
1

Computer Science NEA

Name: Bradley Makinson
Candidate Number:
Centre Name: Ashton Sixth Form College
Centre Number:

2

Contents:
Contents………………………………………………………………………………………2
Introduction/outline of project…………………………………………………….3
ANALYSIS SECTION

Why have I used a computational approach?........................3
Stakeholders……………………………………………………………………….4
Existing solutions………………………………………………………………..7

 Main features…………………………………………………………………….14
 Limitations…………………………………………………………………………17
 Stakeholder Requirements ………………………………………………..17

Success Criteria …………………………………………………………………19
Questionnaires………………………………………………………………….22

DESIGN SECTION
 System diagram……………..………………………………..……………...23
 Systematic breakdown of problem……………………………………24
 Structure of solution…………………………………………………………25
 Systems Algorithms………………………………………………………….28
 Usability features……………………………………………………………..38
 Key Variables and Additional Files……………………………………39
 Iterative Development……………………………………………………..43
 Post-development Stage………………………………………………….56
DEVELOPMENT SECTION
 Initialisation…………………………………………………………………….65
 Start Menu………………………………………………………………………65
 Sign Up……………………………………………………………………………70
 Log in………………………………………………………………………………95
 Main Menu…………………………………………………………….……….102
 Creating sets………………………………………………………….……….108
 Adding flashcards to sets…………………………………....………….114
 Revising flashcards…………………………………………………….…..122
EVALUATION SECTION
 Post-development testing/success criteria evaluation……139
 Usability features/user feedback……………………………………151
 Limitations and how they could be addressed…….…………158
 Maintenance issues…………………………………………………….…160

3

I will be creating a revision app for my NEA using Python with a few other
frameworks, such as PySimpleGUI. It will have similar features to some other revision
apps that already exist (i.e. Quizlet), such as virtual flashcards, quizzes to test your
knowledge, a progress tracker and more that will be discussed further later on. The
key purpose of this app is to help students revise effectively for exams.

ANALYSIS SECTION
In this section, I will start to investigate the problem in order to start planning a
suitable solution for the revision app I plan to create. The problem is students’ needs
to revise for upcoming exams and assessments, and my program will aim to provide
a solution to that by allowing students to create their own revision sets and track
their own progress.

Why have I used a computational approach?
A computational approach is most suitable for my solution for many reasons.
Firstly, there are many mathematical processes that need to be carried out that
would be much quicker and accurate if carried out by a computer system as the CPUs
multiple cores can carry out many tasks quickly and simultaneously, whereas a
human could only carry out one task at once. For example, calculating the average
score, percentage and time taken to complete a quiz would take much longer for a
human to carry out and would be less accurate - these features will be required to
allow the user to track their progress. Specifically, calculating the average percentage
of the user’s test results will be calculated using the following calculation: (achieved
score/maximum possible score) x 100, and this calculation will be carried out many
times throughout the user’s time on the app. It would take a human much longer to
type this into a calculator, and there would be the potential for some inaccuracies in
the results, so therefore a computational approach is more useful here. The purpose
of the app is to provide a quick and easy way for the user to revise efficiently, and
displaying statistics like these on the screen instantly helps achieve this goal by
reducing the time needed to revise a topic as the user will not have to carry out
these calculations themselves. By using a computational approach, repetitive,
mathematical processes like these are guaranteed to be quick and accurate.

Furthermore, with virtual flashcards, the user cannot lose or damage them by
accident as they are stored virtually in the computers memory, making this a much
more reliable way of storing and using your revision materials. I plan to store the
flashcards themselves in an external (.csv) file, meaning the user will not have to
worry about having the resources to create real-life flashcards (e.g. paper, pens etc)
or losing/damaging them as they are securely stored within memory rather than
being a physical item.

There are also certain aspects of my revision app that would be impossible to
implement in any other way than computationally. For example, sending tweets and

4

email notifications would become extremely complicated, and therefore take much
longer, if it wasn’t done with the press of a button on the app itself. This is why I plan
to use the Twitter API to automatically post a pre-written tweet by the press of a
button.

My solution lends itself to the idea of abstraction – breaking down the problem into
smaller, more manageable chunks – as will be described later in my design section.
There will be a lot of different areas in my program, and breaking them down and
solving them modularly via computational methods will make the solution as a whole
a lot more manageable, and make my solution easier to create as the functions and
subroutines I need to use will be laid out clearly.

Overall, a computational approach makes my solution easier to use, quicker to run
and more convenient and organised for the user. Many of the processes that need to
take place in my solution would simply be impractical and too time-consuming for a
human to carry out repetitively.

Stakeholders
As my application will be for academic and revision purposes, I have identified my
stakeholders to be students, mainly under the age of 25. My application will allow
the user to create their own sets of revision materials, and these can be of any level
of complexity, in any subject area. For that reason, the students my application is
aimed at can be of any age, but mainly at GCSE and A-level students who have high
amounts of content to remember, and a very short amount of time to memorise it.
My application will be most useful for students who are close to sitting their exams
and revise frequently, as the progress tracker feature will encourage students to
return to the app frequently and build up their knowledge. Additionally, the user
interface will be very simple, user-friendly and easy to understand, meaning there
will be no confusion in terms of how to use the application, and therefore using the
application should not be an issue for those students with very little IT knowledge.

In order to make my solution more tailored to the needs of my stakeholders, I will
question three of my stakeholders about what they would expect in a revision app
and how they would use it.
My three stakeholders are:

• Marcus, who is a 19 year old university student studying business.

• Vivek, who is a 17 year old A-level student studying Maths, Computer Science
and English Language.

• Sam, who is a 15 year old GCSE student with an interest in studying physics at
a higher level.

I feel this is a good range of ages and study levels, helping me to get a better general
understanding of the needs of students at all levels, and all of these stakeholders will
need to revise for upcoming exams in their various subjects.

5

Question 1: How would you like to log into the revision app?
Marcus: “Email and password”
Vivek: “Username and Password”
Sam: “Using the default username and password fields”

From the answers given to question 1, I am going to stick with my decision to use a

username and password to log in. The users email will be entered when they sign up

for email notification purposes.

Question 2: What features do you expect in a revision application?
Marcus: “Different sections for different subjects etc and a testing section for your
subjects, as well as a social media page (I use Twitter most often)”
Vivek: “Creating Question Sets, Quizzes, Progress Tracker, Twitter updates,
flashcards, quick and easy to use”
Sam: “topic grid so I know what’s revised so far and what’s not yet, a range of
questions and topics and flashcards to revise them etc…”

Many of the responses given to question 2 link heavily with what I was already
planning to include – creating revision material, revising that material using
flashcards, quizzes/tests on that material, and a progress tracker/topic grid, as well
as including the ability to post results to social media (namely Twitter)

Question 3: How would you use a revision application with these features (e.g. how
often, how you would test your knowledge etc.)?
Marcus: “End of every week and before a test/exam”
Vivek: “Create Question Sets after writing notes, do quizzes before doing past papers
on a topic in order to refresh my mind”
Sam: “Nightly sessions, test on topics I’m not as sure about and redo it for a few
nights until I’m good at it”

The answers to question 3 will help me design my solution in a way that allows the
user to have the best experience.

Question 4: Have you used any revision apps before, and if so, what were they and
which features did you like best?
Marcus: “Yes – Quizlet. My favourite feature about it is the way you can test your
knowledge with a quiz.”
Vivek: “No prefer paper. Mostly use flashcards because they are portable.”
Sam: “Quizlet and Memrise, I liked the ability to see which parts have been covered

and which haven’t”

6

In question 4, the idea of portability was mentioned in one of the responses – my

solution will be available on any computer system that meets the software and

hardware requirements (discussed later). I am also planning to include a quiz feature

in my app as mentioned by Marcus.

Question 5: Why would you use a revision app?
Marcus: “In case I had a test coming up (especially because of my uni exams) and it
would refresh my memory about certain topics”
Vivek: “To access a way to revise on the go and to remember key definitions before
exams / last minute practice”
Sam: “Easier and more convenient revision”

The idea of revision of key ideas just before an exam was brought up in question 5,
suggesting the application may be used on a more short-term basis by some
students, perhaps removing the need for a long-term progress tracker.

Question 6: How would you like the program to look, and what would be the best
form of inputs for you?
Marcus: “Not overly complicated, clear instructions and input boxes/buttons as I
don’t want to spend ages figuring out how to use the app rather than revising”
Vivek: “Just be as easy to use as possible, prefer inputs via presses of a button than
textual inputs for example”
Sam: “Having used many revision apps before, I always preferred apps that were
simple and you could revise content or test your knowledge via the press of a
button”

Its clear that my stakeholders want a simple and easy-to-use solution, with buttons
seemingly being the preferred source of user input.

Question 7: How long before your exams would you start using a revision app?
Marcus: “2 weeks at a minimum”
Vivek: “6 months before”
Sam: “A few weeks before rather than months because a revision app is for more
quick, snappy revision”

The idea of quick and snappy revision came up again in question 7, although the
times that my stakeholders would start revision before an exam varied massively –
from 2 weeks to 6 months. For this reason, I will still keep my long-term progress
tracker as some students may wish to use the application over a longer period of time
than others.

These questions and answers from my stakeholders will help me improve my
solution and amend it to include anything that my stakeholders say they would find

7

useful in a revision app. They will help me to understand which features are most
useful for my stakeholders based on their past usage and experience of revision
apps, and thus ensures my solution is designed with my stakeholders’ needs in mind.

Existing solutions
There are many already existing revision apps available, and I will research and
investigate these to ensure I understand what my stakeholders need in my solution.

Solution 1: Quizlet
Quizlet is a free-to-use revision app for students that allows the user to create sets of
terms and definitions on a particular subject, and then revise these in many ways.
Link: https://quizlet.com/en-gb
Features:

This is the sign up screen on Quizlet. You have to enter your date of birth, choose a

username and password, and then enter your email.

My solution will require the user to choose both a username and password for log in

purposes (these will be stored in a secure .csv file), and the user’s email for email

notifications (this will be discussed in more detail later).

I will not require the user to enter their date of birth for any reason, and hence this

will not be included. Similarly, I will not have any reason to ask the user to accept

any terms or conditions, and so this will not be included either.

https://quizlet.com/en-gb

8

On the menu, the user can view all of

their sets, and folders, as well as look

at their progress.

This will be similar for my solution in

order to create a user interface and

menu which will be simple and user-

friendly.

Price: Quizlet is free, but you can pay £19.99

a year to get access to premium content

(e.g. images on flashcards).

My solution will be completely free (no

premium content)

This is the log-in screen on Quizlet. You can either log in via

Google/Facebook/Apple, or simply log in with your username and password.

My solution will only offer the option to log in with your username and password,

and these will be stored in a secure .csv file. Your email will still be required later in

the program for email notifications.

9

On the progress page, the user can see each of their sets, how many of the flashcards

they have learnt and how many they haven’t. They can then view these flashcards

individually.

I will include a progress tracker in my solution too, and it will display time spent revising it,

average score and average time taken to complete the quiz on a particular topic. These

will be recorded as variables and so can be changed and displayed as needed.

I will also provide the option to post results on social media platforms, namely Twitter,

using the Twitter API in order to create a further incentive for my stakeholders to keep

competing with each other.

10

Advantages Disadvantages

Effective flashcard feature Only raw numbers on the progress
tracker rather than a visual
representation (e.g. a graph)

Simple GUI and layout Browser app will require internet access

Unlimited sets/classes, and can share
sets.

Users can create their own sets of

flashcards, as well as browse sets of

flashcards made by other people.

My solution will include the ability

for the user to create their own sets

of flashcards, which they can

amend or delete at any point,

allowing for a more personalised

experience. These flashcards will be

saved to a .csv file, and then I can

write to and read from this file

whenever necessary.

I am not planning to include the

feature of sharing your sets with

others, as this is not a web app, and

I would like this to be a more

personalised application.
Users can then revise the set of

flashcards in many ways – either in the

form of traditional flashcards, by writing

out the definitions, or by taking a quiz to

test their knowledge on that particular

set.

My solution will include the ability to

revise flashcards in the traditional way

(look at term, say definition, check

definition), as well as a quiz feature,

which will allow the user to check their

understanding and track their progress

on a particular topic.

There are also some mini

games that can be played

to help the user learn in a

more fun and interactive

way.

I will not be including any

of these mini games in my

program, as I believe there

are already enough

features for effective and

engaging revision.

11

Solution 2: StudyBlue
Link: https://www.studyblue.com/online-flashcards
StudyBlue is another
free-to-use revision
tool that has many
similar features to
Quizlet.
Features:

The sign up page on StudyBlue asks for the full

name of the user, their email, a password and

their date of birth.

My solution will only require the user to enter

their username and password (for log-in

purposes) and their email (for email

notifications). I will have no need for the user’s

full name or date of birth, and thus these will

not need to be entered.

