
How Bitcoin Satellite Works

April 8, 2021

Contents
1 Bitcoin Satellite 1

1.1 Fundamental Concepts . 2
1.1.1 Forward Error Correction (FEC) 2
1.1.2 Erasure FEC Coding . 2
1.1.3 UDP and Multicast Addressing 5

1.2 Satellite Transmissions . 5
1.3 Satellite Reception . 6
1.4 How Bitcoin Satellite Achieves Reliable Transport of Blocks . . . 7

1.4.1 FEC Chunk Generation and Decoding 7
1.4.2 FEC Chunk Encapsulation and Tracking 8
1.4.3 Interleaved Chunk Transmissions 8
1.4.4 Out-of-order Block Processing 11

1.5 Data Structures Used to Transport Blocks over Bitcoin Satellite . 12
1.6 How Bitcoin Satellite Improves Block Transmission Speeds . . . 13
1.7 Compressed Transactions . 15
1.8 Monitoring a Bitcoin Satellite Rx Node 15

1.8.1 Monitoring the Satellite Traffic 15
1.8.2 Monitoring the FEC decoding process 16
1.8.3 Monitoring the Txn Hit Ratio 18
1.8.4 Observing Out-of-Order Block Receptions 18

1 Bitcoin Satellite

Bitcoin Satellite is an application based on Bitcoin FIBRE and Bitcoin Core.
It is the application used to transmit and receive blocks over the Blockstream
Satellite network. The transmitter (Tx) nodes maintained by Blockstream use
this application to send blocks over the satellite links. The receiver (Rx) nodes
run by users worldwide, in turn, rely on this application in conjunction with
specialized receiver hardware to receive the blocks from space.

1

https://bitcoinfibre.org
https://bitcoincore.org
https://blockstream.com/satellite
https://blockstream.com/satellite

As a fork of Bitcoin Core, Bitcoin Satellite uses the same applications:
bitcoind or bitcoin-qt. The difference is that it introduces two new
options: -udpmulticasttx and -udpmulticast. These options implement the
transmission and reception of data over one-way multicast-addressed UDP
streams. Such UDP multicast streams can carry blockchain data with unique
mechanisms that are suitable for satellite transmissions.

You can install Bitcoin Satellite directly from Blockstream Satellite’s command-
line interface (blocksat-cli). Please refer to the project’s documentation for
further instructions.

In this guide, we thoroughly explain the mechanisms introduced by options
-udpmulticasttx and -udpmulticast. More generally, we explain how Bitcoin
Satellite works and how you can use it effectively.

1.1 Fundamental Concepts

To start, we shall explain some of the fundamental concepts. If you understand
them now, you will have an easier time understanding the main features of
Bitcoin Satellite.

1.1.1 Forward Error Correction (FEC)

The main goal of a forward error correction (FEC) mechanism is to transport
data reliably over a communication channel that can corrupt the data (i.e., a
lossy channel). An FEC mechanism increases the chances of recovering a data
object despite the occurrence of data loss. For example, when receiving data
over a satellite link, the receiver will often miss parts of the data. In this context,
an FEC scheme comes handy.

An FEC encoder adds redundant information to a data object. On the receiving
end, in turn, an FEC decoder tries to recover the original data based on the
received information (including the added redundancy). If the excess (redundant)
information is sufficiently long, the receiver can recover the data even if there
are lots of errors or missing pieces.

In general, an FEC mechanism works as follows:

That is, the sender applies the FEC encoding, and the receiving end executes
the decoding step.

1.1.2 Erasure FEC Coding

A particular type of FEC scheme consists of the so-called erasure codes. What’s
different about them is that they focus on data received with missing pieces

2

https://github.com/Blockstream/satellite/blob/master/doc/bitcoin.md

Figure 1: General operation of FEC encoders and decoders.

rather than data acquired with errors. For example, suppose the original data
can be split into several chunks of equal size, as follows:

Figure 2: Example of data object split into equal-sized chunks.

Next, suppose that all chunks are sent over a satellite link, but the receiver only
gets some of them:

Figure 3: Erasures: missing chunks of data.

