, is to analyze its spectrum. Because the Dirac operator DS3 is an
elliptic operator on a compact manifold S3, spectral theory yields that it is essentially
self-adjoint with domain of definition C∞(S3)2 ⊂ L2(S3)2. It has the purely discrete
spectrum

σ(DS3) =

{
±3

2
, ±5

2
, ±7

2
, . . .

}
, (2.13)

see [19] and [15, Appendix A] for details. In these references, the dimension of the
corresponding eigenspaces is found to be

dim(ker(DS3 − µ)) = µ2 − 1

4
. (2.14)

The basic idea is to restrict ourselves to a finite number of momentum modes. For
a given momentum cutoff Λ and a number N ∈ N of momentum modes, we choose
eigenvalues µ1, . . . , µN ∈ σ(DS3) with |µn| ≤ Λ. Later on we will simply pick the N
smallest eigenvalues by absolute value.

2.2.3 Ansatz for the kernel of the fermionic operator

We have argued in section 1.2 that the object of interest should be the kernel of the
fermionic operator. Before making an explicit ansatz, let us examine, which properties
we require the kernel of the fermionic operator to exhibit.
First of all, we want it to be static, spatially homogeneous and isotropic. To a

reader with a background in general relativity or cosmology, those terms probably
sound familiar. However, the term static has a slightly different meaning here than in
a static universe. We will explain the precise meaning of the assumptions as soon as
we have written down an explicit ansatz.
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2.2 Mathematical setup

Second, we want it to satisfy the Dirac equation – at least it should not be far
from an exact solution. In light of the regularization procedure – described in detail
in [7, 11] – we might want to allow for some additional freedom to perturb the kernel
of the fermionic operator away from an exact solution of the Dirac equation. This will
be made precise shortly.
While it is not in the scope of this thesis to explain the specifics of the regularization

procedure, one can think about it in the following way: Since causal fermion systems
are tailored to take into account physics beyond the standard model, we would like to
be able to occupy states of different masses and arbitrarily change the frequency or
spin orientation of the states. In the continuum limit, we do not expect the Minkowski
vacuum to be an exact minimizer of the causal action principle, but only a suitably
regularized version thereof. The class of possible regularizations is extremely big and
finding “good” ones a difficult task. Thus, the additional freedom can be used to model
some of the regularization effects discussed in [7, 11].
With these assumptions in mind, we make the following ansatz for the kernel of the

fermionic operator

P (t, x; t′, x′) =
N∑

n=1

e−i ωn(t−t′)

(
Ωn +mn Kn

−Kn −Ωn +mn

)
⊗ Eµn(x, x

′) . (2.15)

A few explanations and remarks are in order. By Eµn(x, x
′) we denote the integral

kernel of the spectral projector of DS3 corresponding to the eigenvalue µn. Recall that
if Eµn is the spectral projector to the eigenvalue µn and ψ is a Dirac spinor, we can
represent it by (

Eµnψ
)
(x) =

∫
S3

Eµn(x, x
′)ψ(x′) dµS3(x′) . (2.16)

Remember that we found the purely discrete spectrum of the Dirac operator on S3 in
equation (2.13). Subsequently, we chose N of these eigenvalues as occupied momentum
modes and restricted ourselves to the corresponding eigenspaces of those N eigenval-
ues. Each of these eigenvalues comes with a spectral projection operator to the corre-
sponding eigenspace, which we henceforth represent by the integral kernel Eµn(x, x

′)
as in (2.16). We will postpone an explicit formula for Eµn(x, x

′) until we have further
simplified our initial ansatz. So far it involves the free parameters

mn ∈ R+ and Kn, ωn,Ωn ∈ R for n ∈ {1, . . . , N} , (2.17)

i. e. we are currently dealing with 4N degrees of freedom.
Let us examine, whether the ansatz satisfies our assumptions. Isotropy means that

it is independent of ϑ, ϕ. Although Eµn(x, x
′) does depend on ϑ, ϕ (see σr in (2.48)

and (2.49)), we find σr(σr)† = (σr)2 = 11C2 , and just like the Pauli matrices them-
selves, σr has eigenvalues ±1. Thus the closed chain and thereby also the Lagrangian
are indeed independent of ϑ, ϕ after all.
Spatial homogeneity refers to translational invariance in the spatial domain. In other

words, our ansatz ought to depend only on the difference x− x′. Later in this section
we will construct Eµn based on this assumption, hence it is automatically built in.
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2 The Dirac sphere

Finally, by static we imply that the ansatz depends only on the difference t − t′,
not on the individual values of t, t′, which is obviously fulfilled. Note that this is
a completely different notion than in the common term static universe (or stationary
universe), which is used for a temporally (and spatially) infinite universe that is neither
contracting nor expanding.
Next, we have to verify that it is “close to a solution of the Dirac equation”. To this

end, set
mn := m for some m ∈ R+

Kn :=
µn

R

ωn := Ωn := ±
√
m2

n +K2
n .

(2.18)

We claim that for these values P (t, x; t′, x′) is a solution of the Dirac equation.
We first compute the action of the Dirac operator D on P and suppress two-

dimensional unit matrices for simplicity. Also, due to linearity, we need to consider
only one term in the sum of the kernel of the fermionic operator (2.15) and thus drop
the index n. We also leave out the arguments x, x′ of Eµ. Using DS3Eµ = µEµ we find

DP =

((
i∂t 0
0 −i∂t

)
+

1

R

(
0 DS3

−DS3 0

))
e−i Ω(t−t′)

(
(Ω +m)Eµ KEµ

−KEµ (−Ω +m)Eµ

)

= e−i Ω(t−t′)

(
−Kµ

R
+ Ω(m+ Ω) (m−Ω)µ

R
+KΩ

− (m+Ω)µ
R

+KΩ −Kµ
R

− Ω(m− Ω)

)
⊗ Eµ . (2.19)

The second part of the Dirac equation is simply

−m P = −m e−i Ω(t−t′)

(
Ω +m K
−K −Ω +m

)
⊗ Eµ . (2.20)

Adding (2.19) and (2.20) yields (omitting the common phase factor and the tensor
product with Eµ)(

Ω2 −m2 − Kµ
R

(m−Ω)(µ−KR)
R

+KΩ
(m−Ω)(µ−KR)

R
+KΩ Ω2 −m2 − Kµ

R

)
µ=KR
=

(
Ω2 −m2 −K2 0

0 Ω2 −m2 −K2

)
Ω2=m2+K2

=

(
0 0
0 0

)
. (2.21)

Now we see, how not fixing the parameters as in (2.18) right away gives some addi-
tional freedom. Only for the special values in (2.18) does our ansatz satisfy the Dirac
equation. By allowing them to vary, we can “perturb P away” from the exact solution.
This is illustrated by the shaded area in Figure 2.3, where we draw a typical picture of
the Dirac sea. However, we shall not forget that eventually we will have to minimize
the action with respect to all these parameters. In light of the complicated procedure
of computing the action even for one fixed set of parameters, one might anticipate that
we hit the limits of computation rather quickly. As a consequence, we should keep the
number of parameters as large as necessary, but at the same time as small as possible.
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2.2 Mathematical setup

K

ω

Figure 2.3: An illustration of the Dirac sea. The filled circles represent particles in
negative energy states that are exact solutions to the Dirac equation. The
shaded area suggests that we allow our ansatz to be perturbed away from
the exact solution.

For mathematical simplicity and consistency, we make the following further assump-
tions:

negative-definite image: Considering P (t, x; t′, x′) as the integral kernel of an opera-
tor P , we want the image of P to be negative-definite with respect to the inner
product (2.9). This is equivalent to imposing

Ωn = −
√
m2

n +K2
n . (2.22)

Thereby, we reduce the number of free parameters from 4N to 3N . This is the
reason, why we have only drawn particles in the lower half of Figure 2.3. The
black circles correspond to the shells we are successively occupying by increas-
ing N in our ansatz for the kernel of the fermionic operator.

vector-scalar structure: In order to simplify the mathematical structure further, we
impose a symmetry between the positive and negative momenta by demanding

P (t, x; t′, x′) =
1

2

N∑
n=1

e−i ωn(t−t′)
∑
±

(
Ωn +mn ±Kn

∓Kn −Ωn +mn

)
⊗ E±µn(x, x

′) .

(2.23)

In view of this symmetry, we assume without loss of generality that µ1, . . . , µN ∈
R+. While in principle one can choose freely from the infinitely many positive
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2 The Dirac sphere

eigenvalues, we will later simply pick the N smallest ones. In Figure 2.3, this
amounts to occupying the uppermost two black spots for N = 1, adding the two
neighboring ones for N = 2 and so on.

Remark. The vector-scalar structure does not directly reduce the number of free
parameters. However, we get to higher-dimensional eigenspaces of DS3 more
quickly, because we always populate the shells of positive and negative eigen-
values simultaneously. For example, for N = 2 without the vector-scalar struc-
ture condition, we would choose the eigenvalues {±3/2}. The corresponding
eigenspaces are both two-dimensional. In contrast, with the vector-scalar struc-
ture, we choose {3/2, 5/2} and the corresponding eigenspaces are two- and six-
dimensional respectively.

The name vector-scalar structure is motivated by a general simplification in which
the kernel of the fermionic operator is assumed to be of the form

P (t, x; t′, x′) = gk(t, x; t
′, x′)γk + h(t, x; t′, x′)11C4 , (2.24)

i. e. as a vector part g and a scalar part h, where gk and h are complex-valued
functions. Since the Pauli matrices (2.7), together with the unit matrix 11C2

span the space of all hermitian 2 × 2 matrices, which in particular contains all
orthogonal projections, and because of the form of the gamma matrices (2.6),
we conclude that the kernel of the fermionic projector as in (2.23) is indeed of
vector-scalar structure.

Setting ρn = mn/2 and subsequently rescaling the momenta by Kn → Kn/mn (which
does not result in a loss of generality), we compute

1

2

(
Ωn +mn ±Kn

∓Kn −Ωn +mn

)
=
mn

2

(
Ωn

mn
+ 1 ±Kn

mn

∓Kn

mn
− Ωn

mn
+ 1

)

= ρn

−
√

1 + K2
n

m2
n
+ 1 ±Kn

mn

∓Kn

mn

√
1 + K2

n

m2
n
+ 1


−→ ρn

(
1−

√
1 +K2

n ±Kn

∓Kn 1 +
√

1 +K2
n

)
(2.25)

and can thus rewrite the ansatz (2.23) in the more convenient form

P (t, x; t′, x′) =
N∑

n=1

ρn e
−i ωn(t−t′)

∑
±

(
1−

√
1 +K2

n ±Kn

∓Kn 1 +
√

1 +K2
n

)
⊗ E±µn(x, x

′) .

(2.26)

In this form, it involves the 3N free parameters

ρn > 0 and ωn, Kn ∈ R for n ∈ {1, . . . , N} . (2.27)

In light of the complexity of the action, this seems to be a reasonable dimension for
the parameter space – at least for small N .