The log-in page for StudyBlue requires the

user’s email and password.

Alternatively, my solution will require the

user’s username and password as this is

quicker and easier for the user to enter

Similarly to Quizlet, StudyBlue allows the user to both browse sets of flashcards made by other students,

and make their own sets on whatever subject they like. They can also edit their sets (remove/add

flashcards).

As stated earlier, my solution will allow the user to create their own sets of flashcards and edit them

whenever they like, but I am not planning to include the ability to share sets between users as I want this

to be a very personalised application.

The user has the option to either revise the set as

flashcards (‘flipcards’) or take a quiz to test their

knowledge.

Both of these will be features in my solution as I believe

these are the 2 most effective methods for revision, and

they will be the easiest ways to track the users’ progress

on a particular topic. The layout will consist of the

flashcard itself, then a ‘next’, ‘previous’ and ‘flip’ button

underneath – a simple and clean GUI design that will

cause no confusion for the user.

https://www.studyblue.com/online-flashcards

12

Advantages Disadvantages

Detailed progress tracker with visual
representations

Browser app requires internet access

Can list your interests when creating an
account so the app can recommend
more relevant sets for you to study.

Slightly more complex layout than
Quizlet, but many GUI features are the
same.

Unlimited sets/classes, and can share
sets.

The progress tracker on StudyBlue is relatively similar to Quizlet – for each revision

session the user completes, the percentage score, and a graph of their percentage

scores in that particular subject, appear on the screen. It also shows exactly how

many definitions the user got right/wrong.

The progress tracker in my solution will give an average score and percentage for a

given set of flashcards. I will do this by creating two variables for each set that will

be updated every time the user takes a quiz on that set.

There is also the ability for the user to study solely the definitions they got

right/wrong, and set reminders.

My solution will show the user which definitions they got right and wrong, and will

send the user reminders to revise via email notifications. These will only be able to

be sent whilst the program is running, however.

13

Solution 3: Real-life flashcards
My solution is heavily based on the concept of flashcards – one side of the card has a
term/question on it, the other side has the definition/answer on it. My solution
allows users to do everything they would be able to do with real flashcards, but
virtually.
Real-life flashcards are a more feasible solution for those without consistent access
to a computer, due to the technological requirements of revision apps.

But why would my stakeholders choose to use a virtual app over actual flashcards?
What are the advantages and disadvantages of a virtual app compared to paper
flashcards?

Advantages Disadvantages

All in one place – cannot lose the
flashcards

Hardware and software requirements

No cost (do not need to buy resources,
such as card, pens etc.)

Power consumption by running a
computer system

Quick and automatic test scores and
progress checking

Cannot access anywhere – only
accessible on a computer.

14

Main features of my proposed solution
1.) Log-in/Sign-up screen – on this screen, the user can either log-in to their account
(if they have already created one) or create an account if they haven’t already by
signing up. They can choose either of these options by pressing either the ‘Log-in’
button, or the ‘Sign-up’ button. When the user signs up, they will be asked to enter
their desired username, password and email into the textual input boxes, and these
will be saved into a .csv document, which can then be referred to and read from in
the future when the user logs back in. On the log in screen, the user will have to
enter their username and password into the two free input boxes labelled
‘username’ and ‘password’ – these will then be checked to see if they’re correct by
checking the corresponding boxes in the .csv document (I.e. if person 1’s username is
found in box A1, then box A2 will contain their password and A3 will contain their
email. When the username in box A1 is entered into the ‘username’ input box, the
password in A2 is checked, and if it matches what the user has entered in the
‘password’ input box, they will be allowed in. If not, a message will appear that says
‘incorrect password’). I have included this as it adds personalisation to my program
and allows the user to have their own account – it is a simple and user-friendly
design that will cause no confusion.

2.) Menu screen – Once the user has logged in, they will be taken to the menu
screen. Here, they have the option to create a new set of revision material, edit an
already existing set by adding and removing flashcards, revise a set, take a test on a
set of their choice, or review their progress via the progress tracker. If I decide to add
the ability for the user to set exam deadlines in order to keep them motivated to
revise, this will also be a ‘Set Deadline’ button on the menu screen. These will all be
buttons that can be pressed. There will also be an option to log out and exit the
application (which will automatically log you out), both of which will both be buttons
which can be pressed. Once again, this is a simple design that is easy to use.

3.) Flashcard screen – If the user chooses the option to revise a set, the flashcard
screen will appear. In the centre of the screen, there will be the ‘flashcard’ itself, and
then underneath there will be a ‘next’ and ‘previous’ button to allow the user to go
to the next/previous flashcard. There will also be and a ‘flip’ button, which will ‘flip’
the flashcard (i.e. if the user is looking at the term on the flashcard and then presses
the flip button, it will show the definition, and vice versa). There will also be a button
to delete the flashcard the user is currently looking at, and one to add a new
flashcard at the end of the set. If I decide to implement the functionality to allow the
user to edit the content on already existing flashcards, there will be a button for this
too. Each of these buttons will be a picture of the appropriate symbols (e.g. arrows)
to make it quicker and easier for the user to recognise their functionality. Once all of
the flashcards in the set have been gone through, it will go back to the start of the
set. I will do this to make it much quicker to go from the end of the set of flashcards

15

to the start, and vice versa. The user will be able to exit revising that set at any point
via an ‘Back’ button.

4.) Quiz screen – This aspect of my solution is designed to allow the user to check
their knowledge on a particular subject to check whether they fully understand it or
not. The layout will consist of the question in text at the top of the window, and then
4 multiple choice answers underneath. These multiple-choice answers will be in the
form of buttons, so the user can press the button that they think has the correct
answer on it, and then the screen updates with the next question and 4 possible
answers. At the end of the quiz, the final score, percentage and time taken will be
displayed, as well as an option to share the result on the applications twitter page. It
is during and after the quiz that most of the complex processing will be done – the
score and percentage will be calculated and updated on the progress tracker, and the
questions will be randomly chosen. I could also decide to add the option for a text-
based quiz rather than multiple choice, where the user would have to type in the
answers into a free input rather than press a button.

5.) Progress Tracker – The user will be able to track their progress here – they will be
able to see their best to worst sets (in terms of test percentages), their highest scores
and their exam deadlines all in the form of textual outputs on the screen, with
different colours to represent good (green) and bad (red) test scores. I could also
decide to implement this in the form of a line graph in order to give the user a better
visual representation of their progress, showing a general trend of how they are
doing and thus allowing the user to see more clearly which areas they need to
improve in.

Summary of key/essential features and their justification:

Feature Justification

User can create an account So that their individual progress can be
saved. A username, password and email
will be required to be entered, as these
were the fields mentioned by my
stakeholders.

User can log into an already existing
account using their username and
password

So that the user can return to their work
when the application is re-run.
All revision apps I researched had the
create an account/log-in feature, and it
is something my stakeholders wanted
when I questioned them earlier on.

User can manage their account This feature gives the user the ability to
change their details or even delete their
account, allowing for improved security

16

as passwords and emails can be
changed.

User can create sets of flashcards with a
term and a definition

So that the user can make use of the
application’s other features such as
revising sets and tracking progress.
All other researched solution also
included this ability in order to allow the
user to tailor their revision.

User can revise sets of flashcards This is the main purpose of all revision
apps – to allow the user to revise. My
stakeholders also mentioned that
flashcards were a method of revision
they have found effective before.

User can test their knowledge on a
particular set of material via a quiz, and
see their results.

This is another method of the user
consolidating their knowledge that I
found was consistent with all revision
apps I researched. It was also a feature
my stakeholders mentioned they would
benefit from.

User can view their progress via a
progress tracker within the app.

The existing solutions that I researched
all included this feature in one way or
another. My progress tracker will
include both visual representations of
data (e.g. graphs) and raw numbers.
This will help the user to effectively
track their progress and see where they
can improve, which was mentioned to
be beneficial to my stakeholders.

User can send email notifications of
their progress.

This will serve as a reminder to the user,
and is a feature that is quite unique to
my solution as none of my researched
solutions included it.

User can post their progress to social
media, namely Twitter.

This is a way to motivate students to
revise more as they will be competing
with each other, and this is another
feature that is relatively unique to my
solution but that is because my
researched solutions were designed for
a much larger scale rather than a single
class/school size.

17

Limitations
One limitation of my proposed solution is that there may be a maximum number of 5
sets of flashcards per user (this may yet be increased or even entirely removed). This
will be to limit the number of sheets in the .csv file and make the program more
manageable and reduce the amount of memory needed.

Another limitation of my proposed solution, as I mentioned earlier on in the report,
is that email notifications will only be able to be sent whilst the program is running.
This is because the way email notifications will be sent out is when the user passes a
quiz, or when they press the ‘email notification’ button in order to send out a
reminder via email. This means that when the application is not being ran on a
computer system, email notifications cannot be sent out. The email notifications will
also only be for gmail accounts as I will be using the Google API.

My proposed solution will also not allow users to share their sets with each other as
many other already existing revision apps do. This is because my solution is an
individual revision app. However, due to the limit of 30 users, I may decide to make
my solution tailored towards being a class application, where the whole class can
sign up and create an account. As part of this, I would have to allow the users to
share their sets with each other and create a leaderboard feature.

Design Requirements

Requirement Why it is required

GUI layout that is easy to use and
understand

To make it a more user-friendly
experience

Clear and obvious instructions and
buttons

So that the user knows exactly how to
do what they want to do.

Reasonable image and font sizes So that the text/images are not too
small to see, but also not so large that
they are taking up the whole display.

Colour coding Whilst not an essential requirement,
some colour coding (e.g. green text for a
correct answer and red text for an
incorrect answer) will improve the
experience for the user.

Functionality Requirements

Requirement Why it is required

18

Usernames and passwords need to save
to an external .csv file

So that the user can successfully log in
to their account again when they next
come to use the application.

Flashcards created by the user also need
to save to an external .csv file

So that the user can revise using the
flashcards they have created by using
the ‘flashcard’ functionality.

When certain buttons are pressed, the
correct display needs to appear (e.g. if
the ‘Flashcards’ button is pressed, the
program needs to take the user to the
flashcard screen).

So that my stakeholders can use the
solution correctly and effectively, and
use the wide range of features available.

Quizzes need to display random
questions in a random order

So that they do not become repetitive
and to ensure that the user has a full
knowledge of all the content they need
to revise.

Test score percentages and times need
to be consistently recorded

To ensure that the progress tracker
works correctly and gives the user a
reliable measure of their progress in a
certain topic (so they know where they
need to improve).

A main menu once the user logs in The main menu will contain buttons for
all of the available features that the user
can use – all in one place.

Software Requirements

Requirement Why it is required

An operating system compatible with
running Python 3.x.x
(Window/MacOS/Linux)

To run the finished program

A gmail account To be able to send email notifications,
as these notifications will be sent using
the Google API, so the user would need
a gmail account.

Python 3.x.x installed with the
PySimpleGUI library

This is required to run the application as
this is the framework it has been
created with.

19

Hardware Requirements

Requirement Why it is required

Mouse In order to be able to click buttons and
navigate around the GUI, and input data
to the computer system.

Speakers This is one way data/information is
outputted to the user. It is required in
order to be able to hear some of the
sound effects I will be adding, such as a
‘ding’ sound when the user passes a
quiz etc…
This requirement however is NOT
essential.

Keyboard In order to input important details when
signing up or logging in (such as
usernames and passwords), as well as
for text based quizzes (if I decide to add
them) where the user would have to
type in their answers. The app requires
a keyboard input for the password,
username and email features.

Monitor/screen This is how the application and its data
is outputted to the user.

Success Criteria

No. Criteria Justification How it can be proved

1 The stakeholder would
like the system to allow
them to create an
account if they haven’t
already got one.

This is the first thing
the user will have to
do when they use
the application.

Screen record a stakeholder
entering their details into
the sign-up page, which then
takes them to the menu if
their details are all
valid/haven’t been used
before.

2 The stakeholder would
like the system to allow
them to log in to their
account if they have
already created one.

This is the first thing
the user will have to
do when they use
the application, and
both this and the
sign-up feature
were requested by

Screen record a stakeholder
entering their username and
password into the log-in
page, which then takes them
to their menu if the details
they entered are all correct

20

my stakeholders
and were common
features among
already existing
solutions.

and valid. If not, an error
message will appear.

3 The stakeholder would
like the system to allow
them to create their
own sets of flashcards.

So the user can
revise whatever
content they wish –
the main purpose of
the app.

Screen record a stakeholder
creating a flashcard, then
show a screenshot of this
flashcard saved into an
external .csv file.

4 The stakeholder would
like the system to view
sets of flashcards they
have already created.

So that the user
knows what
revision material
they have/haven’t
already created.

Screenshot of the screen
showing a stakeholder’s
already existing sets of
flashcards.

5 The stakeholder would
like the system to allow
them to revise sets of
flashcards they have
created.

This is the main
purpose of the
revision app –
allowing the user to
revise. Flashcards
were a popular
method of revision
among my
stakeholders.