That is, in this example, the receiver misses chunks 3 and 4.

The primary goal of an erasure code FEC mechanism is to fill the missing
pieces, which are called erasures.

The way the mechanism works is again by using redundancy. Instead of trans-
mitting only the original chunks of the data object, the transmitter also sends
extra (redundant) pieces. With that, the receiving end can tolerate the loss of

3

some chunks. As long as the receiver gets enough of them, it can still recover the
original data. Thus, the FEC mechanism becomes as in the following illustration:

Figure 4: General operation of an erasure coding FEC mechanism.

You can think that one way to accomplish the same thing would be to transmit
the original data chunks repeatedly. For example, instead of sending each chunk
only once, one could send each chunk twice. With that, the receiver would
have higher chances of collecting all the data pieces. Nevertheless, this is an
inefficient approach. An erasure FEC mechanism can recover the data much
more efficiently than a simple data repetition strategy.

The primary efficiency mechanism is the ability to recover the original data based
on any set of distinct chunks. We illustrated above an example where chunks 3
and 4 out of five fragments were missing on reception. However, suppose that
the receiver, now featuring an FEC mechanism, does lose chunks 3 and 4 but
receives two extra (redundant) chunks, like so:

Figure 5: Reception of redundant FEC chunks.

In this case, a well designed FEC mechanism can recover the original data based
on the received set of five distinct chunks (1, 2, 5, 6, and 7), even though chunks
6 and 7 (redundant) are not exactly identical to the missing pieces (3 and 4). If
there are two missing chunks, the receiver can complete the FEC decoding as
soon as it acquires two extra distinct chunks. In contrast, a mechanism based
on repetition needs to receive the exact missing pieces. In this case, it would
wait until the repetitions of chunks 3 and 4 come, which is a far more inefficient
approach.

The erasure coding approach is the one adopted on Bitcoin Satellite. With the
specific transmission protocol used by the Blockstream Satellite network (the
DVB-S2 standard), it turns out that the receivers only output correctly-recovered
chunks of data. If a specific data fragment is wrongly received, an integrity

4

check identifies the problem and drops it. As a result, the receivers may only
miss some chunks (the ones that are dropped) but never receive chunks with
errors. Hence, an erasure coding FEC scheme is perfectly suitable to overcome
the chunk losses.

1.1.3 UDP and Multicast Addressing

UDP is a connectionless protocol for transmitting data over a network. Once
a UDP sender sends a message, it does not wait for a reply or an acknowledg-
ment from the recipient. Furthermore, the UDP sender does not retransmit
the data if the UDP recipient misses it (it cannot tell whether the recipient
missed the message). Hence, UDP is a lightweight protocol suitable for one-way
transmissions. It is opposed to the widely used TCP, which includes connections,
retransmissions, and other features, but requires two-way communication. UDP
is used in Bitcoin Satellite primarily due to its one-way nature, as satellite
receiver nodes can only receive data but not transmit.

The concept of multicast addressing refers to the destination of the UDP messages.
A point-to-point UDP transmission scheme is called unicast-addressed. It consists
of one sender node that posts a message to a specific recipient. In contrast,
with multicast addressing, the communication becomes point-to-multipoint. A
multicast transmitter node (think a satellite transmitter) sends a message for
many recipients simultaneously (the satellite receivers). A multicast receiver,
in turn, consists of a node or application interested in a particular multicast
destination address. As discussed later, the Bitcoin Satellite application runs
such a multicast listener.

1.2 Satellite Transmissions

Next, we discuss the Blockstream Satellite transmissions that originate from
the Bitcoin Satellite application. We shall distinguish them in terms of streams,
which refer to independent sequences of multicast-addressed UDP packets.

The Blockstream Satellite network continuously broadcasts four independent
streams:

• Stream 1: Newly mined blocks arising in real-time on the peer-to-peer
(p2p) Bitcoin network.

• Stream 2: The past 24h of blocks (past 144 blocks on average).
• Stream 3: The past 1h of blocks (past 6 blocks on average).
• Stream 4: The full blockchain.