18



2.2 Mathematical setup

2.2.4 Computing the action

From here on, we simply follow the procedure outlined in section 1.2 to compute the
action. We introduce the closed chain

A(t, x; t′, x′) = P (t, x; t′, x′) P (t, x; t′, x′)∗ , (2.28)

where the star denotes the adjoint with respect to the inner product on the spinors.
We define this inner product pointwise, i. e. on each fiber of the spinor bundle, by
inheritance of the inner product on C4. Recall that the spinor bundle is the associated
bundle to the spin structure with respect to the spin representation on C4. Hence we
simply use the standard scalar product on C4 together with the spin representation κ
to define the inner product

≺ψ |φ�x := −
〈
ψ(x)

∣∣γ0φ(x)〉C4 (2.29)

for all spinors ψ, φ. Because the standard scalar product on C4 is positive definite
and γ0 = diag(1,−1)⊗11C2 , we can directly conclude that the signature (p, q) of ≺· | ·�
indeed fulfills p, q ≤ 2.

The adjoint of the kernel of the fermionic operator is then given by

P (t, x; t′, x′)∗ = γ0P (t, x; t′, x′)†γ0 , (2.30)

because

≺ψ |Pφ� =
〈
ψ
∣∣γ0Pφ〉 = 〈γ0ψ∣∣Pγ0γ0φ〉 = 〈γ0P †γ0ψ

∣∣γ0φ〉 (2.31)

=
〈
P ∗ψ

∣∣γ0φ〉 =≺P ∗ψ |φ� , (2.32)

where we use γ0γ0 = 11C4 and (γ0)† = γ0. We leave out notational clutter for readabil-
ity.

Before we move on to the explicit computation of the closed chain, we notice one
important detail. In our ansatz for P in (2.26), we can consistently pull out one of the
phase factors in the sum, for example

P (t, x; t′, x′) = e−i ω1(t−t′)
N∑

n=1

ρn e
−i (ωn−ω1)(t−t′)

∑
±

. . . (2.33)

Because of (2.28) and (2.30), this phase factor is going to vanish in the closed chain
and has therefore no effect on the Lagrangian and the action. Hence we can drop it
already. Thereby, we reduce the number of the free parameters ωn from N to N−1. In
total, we now have 3N−1 degrees of freedom. From here on, without loss of generality,
we will simply assume ω1 = 0.
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2 The Dirac sphere

Denoting the eigenvalues ofA(t, x; t′, x′) by λ1, . . . , λ4, we introduce the Lagrangian L
as in Definition 5 (keeping in mind the remarks after Definition 9)

L(t, x; t′x′) =
∣∣A(t, x; t′, x′)2∣∣− 1

4
|A(t, x; t′, x′)|2 =

4∑
i=1

|λi|2 −
1

4

( 4∑
i=1

|λi|
)2

=
4∑

i=1

|λi|2 −
1

4

4∑
i,j=1

|λi| |λj| =
1

8

4∑
i,j=1

|λi|2 −
1

4

4∑
i,j=1

|λi| |λj|+
1

8

4∑
i,j=1

|λj|2

=
1

8

4∑
i,j=1

(
|λi|2 − 2|λi| |λj|+ |λj|2

)
=

1

8

4∑
i,j=1

(
|λi| − |λj|

)2
. (2.34)

We will now show that due to the vector-scalar structure of P , the eigenvalues of
the closed chain are always two-fold degenerate. Let us omit the arguments of P in
the following computations and make use of the Feynman slash notation: /a := akγ

k.
Moreover, recall that γ0γkγ0 = −γk = (γk)† for k ∈ {1, 2, 3} and that (γ0)2 = 11C4 .
The vector-scalar structure implies

P = gkγ
k + h11C4 = /g + h (2.35)

for some gk and h. Hence, we find

P ∗ = γ0P †γ0 = γ0(/g
† + h)γ0 = gkγ

0(γk)†γ0 + h = gkγ
k + h (2.36)

and subsequently

A = P P ∗ = (/g + h)(/g + h) = /g/g + /gh+ h/g + hh

=
1

2

[
/g, /g
]︸ ︷︷ ︸

=:A1

+ h/g + h/g︸ ︷︷ ︸
=:A2

+ gjgj + hh︸ ︷︷ ︸
=:ν

, (2.37)

where we make use of the defining property of the gamma matrices (2.8). Next,
using /a/a = aka

k11C4 , we show that the matrices A1 and A2 anti-commute

A1A2 =
1

2

[
/g, /g
]
(h/g + /gh) =

1

2
(/g/g − /g/g)(h/g + /gh)

=
1

2
(h/g/g/g − h/g/g/g + h/g/g/g − h/g/g/g) =

1

2
(h/g/g/g − h/g/g/g + h/g/g/g − h/g/g/g)

=
1

2
(h/g + h/g)(/g/g − /g/g) = −1

2
(h/g + h/g)(/g/g − /g/g)

= −1

2
(h/g + /gh)

[
/g, /g
]
= −A2A1 .

(2.38)

With A1A2 + A2A1 = 0 we find

(A− ν)2 = (A1 + A2)
2 = A1A1 + A1A2 + A2A1 + A2A2 = A2

1 + A2
2 . (2.39)
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Let us write out the expressions for A2
1 and A2

2

A2
1 =

1

4

[
/g, /g
]2

=
1

4

(
(/g/g)

2 − /g/g/g/g − /g/g/g/g + (/g/g)
2
)

=
1

4

(
(gg)2 − 2g2g2 + (gg)2

)
=

1

2
(gg)2 − 1

2
g2g2

(2.40)

and again with (2.8)

A2
2 = (h/g + /gh)

2 = h2/g
2
+ h

2
/g
2 + hh/g/g + hh/g/g

= h2g2 + h
2
g2 + hh(/g/g + /g/g) = h2g2 + h

2
g2 + hhgjgkη

jk

= (hg + hg)2 .

(2.41)

Both A2
1 and A2

2 are scalar multiples of the unit matrix 11C4 . Hence we can in-
terpret (2.39) as a quadratic equation for A. As a consequence, the roots λ± of this
quadratic equation are the zeros of the characteristic polynomial for the closed chain A.
From (2.39) we conclude directly

λ± = ν ±
√
A2

1 + A2
2 . (2.42)

This finally yields the desired result that the eigenvalues of the closed chain are always
two-fold degenerate.
We also see immediately that for A2

1 + A2
2 < 0 the eigenvalues form a complex

conjugate pair and for A2
1+A

2
2 > 0 they are both real. Furthermore, in the latter case,

they have the same sign since λ+λ− > 0 as one verifies in a short calculation.
These observations enable us to rewrite the Lagrangian in a way, even better suited

for numerical computations. Take a look at the Lagrangian as in (2.34):

L(t, x; t′, x′) =
4∑

i=1

|λi|2 −
1

4

( 4∑
i=1

|λi|
)2

=
1

8

4∑
i,j=1

(
|λi| − |λj|

)2
. (2.43)

We show that we can rewrite (2.43) as

L(t, x; t′, x′) = max

(
0,Tr(A2)− 1

4
Tr(A)2

)
. (2.44)

To this end we distinguish the following two cases.

Case 1: The two-fold degenerate eigenvalues form a complex conjugate pair (in par-
ticular, assume their imaginary part is not zero). Then they do not contribute to
the Lagrangian in (2.43), because all four eigenvalues have equal absolute values.
In (2.44), this case is taken care of by the max function, because then

Tr(A2)− 1

4
Tr(A)2 = 4Re(λ+)

2 − 4 Im(λ+)
2 − 4Re(λ+)

2 = −4 Im(λ+)
2 < 0 .

(2.45)
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Case 2: Both eigenvalues are real. In particular, the square of the absolute value
reduces to the square and hence

4∑
i=1

|λi|2 = Tr(A2), and
( 4∑

i=1

|λi|
)2

= Tr(A)2 . (2.46)

In this case, our new expression (2.44) clearly coincides with (2.43) again.

Compare these two cases to Definition 3, where we have introduced a causal structure
on F . Spacelike separated points do not contribute to the action. Therefore the causal
action principle is compatible with the causal structure. This gives rise to the name
“causal action principle”. Hence, all interactions are local at the most fundamental
level in the sense that spacelike separated points do not interact. The representation of
the Lagrangian in (2.44) is better suited for numerical treatment, because computing
the trace of a matrix is usually less expensive than computing its eigenvalues.
As a last step, we have to integrate the Lagrangian to get the action. Instead of

integrating over t, x and t′, x′, we make use of the required spatial and time symmetry
in our ansatz of the kernel of the fermionic operator. They imply that P only depends
on the difference of two space-time points. Hence we can arbitrarily fix one of the
arguments of the Lagrangian and integrate only over the remaining one. We choose to
set t′ = 0 and x′ = n, where n is the north pole of S3. We finally arrive at

S =

∫
R
dt η
( t
T

)
R3

∫
S3

L(t, x; 0, n) dµS3(x) . (2.47)

At this point, we can fill in the last missing piece: Based on the same symmetry
argument, in [15, Appendix A] we find an explicit formula for the integral kernel of
the spectral projectors of DS3 . They are obtained by explicitly computing a basis of
eigenvectors for each eigenspace. In the final form they read

E±(n+ 3
2
)(x, n) =

(n+ 2)!

8π
3
2 Γ(n+ 3

2
)

(
cos(r/2) P

( 1
2
, 3
2
)

n (r)∓ iσr sin(r/2) P
( 3
2
, 1
2
)

n (r)
)
, (2.48)

where
σr := sin(ϑ) cos(ϕ)σ1 + sin(ϑ) sin(ϕ)σ2 + cos(ϑ)σ3 (2.49)

and P
(·,·)
n are the Jacobi polynomials, see [1]. Equation (2.48) holds for all n ∈

{0, 1, 2, . . . }. As we have already mentioned, we only consider the positive eigenvalues
of DS3 (due to the vector-scalar structure) and we will number them in increasing order

µ1 =
3

2
, µ2 =

5

2
, µ3 =

7

2
, . . . (2.50)

Then we find the following relation to the integral kernel (2.48)

E±µn(x, n) = E±((n−1)+ 3
2
)(x, n) (2.51)

for all n ∈ {1, 2, 3, . . . }.
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2.2 Mathematical setup

The causal action principle is to

minimize S under variations of P . (2.52)

In particular, we are eventually interested in the limit T → ∞. However, in chapter 3,
we will discover that the scenarios where the limit T → ∞ becomes relevant, currently
lie beyond our numerical capabilities.