Screen recording of a
stakeholder going through a
set of flashcards and using
all of the available features
(next/previous flashcard, flip
flashcard)

6 The stakeholder would
like the system to allow
them to test their
knowledge on a
particular set of
flashcards.

This is an extremely
important way of
the user seeing
where they need to
improve, and was a
common feature
among my
stakeholders
requests and
already existing
revision apps.

Screen record a stakeholder
taking part in a quiz and
reviewing their score and
time taken to complete the
quiz.

7 The stakeholder would
like the system to keep
track of their progress
and show it in a clear
and concise way.

Once again, this is a
way for my
stakeholders to see
which areas they
aren’t scoring highly
in, and the ability to
track progress over
a ranging period of

Screenshot of the progress
tracker feature showing a
range of statistics (discussed
earlier) about their progress.

21

time was a feature
mentioned by all of
my stakeholders
earlier on in this
section.

8 The stakeholder would
like the system to allow
them to share their
results and progress on
social media.

This adds an
incentive for the
user to keep
revising and
compete with other
students. Twitter
was a commonly
mentioned social
media platform
among my
stakeholders and is
a popular platform
among teenage
students.

Screenshot of tweet that has
been shared by a
stakeholder.

9 The stakeholder would
like the system to have
a clear main menu.

Makes the program
easier to navigate
which is crucial to
providing a user-
friendly experience.

Screenshot of the main
menu.

10 The stakeholder would
like the system to be
user-friendly and easy
to understand.

The user should not
be confused at any
point whilst using a
revision app – it
should be
extremely user-
friendly. This links
to how my
stakeholders
preferred a revision
app that can be
used for quick,
snappy revision, so
my solution needs
to be easy to use so
the user is not
spending too long
figuring out how to
use the app.

Screen recording of some
general use of the
application (e.g. logging in,
navigating the main menu
etc.)

22

11 The stakeholder would
like the system to allow
them to edit already
existing sets of
flashcards.

This allows the user
to add to their
revision material as
they go, helping to
keep the
application
organised and
effective.

Screen recording of a
stakeholder editing
(adding/removing) some
flashcards from an already
existing set that they have
created.

12 The stakeholder would
like the system to allow
them to set exam
dates/deadlines.

This is to help keep
the user organised
and aware of when
they need to have
revised material for
– these will show
up on the user’s
reminders list on
the main menu.

Screen recording of a
stakeholder setting an exam
date / screenshot of exam
dates set by a stakeholder.

13 The stakeholder would
like the system to send
them email
notifications when
prompted to.

This serves as a
method of
reminding my
stakeholders that
they need to revise
on a consistent
basis.

Screenshot of email sent to
a stakeholder.

23

Questionnaires
I have created multiple questionnaires about my solution in order to monitor user
feedback throughout my project to measure the degree of success.

Questionnaire 1: Sign-up/Log-in
1.) Can you successfully create an account on the app?
2.) Can you successfully log back into this account using the same details?
3.) Was this an easy process to understand and carry out?
4.) Do error messages appear when incorrect details are entered?

Questionnaire 2: Creating/editing/revising a set of flashcards
1.) Can you successfully create a set of flashcards with a given name?
2.) Can you then add flashcards to this set?
3.) Can you remove flashcards?
4.) Can you ‘flip’ flashcards for revision purposes?
5.) Is the process easy to understand and carry out?
6.) Do you feel the revision is efficient?

Questionnaire 3: Quizzes
1.) Does the program allow you to take a quiz on a set of flashcards you have
created?
2.) Was the quiz thorough enough?
3.) Were the questions in a random order?
4.) Did the multiple choice/written quiz work correctly and were you given a valid
score, percentage and time taken upon completion?

Questionnaire 4: Progress Tracker
1.) Can you successfully access and view the progress tracker feature?
2.) Are the statistics shown correct?
3.) Do you feel this feature is helping you?
4.) Can you successfully set exam dates/deadlines, and do these show on the main
menu?
5.) Are email notifications successfully sent and received when you prompt the
program to send one?
6.) Can you successfully share your results on the application’s Twitter page?

Questionnaire 5: General
1.) Is the app easy to use and navigate?
2.) Is the GUI layout simple and not confusing?
3.) Are there any errors/problems you encountered whilst using the app? If so, what
were these?
4.) Did the sound effects work correctly?
5.) Is the colour scheme easy on the eye?

24

Design Section

In this section I will design my solution by decomposing it into smaller subroutines,
planning out each of these subroutines, and describing any variables which may be
needed and how my solution may be tested during and after the development
phase.
After analysing my solution, I will first break my problem down into smaller
subroutines to make my solution easier to create and test later on.

Systems diagram

25

Systematic breakdown of problem:

The start menu is required to show up first and be the first display the user sees
because this is where the user has the option to either create an account or log in to
an already existing account. This step is required first because each account is
personalised, so in order to make the experience as tailored to the user as possible,
they will need to log into their account before they use any other features of the
app. Creating an account/logging in before anything else is an authentic feature of
almost all revision apps, so following this in my program is key to making my solution
as simple and easy to use as possible.
There will also be an option to exit the app from the start menu.

Once logged in to their account, the user will be taken to the main menu. This is the
main hub of the application from the user’s point of view as it will be where they can
access all of the features of the application. Each of the options (exit, manage
account, progress tracker etc) will be displayed as clear buttons on a contrasting
background, making my solution as clear and user-friendly as possible. I have shown
the main menu to be separate from the start menu in my systems diagram (above)
because a user can only advance to the main menu once they have logged into their
account, and their inputs to the username and password fields need to be validated.

There will be various different features of my program that you can access from the
main menu. You will be able to exit the program, which will automatically log the
user out, or log out manually, which will take you back to the start menu as shown in
my systems diagram. There will also be an option to manage your account, where
the user can change account details (such as their email address) or even delete their
account. I have broken down ‘Manage account’ into the two smaller problems
‘Delete account’ and ‘Update account details’ because each of these problems will
require a different subroutine – updating account details will involve re-writing to
the user details file, whereas deleting an account will involve removing all of the
information associated with that account as well as any sets of flashcards or progress
that user has made.

The progress tracker contains many features itself, each of which will require a
separate subroutine. A user’s quiz scores will be saved to a file whenever they
complete a quiz, and these will be viewable via the progress tracker. There will also
be options to post your progress on the applications Twitter page using the Twitter
API and send an email reminder of your progress to yourself using the Google API. I
have abstracted these three features of the progress tracker separately because each
of them have a completely different purpose, and will be programmed using
separate subroutines.

There will also be options from the main menu to use existing sets of flashcards or
create a new set.

26

Creating a new set of flashcards will simply involve the user entering the name of the
new set, the name of which will be saved to an external .csv file and will be saved to
the main menu. They can add flashcards to this new set via returning to the main
menu and clicking on the set name.
The menu will also display each of the users sets of flashcards they have already
created (I am planning for there to initially be a maximum of 5 flashcard sets per
user, although this may be increased or even entirely removed later on). They will be
able to click on one of the sets, which will be displayed in the form of a button, and
there will be 3 options:

• Revise that set – in the form of traditional flashcards (this will involve reading
from the .csv file and displaying the terms/definitions on screen) – meaning
the user can ‘flip’ a flashcard and go to the next or previous flashcard. I have
also added the ability for the user to delete the displayed flashcard from this
screen. These will all use separate subroutines to carry out their functions and
hence I have abstracted them separately.

• Add flashcards – this will involve the user adding flashcards to an existing set.
This feature will involve writing to (changing) the .csv file, so I have abstracted
it separately. This has been shown separate to revising a set because revising
a set will involve reading from the file, so this will require a different
subroutine.

• Take a quiz – this allows the user to test their knowledge by answering
questions about a set of content. Whilst this involves reading from the .csv
file, it is abstracted separately to revising a set because the purpose of the
two functions is completely different, and the quiz will involve randomly
reading from the file rather than doing it in a set order.

Structure of solution:
Start menu – this will be the first screen the user sees when they start the app. It will
have 3 buttons for either logging in, creating an account or exiting the app, as well as
a short paragraph of text explaining the functionality of the app and who it is best
for. This is a simple, easy to navigate layout that will appeal to my stakeholders, and
will be achieved using PySimpleGUI’s ‘Button’ and ‘Text’ features. The ability to log in
or create an account will be linked via the press of a button, which will take the user
to a different layout where there will be text fields where the user can either log in
or sign up by entering the relevant information.

Create an account – here the user will enter their desired username, password and
gmail account into the relevant input boxes, which will be clearly labelled. I chose the
username and password method of user verification after consulting my
stakeholders in the analysis section, as they found usernames and passwords to be
the easiest and most secure method of user verification. The user will be asked to
enter their password twice to ensure there are no typos (and if the two entries do
not match, the user will be notified in red text at the bottom of the screen). Once all

27

of this information has been entered and is correct, they will be able to press the
‘Create’ button, which will store their data into a .txt file. Passwords will be hashed
before they are stored in order to make my app more secure. I have decided to store
the users account information into an external file so that their information is saved
even when the app is re-run, and the user can log in again using the account they
have previously created. The user will then be automatically navigated to the main
menu.

Log-in – if the user has already created an account in the past, they can log in using
the same username and password, and then these will be verified to see if they are
correct by reading the data saved into the external file when the user made their
account. If the username and corresponding password entered into the input boxes
do not match any username and password in the .txt file, then an error message in
red text saying “Invalid username/password” will appear at the bottom of the
window, prompting the user to re-enter their username and password. If the
username and password is correct for a certain account, then the user will be
directed to the main menu, and the email variable will be set to the users email
address.

Exit application – This will be an option from both the start and main menu which
allows the user to exit the application. Exiting from the main menu will automatically
log the user out. I will implement this by breaking the event loop whenever the exit
button is pressed.

Main menu – this will be main ‘hub’ of the app, and it is where the user will be taken
once they have logged into their account. It will be laid out in a simple way with
buttons for each of the user’s sets, as well as options to create a new set, manage
their account, access the progress tracker and exit the application, all of which will
also be in the form of buttons, once again via the use of PySimpleGUI’s ‘Button’
feature. This once again links to how my stakeholders wanted a simple, quick and
snappy GUI design allowing them to fully focus on their revision rather than working
out how to use the app.

Manage account – When this button is pressed, it will take the user to a layout
where they can either:

• Delete their account – this will delete all of their information stored in the
external files, including their username, password, email and any sets of
flashcards/progress they have made.

• Edit account details – this will allow my stakeholders to change their
password, username or email address, meaning that if they change their email
at any point, they can continue using the app on the same account so that
their progress/sets are not lost. This will be done be writing to the external file
which stores all of the users’ usernames, passwords and email addresses.

28

There will also be a ‘BACK’ button on this display, as well as at most points
throughout the application, so that the user can go back to the main menu (if they
accidently clicked on this button for example) via a press of this button.

Log out – This option will take the user back to the start menu and reset the email
variable, ready for another user to use the app.

Create a set of flashcards – Accessible from the main menu, pressing this button will
take the user to a screen where they can enter the name of the new set they wish to
create, which will be written to a different external file. The user can then return to
the main menu and click on the new set to add new flashcards to it. I added the
ability for the user to create their own sets rather than revising from pre-made sets
as my stakeholders wanted to be able to personalise their revision to their own
needs. The data saved to an external file from this process will be required for the
user to be able to use the other features of the revision app, because they will not
have anything to revise if they do not create a set.

Choose a set of flashcards – each of the users created sets of flashcards (max of 5,
possibly more) will be viewable from the main menu by the click of a button. Once
the user has chosen a set by clicking on the button with its name on it, they will be
able to do three things:

• Revise the set – this will be in the form of traditional flashcards; it will work by
the program reading from the .csv file, and displaying the term on screen.
There will be a button for the user to ‘flip’ the flashcard, which will then
display the definition. I will most likely use a variable which changes between
‘term’ and ‘definition’ to implement this. The user can revise their set of
flashcards via this method, which is similar to how other revision apps
(discussed in analysis section), as well as real-life flashcards, work and this is
what my stakeholders wanted. There will also be the option to delete the
flashcard being viewed from this screen, also via a button. The next and
previous flashcard to allow the user to navigate through their set will also be
displayed here. These features will be implemented by using counter variables
to track how far into the set the user is.

• Edit set – this will give the user the ability to add flashcards to the set as they
feel is necessary. The changes they make will be written to the .csv file and
this data will then be used when the user chooses to revise the amended set.

• Take a quiz – the user will be able to use this feature to test their knowledge
on a particular set of material. The variables ‘score’ and ‘time’ taken to
complete will be recorded and this data will be stored in an external file, ready
to be used in the progress tracker. This was a commonly wanted feature
among my stakeholders and so I am including it and integrating the results
into the progress tracker. Sound effects may also be added when the user is
taken to the summary screen after the quiz (such as a ‘ding’) to indicate

29

whether they passed (80%) or failed. This is more of an aesthetic touch rather
than a requirement.