Stream 1 allows bitcoin satellite receiver (Rx) nodes to stay in sync with the
blockchain in real-time. As soon as a new block propagates over the p2p network,
it is also broadcast over the satellite network.

5

Stream 2 and Stream 3 allow Rx nodes to recover from recent losses or
temporary reception outages. A satellite receiver can experience complete
interruptions or significant reception failures due to weather conditions (primarily
under heavy rain). If such a failure leads to missing a block when it is sent over
Stream 1, the Rx node can still download the block later when repeated over
Stream 2 or 3.

Stream 4 continuously propagates the entire blockchain. One could set up a
fresh new Bitcoin node attached to a satellite receiver and still achieve the full
sync (i.e., the initial block download) via satellite only.

The satellite network currently allocates the satellite link capacity as follows: -
Stream 1 uses the total capacity whenever there is a new block to be transmitted.
It is also the stream with the highest priority on transmissions. - Streams 2 and 3
operate with approximately 70 kbps each. For Stream 2, this bitrate is enough to
cycle over 144 blocks at least three times during 24h. For Stream 3, likewise, this
bitrate is enough to cycle through 6 blocks at least three times throughout an
hour. - Stream 4 uses the remaining capacity, which is approximately 870 kbps
on average. As a result, the complete sync can be accomplished in around 36
days when receiving from a single satellite or roughly 18 days with dual-satellite
reception.

Thus, conceptually, the multiplexing of streams looks as follows:

Figure 6: Time multiplexing of Blockstream Satellite streams.

Note that Stream 1 only runs when there is a new block to send and then sleeps
until the next block.

1.3 Satellite Reception

A Blockstream Satellite receiver receives the multicast-addressed UDP packets
sent over satellite. Upon reception, these messages are conveyed over the local
network to the interested multicast listeners.

A Bitcoin Satellite Rx node runs bitcoind with option -udpmulticast on its
bitcoin.conf file. This option leads to bitcoind joining the multicast listeners

6

https://bitcoin.org/en/full-node#initial-block-downloadibd
https://github.com/Blockstream/satellite/blob/master/doc/dual-satellite.md
https://github.com/Blockstream/satellite/blob/master/doc/dual-satellite.md
https://github.com/Blockstream/satellite#hardware

interested in the particular address (239.0.0.2:4434) to which the Blockstream
Satellite transmitters send the UDP packets.

1.4 How Bitcoin Satellite Achieves Reliable Transport of
Blocks

Bitcoin Satellite aims at transporting Bitcoin blocks reliably over the lossy
satellite channels. In other words, it tries to maximize the chances of carrying
blocks successfully to receivers worldwide, despite the random losses that each
receiver can experience.

The way it achieves reliable transport is based on the FEC schemes mentioned
earlier, particularly the erasure coding approach. Each block is split into multiple
chunks of data, which we call FEC chunks. Then, the FEC chunks from distinct
blocks are alternated over time to maximize the outage interval that a receiver
can tolerate. This process is thoroughly explained next.

1.4.1 FEC Chunk Generation and Decoding

As mentioned earlier, each block transmitted via the UDP multicast service is first
divided into multiple chunks of data, each containing 1152 bytes. Subsequently,
the Bitcoin Satellite sender node post-processes all chunks of a block through
the so-called FEC encoder. The encoder takes x original fragments and produces
y completely different (FEC-encoded) chunks, where y > x. In other words, it
encodes (modifies) the data to facilitate decoding and adds extra (redundant)
chunks (given that y > x). For example, when processing a block that originally
occupies 1000 fragments, the transmitter node can send 1110 FEC chunks, among
which 110 pieces are redundancy.

Each FEC chunk is sent on an independent multicast-addressed UDP datagram.
The UDP multicast listeners (satellite receivers), in turn, collect the chunks
and track whether a sufficient number of them has been received for each block.
Once enough FEC chunks have been acquired, the receiver decodes the block.

In most cases, the Rx node can decode a block by receiving any combination of
x distinct chunks, x being the number of fragments derived from the original
block before the FEC encoding. Hence, the receiver needs to track how many
different chunks it has acquired for each block coming via satellite. Once it has
x unique chunks for a given block, it starts trying to decode the FEC object.