2.2.5 Bearing in mind the constraints

Now that we have set the objective, we still need to take into account the constraints.
Recall Definition 6 of the causal action principle. The volume constraint is already
incorporated in our model by the choices we have made considering the metric space-
time M and by working on the solution space of the Dirac equation.
Next, let us implement the trace constraint∫

F
tr(x) dρ(x) = const . (2.53)

In our model, the space F amounts to self adjoint operators on the solution space of
the Dirac equation. We have restricted ourselves to a finite number of eigenvalues µn

of the Dirac operator and the corresponding eigenspaces and weighted each of these
eigenspaces by a parameter ρn ∈ R+. Therefore, we can replace the integral above in
our scenario by a weighted sum over the N eigenvalues we have chosen. The traces
are given by the dimension of the associated eigenspaces, which is given in (2.14)
as µ2

n − 1/4. Weighted by the mass parameters ρn, we find for the trace constraint

N∑
n=1

ρn

(
µ2
n −

1

4

)
= const . (2.54)

The left hand side is simply a linear combination of the mass parameters ρn. Hence
we can readily replace one of the N free parameters by a combination of the others.
Without loss of generality, let us choose the constant on the right hand side to be 1
and set

ρN :=
1

µ2
N − 1

4

(
1−

N−1∑
n=1

ρn

(
µ2
n −

1

4

))
. (2.55)

Hence we have eliminated another parameter, leaving us with only 3N − 2 degrees
of freedom. For the simplest case N = 1, this yields a single free parameter, which
makes it very easy to analyze, see section 3.2.
There, we will also work out that the boundedness constraint is indeed necessary

for the existence of minimizers. Hence we better think about how we can factor it in
right now.
While the other two constraints could be integrated seamlessly into the model, we

have to modify it a little bit to incorporate the last one. Recall the boundedness
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2 The Dirac sphere

constraint from (1.7)

T :=

∫∫
F×F

|xy|2 dρ(x) dρ(y) ≤ C , (2.56)

and that the eigenvalues of the product xy coincide with the eigenvalues of the closed
chain Axy. Moreover, because we can express the spectral weight |xy| by the trace
of the closed chain Tr(Axy), we incorporate the boundedness constraint in our model
by adding the term κTr(A)2 to the original Lagrangian for some κ > 0. The new
Lagrangian reads

L := max

(
0,Tr(A2)− 1

4
Tr(A)2

)
+ κTr(A)2 . (2.57)

It is important to always keep in mind that κ is not yet another free parameter. We
fix the value of κ, while the free parameters are varied in the causal action principle.
Hence, κ is not a part of the minimization and entirely controlled by us. In chapter 3,
we will use different values of κ, but we fix them once and for all in the beginning and
use them only to consider the limit κ→ 0 after the minimization.
We will observe that adding the κ term indeed guarantees the existence of min-

imizers. However, we could not implement it as a legit constraint of the variation
principle in a strict sense. We did not restrict the space in which we vary the free
parameters, because it is not clear, how one could make these restrictions explicit such
that they can be implemented on a computer. Moreover, we will see in section 3.5
that optimization with complicated constraints is much harder computationally than
unconstrained optimization. Therefore, we “force” the boundedness constraint upon
our problem by the modification in (2.57) and will try to revert that intervention by
taking the limit κ→ 0 in a plausible way afterwards.
From here on, if not otherwise specified, we will always refer to definition (2.57), when

talking about the Lagrangian. While this version ensures the existence of minimizers
for κ > 0, eventually we want to take the limit κ→ 0. To do this in a sensible way, we
introduce the so called rescaling procedure. Because the desire for this limit becomes
more intuitive after we have seen some results for N = 1, we postpone the discussion
of the rescaling procedure to section 3.4.
To sum up, the volume constraint does not need special attention for the Dirac

sphere. The trace constraint is very easy to implement. Fortunately, it allows us
to fix one free parameter by a linear combination of the others, thereby eliminating
one dimension of the parameter space. The boundedness constraint is respected by
explicitly inserting it into the model. We still need to review how to make sense out
of the limit κ→ 0.

2.3 The numerical recipe

In the last section of this chapter, we rehash our efforts so far and view them as a
starting point for a numerical study. We lay out the procedure step by step in an
almost pseudo-code like manner.
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2.3 The numerical recipe

1. We begin with the implementation of the kernel of the fermionic operator. The
final version of our ansatz reads

P (t, x; 0, n) =
N∑

n=1

ρn e
−i ωnt

∑
±

(
1−

√
1 +K2

n ±Kn

∓Kn 1 +
√

1 +K2
n

)
⊗ E±µn(x, n) .

(2.58)

• We have the 3N − 2 free parameters ρn > 0 for n ∈ {1, . . . , N − 1}, Kn ∈
R for n ∈ {1, . . . , N} and ωn ∈ R for n ∈ {2, . . . , N}. The last mass
parameter ρN is fixed by the trace constraint in (2.55) and we set the first
frequency parameter ω1 to zero.

• Our chosen eigenvalues µn of the Dirac operator on the unit sphere S3 are
given in (2.50).

• The integral kernels of the spectral operators of DS3 are explicitly given
in (2.48). Since we know the Pauli matrices and the Jacobi polynomials, we
can readily implement E±µn(x, n).

• The last two missing symbols x and t represent a point in space-time and
will be integrated over later. Note that we have fixed the second space-time
point (t′, x′) at (0, n). This carries over to the closed chain, the Lagrangian
and the action.

As a conclusion, we can compute the kernel of the fermionic operator (2.58) as a
complex 4×4 matrix depending on the space-time point (t, x) as well as on 3N−2
free parameters. To perform this step on a machine, we basically only need to
compute matrix multiplications. (Of course, we assume that all basic arithmetic
operations on real numbers are no problem for a computer.)

2. The closed chain is easily computed as in (2.28) using (2.30) for P ∗. From a
computational perspective, we need to be able to perform multiplications and
complex conjugation of 4× 4 matrices.

3. By virtue of (2.57), all we need for the Lagrangian is again matrix multiplication
and computing the trace of complex 4× 4 matrices (as well as the max function
for real numbers). Recall that the Lagrangian is a scalar real-valued function of
the space-time point (t, x). Also it still depends on the free parameters and κ
has entered as yet another variable of the model.

4. The action can then be computed as in (2.47). First of all, we can set R = 1 for
all practical purposes, as it merely results in a scale factor. Note that the precise
values of the action are of no interest. Only the position of the minimum in our
parameter space is of significance.

For the spatial integration we use the volume measure dµS3 = sin(r)2 sin(θ)
in (2.5). The Lagrangian is independent of ϑ and ϕ, due to the isotropy assump-
tion in our ansatz for P . Integrating over ϑ, ϕ yields a constant factor, which
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2 The Dirac sphere

can again be neglected. The remaining spatial integration is simply∫ π

0

L(t, r; 0, n) sin(r)2 dr , (2.59)

where we indicate that L depends only on r, not on (ϑ, ϕ).

The temporal integration is a little bit more tricky. How do we choose η and the
lifetime T? In principle, one could choose η for example like in Figure 2.2. It has
compact support, which renders the integral finite. Subsequently, one would find
the minimum of the action for a sequence of increasing values for T and analyze
the limit as T goes to infinity.

However, in chapter 3, we will only analyze the two scenarios N = 1 and N = 2.
It turns out that in the first one the Lagrangian is independent of t and in
the second one it is periodic in t with a certain period T0 > 0. Thus we need
to perform the temporal integration either not at all or only over one period.
Therefore, we can get rid of the function η in the integrand. The action then
reads

S =

∫ T0

0

dt

∫ π

0

drL(t, r; 0, n) sin(r)2 . (2.60)

This is a two-dimensional integral of a real-valued function over a bounded rect-
angular region.

Although one finds plenty literature on numerical integration, depending on the
integrand L this could potentially become a cumbersome step. Because it is hard
to develop an intuition about how the Lagrangian looks like and how it behaves,
we indeed spent a lot of time to make sure that we get the integration right.
Gaining such insights is actually the main goal of this thesis. One unpleasant
feature that we can detect already is the max function. It makes the Lagrangian
non-differentiable. Integrands with kinks are rarely an advantage when it comes
to numerics.

5. The last step is to minimize S by varying the free parameters. To this end we
consider κ to be fixed as part of the model. We emphasize again that just like N ,
it is not a free parameter. For the case N = 1, there is only the free parameterK1

left. In this case, the minimization can easily be done, see section 3.2. For N = 2,
we have in principle four free parameters, namely ρ1, K1, K2, ω2. However, since
the Lagrangian in this case is clearly periodic with period T0 = 2π/ω2, we can
arbitrarily fix ω2, as long as we properly adjust the integration bounds. Only
ratios of frequencies have a substantial impact on the Lagrangian, which is why
they only come into play for N ≥ 3. We choose ω2 = 1 and T0 = 2π. Eventually,
we arrive at only three free parameters for N = 2.

Exactly like numerical integration, minimization is discussed in great detail in the
literature. However, just as before, finding and adjusting an efficient method for
the problem at hand almost always requires some knowledge and understanding
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2.3 The numerical recipe

of the target function. In particular, we need to keep in mind that each single
evaluation of the action for a fixed set of parameters might already be very
expensive. The methods we have ultimately chosen are discussed in section 3.3
and section 3.5 for integration and optimization respectively.

Now that we have established our model and verified that it fulfills our needs, we
can begin with the numerics.
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3 Numerical computations

In this chapter, we compare and explain several numerical techniques relevant for the
treatment of the Dirac sphere and at the same time present the results they supply.
We intend to stay close to the actual problem and discuss numerical methods just in
time when they are needed, see sections 3.3 and 3.5.

We start out with a few remarks on the choice of appropriate tools in section 3.1.
Afterwards, we proceed with an analytic treatment of the Dirac sphere with one shell,
i. e. N = 1, as far as possible in section 3.2. This leads to the necessity of the bound-
edness constraint. After an excursion about numerical integration in section 3.3, we
revisit the N = 1 case numerically. We explain the idea of rescaling in section 3.4.
After a second excursion about numerical optimization in section 3.5, we eventually
show results for N = 2 in section 3.6. We conclude with a brief outlook on larger N
and the limiting case N → ∞ in the final section 3.7.

3.1 Which tools should we use?

Let us start out with some remarks on the tools best suited for our task. While in
theory only the applied methods matter for the final result, but not which program-
ming language, libraries or frameworks one uses, in practice, this is a crucial decision.
Unfortunately, the consensus among a rather large community is that C/C++ and For-
tran are the only choices for “real numerics”. There is no doubt that these languages
usually dominate whenever it comes to highly parallelized large scale computing tasks
on distributed memory machines, where performance is the number one priority.

However, although there are C/C++ packages for basically everything, one cannot
deny that fast prototyping, experimenting with different implementations and quick
visualizations are not exactly the strengths of C/C++ and Fortran compared to other
languages and frameworks. But this is precisely what we demand for our problem.
Albeit computation time might become an issue for larger N , flexibility and fast pro-
totyping definitely outweigh the demands for the last bit of performance for N = 1
and N = 2.

We have little analytic knowledge about how the Lagrangian looks like, therefore
it is hard to choose a proper integration scheme in advance and we probably need to
experiment to find a good one. We do not know, how the action depends on the free
parameters, therefore we cannot decide on a minimization technique right away, let
alone, pick suitable start points for local methods. Again, trial and error will play an
important role.