Progress Tracker – Data from the quizzes will be required for this feature – it will
show a user’s quiz scores in the form of raw numbers and also on a graph. This
was a feature requested by all of my stakeholders as they wanted the ability to
track their scores and see where they need to improve. All of this information will
be in one place, making it easy to compare and deduce which subjects/areas the
user is strong in, and the areas they need to improve in.

• Post results to social media – the app will have a shared Twitter page
where users can post their progress and test scores along with other
members of the app (designed for class use). This adds a sense of
competition to the app which will add to the user’s motivation to revise. I
have decided to use Twitter as it is the social media platform that a couple
of my stakeholders said they use regularly. I will be using the Twitter API,
and tweets will follow the rough template “[username] scored [score] on a
quiz about [set name]! Well done!”. Data from the quizzes/progress
tracker will be read from the external file for this feature.

• Send email reminder – this feature requires the users email address,
which they would have entered when signing up to the app, and will send
an email reminder via the press of a button. It is designed to ensure my
stakeholders do not forget about their progress, and it encourages them to
stay on top of their revision. Whilst this is not a scheduled reminder, it will
still be in the users inbox when they next check their emails, which should
still have the same effect. I will be using the Google API to achieve this,
meaning unfortunately only gmail accounts will be able to benefit from
this feature.

Systems Algorithms

Start Menu

layout = STARTMENU
if button == ‘sign_up’ THEN
 layout = SIGNUP
if button == ‘log_in’ THEN
 layout = LOGIN
if button == ‘Exit’ THEN
 break event loop

This feature changes the layout shown to the user via the press of a button, allowing the
user to easily log in and sign up.

Create an account

30

valid_username = True
import hashlib
if button == ‘create_account’ THEN
 username = str(USERINPUT)

password1 = str(USERINPUT)
password_validation = str(USERINPUT)
email = str(USERINPUT)
OPEN FILE ‘userinfo.txt’, READ AND WRITE

 for i in range 1 to (num_of_accounts*4) THEN
 if f.read(line i) == username THEN
 UPDATE ELEMENT ‘error_message’ TO “Username already taken”
 valid_username = FALSE

 if valid_username == True THEN

if password1 == password_validation THEN
if len(email) > 11 AND email[len(email)-11 , len(email)-1] == ‘@gmail.com’ THEN
 password = hashlib.sha256(password1)
 num_of_sets = 0
 user_id += 1
 WRITE username TO ‘userinfo.txt’ on line[(num_of_accounts*4)+1]
 WRITE password TO ‘userinfo.txt’ on line[(num_of_accounts*4)+2]
 WRITE email TO ‘userinfo.txt’ on line[(num_of_accounts*4)+3]
 WRITE user_id TO ‘userinfo.txt’ on line[(num_of_accounts*4)+4]

 CLOSE FILE ‘userinfo.txt’
 CREATE FILE ‘{user_id}.csv’
 OPEN FILE ‘{user_id}.csv’, WRITE

 WRITE num_of_sets TO ‘{user_id}.csv’ in D1
 num_of_accounts += 1
 layout = MAINMENU
 break
else THEN
 UPDATE ELEMENT ‘signup_error_message’ TO “Invalid email”

else THEN
 UPDATE ELEMENT ‘signup_error_message’ TO “Incorrect password entry”

PROCEDURE set_names()
CLOSE FILE ‘{user_id}.csv’

This algorithm allows the user to textually input their desired username, password and email
address into 3 input boxes, and when they confirm their details via the press of a button,
their account is either created if their inputs are valid (their details are written to and stored
in userinfo.txt), and if they aren’t, an error message is shown at the bottom of the display
informing the user of the problem, which they can then fix and resubmit.

Log in

if button == ‘log_in’ THEN
 username = str(USERINPUT)
 password = str(USERINPUT)
 OPEN FILE ‘userinfo.txt’, READ
 for i in range 1 to (num_of_accounts*4) THEN
 if f.read(line i) == username THEN
 if f.read(line i +1) == hashlib.sha256(password) THEN

31

 UPDATE ELEMENT ‘login_error_message’ TO “Log-in Successful”
 email = f.read(line i +2)
 user_id = f.read(line i +3)
 CLOSE FILE ‘userinfo.txt’, READ
 OPEN FILE ‘{user_id}.csv’, READ
 num_of_sets = D1 in ‘{user_id}.csv’
 layout = MAINMENU
 break
 else THEN
 UPDATE ELEMENT ‘login_error_message’ TO “Incorrect Password”
 PROCEDURE set_names(user_id)
 CLOSE FILE ‘{user_id}.csv’

This feature allows the user to log in to an already existing account via typing their
username and password into the textual input boxes and validating their details via the
press of a button. The details are searched for in userinfo.txt and if they match, the user Is
taken onto their account, and if they don’t the user is notified via an error message at the
bottom of the display.

PROCEDURE set_names()

define PROCEDURE set_names(user_id)
 OPEN FILE ‘{user_id}.csv’
 UPDATE ELEMENT ‘set1’ TO “Set 1 – {f.read[E1]}”
 UPDATE ELEMENT ‘set2’ TO “Set 2 – {f.read[E2]}”
 UPDATE ELEMENT ‘set3’ TO “Set 3 – {f.read[E3]}”
 UPDATE ELEMENT ‘set4’ TO “Set 4 – {f.read[E4]}”
 UPDATE ELEMENT ‘set5’ TO “Set 5 – {f.read[E5]}”
 CLOSE FILE ‘{user_id}.csv’

This procedure simply updates the text on the set buttons on the users main menu to the
names of the users sets, which are read from their personal .csv file.

Main Menu

if button == ‘log_out’ THEN
 PROCEDURE LOGOUT()
if button == ‘manage_account’ THEN
 layout = ACCOUNT
if button == ‘progress_tracker’ THEN
 layout = PROGRESS
 … shown later on
if button == ‘new_set’ THEN
 layout = SETNAME
if button == ‘my_sets’ THEN
 layout = SETS
if button == ‘Exit’ THEN

32

 break event loop

The main menu is the ‘hub’ of the application, as it is where the user can access all of the
main features of the app via the press of a button. This algorithm simply updates the display
whenever a button is pressed to the relevant layout, or shuts the app down by breaking the
event loop if the ‘Exit’ button is pressed.

Log Out
define PRODECURE LOGOUT()
 UPDATE ELEMENT ‘signup_error_message’ TO “”
 UPDATE ELEMENT ‘login_error_message’ TO “”
 layout = STARTMENU

This algorithms shows how when the ‘log_out’ button is pressed, a procedure is ran which
takes the user back to the start menu and resets the error messages ready for when the next
user uses the application.

Manage Account

if button == ‘update_username’ THEN
 new_username = str(USERINPUT)
 OPEN FILE ‘userinfo.txt’, READ
 valid_username = True
 for i in range 1 to (num_of_accounts*4) THEN
 if f.read(line i) == new_username THEN
 UPDATE ELEMENT ‘error_message’ TO “Username already taken”
 valid_username = False
 break
 if valid_username == True
 CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
 for i in range 1 to (num_of_accounts*4) THEN
 if line(i) IN ‘userinfo.txt’ == username THEN
 line(i) in ‘new.txt’ = new_username
 else THEN
 line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 DELETE FILE ‘userinfo.txt’
 RENAME FILE ‘new.txt’ to ‘userinfo.txt’
 CLOSE FILE ‘userinfo.txt’

if button == ‘update_password’ THEN
 new_password = hashlib.sha256(str(USERINPUT))
 OPEN FILE ‘userinfo.txt’, READ
 CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
 for i in range 1 to (num_of_accounts*4) THEN
 if line(i) IN ‘userinfo.txt’ == username THEN
 line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 line(i+1) in ‘new.txt’ = new_password
 i+=2
 else THEN

33

 line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 DELETE FILE ‘userinfo.txt’
 RENAME FILE ‘new.txt’ to ‘userinfo.txt’
 CLOSE FILE ‘userinfo.txt’

if button == ‘update_email’ THEN
 new_email = str(USERINPUT)
 OPEN FILE ‘userinfo.txt’, READ
 CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
 if len(new_email) > 11 AND new_email[len(email)-11 , len(email)-1] == ‘@gmail.com’ THEN
 for i in range 1 to (num_of_accounts*4) THEN
 if line(i) IN ‘userinfo.txt’ == username THEN
 line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 line(i+1) in ‘new.txt’ = line(i+1) IN ‘userinfo.txt’
 line(i+2) in ‘new.txt’ = new_email
 i+=3
 else THEN
 line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 DELETE FILE ‘userinfo.txt’
 RENAME FILE ‘new.txt’ to ‘userinfo.txt’
 CLOSE FILE ‘userinfo.txt’
 else THEN
 UPDATE ELEMENT ‘update_account_error’ TO “Invalid email”

This algorithm shows the different processes ran if the user decides to update either their
username, password or email. The new username, password or email is validated to ensure
that it is correct/does not already exist, and if it is valid, userinfo.txt is rewritten to update
the new piece of information. If the data entered is invalid, then an error message is
displayed to the user at the bottom of the display.

Delete Account

new_line = 1
define PROCEDURE delete_account(username)
 OPEN FILE ‘userinfo.txt’, READ
 CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
 for i in range 1 to (num_of_accounts*4) THEN
 if line(i) IN ‘userinfo.txt’ == username THEN
 i+=4
 else THEN
 line(new_line) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
 new_line += 1
 DELETE FILE ‘{user_id}.csv’
 DELETE FILE ‘userinfo.txt’
 RENAME FILE ‘new.txt’ to ‘userinfo.txt’
 CLOSE FILE ‘userinfo.txt’

This algorithm re-writes userinfo.txt to include everything in the original file apart from the
information associated with the deleted account, and deletes the users personal .csv file. By

34

doing this, no data has to be stored from deleted accounts (thus reducing the storage space
needed by the app).

Create a new set of flashcards

if button == ‘new_set’ THEN
 layout = SETNAME

if button == ‘confirm_name’ THEN
 if num_of_sets == 5 THEN
 UPDATE ELEMENT ‘create_error_message’ TO “Max number of sets reached”
 else THEN
 OPEN FILE ‘{user_id}.csv’, WRITE
 set_name = str(USERINPUT)
 num_of_sets += 1

 E[num_of_sets] in ‘{user_id}.csv’ = set_name
 D1 in ‘{user_id}.csv’ = num_of_sets
 CLOSE FILE ‘{user_id}.csv’
 PROCEDURE set_names(user_id)
 layout = FLASHCARDSET

This algorithm allows the user to enter the name of a new set they wish to create, which is
then written to the users .csv file as long as they have not already reached their 5 set limit.
The buttons on the ‘My Sets’ page are then updated to show the name of this new set.

Choose a set of flashcards

if button == ‘set1’ THEN
 set = 1
 layout = SETMENU
if button == ‘set2’ THEN
 set = 2
 layout = SETMENU
if button == ‘set3’ THEN
 set = 3
 layout = SETMENU
if button == ‘set4’ THEN
 set = 4
 layout = SETMENU
if button == ‘set5’ THEN
 set = 5
 layout = SETMENU

This algorithm changes the layout shown to the user via the press of a button, and updating
the ‘set’ variable to the relevant set so that the program knows which set to search for in the
.csv file.

35

Add flashcards

if button = ‘new_flashcard’ THEN
 layout = NEWFLASHCARD

if button = ‘add’ THEN

term = str(USERINPUT)
 definition = str(USERINPUT)
 num_of_flashcards += 1
 OPEN([{user_id}.csv] to append) = user_file
 write = csv.writer[user_file]
 write.addnewrow(term, definition, set)
 CLOSE FILE ‘{user_id}.csv’
 CLEAR INPUTS ‘term’ AND ‘definition’

This algorithm takes 2 user inputs as strings and stores them in the users .csv file along with
the relevant set number. This is so these flashcards can be read from the file and displayed
on the screen for other features of the app.