The actual number of chunks sent by the transmitter nodes for each block is y
and y > x. Hence, there are y - x excess chunks. This surplus corresponds to
the number of fragments that the Rx node can miss while preserving its ability
to recover the block. In the example where the Tx node sends y=1110 chunks
for a block that originally has x=1000, an Rx node can miss up to 110 chunks
and still recover it.

7

So the two key elements of the decoding process are the redundancy and the
efficient data recovery mechanism provided by the FEC scheme. The redundancy
element comes from the transmitter sending y FEC chunks for each block of x
original chunks, with y > x. The efficient data recovery comes from the FEC
scheme’s ability to recover the original data from any set of x distinct chunks on
the receiving end. It implies that the Rx node can lose any set of y - x chunks
safely most of the time.

1.4.2 FEC Chunk Encapsulation and Tracking

The next question is how the Rx node can track the incoming FEC chunks. The
Bitcoin Satellite implementation uses the encapsulation protocol from Bitcoin
FIBRE with minor modifications. This protocol adds enough information into
the UDP packets to allow receivers to track the incoming FEC chunks.

In essence, each UDP datagram contains metadata in addition to the actual
FEC chunk. The essential metadata fields are the following:

• Hash prefix
• Original data object length
• Chunk ID

The hash prefix is a 64-bit prefix of the block hash. At first, the receivers rely
on this information to organize which chunk belongs to each block. The original
data object length is the information that allows receivers to figure out how many
chunks are necessary for each block. That is, it gives enough information to
compute x, the number of fragments derived from the original block (before FEC
encoding). Lastly, the chunk ID is the chunk identification number, which allows
for tracking of the unique (distinct) FEC chunks received for each FEC-encoded
block.

1.4.3 Interleaved Chunk Transmissions

So we already know that each Bitcoin block is split into multiple FEC chunks
and that each chunk is sent on an independent UDP packet with some metadata
fields. The next important aspect is how we alternate between chunks of different
blocks. The strategy differs among the four streams sent over the satellite
network.

Recall that Streams 2 and 3 refer retransmit the past 24h and 1h of blocks,
respectively. Recall also that Stream 4 refers to the full-blockchain transmission
loop. The Tx node interleaves (alternates in time) the chunks of several consecu-
tive blocks in all of these streams. First, the Tx node groups several successive
blocks in a window of blocks. Then, it transmits a single chunk out of each block
per transmission turn.

For example, consider the hypothetical window of blocks below:

8

https://bitcoinfibre.org
https://bitcoinfibre.org

Figure 7: Hypothetical window of blocks.

The most natural approach for transmission would be to transmit Block 1 first.
Then, send Block 2, and so on. However, this is not how the Bitcoin Satellite
transmitter works. Instead, the transmitter continuously iterates over a window
of blocks while transmitting a single chunk out of each. The process becomes as
follows:

On the first iteration, the transmission loop in this example sends one chunk
from each of the seven blocks. In the next iteration, it repeats the process. More
generally, it continues transmitting one FEC chunk out each of each block in
the window indefinitely. In other words, the blocks are sent in parallel instead
of in series.

Eventually, when a block is fully transmitted, the node adds a new block to the
Tx block window. Thus, the transmission window keeps moving. For example,
in the illustrated above, the first block that would complete transmission would
be Block 4, the smallest block in the window (which only has three chunks).

Note that the FEC chunk size is fixed (of 1152 bytes), and it is the
number of chunks that varies among blocks. While tiny blocks can be
split into a few fragments, large ones can use more than a thousand
chunks (sometimes up to two thousand).

The primary motivation for the interleaved transmission approach is to protect
from error bursts and outages of the receiving end. The benefit of doing so is
better explained with an example.

9

Figure 8: Time-interleaved transmission of FEC chunks from a window of blocks.