29



3 Numerical computations

Quick, expressive and flexible visualizations prove helpful in all of the above men-
tioned. Finally, we would like to let the computer perform steps 1-3 in section 2.3 too,
which are mostly symbolic modifications. For the cases N = 1 and N = 2 those could
probably still be done with pencil and paper, but for larger N it gets quite cumbersome
and error-prone.
For the symbolic computations to set up the model, the two standard commercial

general purpose computer algebra systems are MapleTM (see [21]) and MathematicaTM

(see [26]), which are not only most widely distributed, but also provide the largest
functionality. Due to the author’s preferences, Mathematica has been used for this
work.
The integration and minimization are clearly non-symbolic numerical tasks. We

have first considered MatlabTM (see [17]), and Python (under the Python Software
Foundation license), but also newer approaches such as Julia (under the MIT/GPL v2
license) and Rust (under the MIT/Apache 2.0 license). Although we are in favor of
free and open-source software, again for reasons of experience, we gave Matlab a try.
After a while, the process of transferring the output of symbolic computations in

Mathematica to Matlab became rather annoying and since we crosschecked all Matlab
results in Mathematica anyway, we completely switched to Mathematica. Unfortu-
nately, it still comes as a surprise to most people that Mathematica’s numerical capa-
bilities are close to and often even beat those of Matlab in terms of performance for
most benchmarks. In addition, the set of available algorithms is immense and Math-
ematica allows for manual fine tuning of all kinds of options. Once one gets used to
Mathematica’s syntax and peculiarities in the way numerical computations are input,
it is a very powerful and convenient tool not only for symbolic manipulations.
As a final remark, let us state that all tools and languages mentioned above do a

pretty good job, if they are used correctly. Usually, experience and a deep understand-
ing of how to use a tool outweigh the inherent differences.

3.2 One shell (N = 1)

3.2.1 Necessity of the boundedness constraint

For the simplest case, N = 1, we can still perform most computations analytically.
The only free parameter is K := K1 and we set ρ1 = 1 in the ansatz (2.58). For the
time being, let us disregard the boundedness constraint, i. e. let us set κ = 0 in (2.57).
Moreover, we will discover that K only appears as K2 in all quantities. Therefore we
can assume K ≥ 0 without loss of generality.
First, we compute the eigenvalues of the closed chain

λ± =
1 + (1 +K2) cos(r)±

√
(1 +K2)(1 + cos(r))(1−K2 + (1 +K2) cos(r))

π4
. (3.1)

Recall that they are always two-fold degenerate (which is verified by the numerical
computation). Moreover, there is no time dependency for N = 1. The eigenvalues
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Figure 3.1: We show ∆ as a function of r for various K. Clearly, the region where ∆ is
negative becomes larger with increasing K. At the same time the support
of L in the r domain is shrinking.

are indeed of the form (2.42) and we can analyze the part under the square root to
determine, for which combination ofK and r they are going to contribute to the action.
The best way to think about it is to ask: “For a given K, which part of r ∈ [0, π] does
contribute to the action”. In other words: “Which r are not spacelike separated from
the north pole n.” The sign of the part under the square root is obviously determined
by the sign of the expression

∆ := 1−K2 + (1 +K2) cos(r) . (3.2)

In Figure 3.1, we show ∆ as a function of r for various K.
Solving ∆ = 0 for r yields rmax(K) = arccos

(
(K2 − 1)(K2 + 1)

)
. We infer from

Figure 3.1 that supp(LK) = [0, rmax(K)], where we view LK as a function of r only. The
function rmax(K) decreases monotonically from rmax(0) = π to rmax(K) → 0 for K →
∞. This means that for large K the eigenvalues of the closed chain become complex
conjugate pairs almost everywhere on S3 and hence the support of the Lagrangian
shrinks to the empty set as K increases. However, we can not yet conclude that the
action becomes zero for large K, because the Lagrangian might exhibit a δ distribution
like behavior for K → ∞.
We can write down L explicitly

L(r) = 1

π8
max

(
0, 8 (1 +K2) cos

(r
2

)2
∆
)
. (3.3)

In this simple setting, we can even perform the integral over space-time analytically, by
making use of the fact that we know the support of the integrand. If we use rmax(K)
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Figure 3.2: We show the (suitably normalized) action as a function of the only free
parameter K. The plot already indicates that S decreases monotonically
as K → ∞.

as the upper integration bound, we can get rid of the max function in (3.3). This helps
the computer algebra system, because the max function is generically hard to handle
in symbolic integrations. Eventually, we find

S =
4π

3

∫ rmax(K)

0

L(r) sin(r)2 dr

=
2

9π7

2K(15 + 31K2 + 9K4 + 9K6) + 3(1 +K2)3(5− 3K2) arccos
(
1− 2

1+K2

)
(1 +K2)2

,

(3.4)

which is shown in Figure 3.2. As already indicated by the plot, computing the series
expansion

S ∝ 1

K
+O

( 1

K2

)
, (3.5)

reveals that S → 0 for K → ∞. Hence there exists no minimizer and we conclude that
the boundedness constraint truly is a necessary condition for the existence of minimiz-
ers. Only at this point did we realize the resemblance of our model to example 2.8 and
example 2.9 in [8]. This is how the “Dirac sphere” got its name.

3.2.2 Including the boundedness constraint

Now that we have shown the necessity of the boundedness constraint, let us take it
into account. Using κ > 0 ensures that supp(L) = [0, π] and hence we can not run into
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the same problem as before. The Lagrangian in (3.3) only changes by the additional
term

κTr(A)2 =
16κ

π8

(
1 + (1 +K2) cos(r)

)2
. (3.6)

In Figure 3.3, we compare the Lagrangian for κ = 0 and κ = 0.01. One clearly
recognizes how the κ term “kicks in” as K increases.

When aiming for the action, we have to switch from symbolic evaluation to numerics.
Because of the additional κ term, we cannot do the same trick as above to get rid of
the max function anymore. Instead, we perform the integration numerically for various
values of κ. The result is shown in Figure 3.4. Again, we have normalized all curves
by S|κ=0,K=0. Clearly, the κ term prevents the action from monotonically approaching
zero, but instead “bends” it up for large K, such that a minimum is acquired. This
verifies numerically the existence of minimizers for κ > 0, i. e. when the boundedness
constraint is taken into account.

Before we move on, let us spend a few words on the numerical integration.

3.3 Numerical methods I: Integration

3.3.1 Preliminary considerations

The issues one has to worry most about in numerical integration are either non con-
tinuous functions, highly localized features such as peaks or bumps up to singularities
(generally speaking, large gradients are a disadvantage) and highly oscillating func-
tions. For high-dimensional integrals one has to deal with yet another class of prob-
lems, which we are not going to discuss here. It is also not in the scope of this thesis
to explain the basic quadrature rules and integration strategies. We assume that the
reader is familiar with Gaussian quadrature and has a basic understanding of numerics.

So far, our integrands did not look too bad. For κ = 0 they are smooth and do
not exhibit any localized peaks or bumps, let alone singularities, and are also not
oscillating. We expect almost any quadrature scheme to do a splendid job. Let us
look at how Mathematica handles those integrals. Without specifying any further
options, Mathematica uses a lot of built in machinery to determine, which strategy
and method performs best. It first tries to analyze the integrand analytically for a
certain time of symbolic processing. It tries to find symmetries, singularities, localized
features and rapid oscillations. For a performance and precision analysis it is thus
important to make sure one knows exactly what Mathematica is doing behind the
scenes and closely monitor the procedure.

Mathematica currently implements about a dozen quadrature rules together with
numerous integration strategies and various methods for higher-dimensional integrals.
In our examples, it almost always uses the Gauss-Kronrod rule with a global adaptive
strategy. Also commonly used is the Clenshaw-Curtis rule with the same strategy.
We will first discuss the choice of the quadrature rules and come back to integra-
tion strategies later. The following is not restricted to the one-dimensional case. By
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Figure 3.3: We plot (a suitably normalized version of) the Lagrangian as a function
of r for several values of K in the first row, where in the left plot κ = 0 and
in the right plot κ = 0.01. In the second row, we plot the actual integrand
of the action again for several K and for κ = 0 (left) as well as κ = 0.01
(right). It is clearly visible, how a non-zero κ affects the support and
smoothness of the Lagrangian and the integrand respectively. The legend
in the first plot is valid for all four.
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Figure 3.4: We plot (a suitably normalized version of) the action as a function of K for
various values of κ. Note, how the κ term shifts the curve in the y direction,
but most importantly, prevents a monotonic decrease as K → ∞. In fact,
for κ > 0 the action takes on a minimum and goes off to infinity for largeK.

cartesian products of one-dimensional domains, all rules explained here also apply to
higher-dimensional integrals.
The Gauss-Kronrod and Clenshaw-Curtis rule seem to be most adequate for our

purposes, because they are used as so called nested quadrature rules . That means that
we apply two quadrature schemes of different order, where we reuse the set of function
evaluations of the lower order rule for the higher order rule. In order to construct an
error estimate during the integration (when we obviously do not have the exact result
at hand), one usually compares higher order estimates to lower order estimates.
Further, one specifies a goal for the absolute and/or relative difference of these

comparisons and returns the current estimate when one has reached one of the two
goals. We specify a precision goal and an accuracy goal . Both are given as positive
real numbers, we call them gp and ga respectively. The integration stops as soon as
the expression

(error ≤ 10−gp · integral value) ∨ (error ≤ 10−ga) (3.7)

evaluates to true.
Because the main computational effort in numerical integration usually lies in the

frequent evaluation of the integrand, it is highly desirable to reuse prior function values.
Instead of computing two completely independent sets of points and weights to obtain
two approximations of different order, reusing the points of the lower order scheme and
only adding some new ones for the higher order scheme can give a significant speedup.
The Gauss-Kronrod rule for example, does exactly that. It is a modified version

of Gauss quadrature, in which the evaluation points are chosen precisely in such a
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way, that they can be reused in a higher order approximation. For example, we can
use a 7 point Gauss rule together with a 15 point Kronrod rule. Because the 7 grid
points of the Gauss rule are also points of the Kronrod rule, one only has to perform 8
additional function evaluations in between the Gauss points to obtain the higher order
Kronrod approximation. The Gauss-Kronrod rule is an open rule, i. e. it does not
evaluate the integrand at the end points. While the Gauss rule with N points is exact
for polynomials up to order 2N − 1, the Kronrod extension with an additional N + 1
points (2N + 1 in total) is exact for polynomials up to order 3N + 1 or 3N + 2 for
even or odd N respectively, see [24]. For most Gauss rules, the weights are computed
in O(N2) time.
While for N evaluation points the Clenshaw-Curtis rule is only exact for polynomials

up to order N − 1 (as compared to Gauss quadrature schemes), it also has certain
advantages. The Clenshaw-Curtis rule is based on an expansion of the integrand in
Chebychev polynomials, hence the weights can be computed in O(N logN) time via a
discrete Chebychev transform by an algorithm analogous to the fast fourier transform.
Moreover, it is naturally suited for nested quadrature, i. e. higher order approximations
automatically contain the points of lower order approximations. One can still always
use the same rule (as opposed to the Gauss-Kronrod rule).
In fact, since most integrands are not polynomials, the order to which a rule is exact

is not the best criterion. It is known that an expansion in Chebychev polynomials
converges rapidly for a large class of functions. Eventually, both, Clenshaw-Curtis and
Gauss-Kronrod, are popular choices, which have proven to yield rapid convergence for
a wide variety of integrands. In our simulations, we have compared the two along
with several other rules for a set of representative integrands, i. e. a set of different
combinations of parameters. In the end, it turned out that leaving the choice to
Mathematica gave the best results. This was almost always the Gauss-Kronrod rule.
Now that we have a quadrature rule, we come to the integration strategy. In prin-

ciple, one could use the above mentioned quadrature rules for the whole domain of
integration and choose a huge number of points to make sure the estimate is good
enough. However, this comes with an important disadvantage. Imagine our integrand
is a low order polynomial for the bigger part of the domain, but at some small fraction
of the integration region it exhibits highly oscillatory behavior with large amplitude.
While the integral of the polynomial part is already exact for a reasonably low order
approximation, to reach the precision and/or accuracy goals everywhere, one has to go
to ever finer grids on the whole domain, until eventually, the errors are small enough
also for the unpleasant part.
The immediate idea is to only refine the grid, where it is necessary. The two strate-

gies we contemplated about are global and local adaptive strategies. Both, theoretical
and practical considerations indicate that global adaptive strategies generally perform
better than local adaptive strategies, see [18, 20]. Therefore, we focus on global adap-
tive strategies right from the start.
In a global adaptive strategy, we begin with the specified quadrature rule and a small

number of grid points for the whole domain. If the termination condition (3.7) is not
yet satisfied, the domain is divided into two halves and the integration is reevaluated
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on each subdomain. For each of those integrals we check the precision and accuracy
goal and recursively bisect the region further, if necessary. The new overall termination
condition for a global adaptive strategy becomes