Revise flashcards

if button == ‘revise’ THEN
 layout = FLASHCARD
 flashcard_number = 1
 OPEN FILE ‘{user_id}.csv’, READ
 PROCEDURE next_flashcard(flashcard_number)
 CLOSE FILE ‘{user_id}.csv’

define PROCEDURE next_flashcard(flashcard_number)
 for flashcard_number in range 1 to (num_of_flashcards) THEN
 if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN
 term = A[flashcard_number] in ‘{user_id}.csv’
 definition = B[flashcard_number] in ‘{user_id}.csv’
 UPDATE ELEMENT ‘flashcard_text’ TO term
 flashcard_number += 1
 break
 else THEN
 flashcard_number += 1

if button == ‘flip’ THEN
 UPDATE ELEMENT ‘flashcard_text’ TO definition

if button == ‘next’ THEN
 OPEN FILE ‘{user_id}.csv’, READ
 PROCEDURE next_flashcard(flashcard_number)
 CLOSE FILE ‘{user_id}.csv’

36

if button == ‘previous’ THEN
 flashcard_number -= 2
 OPEN FILE ‘{user_id}.csv’, READ
 for flashcard_number in range 1 to (num_of_flashcards) THEN
 if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN
 term = A[flashcard_number] in ‘{user_id}.csv’
 definition = B[flashcard_number] in ‘{user_id}.csv’
 UPDATE ELEMENT ‘flashcard_text’ TO term
 flashcard_number -= 1
 break
 else THEN
 flashcard_number -= 1
 CLOSE FILE ‘{user_id}.csv’

This algorithm sequentially searches through the users .csv file to find flashcards with the
relevant set number associated to them, and when one is found, the search is paused and
the flashcard is displayed on screen. The term and definition are stored as variables so that
when the flashcard is ‘flipped’ the definition is shown instead of the term (and vice versa).
When the user decides to move on to the next flashcard, the search is resumed and this
whole process goes on until the algorithm has searched all of the users created flashcards in
the .csv file. The ‘previous’ button works the same way except it searches up the file rather
than down it.

Delete flashcards

if button == ‘delete’ THEN
 OPEN FILE ‘{user_id}.csv’, READ + WRITE
 position A[flashcard_number] = “ ”
 position B[flashcard_number] = “ ”
 position C[flashcard_number] = “ ”
 PROCEDURE next_flashcard(flashcard_number)
 CLOSE FILE ‘{user_id}.csv’

This algorithm simply deletes a flashcard (term, definition, and its set number) from the
users .csv file, and then updates to the next flashcard in the same way as stated in the
previous algorithm.

Quiz

if button == ‘quiz’ THEN
 layout = QUIZ
 start_time recorded
 num_of_questions = 0
 flashcard_number = 1
 PROCEDURE update_question()

define PROCEDURE update_question()
 random_answers = []
 random_answer_slot = [0,1,2,3]
 OPEN FILE ‘{user_id}.csv’, READ
 for i in range 1 to num_of_flashcards THEN
 if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN

37

 term = A[flashcard_number] in ‘{user_id}.csv’
 definition = B[flashcard_number] in ‘{user_id}.csv’
 APPEND flashcard_number to random_answers
 UPDATE ELEMENT ‘question’ TO definition
 random_slot = random.randint(0,len(random_answer_slot)-1)
 correct_answer = random_answer_slot[random_slot]
 UPDATE ELEMENT ‘answer{correct_answer}’ TO term
 REMOVE random_answer_slot[correct_answer]
 while len(random_answers) < 4 THEN
 random_ans = random.randint(1,num_of_flashcards)
 if random_ans NOT IN random_answers THEN
 APPEND random_ans TO random_answers
 random_slot = random_answer_slot[random.randint(0,len(random_answer_slot)-1)]
 UPDATE ELEMENT ‘answer{random_slot}’ TO B[random_ans} in ‘{user_id}.csv’
 REMOVE random_answer_slot[random_slot]
 flashcard_number += 1
 num_of_questions += 1

END PROCEDURE
 else THEN
 flashcard_number += 1
 end_time recorded
 time_taken = start_time – end_time
 percentage = (score/num_of_questions) x100
 num_of_quizzes += 1
 WRITE num_of_quizzes TO D1 in ‘{user_id}.csv’
 WRITE time_taken TO F[num_of_quizzes] in ‘{user_id}.csv’
 WRITE percentage TO G[num_of_quizzes] in ‘{user_id}.csv’
 WRITE set TO H[num_of_quizzes] in ‘{user_id}.csv’
 UPDATE ELEMENT ‘SCORE’ TO score
 UPDATE ELEMENT ‘TIME’ TO time_taken
 layout = QUIZRESULTS
 CLOSE FILE ‘{user_id}.csv’
 if percentage > 80 THEN
 play ‘ding.mp4’

if button == ‘answer0’ THEN
 chosen_answer = 0
 if chosen_answer == correct_answer THEN
 score += 1
 PROCEDURE update_question()

if button == ‘answer1’ THEN
 chosen_answer = 1
 if chosen_answer == correct_answer THEN
 score += 1
 PROCEDURE update_question()

if button == ‘answer2’ THEN
 chosen_answer = 2
 if chosen_answer == correct_answer THEN
 score += 1
 PROCEDURE update_question()

if button == ‘answer3’ THEN
 chosen_answer = 3
 if chosen_answer == correct_answer THEN
 score += 1
 PROCEDURE update_question()

This algorithm works in a similar way to the revise feature in the sense that it sequentially
searches through the users .csv file to find the next term and definition for the chosen set,
and then it displays the term/question at the top of the display, and places the correct
definition/answer into one of the 4 multiple choice buttons. The algorithm then fills the other
3 buttons with 3 other randomly chosen definitions/answers from the .csv file. If the correct
answer is chosen (via a button press) by the user, the score variable increments by one, and
whenever any answer is chosen, the display is updated to show the next question and 4
possible answers. This process repeats until the algorithm has gone through all of the

38

flashcards in the users .csv file, at which point a summary screen is shown with the users
final score, percentage and time taken.

Progress Tracker

import matplotlib.pyplot as plt
if button == ‘progress_tracker’ THEN
 layout = PROGRESS
 OPEN FILE ‘{user_id}.csv’, READ
 UPDATE ELEMENT ‘result1’ TO “Set [H[num_of_quizzes]] – [G[num_of_quizzes]] in [F[num_of_quizzes]]”
 UPDATE ELEMENT ‘result2’ TO “Set [H[num_of_quizzes -1]] – [G[num_of_quizzes -1]] in [F[num_of_quizzes -1]]”

UPDATE ELEMENT ‘result3’ TO “Set [H[num_of_quizzes -2]] – [G[num_of_quizzes -2]] in [F[num_of_quizzes -2]]”
UPDATE ELEMENT ‘result4’ TO “Set [H[num_of_quizzes -3]] – [G[num_of_quizzes -3]] in [F[num_of_quizzes -3]]”
UPDATE ELEMENT ‘result5’ TO “Set [H[num_of_quizzes -4]] – [G[num_of_quizzes -4]] in [F[num_of_quizzes -4]]”
x = [1,2,3,4,5]
y = [G[num_of_quizzes], G[num_of_quizzes -1], G[num_of_quizzes -2], G[num_of_quizzes -3], G[num_of_quizzes -4]]
plt.plot(x, y)
plt.xlabel(‘Attempt (most recent to least recent)’)
plt.ylabel(‘Percentage’)
plt.title(‘Percentage Graph’)
UPDATE ELEMENT ‘graph’ TO plt.show()
CLOSE FILE ‘{user_id}.csv’

import tweepy
if button == ‘twitter’ THEN
 OPEN FILE ‘{user_id}.csv’, READ
 Authenticate consumer_key and consumer_secret_key
 Authenticate access_token and secret_access_token
 Create API Object
 API.update_status(show 5 most recent percentages in same method as above)
 CLOSE FILE ‘{user_id}.csv’

if button == ‘email_reminder’ THEN
 try:
 sender = revisionapp@gmail.com
 recipient = email
 subject = “REMINDER TO CONTINUE REVISION!”
 message = “Keep up the good work!”
 SEND subject WITH message FROM sender TO recipient
 except:
 UPDATE ELEMENT ‘progress_tracker_error_message’ TO “An error occurred”

This algorithm takes the user to the progress tracker screen. When the button is pressed, the
features of the progress tracker are updated and displayed. 5 raw number results will be
shown on the left along with their respective set number, and on the right there will be a
graph created and displayed of percentage against attempt. There will also be a button
which sends a tweet of the users 5 most recent scores to the applications Twitter page, as
well as a button to send an email reminder to the users email address via the Google API.

Back
Throughout my application, there will be a back button in the bottom corner of the screen
with will simply update the layout to the layout that was previously visible to the user.

Algorithm Summary
All of these algorithms link together and cover all areas and features of my program,
allowing the user to use every feature as easily and effectively as possible, and navigate

mailto:revisionapp@gmail.com

39

between areas of my solution as logically and fluently as possible in a way that will allow the
user to gain a fast understanding of how to use the app.
Therefore, all the algorithms form a complete solution because they correspond to and link
together in the same way as the systems diagram.

40

Usability features

Layout Diagram

I have designed my application to be as simple to understand and use as possible. I made

this decision with my stakeholders in mind – they asked for a simple and quick-to-use app

that would allow them to revise effectively using a wide range of features in as little time as

possible. To allow this, I have reduced the number of layouts I am using to approximately

one layout per feature to reduce the time the user has to spend navigating in between

features and around the app. This also lowers the storage space needed by the program to

41

as small an amount as possible, as storage space will need to be saved for the .txt and .csv

files that will store all of the users data and information.

The only sources of user input in my application will be via buttons and textual inputs,

linking to how the main hardware requirements for my solution are a mouse and keyboard.

This also means that the user can run the application on almost any device, as all devices

nowadays allow the user to press buttons (either via a mouse click or touchscreen) and

input text (either via keyboard hardware or a digital keyboard). The log-in/sign-up features

will require textual inputs via a keyboard so that the user can enter their username,

password etc, and textual inputs will also be required when the user creates flashcards and

updates account details. However, apart from that, most of the user inputs are buttons (as

seen primarily in the start menu and main menu), as this is a quick way of navigating around

the app. I also opted for multiple choice answers involving buttons rather than textual

inputs for the quiz feature, as I felt that again pressing a button to choose your answer is a

lot quicker than having to type an answer in to an input box whilst being no less effective in

terms of revision.

The ‘Exit’ buttons will be red in colour as this makes them stand out and is a common

convention among most apps nowadays, not just revision apps. The error messages will also

be in red text for this reason. Other text around the app, such as the instructions on the

start menu, will be in bold, and will be as large as possible in the window so that the user

does not have to struggle to read the text. The text itself will be as brief and short as

possible, once again to reduce the amount of time the user would have to spend reading it.

Key Variables

Variable Name Data Type Purpose

username String To store the current users plaintext username. This
may be changed if the user decides to
change/update their username via the ‘Manage
Account’ feature.

password String To store the users hashed password (increased
security). This may be changed if the user decides
to change/update their password via the ‘Manage
Account’ feature.

email String To store the users email address. This may be
changed if the user decides to change/update their
email via the ‘Manage Account’ feature, and it will
also be used as the address that email reminders
are sent to.

user_id Integer This is the users unique user ID, and is used to
identify their own personal .csv file.

num_of_sets Integer Stores the number of sets a user has created, and
this value is stored in their own .csv file and
updated whenever the variable changes value. This

42

variable is used to ensure the user does not exceed
their 5 set limit.

num_of_accounts Integer Stores the number of accounts on the application,
and it is used to stop the search for a
username/password/email in userinfo.txt
becoming infinite (creates a limit in the for loop)

valid_username Boolean Used to confirm whether a username is valid when
entered before being written to the .csv file (i.e.
that it has not already been used by another user)
whenever a user creates a new account or updates
their account details.

new_username String Stores the new username a user enters into the
relevant input box when updating their account
details, and the contents of this variable are then
written to the .csv file if it is valid.

new_password String Stores the new hashed password a user enters into
the relevant input box when updating their
account details, and the contents of this variable
are then written to the .csv file if it is valid.

new_email String Stores the new email a user enters into the
relevant input box when updating their account
details, and the contents of this variable are then
written to the .csv file if it is valid.

set Integer Stores the integer value of the set that the user is
currently revising from/editing/adding to/taking a
quiz from. This is so that each term and definition
the user adds to a set is stored in the .csv file along
with the set they are created for. This is so that
when the program is reading back from the file, it
can validate which flashcards should be shown to
the user for a particular set by sequentially
searching for that set number in the database, and
when a row with that set number is found, the
corresponding term and definition are allocated to
the term and definition variables (below).

term String Stores the term of flashcard to be written to the
.csv file or stores the term which has been read
from the .csv file which will be displayed to the
user.

definition String Stores the definition of flashcard to be written to
the .csv file or stores the definition which has been
read from the .csv file which will be displayed to
the user.

flashcard_number Integer Stores the row number from the .csv file of the
term/definition which is being searched to check
whether it is in a particular set.