10

Suppose that the transmitter sends a single chunk per second. Next, suppose
this transmitter is sending an FEC-encoded block composed of 250 FEC chunks,
50 of which are redundant (i.e., y=250 and x=200). Finally, suppose that a
receiver suddenly experiences a complete satellite outage for 5 minutes (i.e., 300
seconds). If the sender node did not interleave the chunks, the receiver would
miss 300 chunks, namely the 250 pieces of the given block, including the excess
50 fragments. As a result, the receiver would not be able to recover the referred
block.

Now, contrast this with the case where the transmitter alternates between chunks
of 1000 consecutive blocks. The hypothetical transmitter that sends a single
chunk per second would take 1000 seconds to transmit a single fragment out of
each block in the 1000-block window. Consequently, if a receiver experiences a
5-minute outage, it loses a single chunk from 300 distinct blocks, rather than
potentially 300 chunks of the same block. Finally, given that each block has
excess chunks (the example block has 50), the receiver can still recover the data
in this case. If the receiver misses one chunk of the hypothetical block with 50
excess chunks, there are still 49 extra chunks to back up the decoding process.
In other words, the interleaved approach distributes the chunk losses among
many blocks.

The only drawback of the interleaved transmission approach is that it leads
to longer intervals to transport each block over the multicast-addressed UDP
streams. However, in the long term, the average block transmission speed is
equivalent. The interleaved approach takes longer to complete the transmission
of individual blocks because many blocks are effectively transported in parallel.

Lastly, note that Stream 1 (which carries recently mined blocks) does not
interleave chunk transmissions. The rationale is that Stream 1 focuses on
transporting a single block (a new block in the chain) as quickly as possible.
Thus, the interleaved transmission approach does not apply to it. Moreover,
Stream 1 benefits from extra redundancy, as explained later, so it needs less
protection than the blocks sent over Stream 2 and 3. Besides, if a receiver fails
to receive the new block sent over Stream 1, it can still get the repetitions later
over Streams 2 and 3.

1.4.4 Out-of-order Block Processing

Another essential element for achieving a reliable transport of blocks over Bitcoin
Satellite is the processing of out-of-order blocks. All blocks in the blockchain
have a number since the Genesis block. This number is the so-called block
height. A block is said to be in order when its height is equal to the previous
block height plus one. Otherwise, the block is out of order. For example, if the
previous block has a height of 640299 and the node subsequently receives height
640302, the latter is out of order.

As explained earlier, some streams send several blocks in parallel (with time-

11

https://en.bitcoin.it/wiki/Block_chain
https://en.bitcoin.it/wiki/Genesis_block
https://developer.bitcoin.org/glossary.html
https://developer.bitcoin.org/glossary.html

interleaved FEC chunks). Hence, on a window of blocks sent in parallel, the
shorter blocks tend to complete earlier. This means that the blocks are not
received in sequence. This parallel transmission feature is the first cause of
blocks received out of order by a Bitcoin Satellite Rx node.

Next, recall that Stream 1 sends new blocks as they arise in the p2p network.
Therefore, Stream 1 always transmits the blocks in sequence. The only exception
is when there is a chain reorganization.

Nevertheless, an Rx node can fail to receive a block transmitted by Stream
1 and then wait for its repetition sent later through Streams 2 and 3. While
the repetition does not arrive, the node will continue to receive new blocks via
Stream 1. From this point on, all blocks received via Stream 1 become effectively
out-of-order blocks because they are on top of a height that is still missing. This
is the second reason why blocks can be received out of order.

Lastly, there is a third scenario where blocks become out of order. Recall that
Bitcoin Satellite propagates the entire blockchain through Stream 3. Thus,
an Rx node may start with an empty Bitcoin data directory and achieve full
synchronization while disconnected from the internet. However, the problem is
that when the Rx node is launched, the Blockstream Satellite Tx node may be
transmitting any block, not necessarily the first block. Thus, the Rx node can
start from any height within the chain. As a result, the node receives the entire
chain out of order until it catches up with the chain’s start.

Bitcoin Satellite overcomes the three referred scenarios by saving out-of-order
blocks (OOOBs) on a dedicated database. Any block received out of order via
satellite (more specifically, using the -udpmulticast option on bitcoind) is
first minimally validated. If it passes this validation, it is then stored on the
OOOB database. Correspondingly, whenever a block is processed in regular
order, Bitcoin Satellite checks if the subsequent blocks (to be placed on top of
the incoming block) are available on the OOOB database. In the positive case,
the Bitcoin Satellite Rx node processes the succeeding blocks immediately.