(global error ≤ 10−gp · global integral value) ∨ (global error ≤ 10−ga) , (3.8)

i. e. we add up the errors of all subdomains to determine, whether the overall goal is
satisfied.
The obvious advantage is that if the approximation on one subregion is good enough,

the result is kept and the grid is not refined further on this part of the domain.
However, all regions where the error estimate is still large are subdivided further.
Thereby one reduces the overall number of function evaluations to a minimum. Specific
implementations are rather complex, since one has to do a lot of book keeping for all
the bisections and local error estimates. Otherwise we risk to miss local features that
might be hiding in between the chosen points.
We make two final remarks before we dive into specific examples. First, note that

the precision goal, i. e. the first condition in (3.8), involves the current value of the inte-
gral. If the actual value of the integral is zero, the precision goal can never be reached
(in theory), because the error is positive and the right hand side of the inequality is
zero. Therefore, adding a small positive constant to the integrand sometimes helps
detect convergence. In the N = 2 case, we add (2π2)−1 to the integrand and sub-
tract 1 from the action afterwards to compensate for it. (Recall that the integral is
over [0, 2π]× [0, π].) Second, during the first bisections in the global adaptive strategy,
the error can actually increase, as we resolve more localized features that were com-
pletely overseen in the previous resolution. However, at some point the error should
decrease monotonically. One can specify, how many increases of the error one toler-
ates, before aborting the integration. As we do expect increasing errors, e. g. for the
complex integrands in Figure 3.10, but also know that it will converge eventually, we
allow for up to 10 000 increases.

3.3.2 Examples

Let us finally examine some examples. Again, we look at the integrand of the action
for N = 1. First, we consider the simplest case, where κ = K = 0. In Figure 3.5,
we compare the trapezoidal, the Clenshaw-Curtis and the Gauss-Kronrod rule for this
simple example. The plot shows, how the domain [0, π] has been sampled by each
rule. On the y axis, we see the number of the evaluations in chronological order as
carried out by the corresponding rule. The trapezoidal rule, marked by red circles,
started with a first function evaluation at r = 0 and – as we expected – samples the
region by equidistant points up to r = π. In this case, Mathematica uses 9 points
to begin with. After those 9 evaluations, the error estimate was apparently already
small enough and the trapezoidal rule returned its approximation without any further
adaptive refinements.
The Clenshaw-Curtis rule in contrast, evaluated the function a total of 163 times.

That is a factor of almost 20 compared to the trapezoidal rule. We also see some
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Figure 3.5: We compare the number of function evaluations for three different quadra-
ture rules with κ = K = 0. We have used default settings for the number of
starting points, the number of adaptive recursions and the same accuracy
and precision goal. Symbolic preprocessing is switched off.

adaptive refinement. While it started out with 9 evaluations (not equidistant) from r =
0 to r = π too, it probed the whole domain another two times with higher point
density and finally increased the resolution even further for certain regions. The Gauss-
Kronrod rule behaves similar. The points of the Gauss-Kronrod rule are closer near the
end points as well, but do not include them. We see that it divides the whole domain
into two parts after the first refinement step and then bisects once more creating a total
of four subdomains. Comparing Figure 3.5 to the actual integrand for κ = K = 0 in
the lower left plot of Figure 3.3, we see where the Clenshaw-Curtis and Gauss-Kronrod
rule needed some refinement to correctly capture the integrand.

The results of all three methods agree up to the specified goal, i. e. within machine
precision. We have worked with floating point numbers following the IEEE 754 stan-
dard (equivalent to the double data type in C) throughout the whole thesis (except
for some testing). This suffices for our purposes.

Hence, the trapezoidal rule is the clear winner in this example. Why would we use
something fancy, if the simple trapezoidal rule is better after all? Keep in mind that
the integrand was very well behaved, L|κ=K=0 = 16 cos(r/2)4/π8.

Figure 3.6 shows what happens, when we repeat the experiment for K = 1. We split
the results in two plots for better visibility. Again, from the lower left plot in Figure 3.3,
we realize that the integrand is not smooth anymore. Additionally, its gradients have
become larger. To achieve the same accuracy, the trapezoidal rule now needs almost 50
times as many evaluations as the Gauss-Kronrod rule. In fact, the Gauss-Kronrod rule
needs even less evaluations than before. Mathematica seems to “understand” quickly
that the integrand vanishes on a large portion of the domain. If the lower and higher
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Figure 3.6: We repeat the experiment from Figure 3.5 with K = 1.

order approximation, which are used to determine the error estimate, coincide right
away (for example because the integrand evaluates to zero everywhere), the termi-
nation conditions are immediately fulfilled (at least for the subdomain in question).
Therefore, it makes sense to force Mathematica to perform a minimum number of
recursive bisections before it stops, regardless of the error estimates.

As one can imagine from the shape of the integrands in the second row of Fig-
ure 3.3, when we also take κ > 0, the trapezoidal rule stands no chance against the
Gauss-Kronrod rule. While these observations are only examples or heuristics and do
not generally prove anything, they are extremely valuable in practice. Rigorous con-
vergence analysis of integration strategies and rules for generic integrands is ongoing
research, see [25] for a comparison of the Gauss-Kronrod and the Clenshaw-Curtis rule.
At this point, one should be able to appreciate our decision to choose Mathematica
over C.

By using very conservative initial conditions, such as a high number of sample points
for the first scan of the domain and enforcing a minimum number of recursive refine-
ments, we are confident to obtain accurate results. The methods generalize to two-
dimensional integrals by a cartesian product of the one-dimensional procedure. For
high-dimensional integrals one would use entirely different techniques such as stochas-
tic methods, e. g. (pseudo) Monte Carlo, or sparse grid methods. Since we only need
one- and two-dimensional integrals, the cartesian product rule is still the strategy of
choice.
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3.4 Rescaling

3.4.1 Why do we need that?

After this excursion, let us come back to the Dirac sphere for N = 1. We have
discovered the necessity of the boundedness constraint and took it into account by
adding the term κTr(A)2 to the Lagrangian, where we assume κ to be an arbitrary
real positive parameter.

For relatively large κ, we find the interesting feature that the minimum “jumps” at
some point. For example, consider the line for κ = 0.01 in Figure 3.4. The minimum
is clearly at K = 0 and it will apparently stay there for κ > 0.01. In contrast,
for κ = 0.005 it is roughly at K = 2.3. The lines in between indicate that this is
not a continuous transition. Indeed, we have found the jump to occur at κ ≈ 0.009
from K ≈ 1.9 down to K = 0. However, since we are eventually interested in the
limit κ → 0, this behavior for large κ is nothing more than a curious feature and
of no particular interest. In the limit κ → 0, the position of the minimum depends
continuously on κ.

Let us explore this continuous behavior in more detail. In the one-dimensional case,
we can still employ the simplest imaginable method of minimizing the action for fixed κ.
We evaluate the action on a dense grid for K. We choose 501 equidistant grid points
in the interval [0, 50] including the endpoints. As a first approximation, we can simply
pick the grid point with the smallest action as our minimum. With a grid spacing
of ∆t, this procedure is accurate up to ∆t/2 = 0.05 in our example. To add some
precision, we additionally interpolate the action by cubic B-splines and minimize the
interpolating function. Given that the position of the minimum depends reasonably
smoothly on κ, which it does in our case for small κ, this method is already highly
accurate. The minimization procedure for the interpolating functions will be discussed
in section 3.5.

We then also sample κ in the interval [10−7, 10−3]. We have already observed that
the position of the minimum depends continuously on κ in this range. For κ we again
choose 501 grid points and space them logarithmically in the specified interval. The
results are shown in Figure 3.7.

This analysis verifies that by simply taking κ → 0, we get back the same results
as without the boundedness constraint, see Figure 3.4, which was already clear from
the analytic findings in section 3.2. The action approaches zero, as K → ∞, because
the eigenvalues (3.1) form complex conjugate pairs on the whole domain r ∈ [0, π].
For κ = 0 we can easily find a minimizing sequence, for example (Kn)n∈N = n, see
Figure 3.2 and Figure 3.7. In addition, the absolute value of the eigenvalues approaches
infinity as K → ∞, which can be read off equation (3.1).

Therefore, we want to modify the limit by what we call the rescaling procedure.
Because we will also apply the procedure later on for N = 2, let us go back to the
abstract formulation of causal fermion systems and briefly outline the general idea.
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Figure 3.7: We show the position Kmin of the minimum of the action (left) and the
minimal value of the action (right) as κ→ 0. There are 501 logarithmically
spaced points for κ between 10−7 and 10−3. For each one, we obtain Kmin

by minimizing a cubic B-spline interpolating function of the action based
on 501 linearly spaced values for K from 0 to 30. The data is well approx-
imated by power laws Kmin ∝ κ−0.206 and Smin ∝ κ0.197.

3.4.2 The rescaling procedure

Let (H,F , ρ) be a causal fermion system and M := supp(ρ) the corresponding space-
time. We will assume, that all x ∈M are isospectral , i. e. σ(x) = σ(x′) for all x, x′ ∈M ,
we write x ' x′. Note that the Dirac sphere satisfies this assumption by construction.
If we choose as a norm on M

‖ · ‖ : M → R , x 7→ ‖x‖ := max
λ∈σ(x)

|λ| , (3.9)

apparently all x ∈ M have the same norm and we define c := ‖x‖. Furthermore,
because P (x, x) = πxx = x|Sx , we find P (x, x) ' x. In particular, for the Dirac sphere
‖P (n, n)‖ = c.
The idea of the rescaling procedure is to rescale the causal fermion system such

that ‖x‖ = 1. In the general setting, this amounts to the map

Φ : F → F , y 7→ y

‖y‖
. (3.10)

We have illustrated the action of the map Φ in Figure 3.8. By virtue of the map Φ, we
define a new rescaled measure by the push forward measure ρr := Φ∗ρ and the rescaled
space-time by M r := supp(ρr) = {x/c |x ∈ M}. The kernel of the fermionic operator
is also rescaled by 1/c and one easily verifies the following formulas for the emerging
rescaled quantities∫

tr(x) dρr(x) =
1

c

∫
tr(x) dρ(x) , Ar

xy =
Axy

c2
, Lr =

L
c4
, Sr =

S
c4
. (3.11)
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M := supp(ρ)

c

M r := supp(ρr)

1 Φ

Φ

Φ

Figure 3.8: We show an illustration of the rescaling procedure. It basically shrinks the
space-time to “radius” one. Of course, we can not give reasonable names
to the axes in this picture.