43

num_of_questions Integer This stores the total number of questions the user
has answered in a quiz.

score Integer Stores the number of questions a user has gotten
correct in a quiz. This can then be used along with
the num_of_questions variable to calculate the
percentage.

random_answers Integer
array

Stores the row numbers of the correct answer to a
question in a quiz along with the other 3 randomly
chosen answers. This is to ensure the same answer
does not appear twice in a multiple choice
question, as if the row number of a randomly
chosen answer is already in the array, it is rejected
and another random number is generated.

random_answers_slot Integer
array

Stores 4 integers – 0,1,2,3 – and each randomly
chosen answer to a question is randomly assigned
one of these numbers (which is then removed from
the array), which determines which of the 4
multiple choice boxes the answer is placed in. This
ensures that correct answers are not always in the
same box, and helps make sure that the quiz is
never repetitive and so properly tests the users
knowledge.

random_slot Integer Generates a random integer between 1 the length
of the random_answers_slot array, which is used
as the index position of an integer in the list which
is then used to determine which multiple choice
box an answer will be in.

correct_answer Integer Holds the integer of the answer box which holds
the correct answer, so that if this answer is chosen,
the users score is incremented by 1.

random_ans Integer Holds the row number of a randomly chosen
definition from the users .csv file. The definition on
this row is then used as one of the four multiple
choice question answers.

start_time Time Records the time a quiz was started at.

end_time Time Records the time a quiz was completed.

time_taken Time Time taken to complete a quiz (end_time –
start_time).

percentage Integer Holds the percentage a user achieves in a quiz.

num_of_quizzes Integer The number of quizzes a user has completed is
stored in the users .csv file, and this variable is
used to update this value – if the number of
quizzes a user has completed changes, the original
value is read from the .csv file and stored as this
variable, the variable is incremented by 1, and then
the value the variable holds is then written back to
the .csv file. This is needed for the progress tracker.

44

x Integer
array

Used to store the values that will go on the x axis
(quiz attempt number) of the progress tracker
graph.

y Integer
array

Used to store the values that will go on the y axis
(percentage) of the progress tracker graph.

Additional Files

File Name Use File Size

userinfo.txt Stores all of the users’
information for their
accounts (usernames,
hashed passwords, emails,
IDs etc)

PER USER assuming:

• max 20 character long
username – 20 bytes

• password - fixed 64
bit SHA 256 value

• email – max 30 bytes

• user ID – max 2 bytes
 - TOTAL = 116bytes
 - 30 USERS (class size) =
around 3500bytes = 3.5KB

A .csv file for each user
named ‘{user_id}.csv’
e.g. user with ID 1 would
have a .csv file named
‘1.csv’

Stores all of a users
individual flashcards, sets,
quiz scores and results,
number of
quizzes/flashcards etc

PER USER FILE:

• max 5 sets, assuming
each is 20 characters
long – 100 bytes

• number_of_flashcards
variable – 2 bytes max

• 3 columns for terms,
definitions and
corresponding set
numbers, assuming 50
flashcards, and each
term/definition being
an average of 20
characters = 3000
bytes

• 3 columns for test
percentages, times
and sets, assuming 10
quiz results are stored
= 60 bytes

TOTAL = 3162 bytes = 3.2KB

ding.mp3 Sound effect for when a
user passes a quiz.

47KB (stated in file manager)

45

Iterative development
This section will include test tables for each algorithm previously written to ensure my
solution is robust and effective.

Start Menu – 1st Iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

1.1.1 Selection of
option via
‘Sign_up’
button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the SIGNUP layout has
not been defined.

Checking whether
the buttons appear
on the screen as
intended and are
pressable.

1.1.2 Selection of
option via
‘log_in’
button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the LOGIN layout has
not been defined.

Checking whether
the buttons appear
on the screen as
intended and are
pressable.

1.1.3 Selection of
option via
‘Exit’ button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Checking whether
the buttons appear
on the screen as
intended and are
pressable.

Start Menu – 2nd iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

1.2.1 Selection of
option via
‘Sign_up’
button

Mouse
click

Layout will be
updated to
‘SIGNUP’

To check whether the
sign-up screen is
accessible via a button
press from the start
menu.

1.2.2 Selection of
option via
‘log_in’
button

Mouse
click

Layout will be
updated to ‘LOGIN’

To check whether the
log-in screen is
accessible via a button
press from the start
menu.

1.2.3 Selection of
option via
‘Exit’ button

Mouse
click

App will close as
event loop is
broken.

To check whether the
Exit button functions as
intended from the start
menu.

Sign up – 1st iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.1.1 Entering
username,
password and
email into
relevant fields

String ‘username123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings
into the
relevant
input boxes.

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

46

The password
should be
dotted.

2.1.2 Selection of
button to
confirm
account
details

Mouse click Nothing, as
functionality
of button has
not been
implemented
yet.

To check whether
the button on
screen appears in
the correct place
and allows user
interaction.

Sign up – 2nd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.2.1 Entering
username,
password
(twice) and
email into
relevant
fields

String ‘username123’
String ‘password123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Checking whether
the user can enter
a string into the
textual input boxes
that should appear
on screen.

2.2.2 Selection of
button to
confirm
account
details

Mouse click Entry fields
will clear and
strings will be
written to
‘userinfo.txt’,
but app will
remain on the
same screen.

To check whether
details entered
into the input
boxes by the user
are stored to an
external file via a
button press so
they can be
referenced at any
later date.

Sign up – 3rd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.3.1 Entering
username,
password and
email into
relevant fields

String ‘username123’
String ‘password123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings
into the
relevant
input boxes.
The password
should be
dotted.

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

2.3.2 Selection of
button to
confirm
account
details

Mouse click Entry fields
will clear and
strings will be
written to
‘userinfo.txt’,
and layout
will be
updated to
MAIN MENU.

To check whether
the confirm account
button takes the
user to the main
menu once the
details they have
entered have been
validated and
stored.

47

Sign up – 4th iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.4.1 Entering
duplicate
username
and invalid
email

String ‘username123’
String ‘password123’
String ‘password123’
String
‘bradleymak2003@gml
.com’
INVALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes. The
password should
be dotted.

Checking
whether the user
can enter a
string into the
textual input
boxes that
should appear
on screen.

2.4.2 Selection of
button to
confirm
account
details

Mouse click Error message will
appear at bottom of
screen stating
invalid username at
first (as this
username was used
in a previous test),
so change username
to ‘111’ and try
again, now error
message should say
invalid email and
layout will remain
the same.

To check
whether the
validation
algorithm
detects an
invalid email and
displays the issue
to the user (and
does not
proceed to the
main menu).

Sign up – 5th iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.5.1 Entering
invalid email

String ‘123’
String ‘password123’
String ‘password’
String
‘bradleymak2003
@gmail.com’
INVALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

2.5.2 Selection of
button to
confirm
account
details

Mouse click Error message
will appear at
bottom of
screen stating
that the user
mistyped their
password (i.e.
the 2
password
input boxes do
not match).

To check whether
the validation
algorithm detects
an invalid
password re-entry
and displays the
issue to the user
(and does not
proceed to the
main menu).

Sign up – 6th iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

48

2.5.1 Missing field String ‘12345’
String ‘password123’
String ‘password123’
String ‘ ’
INVALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

2.5.2 Selection of
button to
confirm
account
details

Mouse click Error message
will appear at
bottom of
screen stating
that all fields
need to be
entered (as
email is
missing)

To check whether
the validation
algorithm detects
missing inputs, as
all inputs are
required.

Log in – 1st iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.1.1 Entering
username
and
password
into relevant
fields

String
‘username123’
String ‘password123’
VALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

3.1.2 Selection of
button to
confirm
account
details

Mouse click Nothing, as
functionality of
button has not
been
implemented
yet.

To check whether
the confirm
button on screen
appears in the
correct place and
allows user
interaction.

Log in – 2nd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.2.1 Entering
username
and
password
into relevant
fields

String
‘username123’
String
‘password123’
VALID DATA

App will allow
user to enter
these strings into
the relevant
input boxes

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

3.2.2 Selection of
button to
confirm
account
details

Mouse click Layout will be
updated to
MAINMENU and
user will be

To check whether
the button takes
the user to the main
menu of the app if
their log-in details

49

taken to the
main menu.

are valid and
correct.

Log in – 3rd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.3.1 Entering
incorrect
password

String
‘username123’
String ‘password1’
INVALID DATA

App will allow
user to enter
these strings into
the relevant
input boxes

Checking
whether the
user can enter a
string into the
textual input
boxes that
should appear
on screen.

3.3.2 Selection of
button to
confirm
account
details

Mouse click Error message
will appear at
bottom of screen
stating invalid
password, and
layout will
remain the
same.

To check
whether the
confirm account
button takes the
user to the main
menu if the
details they
enter are
incorrect.

3.3.3 Entering
username
that doesn’t
exist

String ‘username1’
String ‘password123’
INVALID DATA

App will allow
user to enter
these strings into
the relevant
input boxes

Checking
whether the
user can enter a
string into the
textual input
boxes that
should appear
on screen.

3.3.4 Selection of
button to
confirm
account
details

Mouse click Error message
will appear at
bottom of screen
stating that the
username
doesn’t exist.

To check
whether the
confirm account
button takes the
user to the main
menu if the
details they
enter are
incorrect.

Main Menu – 1st iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

4.1.1 Selection of
option via
‘new_set’ button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the SETNAME layout
has not been defined.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

50

4.1.2 Selection of
option via
‘my_sets’ button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the SETS layout has not
been defined.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

4.1.3 Selection of
option via
‘progress_tracker’
button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the PROGRESS layout
has not been defined.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

4.1.4 Selection of
option via
‘manage_account’
button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the ACCOUNT layout
has not been defined.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

4.1.5 Selection of
option via
‘log_out’ button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

4.1.6 Selection of
option via ‘Exit’
button

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

Main Menu – 2nd iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

4.2.1 Selection of option
via ‘new_set’
button

Mouse
click

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

4.2.2 Selection of option
via ‘my_sets’ button

Mouse
click

Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

4.2.3 Selection of option
via

Mouse
click

Layout will be
updated to

Checking whether
the button

51

‘progress_tracker’
button

PROGRESS, so the
user will be taken to
a different screen.

functions properly
(i.e. updates the
layout to the
corresponding
option)

4.2.4 Selection of option
via
‘manage_account’
button

Mouse
click

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

4.2.5 Selection of option
via ‘log_out’ button

Mouse
click

User will be logged
out and taken back
to the start menu
(layout is updated to
STARTMENU)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

4.2.6 Selection of option
via ‘Exit’ button

Mouse
click

App will close as
event loop is broken.
User will be
automatically logged
out.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Creating a new set of flashcards – 1st iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

5.1.1 Entering
name of set
into textual
input boxes

String ‘Data
Structures’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes

Checking whether the
user can enter a string
into the textual input
boxes that should
appear on screen
(there is no invalid
string for a set name –
it can be anything).

5.1.2 Selection of
button to
create set
with the
given name

Mouse click Nothing will
happen as the
functionality of
the button has
not been
implemented yet.

To check whether the
confirm button on
screen appears in the
correct place and
allows user interaction.

Creating a new set of flashcards – 2nd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

5.2.1 Entering
name of set
into textual
input boxes

String ‘Data
Structures’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes

Checking whether the
user can enter a string
into the textual input
boxes that should
appear on screen

52

(there is no invalid
string for a set name –
it can be anything).

5.2.2 Selection of
button to
create set
with the
given name

Mouse click Name of set will
be written to the
users personal
.csv file, and the
relevant button
on the choose set
layout will be
updated to show
the new set
name.

To check whether the
button correctly
creates a set for the
user with the given
name, stores the name
in the users .csv file,
updates the button
text on the ‘MYSETS’
layout, and updates
the relevant variables
(i.e. num_of_sets).

Adding flashcards – 1st iteration

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

6.1.1 Entering term
and definition
into textual
input boxes

String ‘Static’
String ‘Size
cannot change
during runtime’
VALID DATA

App will allow user
to enter these
strings into the
relevant input
boxes

To check the user
can enter
characters into
the two textual
input boxes.

6.1.2 Selection of
button to add
flashcard to
set

Mouse click Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check the
‘add’ button
appears correctly
formatted on the
display and can
be interacted
with by the user.

Adding flashcards – 2nd iteration

Test
Number

Test Item Test Data Expected Result Justification Actual Result

6.2.1 Entering term
and definition
into textual
input boxes

String ‘Static’
String ‘Size
cannot change
during runtime’
VALID DATA

App will allow user
to enter these
strings into the
relevant input
boxes

To check the user
can enter
characters into
the two textual
input boxes.

6.2.2 Selection of
button to add
flashcard to
set

Mouse click Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

To check the
‘add’ button
writes the term
and definition to
the correct
positions in the
users .csv file
when pressed.

53

Revise flashcards – 1st iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

7.1.1 Flip flashcard
via button
press

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

7.1.2 Viewing the
next
flashcard via
a button
press

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

7.1.3 Viewing the
previous
flashcard via
a button
press

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

7.1.4 Deleting
flashcard via
a button
press

Mouse
click

Nothing will happen as
the functionality of the
button has not been
implemented yet.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

Revise flashcards – 2nd iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

7.2.1 Flip flashcard
via button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and vice
versa)

To check whether
the correct
corresponding
definition to the
term (or vice versa)
is displayed on
screen when the
button is pressed.

7.2.2 Viewing the
next flashcard
via a button
press

Mouse
click

The next flashcard read
from the users .csv file
will appear on the
screen.