1.5 Data Structures Used to Transport Blocks over Bit-
coin Satellite

Before proceeding to the next topic, it is worth clarifying the data structures
sent over multicast-addressed UDP streams. For each block, the Tx node sends
two structures (interchangeably called data objects): the header and the body
of a block. The Tx node transmits the header object first, then sends the body
object. The two objects are FEC-encoded separately. Correspondingly, the Rx
node decodes the two objects independently.

The header object contains the standard block header and auxiliary information.
More specifically, it consists of a modified version of the cmpctblock message

12

https://en.bitcoin.it/wiki/Chain_Reorganization
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki#cmpctblock

containing the HeaderAndShortIDs structure. The modified version is called
HeaderAndLengthShortTxIDs.

Among other information, the HeaderAndShortIDs structure has a field called
shortids, which contains the short transaction IDs of each transaction (txn) in
the block. The modified message sent by the Bitcoin Satellite Tx node (again,
called HeaderAndLengthShortTxIDs) has the same information and more. For
instance, it includes a field named txlens, which consists of a list with the
length of each txn in the block. Ultimately, upon reception of the header object,
the Rx node becomes aware of the txns in the block that is yet to come.

The body message contains the actual txns, i.e., the transactions list from the
regular block structure. The entire list is treated as a single data object and
split into multiple chunks (up to thousands). Then, as mentioned earlier, the
FEC encoder post-processes all the x original chunks and generates y encoded
chunks with redundancy. The body object comprises these y chunks.

The processing sequence on the Rx node is as follows. For each block, the node
starts by receiving the header FEC chunks. Once it has enough header chunks,
it decodes the header object. Then, with the header information, the node can
prepare the block that is yet to come. Subsequently, the node receives the body
FEC chunks. Once it has enough body chunks, it decodes the body message. At
this point, the node completes the block information and processes the block as
usual through Bitcoin Core mechanisms.

1.6 How Bitcoin Satellite Improves Block Transmission
Speeds

Bitcoin Satellite has a mechanism to transport new blocks recently mined in
the p2p network as fast as possible. The scheme comes from Bitcoin FIBRE’s
implementation. It is based on the transmission of mempool transactions (txns)
over the UDP multicast streams.

Each Bitcoin block contains a series of txns. Hence, when the receiver has some
txns of the block ahead of time, it can fill portions of the block in advance. In
the context of FEC-encoded transmissions, the receiver (possessing some txns
of the block) can fill some FEC chunks of the block body object before actually
receiving the chunks.

The Bitcoin Satellite Tx nodes continuously send the mempool txns that are
more likely to enter new blocks (yet to be mined). Thus, satellite receivers
worldwide receive and store txns even if they are connected only via satellite.

When a new block finally arises in the p2p network, the Tx node starts by trans-
mitting the corresponding header object over Stream 1. Once an Rx node receives
and decodes the header object (containing the HeaderAndLengthShortTxIDs
structure), it can determine the block’s exact memory layout. With that, the

13

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki#headerandshortids
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki#headerandshortids
https://en.bitcoin.it/wiki/Protocol_documentation#Short_transaction_ID
https://en.bitcoin.it/wiki/Block
https://bitcoinfibre.org
https://en.bitcoin.it/wiki/Vocabulary#Memory_pool

Rx node immediately reserves memory for the block’s body object and prefills all
the txns that it already has in its local mempool.

As shown below, the prefilling operation implies that some of the body FEC
chunks become known in advance. The remaining FEC chunks containing parts
of txns that are not available locally yet become erasures. Consequently, when
the Tx node starts to transmit the body object (sent after the header), the Rx
node knows most of it already. In this case, the Rx node only waits for a few
remaining FEC chunks.

Figure 9: Pre-filling of FEC chunks based on txns available on the local mempool.