Let us now assume that ρn is a minimizing sequence for the action. Then ρrn converges
as a measure to some ρlimit and, as usual, we define M limit := supp(ρlimit). At the same
time, by the rescaling procedure, we ensure that ‖x‖ = 1 stays constant for all x ∈M .
What does this mean for the Dirac sphere with N = 1? Again, assume we have

a minimizing sequence of the action for κ = 0. We have argued that for such a
sequence cn → ∞ and no minimum is obtained. However, for all κ > 0, we do find a
minimum of the action. We can now keep track of the minimizers while taking κ→ 0
and perform the rescaling procedure along the way. Thereby, ‖x‖ stays constant when
taking the limit.
In practice, the rescaling procedure is performed in the following steps:

1. Take a finite decreasing sequence κ1 > κ2 > · · · > κM > 0 for some M ∈ N.

2. For each κi, find the minimizer of the causal action principle. This will result
in a set of fixed parameter values for the 3N − 2 free parameters. For example,
for N = 1 it yields Kmin, which we have already seen in Figure 3.7. For N = 2,
it yields a set of values ρmin

1 , Kmin
1 , Kmin

2 .

3. For each κi, use the corresponding minimizing parameter values to compute ci :=
‖P (n, n)‖ as in (3.9).

4. For each κi, rescale the minimum of the corresponding action by Sr
min := Smin/c

4
i .

In Figure 3.9, we show the result of this rescaling procedure for N = 1 and again 501
logarithmically spaced grid points for κ from 10−7 to 10−3. The action decreases almost
linearly as κ → 0. The limit is totally space-like in the sense that L(x, y) = 0 for
all x, y ∈M limit.
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Figure 3.9: We plot the rescaled minimal action as a function of κ. Instead of a moder-
ate power of roughly 0.2 as in Figure 3.7, the rescaled action scales almost
linearly Sr

min ∝ κ0.923.

Before we go on to the Dirac sphere with two shells, let us again review some
numerical concepts.

3.5 Numerical methods II: Finding a minimum

Numerical optimization is a huge field on its own and there are plenty classification
criteria for numerous methods. We will only briefly touch upon two criteria to restrict
the pool of possibilities for our application. We first take a look at our parameter
space. For N = 1 we had K ∈ [0,∞) (recall that only K2 entered the equations).
For N = 2 we found ρ1 ∈ R+, K1, K2 ∈ R. For the same reason as above, we can
restrict ourselves to non-negative values for K1, K2. The trace constraint for N = 2
reads 2ρ1 + 6ρ2 = const. We choose ρ1 + 3ρ2 = 1, hence the parameter ρ1 is restricted
to (0, 1). The constraints of our optimization problem are encoded in the boundaries
of the parameter space.

This suggests that we are dealing with a constrained optimization problem. How-
ever, once we have obtained a reasonable understanding of the Lagrangian, we do not
explicitly take these constraints into account. As we discuss shortly, this allows us to
use faster methods for unconstrained optimization.

Second, let us compare global and local methods. At a first glance, one might argue
that we certainly want to find the global minimum. Why would one even bother for
local methods? It is not that simple. Intuitively, it is clear that finding a global
optimum is much harder than finding a local one. In fact, the difference can hardly be
overestimated. As a consequence, global optimization methods are generically more
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expensive than local ones. Given the computational complexity of the action, it is well
worth the effort to invest some time in getting local methods to work.
So far, we have narrowed down our possibilities to unconstrained local optimization.

We can further categorize into gradient based methods and direct search methods.
Prior generally use first and second derivatives (or approximations thereof) to gradually
move to lower/higher values from one or multiple start points. Direct search methods
do not need derivatives. Famous examples are the Nelder-Mead algorithm, stochastic
methods such as simulated annealing, or genetic algorithms and differential evolution.
For the minimization in the N = 1 case, we employ a line search using a Quasi-

Newton method. Again, it is beyond the scope of this thesis to introduce basic tech-
niques such as (Quasi-)Newton methods, gradient descent, conjugate gradient descent
or the Levenberg-Marquardt algorithm. The following not only holds true for one-
dimensional optimization problems, but generalizes also to higher-dimensional settings.
The specific Quasi-Newton method used here is the Broyden-Fletcher-Goldfarb-

Shanno algorithm (BFGS), see for example [2] and references therein for details. Usu-
ally, the search direction pn in the n-th step is determined by solving Bn pn = ∇S(xn),
where Bn is the Hessian of S and xn is the current position in the parameter space. The
gradient ∇ is with respect to xn, i. e. with respect to the free parameters. For N = 1,
this is just K, for N = 2, it contains the parameters ρ1, K1, K2. Basically, the BFGS
algorithm determines the search direction not by computing the exact Hessian at each
step, but using an iteratively updated approximation. Moreover, Mathematica does
not even compute the Hessian Bn itself, but only the Cholesky factors. Thereby the
above equation for the search direction pn can be solved in O(k2) time, if k is the
number of parameters, see [3].
While Quasi-Newton methods can not hold up with the quadratic convergence of

Newton’s method, with an adequate line search strategy it still converges superlin-
early [23]. The savings from not having to compute the Hessian (or a finite difference
approximation thereof) from scratch in each step and the robustness against the scale
problem outweigh the slightly inferior convergence rate in most applications.
Since we do not have an analytic expression for the gradient, it is approximated

by second order central finite differences. This becomes expensive as the dimension
of the parameter space increases. Hence we now have the ingredients to find the
search direction pn at the point xn in the n-th step. Keep in mind that the direction
is not exact, but only an estimate. For an update to the next point in parameter
space xn → xn+1, we still need the step size.
The idea of a line search is to determine an appropriate step size α by minimiz-

ing ε(α) := S(xn + αpn). In this equation, we only minimize with respect to α, i. e. it
is a simple one-dimensional optimization problem independent of the dimension of the
original parameter space.
Note that ε′(α) = (∇S(xn+αpn))Tpn, i. e. it amounts to a one-dimensional gradient

based optimization problem. We are not interested in solving this problem exactly,
but only need an approximation that lies close to the real minimum. For one, recall
that the search direction itself is not exact and furthermore, this step only serves to
find a reasonable step size for the original minimization.

44



3.6 Two shells (N = 2)

For the Quasi-Newton method, as suggested in [23], we employ the Wolfe conditions
with a decrease factor of 10−4 and a curvature factor of 0.9 to decide, whether the
approximation is good enough. For the minimization of ε(xn + αpn), we follow a line
search strategy due to More and Thuente described in [22]. It uses quadratic and cubic
interpolations in seeking to fulfill both Wolfe conditions.
Why would we accept the overhead of an additional one-dimensional optimization

in each step only to determine the step size? The biggest advantage is that thereby
we do not rely on the assumption that the model is close to the real behavior. In
Newton’s method (and most other gradient based local methods), one works with a
quadratic model, i. e. S(xn) + (∇S(xn))Tpn + 1

2
pTnBnpn. Hence the model captures

the true function only up to second order so to speak. The resulting step size is only
as good as this representation. However, it is not at all guaranteed in general that
a normal step in Newton’s method indeed brings us closer to the optimum. Since
we only seek a crude estimate for the minimum of a rather simple one-dimensional
optimization problem, the line search strategy does eventually pay off.
For one shell, i. e. N = 1, it does not really matter, which minimization procedure

we employ. We have tested various techniques ranging from a simple Newton method
up to a line search with different Quasi-Newton methods. All of them finish within
seconds for 501 different values of κ and gave the same results. Note that we already
had a very good idea of the positions of the minima from sampling an appropriate
interval as in Figure 3.7. For all local methods we tested, it suffices to choose any
value K > 2 as a start point, which we read off Figure 3.4. Providing a good start
point is crucial. For a three-dimensional parameter space, visualizing the action for
different κ is not that simple anymore and we expect the minimization to be orders of
magnitude more expensive. Therefore, we went through great lengths to get a feeling
for where the minima might lie, which is the subject of the following section.

3.6 Two shells (N = 2)

We have already developed all necessary concepts based on the example N = 1 in the
previous sections. Thus in this section, we will merely repeat the analysis for N = 2
and present the results. Additionally, we will emphasize some problems arising only
in the N = 2 case.
Computing the Lagrangian should be straight forward. We simply follow the recipe

given in section 2.3. The expressions become a little bit lengthy, but are still easily
handled symbolically by Mathematica. After tweaking the integrand, by letting Math-
ematica simplify the expression first and then adding some further simplifications by
hand, we end up with an expression that takes up around 10 to 20 lines. It is symmet-
ric around 0 for both K1 and K2, hence we only consider K1, K2 > 0. Moreover, as
mentioned before, it is periodic in t. We have chosen ω2 = 1, hence the period is 2π.
From the ansatz of the kernel of the fermionic operator, we infer that it only involves

the four basic mathematical operations as well as sin, cos, max and the square root.
This is important, because it allows us to use Mathematica’s Compile function. As a
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symbolic computer algebra system, Mathematica always deals with all kind of input.
Basically every expression is allowed as input to any function. A lot of checks and
interpretation has to be performed for this to work. By “compiling” a function, we
specify that the only input we will provide are always real numbers following the
IEEE 745 norm. Mathematica can then transform the function implementation from
the usual Wolfram language to perfectly valid C code. (To find a C implementation
the expression must not contain complex functions or operations not present in the C
standard libraries.) A C-compiler produces code that is very close to actual machine
code and links the resulting object file back to Mathematica. This can give an enormous
performance boost for applications like ours, which rely on a whole lot of basic number
crunching.

Furthermore, we demand the compilation to be optimized for speed (Mathematica
looks for recurring subexpressions and only computes them once and uses available
compiler optimizations), to suppress all symbolic evaluation and to produce thread
safe code for parallel execution.

As a second step, we need to get some intuition about the integrand. If it behaves
smoothly, we might only need a few function evaluations for a good approximation
of the integral in the action. If it shows kinks, large gradients high frequency oscilla-
tions or strongly localized features, we might want to be very conservative during the
integration and choose many points and/or adaptive refinements, see section 3.3.

The analytic expression of the integrand reveals that there are no high frequency
oscillations in neither the t nor the r direction. However, we can not exclude the other
potential issues. Quite the contrary, from the N = 1 case we even anticipate them
to occur. To this end we wrote an interactive tool that lets us change all three free
parameters and κ simultaneously and updates a plot of the corresponding integrand
in real time.1

We further augmented this tool to perform the integration in the background, plot
the evaluation points that were used and return the value of the action as well as
the number of evaluation points. We show the output of the tool for two exemplary
points in parameter space in Figure 3.10. Even for the complex structure shown there,
the integration took less than a second.2 The number of function evaluations varies
greatly from less than 2000 up to about 150 000. At this point, an adaptive integration
strategy is indispensable.