To check whether a
new flashcard is
displayed on screen
from the correct set.

7.2.3 Viewing the
previous
flashcard via
a button
press

Mouse
click

The previous flashcard
read from the users
.csv file will appear on
the screen.

To check whether
the previously
displayed flashcard
is displayed on
screen when the
button is pressed.

7.2.4 Deleting
flashcard via

Mouse
click

The flashcard will be
deleted from the users

To check whether
pressing the button

54

a button
press

.csv file, and the screen
will turn blank as the
procedure to search
for the next flashcard
has not been ran yet.

to remove a
flashcard removes it
from the users .csv
file.

Revise flashcards – 3rd iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

7.3.1 Flip flashcard
via button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and vice
versa)

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

7.3.2 Viewing the
next flashcard
via a button
press

Mouse
click

The next flashcard read
from the users .csv file
will appear on the
screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

7.3.3 Viewing the
previous
flashcard via
a button
press

Mouse
click

The previous flashcard
read from the users
.csv file will appear on
the screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

7.3.4 Deleting
flashcard via
a button
press

Mouse
click

The flashcard will be
deleted from the users
.csv file and the next
flashcard procedure is
then ran to make the
next term appear on
the screen.

To check whether
the next flashcard
automatically
appears on screen
when the user
deletes a flashcard.

Quiz – 1st iteration

Test
Number

Test Item Test Data Expected Result Justification Actual Result

8.1.1 Question and 4
multiple choice
answers should
appear on screen

Clicking on
the ‘Quiz’
button from
the set
menu.

A space for the
question should
appear on screen,
with 4 empty
multiple choice
buttons.

To check whether
the format of the
quiz feature is
correct before
implementing the
Q and A system.

8.1.2 Choosing answer
via button press.

Mouse click Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check whether
the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Quiz – 2nd iteration

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

55

8.2.1 Question and 4
multiple choice
answers should
appear on screen

Clicking on the
‘Quiz’ button
from the set
menu.

A question
should appear on
the screen, with
4 multiple choice
answers in the
form of buttons.

To check whether
the algorithm is
successfully
reading the
question and
corresponding 4
answers from the
correct set from
the users .csv file.

8.2.2 Choosing answer
via button press.

Mouse click Nothing will
happen as the
functionality of
the button has
not been
implemented
yet.

To check whether
the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Quiz – 3rd iteration

Test
Number

Test Item Test Data Expected Result Justification Actual Result

8.3.1 Question and
4 multiple
choice
answers
should
appear on
screen

Clicking on the
‘Quiz’ button
from the set
menu.

A question should
appear on the
screen, with 4
multiple choice
answers in the form
of buttons. These
answers should be
randomly placed in
the 4 boxes.

To check whether
the 4 multiple
choice answers
being displayed
always contain 1
correct answers
and 3 other
random answers
from the correct
set.

8.3.2 Choosing
answer via
button press.

Mouse click Nothing will happen
as the functionality
of the button has not
been implemented
yet.

To check whether
the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Quiz – 4th iteration

Test
Number

Test Item Test
Data

Expected Result Justification Actual
Result

8.4.1 Question and 4
multiple choice
answers should
appear on
screen

Clicking on
the ‘Quiz’
button
from the
set menu.

A question should
appear on the
screen, with 4
multiple choice
answers in the form
of buttons. These
answers should be
randomly placed in
the 4 boxes.

To check whether
the 4 multiple
choice answers
being displayed
always contain 1
correct answers
and 3 other
random answers
from the correct
set.

56

8.4.2 Choosing
answer via
button press.

Mouse
click

A new question
should appear with 4
randomly placed
multiple-choice
answers. This process
will repeat until the
quiz is complete,
when a summary
screen should appear
with no statistics on
it as the score,
percentage and
time_taken variables
have not been
implemented yet.

To check that when
the user chooses an
answer, the next
question is
displayed again
with random
multiple choice
answers. This
feature is key to
allowing the quiz to
progress.

8.4.3 Completing
Quiz via
multiple button
presses

Mouse
click

A summary screen
should appear with
the correct score,
percentage and time
taken. These should
also be written to the
users csv file.

To check that after
the user has gone
through all the
questions, the
correct statistics are
displayed on screen
and written in the
correct positions in
the users .csv file.

Progress Tracker – 1st iteration

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

9.1.1 Raw numbers
representation
of users data

Clicking the
‘Progress
Tracker’ button
from the main
menu.

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

This is to check
that the algorithm
is correctly reading
the users statistics
from their .csv file
and displaying
them in the correct
position on the
display.

9.1.2 Visual
representation
of users data
(e.g. graph)

Clicking the
‘Progress
Tracker’ button
from the main
menu.

The graph should
appear but with no
data plotted.

This is to check the
graph is positioned
correctly on the
display, with the
correct axis labels.

9.1.3 Choosing a
function via a
button press
(post to
Twitter)

Mouse click Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Twitter API) has not
been implemented
yet.

To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with it.

9.1.4 Choosing a
function via a
button press
(email
reminder)

Mouse click Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not

To check whether
the button is
formatted
correctly on the
display and

57

been implemented
yet.

whether the user
can interact with it.

Progress Tracker – 2nd iteration

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

9.2.1 Raw numbers
representation
of users data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

This is to check
that the algorithm
is correctly
reading the users
statistics from
their .csv file and
displaying them in
the correct
position on the
display.

9.2.2 Visual
representation
of users data
(e.g. graph)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The graph should
appear on the left
with the correct
data plotted.

This is to check
that the correct
data has been
plotted on the
graph, and that
the data is clear to
see and make
deductions about
the users progress
from.

9.2.3 Choosing a
function via a
button press
(post to
Twitter)

Mouse click Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Twitter API) has not
been implemented
yet.

To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with
it.

9.2.4 Choosing a
function via a
button press
(email
reminder)

Mouse click Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not
been implemented
yet.

To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with
it.

Progress Tracker – 3rd iteration

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

9.3.1 Raw numbers
representation
of users data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

This is to check that
the algorithm is
correctly reading
the users statistics
from their .csv file
and displaying them
in the correct
position on the
display.

58

9.3.2 Visual
representation
of users data
(e.g. graph)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The graph should
appear on the left
with the correct
data plotted.

This is to check that
the correct data has
been plotted on the
graph, and that the
data is clear to see
and make
deductions about
the users progress
from.

9.3.3 Choosing a
function via a
button press
(post to
Twitter)

Mouse click A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

This is to check that
the algorithm is
tweeting the correct
information when
the button is
pressed.

9.3.4 Choosing a
function via a
button press
(email
reminder)

Mouse click Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not
been implemented
yet.

To check whether
the button is
formatted correctly
on the display and
whether the user
can interact with it.

Progress Tracker – 4th iteration

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

9.4.1 Raw numbers
representation
of users data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

This is to check that
the algorithm is
correctly reading
the users statistics
from their .csv file
and displaying them
in the correct
position on the
display.

9.4.2 Visual
representation
of users data
(e.g. graph)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The graph should
appear on the left
with the correct
data plotted.

This is to check that
the correct data has
been plotted on the
graph, and that the
data is clear to see
and make
deductions about
the users progress
from.

9.4.3 Choosing a
function via a
button press
(post to
Twitter)

Mouse click A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

This is to check that
the algorithm is
tweeting the correct
information when
the button is
pressed.

59

9.4.4 Choosing a
function via a
button press
(email
reminder)

Mouse click An email should be
sent to the users
email address with
the correct subject
and message.

This is to check that
an email is
successfully sent to
the users email
address (which is
already stored by
the ‘email’ variable
in the program),
containing the
relevant
information.

Post-development Phase
Here I will go through my success criteria and outline how I will test the criteria to
check whether they have been met and to test the robustness of my solution.

The stakeholder would like the system to allow them to create an account if they
haven’t already got one.

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

10.1.1 Attempting
to submit
valid
account
details

String
‘username123’
String
‘password123’
String
‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

The users account
will be created,
their details will
be saved to their
.csv file, and they
will be taken to
the main menu.

Ensures the user
can successfully
create an account
using valid
account details

10.1.2 Attempting
to submit
invalid
account
details

String
‘username123’
String
‘password123’
String
‘password123’
String ‘123456789’
INVALID DATA

An error message
will appear at the
bottom of the
screen notifying
the user of the
problem (invalid
email in this
case).

Checks whether
the system detects
when an invalid
email has been
entered (and does
not crash).

10.1.3 Attempting
to submit
incorrect
account
details

String
‘username123’
String
‘password123’
String ‘password’
String
‘bradleymak2003
@gmail.com’
INVALID DATA

An error message
will appear at the
bottom of the
screen notifying
the user that the
2 passwords they
entered do not
match (i.e. they
mistyped their
password).

Checks whether
the system detects
when the two
password fields do
not match.

The stakeholder would like the system to allow them to log in to their account if they
have already created one.

60

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

11.1.1 Entering
correct
username
and password

String
‘username123’
String
‘password123’
VALID DATA

App will verify their
account details and
take the user to the
main menu.

Ensures that the
user can log back
into the system at a
different time using
their already
existing log-in
details.

11.1.2 Entering
incorrect
username
and
password.

String
‘username123’
String
‘password1’
INVALID DATA

An error message
will appear at the
bottom of the
screen alerting the
user to the problem
(most likely an
incorrect password)

Ensures the app is
secure by checking
whether the system
detects when the
user has entered a
password that is not
associated with the
entered username.

The stakeholder would like the system to have a clear main menu.
The stakeholder would like the system to be user-friendly and easy to understand.

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

12.1.1 Selection of option
via ‘Sign_up’ button

Mouse
click

Layout will be
updated to ‘SIGNUP’

Ensures the user
can choose to
sign up easily via
a button press.

12.1.2 Selection of option
via ‘log_in’ button

Mouse
click

Layout will be
updated to ‘LOGIN’

Ensures the user
can choose to log
in easily via a
button press.

12.1.3 Selection of option
via ‘new_set’ button

Mouse
click

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.

Ensures the user
can choose to
create a new set
easily via a
button press.

12.1.4 Selection of option
via ‘my_sets’ button

Mouse
click

Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Ensures the user
can choose to
view their sets
easily via a
button press.

12.1.5 Selection of option
via
‘progress_tracker’
button

Mouse
click

Layout will be
updated to
PROGRESS, so the
user will be taken to
a different screen.

Ensures the user
can choose to
view their
progress easily
via a button
press.

12.1.6 Selection of option
via
‘manage_account’
button

Mouse
click

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.

Ensures the user
can choose to
manage their
account easily via
a button press.

12.1.7 Selection of option
via ‘log_out’ button

Mouse
click

User will be logged
out and taken back
to the start menu

Ensures the user
can choose to log

61

(layout is updated to
STARTMENU)

out easily via a
button press.

12.1.8 Selection of option
via ‘Exit’ button

Mouse
click

App will close as
event loop is broken.

Ensures the user
can choose to
exit the app
easily via a
button press.

The stakeholder would like the system to allow them to create their own sets of
flashcards.

Test
Number

Test Item Test Data Expected Result Justification Actual Result

13.1.1 Entering
name of set
into textual
input boxes

String ‘Data
Structures’
VALID
DATA

Name of set will be
written to the users
personal .csv file, and
the relevant button
on the choose set
layout will be
updated to show the
new set name.

Ensures the user can
create a new set of
flashcards under
whatever name they
want, and that this
name is written to
the users .csv file
and the buttons on
the ‘MYSETS’ menu
are updated to
include this new set.

The stakeholder would like the system to allow them to view sets of flashcards they
have already created.

Test
Number

Test Item Test Data Expected Result Justification Actual Result

14.1.1 Viewing
names of sets
of flashcards
the user has
already
created

Clicking the
‘My Sets’
button from
the main
menu.

The names of the
users sets should
be displayed on the
buttons on the
MYSETS display.

To ensure that the
set names
displayed are
correct and up-to-
date.

The stakeholder would like the system to allow them to revise sets of flashcards they
have created.

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

15.1.1 Flip flashcard
via button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and vice
versa)

Ensures that the user
can ‘flip’ flashcards
(i.e. alternate
between the term and
definition) via a
button press.

15.1.2 Viewing the
next flashcard
via a button
press

Mouse
click

The next flashcard read
from the users .csv file
will appear on the
screen.

Ensures that the next
flashcard displayed is
from the correct set
and is not repeated.

15.1.3 Viewing the
previous
flashcard via

Mouse
click

The previous flashcard
read from the users

Ensures that when tis
button is pressed, the
previous flashcard is

62

a button
press

.csv file will appear on
the screen.

successfully displayed
to the user.

The stakeholder would like the system to allow them to edit already existing sets of
flashcards

Test
Number

Test Item Test Data Expected Result Justification Actual Result

16.1.1 Submitting a
term and
definition to
be created as
a flashcard via
2 textual
inputs and a
button press.

String ‘Static’
String ‘Size
cannot
change during
runtime’
VALID DATA

Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

Ensures that any
term/definition can
be entered and
written to the .csv
file without an
error occurring.