Finally, recall that an erasure coding FEC mechanism can recover the original
data from any set of x unique FEC-coded chunks. Since the Tx node sends FEC
chunks with random FEC IDs, it becomes very likely that every incoming chunk
is a unique (new) chunk to the Rx node. In the end, if the receiver prefills z
FEC chunks based on the local (mempool) txns, only x-z FEC chunks remain as
erasures. Thus, the Rx node only needs to acquire x-z chunks to complete the
FEC decoding. This mechanism provides a substantial reduction in the overall
block transport latency.

Furthermore, this mechanism results in extra redundancy (protection) on the
transport of new blocks over Stream 1. If the Rx end already has z chunks of a
block and only needs x - z remaining chunks, while the Tx end sends y FEC
chunks, it means that all y - (x - z) chunks become redundant. Recall that
in Streams 2 to 4, each block has y - x redundant chunks. Here, in contrast, on
Stream 1, each block has y - x + z excess chunks. For z > 0, this is a more
significant number of extra chunks.

Suppose, for instance, the case of a block with x=1000 chunks (again, sent with
y=1110 FEC chunks). If the Rx node can prefill z=950 chunks out of x=1000, it
only needs to receive 50 remaining chunks. In this case, the latency to download

14

the block is 20 times lower than if it were to be received with no prefilling
mechanism.

1.7 Compressed Transactions

Another essential feature of Bitcoin Satellite is that it uses a more efficient
representation of txns with compression. The Bitcoin Satellite Tx nodes send
FEC-encoded blocks with compressed txns. The Bitcoin Satellite Rx nodes, in
turn, decompress the txns after decoding a FEC block. Most txns are compressed
by around 20%, which results in significant savings on data transmissions.

1.8 Monitoring a Bitcoin Satellite Rx Node

So the next question is how one can verify that a Bitcoin Satellite Rx node is
operating correctly. In general, you can check if the node is staying in sync with
the blockchain and receiving multicast-addressed UDP data via the satellite
receiver. You can check this using RPC commands and by inspection of logs
collected by the debug.log file in your Bitcoin data directory (by default at
~/.bitcoin). This section explains how.

The explanation that follows applies to Bitcoin Satellite version v0.19.1.0.2.0
(read as satellite version 0.2.0 based on Bitcoin Core 0.19.1) or any later
version. You can check your version by running:

bitcoind --version

Version v0.19.1.0.2.0 shows the following:

v0.19.1.0-g7fb5a08899ed6dc34229fb8476d2b1666f076fc8

If you would like to update Bitcoin Satellite to the latest version, please refer to
blocksat-cli’s documentation.

1.8.1 Monitoring the Satellite Traffic

Firstly, you can run the RPC command getudpmulticastinfo to obtain infor-
mation from the UDP Multicast group configured for satellite reception. For
instance, run:

bitcoin-cli getudpmulticastinfo

The result includes the traffic’s measured bitrate.

{
"172.16.235.9:0": {

"bitrate": "1.060615 Mbps",
"group": 0,

15

https://github.com/Blockstream/satellite/blob/master/doc/quick-reference.md#5-bitcoin-satellite-setup

"groupname": "blocksat-tbs",
"ifname": "dvb0_0",
"mcast_ip": "239.0.0.2",
"port": 4434,
"rcvd_bytes": 235730221924,
"trusted": true

}
}

1.8.2 Monitoring the FEC decoding process

You can also monitor the status of the FEC decoding process. Bitcoin Satellite
has an RPC command called getchunkstats, which can be executed as follows:

bitcoin-cli getchunkstats

This command returns the number of blocks being download in parallel and the
corresponding number of FEC chunks, as follows:

{
"n_blks": 322,
"n_chunks": 104637

}

Alternatively, when the block heights are already known, the command returns
progress information concerning the blocks with minimum and maximum heights
among the ones being received, as follows:

{
"min_blk": {

"height": 640064,
"header_chunks": "22 / 22",
"body_chunks": "251 / 930",
"progress": "28.68%"

},
"max_blk": {

"height": 640067,
"header_chunks": "19 / 19",
"body_chunks": "706 / 938",
"progress": "75.76%"

},
"n_blks": 1650,
"n_chunks": 623947

}

However, note that the Rx node first needs to decode the header object (with
the HeaderAndLengthShortTxIDs structure) to become aware of the incoming

16

heights, as explained earlier. Thus, the getchunkstats RPC command typically
returns the former result, containing the number of blocks and chunks only.