Let us point out a few observations we made, while playing around with the tool,
trying to get a feeling for how the action depends on the parameters. As expected,
for all combinations of κ > 0 and ρ1 ∈ [0, 1] did we find an increasing action for
both K1 → ∞ and K2 → ∞. Hence, sufficiently increasing either one of the two
(while keeping the other fixed at an arbitrary value), eventually results in a monotonic
increase of the action. Due to the form of the κ term, this does not come as a surprise.

1All code is available upon request from niki.kilbertus@physik.uni-regensburg.de.
2These computations were performed on an i7-4470HQ at 2.2GHz with 16GB RAM.
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Figure 3.10: We show the evaluation points of the integrand in a scatter plot for
the parameter values κ = 10−4, ρ1 = 0.3, K1 = 10, K2 = 2 (top),
and κ = 10−4, ρ1 = 0.8, K1 = 4, K2 = 6.5 (bottom). The integration
routine performed 70 992 and 110 942 function evaluations respectively
until it reached the specified precision goal. Those are examples with a
particularly rich structure.
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The observations led us to believe that once the action has increased beyond a certain
threshold for large K1, K2, it will keep on growing and not return to smaller values
again for even larger Ks. This is backed by the analytic form of Tr(A)2. Hence, for
fixed κ and ρ1, we should be able to find a minimum by starting sufficiently far from
the origin in the K1-K2-plane.
The main task is to specify good start points for the minimization. In the be-

ginning, we followed the same approach as for the one shell case. We took out a
three-dimensional cube of the parameter space, e. g.

(ρ1, K1, K2) ∈ [0.01, 0.99]× [0, 10]× [0, 10] , (3.12)

discretized it by a grid (equidistant or logarithmically spaced in each direction) and
looked for the minimal value as a good candidate for a start point. Then we repeated
this for several values of κ, say in the interval [10−7, 10−3]. This was feasible for N = 1,
because we only had one free parameter and the integration was very quick. Computing
a few hundred points for the single parameter K and repeating that for again a few
hundred different values of κ was a matter of minutes, even including interpolation
and minimization of the interpolant for each κ.
For the three-dimensional parameter space, the largest grid we used had 27×51×51

points and we computed it for 31 values of κ. This is a total of about 2 million
evaluations of the action. (Keep in mind that each evaluation of the action costs
about 2000 to 150 000 evaluations of the integrand.) On a machine with 16 CPUs of
the Xeon E5-2650 model at 2.5GHz with 66GB RAM this took about a day and a
half. Unfortunately, we waited for so long only to find that the minima were almost
always located at the boundary of our computational domain. This indicates that we
did not choose the domain large enough in the K1 and K2 direction. Note that the ρ1
domain is constrained anyway and is therefore under control. Moderate extensions still
led to the same results. Since the resolution is limited in terms of computing time, we
need to find a different method.
In order not to hit the boundaries, we want to adjust the K1, K2 domain depending

on the values of κ and ρ1. Due to the trace constraint ρ1 + 3ρ2 = 1, the parameter ρ1
determines the relative contributions of the two shells. In the limiting cases ρ1 = 1
and ρ1 = 0, we have ρ2 = 0 and ρ2 = 1/3 (the maximum value for ρ2) respectively.
In the first case, we get back the N = 1 model. In the second case, we find a very
similar model, because then again only one shell is occupied. This is seen from the
general ansatz for the kernel of the fermionic operator in (2.58). In Figure 3.11, we
show the action along the K1 and K2 axis respectively for various values of ρ1. We are
interested in the position of the minima. Therefore, we normalize all curves by SKi=0

for i ∈ {1, 2} respectively.
While we only show those plots for κ = 10−4 the qualitative behavior is represen-

tative for the whole range of κ > 0 below about 10−2. Note that in the two plots of
Figure 3.11, the colors correspond to the same values of ρ1. In the upper plot, the
minima of the action move away from zero as ρ1 increases. On the contrary, in the
lower plot, the minima approach zero as ρ1 increases. While the absolute position of
the minima changes slightly, this behavior is universal for all relevant κ.
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Figure 3.11: We plot (a suitably normalized version) of the action for κ = 10−4 and
several values of ρ1. In the upper plot, we observe the behavior along
the K1-axis, i. e. K2 = 0. In the lower plot, we observe the behavior along
the K2-axis, i. e. K1 = 0.
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Figure 3.12: For each ρ1, K
min
1 and Kmin

2 set the scale for the choice of the computa-
tional domain (shown as dashed rectangles). Extending those bounds by
a reasonable scale factor (for the picture we have used ξ = 1.3), we expect
the minimum of the action to lie within the solid rectangles. Hence the
red × symbols indicate our candidates for start points of the minimization
procedure. As we shift the weight from one shell to the other, by increas-
ing ρ1 from 0 to 1, the height and width of the domain scale inversely to
each other.

Let us denote the position of the minima as a function of ρ1 byK
min
1 (ρ1) (whereK2 =

0) and by Kmin
2 (ρ1) (where K1 = 0), which are different functions for eachκ. We will

only make the dependence on κ explicit in the notation, when necessary. The above
observation amounts to the statement that Kmin

1 is monotonically decreasing and Kmin
2

is monotonically increasing. This can be understood in light of the fact that small
values of ρ1 put more weight on the second shell, whereas large values of ρ1 (close to 1)
enforce the effect of the first shell.

Our basic assumption in choosing plausible start points for the local gradient based
optimization is that Kmin

1 and Kmin
2 set the scale for the thresholds from which on

the action will only increase. We choose a factor ξ & 1 and postulate that for a
given ρ1 (and a given κ of course), the minimum of the action lies within (K1, K2) ∈
[0, ξ Kmin

1 (ρ1)] × [0, ξ Kmin
2 (ρ1)]. In Figure 3.12, we illustrate how the computational

domain is now altered depending on ρ1. One immediately recognizes, why our first
approach with a fixed computational domain for all combinations of parameters and
all κ could not work. For most cases it was rather generous for one direction but
way too narrow for the other one. For example, for κ = 10−3 and ρ1 = 0.01 we have
found Kmin

1 ≈ 200Kmin
2 .

Now we have a strategy to choose a starting point in the K1-K2-plane, once ρ1 is
given. Note that so far we have always assumed that ρ1 is fixed and we are only
minimizing with respect to K1 or K2. While this does not come near the actual
problem, it gives us a neat heuristic on how to tackle it. Because we still have no idea
how to choose a reasonable start value for ρ1, we will simply scan it again, where we
take a smaller spacing near the endpoints 0 and 1.
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3.6 Two shells (N = 2)

We again discretize the new adaptive domain

(ρ1, K1, K2) ∈ (0, 1)× [0, ξKmin
1 (ρ1)]× [0, ξKmin

2 (ρ1)] (3.13)

by a lattice with a fixed number of grid points. Indeed, for all κ, the minimal value
of those evaluations came to lie inside the computational domain. This encouraged
us to proceed with the suggested approach. Unfortunately, an interpolation between
the established grid points and subsequent minimization of the interpolating function,
which can be evaluated much faster than the true action, turned out to not work at
all. As soon as we went beyond linear interpolation (which yields the same results as
just picking the minimal value on the grid), the interpolating function took on negative
values. Because the action is strictly positive, the interpolant clearly does not represent
the true behavior of the action properly. To get a trustworthy interpolant, we would
need more grid points than we could compute in reasonable time, in particular also
more than the minimization procedure.
A canonical choice for the start point is the minimal value on the grid. However,

whenever we want to test a new κ, we would then have to sample the whole parameter
space again, which is incredibly expensive for reasonably fine grids. Moreover, it yields
only one start point for each κ, which we feel slightly uncomfortable with, because it
bears a great risk of getting trapped in a local minimum. Starting at multiple points
in parameter space for each κ adds some valuable redundancy that mitigates this risk.
Hence, our new overall strategy is given by the following multistart method:

1. Take a finite decreasing sequence κ1 > κ2 > · · · > κM > 0 for some M ∈ N,
e. g. κi = 10−i for i ∈ 2, 4, . . . , 6.

2. Scan the interval (0, 1) by finitely many values ρj1 for j ∈ {1, . . . , L}.

3. For each κi and each ρj1, findK
i,j
1 := Kmin

1 (κi, ρ
j
1) andK

i,j
2 := Kmin

2 (κi, ρ
j
1). (Here,

we indicate the dependence of the Kmin on κ explicitly.)

4. For each κi and each ρj1, minimize the action as outlined in section 3.5 with the
start point (ρj1, ξK

i,j
1 , ξK

i,j
2 ).

5. For each κi, find among the L minima from the previous step the smallest one
and save it together with the position in parameter space.

After we have obtained the minima for a decreasing sequence κi, we can proceed
with the rescaling procedure as in section 3.4.
Performing 2 ·M ·L one-dimensional optimizations for each new run only to get hold

of Kmin
1 , Kmin

2 for start points in a reasonable range still seems like a large overhead.
Therefore, we precompute a model for the start points in the K1-K2-plane depending
on ρ1 and κ. We compute the minima once for κi = 10−i with i ∈ {2, . . . , 6} and 27
values for ρ spread over the interval (0, 1) with more points near the boundaries. For
each κi, we found the position of the minima to be reasonably well approximated
by Kmin

1 (ρ1) = a1 + a2 · ρa31 and Kmin
2 (ρ1) = b1 + b2 · (b3 − ρ1)

b4 with appropriate values
for the ai and bi.
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3 Numerical computations

The least squares fits of these models to the data are shown in Figure 3.13. Note that
while the approximation of Kmin

1 is off for small values of κ, especially around ρ1 ≈ 0.2,
the fits mostly overestimate the true value. This amounts to a larger scaling factor ξ
in Figure 3.12 and shifts the start point further into the region, where the action is
definitely increasing with increasing K1 and K2. That might cause the optimization
procedure to take a few more steps, but should not distort the quality of the start
point in view of the found minimum. Keep in mind that we only need to estimate the
scale of Kmin

i for the choice of our start points. To this end, the quality of the fits is
more than enough.
Finally, we again use a least squares fit for the parameters ai, bi of the fits above.

Those are of similar quality. Using these models, we can estimate Ki,j
1 and Ki,j

2 for
any κi and ρ

j
1 (in a reasonable range) in practically no time, without having to optimize

along the K1 and K2 axes over and over again. After all, the scaling factor ξ is the
pivotal tuning parameter for the ultimate choice of the start points. We have used
values ranging from ξ = 0.3 up to ξ = 2.
In Figure 3.14, we analyze the behavior of the action as κ → 0 before and after

the rescaling procedure. With the rescaling, we find an almost linear dependence,
just as for N = 1, see Figure 3.9. Thus, we again find a totally spacelike solution,
where L(x, y) = 0 and ‖x‖ = 1 for all x, y ∈ M . Moreover, as κ goes to zero, we
find ρmin

1 → 0, Kmin
1 → ∞ and Kmin

2 → 0. Hence, in the limit, it seems that only the
second shell is occupied, i. e. a different diverging minimizing sequence is found here
than for N = 1, which would amount to ρ1 → 1, K1 → ∞.
In Figure 3.15, we show the trajectory of the minima in the three-dimensional pa-

rameter space as κ → 0 together with the projection to each of the two-dimensional
planes. In addition, we plot each single free parameter as a function of κ with loga-
rithmic axes. Even though the curves exhibit a plateau, we have no reason to believe
that any of them will converge to a finite value greater than zero for κ → 0. This is
also expected since the decreasing action is not flattening out for almost four decades.