Furthermore, as soon as the node decodes the header object, where it finds the
block height information, it can check whether the block is needed or already
available locally. If the block is already available locally, the node stops processing
the block. Any further FEC chunk received for this block gets dropped to avoid
unnecessary work.

Ultimately, when the node is in sync with the blockchain and operating for
a sufficiently long interval, command getchunkstats commonly returns zero
blocks and chunks, as follows:

{
"n_blks": 0,
"n_chunks": 0

}

This is a valid result when all blocks being received over satellite are already
available locally. However, as soon as the node starts to receive a new block (one
that is not available locally yet), the counts become non-zero.

An alternative view can be obtained by running getchunkstats with argument
0, as follows:

bitcoin-cli getchunkstats 0

This command returns information from all the FEC-encoded blocks that are
currently partially received.

{
"0035f332c7544c4d": {

"header_chunks": "9 / 14",
"body_chunks": "599 / 835",
"progress": "71.61%"

},
"00418a9a3d82cde8": {

"header_chunks": "19 / 20",
"body_chunks": "498 / 812",
"progress": "62.14%"

},
"00773ee8aee3efa6": {

"header_chunks": "0 / 0",
"body_chunks": "268 / 483",
"progress": "0%"

},
...

The key of each entry corresponds to the 64-bit prefix of the block hash. Each
entry shows the number of chunks received for the header and the body FEC

17

objects. When the node has not received any header or body chunk, the returned
count remains 0 / 0 because the total number of chunks composing the object
is still unknown. The progress percentage is determined based on both header
and body chunks.

1.8.3 Monitoring the Txn Hit Ratio

There is also an RPC command to get a sense of the block transfer speed gains
due to the aforementioned txn prefilling mechanism.

The metric of interest is the so-called txn hit ratio, determined as follows:

fec_hit_ratio = txns_available_locally

total_txns

That is, the txn hit ratio is given by the number of txns already available locally
(in the mempool) when a block comes, divided by the total number of txns
composing the block. A similar metric is the FEC chunk hit ratio, which is the
ratio between the number of FEC chunks prefilled based on local txns and the
total number of FEC chunks composing the block. The higher these ratios, the
better it is for latency. A 100% FEC chunk hit ratio implies an immediate FEC
decoding upon a block header message’s reception.

You can monitor these ratios using the getfechitratio RPC command. For
instance, run:

bitcoin-cli getfechitratio

The result shows both ratios separately, as follows:

{
"172.16.235.9:0": {

"txn_ratio": 1,
"chunk_ratio": 1

}
}

1.8.4 Observing Out-of-Order Block Receptions

As explained earlier, Bitcoin Satellite deals with blocks received out-of-order.
You can check how many out-of-order blocks are waiting to be processed by
running the following RPC command:

bitcoin-cli getoooblocks

Note that if you are running the full synchronization, there can be a large number
of out-of-order blocks until your node catches up with the preceding blocks.

18

	Bitcoin Satellite
	Fundamental Concepts
	Forward Error Correction (FEC)
	Erasure FEC Coding
	UDP and Multicast Addressing

	Satellite Transmissions
	Satellite Reception
	How Bitcoin Satellite Achieves Reliable Transport of Blocks
	FEC Chunk Generation and Decoding
	FEC Chunk Encapsulation and Tracking
	Interleaved Chunk Transmissions
	Out-of-order Block Processing

	Data Structures Used to Transport Blocks over Bitcoin Satellite
	How Bitcoin Satellite Improves Block Transmission Speeds
	Compressed Transactions
	Monitoring a Bitcoin Satellite Rx Node
	Monitoring the Satellite Traffic
	Monitoring the FEC decoding process
	Monitoring the Txn Hit Ratio
	Observing Out-of-Order Block Receptions