3.7 Outlook: Many shells

When we began to feel comfortable with the specification of the Dirac sphere as a
numerically accessible model, we originally planned on exploring the N → ∞ (and
subsequently also the T → ∞) limit. The N → ∞ limit would correspond to the
completely filled Dirac sea. Our motivation is to find out, if and how the minimum is
perturbed away from the vacuum. Such a deviation amounts to a regularized version
of the vacuum state and potentially encodes physics beyond the results of classical field
theory.
Soon it became clear that this will remain an open task beyond the designated six

months of a master’s thesis. Let us try to estimate, how much harder the problem will
become for larger N . It did not come as a surprise that the transition from one to
three parameters complicated the situation quite a bit. For N = 1000, the number of
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Figure 3.13: We plot Kmin
1 (top) and Kmin

2 (bottom) as a function of ρ1 for several
values of κ together with the corresponding least squares fits. In both
plots, the curves for different κ have been offset vertically by 10 from each
other for better visibility. The true curves lie much closer together.
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Figure 3.14: We plot the action as a function of κ over almost four decades before
the rescaling procedure (top) and after (bottom). After the rescaling
procedure we find an almost linear decay of the action, as κ → 0. The
points here are the combined results of three different runs with different
values for ξ from 0.3 to 2 and also different sequences of ρj1, i. e. completely
different start points. The consistent overall alignment gives us confidence
about the numerical correctness.
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Figure 3.15: In the first plot, we show the trajectory of the minima in the three-
dimensional parameter space as κ → 0 together with the projections to
each of the three two-dimensional planes. The uppermost point corre-
sponds to large κ. In the remaining three plots, we show each of the three
free parameters of the minimum as a function of κ separately.
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3 Numerical computations

free parameters grows to roughly 3000, which seems almost impossible to handle by
the same brute force method we employed here. Needless to say, we would have to redo
the cumbersome task of finding reasonable start points all over again. For N = 2, we
temporarily fixed one parameter ρ1 and explored what happens in the K1-K2-plane.
We developed little intuition about the dependence of the minimum on ρ1, but sampled
the whole domain for ρ1. An analogous procedure is infeasible already for N = 3.
Moreover, recall that for N = 2 we enjoyed the luxury of a periodic integrand in the

temporal direction. Already for N = 3, we have two free frequency parameters ω2, ω3.
For an irrational ratio of those two, the Lagrangian is not periodic. For this reason,
we have to factor in the temporal cutoff function η, see Figure 2.2. This means that
choosing one fixed domain for the temporal integration is not sufficient anymore, but
one has to perform the whole task for several lifetimes of the universe. Since we
still expect highly localized features, we will also have to increase the resolution for a
growing temporal domain. While we ultimately felt that we had the integration under
control for N = 2, this is predicted to change drastically for N = 3 and higher.
If one were to manage N = 3, it would be very interesting to check the following

conjecture: It is believed that the minimizer will be periodic, i. e. the frequency param-
eters ωi will take on values with pairwise rational ratios. Thereby, the lowest frequency
would determine the overall period of the Lagrangian in the temporal direction.
Before one can explore an adequate approximation of the Dirac sea, we expect some

fundamental analytic insights to be necessary, in order to overcome the numerical dif-
ficulties. However, up to now, we only took some first steps and aimed at gaining a
feeling and some intuition about the Dirac sphere. There is a lot of room for improve-
ment in the numerical part too, hence we do not exclude further fruitful numerical
analysis even for larger N .
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4 Conclusion

This thesis consists of two major parts. For one, we specify the Dirac sphere as a
numerically accessible model. Second, we implement the model and provide results for
two special cases. Let us rehash the main findings.
In analogy to the well understood Minkowski example in section 1.3, we start from

the “usual” notions right away, see Table 1.1. Because of the lessons learned in previous
work, see [14], we chose a closed space-time manifold and let time be unbounded. A
natural choice therefore isM := R×S3. The main task is to make a reasonable ansatz
for the kernel of the fermionic operator, since all further quantities, such as the closed
chain, the Lagrangian and eventually the action are derived from it.
A good starting point is to model spin one half particles, i. e. we construct four-

dimensional Dirac spinors on M . We can write down a solution to the Dirac equation
on M directly, see (2.18)-(2.21). Following the idea of causal fermion systems and the
related regularization, we relax the conditions (2.18) and allow for more freedom in
the choice of the parameters. At the same time, we need to ensure that the number
of degrees of freedom does not get too large. Otherwise, we would not be able to
minimize the action numerically.
Under the assumptions that P is homogeneous, isotropic and static, as well as that

the image of P is negative-definite (2.22) and it has vector-scalar structure (2.23), we
can eventually write the Lagrangian as in (2.44). In this simple form, it is perfectly
suited for numerical evaluation. Due to [15], we also have the explicit expression (2.48)
for the integral kernel of the spectral projectors of the Dirac operator on S3. Taking
into account the constraints has two effects. First, we can eliminate one free parameter
using the trace constraint. Second, the boundedness constraint requires us to alter the
model by adding the term κTr(A)2 to the Lagrangian. In section 2.3, we conclude with
a positive answer to our first major question. The Dirac sphere constitutes a model
with 3N − 2 free parameters, which is straight forward to implement on a computer.
Moreover, it encodes fermions on a closed, four-dimensional space-time and could hence
also reproduce the notion of the Dirac sea.
Chapter 3 is devoted to the actual analysis of the Dirac sphere. The case N = 1

in section 3.2 can almost entirely be computed analytically and yields the necessity of
the boundedness constraint as a first interesting result. Disregarding the boundedness
constraint, we find a diverging minimizing sequence. Therefore, we have to add the κ
term, which ensures the existence of minimizers for positive κ, see Figure 3.4.
Introducing the rescaling procedure to sensibly take the limit κ → 0 after the opti-

mization is another essential part of this work. For both cases, N = 1 and N = 2, we
find an almost linear dependence of the minimal action on κ. It would be interesting
to investigate, whether this behavior is also recovered for larger N . The limit κ → 0
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for N = 2 is summarized in Figure 3.14 and Figure 3.15.
Of course, the most time consuming part of the whole thesis was code development.

Extensive testing, trial and error, as well as literature studies led us to the conclusions
in sections 3.3 and 3.5 about which methods to use.
Ultimately, the paramount conclusion is that numerical treatment of causal fermion

systems will remain a tedious task, but moderate advance in minor steps is definitely
possible. The code and considerations developed throughout this thesis, form a solid
basis for future numerical analysis of causal fermion systems. However, for physically
relevant results, we anticipate further analytic insight to be indispensable. A long-term
goal is to compute the Dirac sphere for N on the order of 103 to 105 and investigate,
whether one observes a completely filled Dirac sea with three generations and if or how
it deviates from the exact vacuum solution.
We also have short-term goals in mind. First, deriving the Dirac sphere rigorously

from the abstract framework of causal fermion systems should in principle be straight
forward. Second, the temporal periodicity of the minimizers is another question that
poses itself for any N > 2. Ultimately, we want to understand in detail the connection
of the Dirac sphere to so called critical minimizers that arise in the causal action
principle of certain models.
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Axy, see closed chain
M , see space-time
P , see kernel of the fermionic operator
Sx, see spin space
M+

0 , see Borel measure
L, see Lagrangian
S, see action
C, see direction of time
F , see causal fermion system
H, see causal fermion system
M, see Minkowski space
κ term, 24, 33
n, north pole, 10
πx, see also spin space
ρ, see universal measure
≺· | ·�, see spin scalar product
≺· | ·� (x), see spin scalar product

accuracy goal, 35
action, 3
adjoint spinor, 6

B-spline
cubic, 40

BFGS, see Broyden-Fletcher-Goldfarb-
Shanno algorithm

Borel measure, 3
boundary effects, 10
boundedness constraint, 3, 30
Broyden-Fletcher-Goldfarb-Shanno algo-

rithm, 44
bundle

spinor, 12

cartesian product rule, 39
causal action principle, 1, 3

causal fermion system, 1, 2
causal structure, 3
Chebychev polynomials, 36
Chebychev transform, 36
Cholesky factor, 44
Clenshaw-Curtis rule, 33
closed chain, 5
conjugate gradient descent, 44
constraint

boundedness, 3, 30
trace, 3
volume, 3

critical minimizer, 58
cubic B-spline, 40
curvature factor, 45

decrease factor, 45
Dirac equation, 6
Dirac matrix, 12
Dirac sea, 14, 16, 57
Dirac sphere, 9, 32
Dirac spinor, 6, 12
direction of time, 5

fermionic operator
kernel of the, 4

fermionic projector, 4
principle of the, 1, 14

gamma matrix, 12
Gauss-Kronrod rule, 33
Gaussian quadrature, 33
global adaptive strategy, 33, 36
goal

accuracy, 35
precision, 35
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gradient descent, 44
conjugate, 44

Hessian, 44
homogeneous

spatially, 14

image
negative-definite, 17

isospectral, 41
isotropic, 14

kernel of the fermionic operator, 4

Lagrangian, 3
Levenberg-Marquardt algorithm, 44
lifetime of the universe, 10
lightlike, 3
line search strategy, 45
local adaptive strategy, 36

matrix
Dirac, 12
gamma, 12

measure
universal, 2
volume, 3

Minkowski space, 6
Monte Carlo method, 39

pseudo, 39

negative-definite image, 17
nested quadrature rule, 35
Newton method, 44

Quasi-, 44

one-particle wave function, 4

precision goal, 35
principle of the fermionic projector, 1

Quasi-Newton method, 44

regularization procedure, 15
rescaling, 40
rescaling procedure, 40, 41
rule

cartesian product, 39
Clenshaw-Curtis, 33
Gauss-Kronrod, 33
nested quadrature, 35
trapezoidal, 37

scalar product
spin, 5

separation
lightlike, 3
spacelike, 3
timelike, 3

space-time, 3
space-time point, 3
spacelike, 3
sparse grid method, 39
spatially homogeneous, 14
spectral weight, 3
spin dimension, 2
spin scalar product, 5, 6
spin space, 4
spin structure, 12
spinor

Dirac, 12
spinor bundle, 12
static, 14
stationary universe, 16
stochastic integration methods, 39
strategy

global adaptive, 33, 36
line search, 45
local adaptive, 36

structure
spin, 12

structure
vector-scalar, 17

termination condition, 37
time

direction of, 5
timelike, 3
trace constraint, 3
trapezoidal rule, 37

universal measure, 2
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universe
stationary, 16

vector-scalar structure, 17
volume constraint, 3
volume measure, 3

wave function
one-particle, 4

weight
spectral, 3

Wolfe conditions, 45
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Ich habe die Arbeit selbstständig verfasst, keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt und bisher keiner anderen Prüfungsbehörde vorgelegt.
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