16.1.2 Submitting a
term and
definition to
be created as
a flashcard via
2 textual
inputs and a
button press.

String ‘12*4’
String ‘48’
VALID DATA

Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

Ensures that any
term/definition can
be entered and
written to the .csv
file without an
error occurring.

16.1.3 Deleting
flashcard via a
button press

Mouse click The flashcard will
be deleted from
the users .csv file
and the next
flashcard
procedure is then
ran to make the
next term appear
on the screen.

Ensures that the
user can
successfully delete
a flashcard from a
set (by checking
whether it has
been removed
from the users .csv
file).

The stakeholder would like the system to allow them to test their knowledge on a
particular set of flashcards.

Test
Number

Test Item Test
Data

Expected Result Justification Actual
Result

17.1.1 Question and 4
multiple choice
answers should
appear on screen.

User should be
able to choose an
answer.

Clicking
the ‘Quiz’
button
from the
set menu.

Mouse
click.

A question should
appear on the screen,
with 4 multiple choice
answers in the form of
buttons. When an
answer is chosen, a
new question should
appear with 4
randomly placed
multiple-choice
answers. This process

To ensure that
the quiz feature
works correctly
regardless of
which set the
user chooses,
and that the
questions and
answers are
random and not
repeated.

63

will repeat until the
quiz is complete, when
a summary screen
should appear with no
statistics on it as the
score, percentage and
time_taken variables
have not been
implemented yet.

To ensure that
the quiz ends
after all of the
questions have
been answered.

17.1.2 Quiz Summary Visual
output
when quiz
is
complete
via
multiple
button
presses.

A summary screen
should appear with the
correct score,
percentage and time
taken. These should
also be written to the
users csv file.

To ensure that
the correct
statistics are
displayed on
screen when
the quiz ends.

The stakeholder would like the system to keep track of their progress and show it in
a clear and concise way.
The stakeholder would like the system to allow them to share their results and
progress on social media.
The stakeholder would like the system to send them email notifications when
prompted to.

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

18.1.1 Raw numbers
representation of
users data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

To ensure that
the statistics
displayed on
screen are
correct.

18.1.2 Visual
representation of
users data (e.g.
graph)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The graph should
appear on the left
with the correct
data plotted.

To ensure that
the graph is
plotted correctly
and is easy for the
user to see and
deduce their
progress from.

18.1.3 Choosing a
function via a
button press
(post to Twitter)

Mouse click A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

To ensure that
the user can
successfully tweet
their progress
onto the
applications
Twitter page via a
button press.

64

18.1.4 Choosing a
function via a
button press
(email reminder)

Mouse click An email should be
sent to the users
email address with
the correct subject
and message.

To ensure that
the user can
successfully send
themselves an
email reminder to
their email
address stored by
the app.

65

Development Section
This section will cover the development of my solution including testing throughout, any
problems encountered and how they were solved, and screenshots/videos of my solution in
action. I will also be asking my stakeholders for feedback and evaluating my success criteria
throughout.

Initialisation
I have first started by importing the PySimpleGUI library in Python and defining the colour
theme for my app:

I have chosen this colour theme after looking online at all of the available colour schemes in
PySimpleGUI, and I think it allows for a good contrast between the background and the
buttons allowing for the app to look sharper. I chose PySimpleGUI as it allows for simple and
easily changeable layout designs and allows for a clear structure in my solution via event
checking in the event loop.

Start Menu
I have next created the start menu layout called ‘StartScreen’ which should consist of 3
centralised buttons for each of the functions available at this point.

66

I also defined the first column (I will be using columns in my solution to allow the program
to ‘switch’ between layout by making the relevant columns visible/invisible) and a window
for the GUI to be displayed on.

I next created the event loop which allows the program to run so I can check the layout as
part of my first iteration of testing:

However, when I run this code I receive an error shown here:

This is due to the fact that there is no ‘center’ justification for buttons, so I tried putting the
justification in the column element instead of defining it for each individual button/text
element, and whilst I now got no error, the buttons and text were not actually centralised.

As you can see from the screenshot on the left,
the buttons all look correct (i.e. correct size,
colour and text) but are not appearing in the
correct positions on the display (central).

To solve this problem I have started by giving the window a fixed size, meaning that it will
appear the same on all devices:

67

I have next used empty text elements to centralise the buttons on the display, which
because of the fixed display size, will mean that the buttons always appear central on all
devices, allowing for convenient, on the go usage of the app on any device which was a
feature requested by my stakeholders. The ‘center’ justification worked for the text
element.

The result is a layout with the buttons all correctly formatted and positioned in order to
make the display as user friendly and easy to use as possible in line with my success criteria I
set out in the analysis section.

I can now carry out the first iteration of my testing for the start menu (clip shown in testing
evidence powerpoint):

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

1.1.1 Selection of
option via
‘Sign_up’
button

Mouse click Nothing will happen as
the functionality of the
button has not been
implemented yet, and the
SIGNUP layout has not
been defined.

Checking
whether the
buttons appear
on the screen as
intended and
are pressable.

Buttons appears
correctly on the
interface but is not
functioning as of yet.

1.1.2 Selection of
option via

Mouse click Nothing will happen as
the functionality of the
button has not been

Checking
whether the
buttons appear

Buttons appears
correctly on the

68

‘log_in’
button

implemented yet, and the
LOGIN layout has not
been defined.

on the screen as
intended and
are pressable.

interface but is not
functioning as of yet.

1.1.3 Selection of
option via
‘Exit’ button

Mouse click Nothing will happen as
the functionality of the
button has not been
implemented yet.

Checking
whether the
buttons appear
on the screen as
intended and
are pressable.

Buttons appears
correctly on the
interface but is not
functioning as of yet.

Start Screen – Review 1
Success Criteria Review
The development so far shows I am focusing on the success criteria of offering a user
friendly design (success criteria 10 in analysis section) and allowing my app to be used and
appear the same on a wide range of devices, allowing for convenience as requested by my
stakeholders.

Stakeholder feedback
I asked one of my stakeholders, Vivek, for his opinions on the layout and whether he
thought it was easy to use and understand. He said “The layout is good and the functionality
is clear but it would be nice if the text was a bit bigger/bolder.”
After hearing this feedback, I have increased the font size of both the text and button
elements (along with some adjustment of the size of the elements in order to keep them
centralised) and made the text at the top of the screen bold in order to make it stand out
and easier to read.

This is how the layout now looks.

69

I have quickly defined the sign up and log in layouts to allow me to test the functionality of
my buttons. These are not the final layouts, but they are sufficient to allow me to carry out
iteration 2 of the start menu testing.:

I have also added the two new layouts as columns which, as stated earlier, can be made
visible/invisible as required to give the impression of the program switching interfaces.

I have started by implementing the functionality of the ‘Exit’ button by adding the following
piece of code, which tells the program that if the button with the ID ‘Exit’ is pressed (or if
the window is closed) the event loop should break and thus the app will close.

I then tested the functionality of the button (test 1.2.3 in testing evidence powerpoint) and
it worked as intended with no issues.

Next, I implemented the functionality of the signup button. To do this, when the button is
pressed, the Start Screen layout is made invisible and simultaneously the Sign Up layout is
made visible to the user. This gives the impression of the program switching layouts when in
reality all of the layouts are there, some are just invisible and so only the visible layout is
shown on the screen to the user.

After coding this, I tested the functionality of the button (test 1.2.1 in testing evidence
powerpoint) and the test was successful with no issues – the correct layout was displayed
upon pressing the button.

Finally, I implemented the functionality of the login button. This works in an identical way to
the signup button, except the layout which is made visible is the LOGIN layout rather than
the SIGNUP layout.

Again, I tested the functionality of the login button (test 1.2.2 in testing evidence
powerpoint) and the test was successful with no issues – the correct layout was displayed
on screen to the user.

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

70

1.2.1 Selection of
option via
‘Sign_up’
button

Mouse
click

Layout will be
updated to ‘SIGNUP’

To check whether the
sign-up screen is
accessible via a button
press from the start menu.

The correct layout
(‘SIGNUP’) was
displayed on
screen.

1.2.2 Selection of
option via
‘log_in’ button

Mouse
click

Layout will be
updated to ‘LOGIN’

To check whether the log-
in screen is accessible via a
button press from the
start menu.

The correct layout
(‘LOGIN’) was
displayed on
screen.

1.2.3 Selection of
option via ‘Exit’
button

Mouse
click

App will close as
event loop is broken.

To check whether the Exit
button functions as
intended from the start
menu.

App closes as
event loop is
broken.

Start Screen – Review 2
Success Criteria
I am now partway through success criteria 1 and 2 about allowing the user to log in/sign up.
Creating the functional buttons which allow the user to access the page to log in/sign up is
part of this success criteria and thus whilst success criteria 1 and 2 are not fully complete
yet, I am now partway there.

Sign up – Stage 1
I have next decided to develop the sign-up feature of my app, as this feature will be
required before the log in feature can be tested. It is also the first feature a user will come
across when they start using the app (as they will first need to create an account).

Firstly, I need to create the proper SIGNUP layout rather than the test layout I used for the
previous iteration of tests. This is the code I have written for the SIGNUP layout after some
minor changes to the size of elements (via trial and error) to ensure they were properly
positioned:

71

I ran the app and when I clicked on the Signup button, this was the display which appeared:

After my previous conversation with one of my stakeholders, Vivek, I decided to make the
block of text at the top of the screen large and bold to make it easy to read.
The input boxes are sufficiently large and the submit/back buttons are properly positioned
and coloured as I intended.

Sign Up – Review 1
Stakeholder feedback
I sent this prototype to one of my stakeholders, Marcus, to try out for his feedback on the
design of the SIGNUP layout. He said “I like the text at the top, I’d prefer the input boxes to
appear empty so I don’t have to clear the text from them before I type something and have
the purpose of each input box as text to the left of it. It’d also be better if the buttons were
a bit bigger. Other than that I like it”.

I followed up on Marcus’ request for the
input boxes to be made larger, and I
increased their size so that the layout
now appears like this:

72

Marcus also requested that the input boxes had the text outside of the box rather than
inside so that he didn’t have to clear the text every time he wanted to enter his details. I
contacted Sam and Vivek about this issue too as I was interested to hear their opinions on it.
Sam wasn’t overly bothered but Vivek also said he’d prefer the text outside the input box
rather than inside for the same reason (to allow for quicker and easier account creation).
Therefore, I have decided that I am going to change this prototype in line with the feedback
from my stakeholders.

Firstly, I have removed the default text
from each input text element, so they
now just appear blank when the program
is ran as shown here:

I have next added a text element before each input box, each displaying the required field
to be entered in each box:

The result was this interface when the
program was ran:

73

I decided to increase the text size in order to make it easier to read (in line with an earlier
request from my stakeholders) and aligned the input boxes by setting each text element to
a given size:

The result is an interface which looks clean,
simple and effective and has my stakeholders
requests in mind:

Now that the design of the SIGNUP interface has been finalised in line with my stakeholders
requests, I can begin the first iteration of testing of this prototype.

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

2.1.1 Entering
username,
password and
email into
relevant fields

String ‘username123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes. The
password should
be dotted.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

Program allows
user to enter any
data type into
the input boxes
via the
keyboard.
However, the
password was
not dotted.

2.1.2 Selection of
button to
confirm
account details

Mouse click Nothing, as
functionality of
button has not
been
implemented yet.

To check whether
the button on
screen appears in
the correct place
and allows user
interaction.

Nothing happens
when the submit
(or back) button
are pressed as
the functionality
of these buttons
has not been
implemented
yet.

Testing evidence for tests 2.1.1 and 2.1.2 can be found in the testing evidence powerpoint.

However, whilst testing this prototype, I noticed that the password is not dotted whilst it is
being entered. This puts the user at risk of shouldering (where someone steals their
password by looking at it whilst it is being entered) as the password is not dotted (hidden)
as it is being entered.

74

I did a bit of research about how to do this as is it something I have not done before, and I
found the following website: https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-
mask-user-input-in-PySimpleGUI. It turns out it is quite simple and just requires the
password character to be defined within the element (highlighted):

Now when a password is entered, the
password appears as asterisks rather than
the actual characters, making my program
much more secure:

Testing evidence of this can be found in the
testing evidence powerpoint (test 2.1.1 re-
run).

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

2.1.1 Entering
username,
password and
email into
relevant fields

String ‘username123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes. The
password should
be dotted.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

Program allows
user to enter any
data type into
the input boxes
via the
keyboard. The
password is now
hidden as it is
entered.

2.1.2 Selection of
button to
confirm
account details

Mouse click Nothing, as
functionality of
button has not
been
implemented yet.

To check whether
the button on
screen appears in
the correct place
and allows user
interaction.

Nothing happens
when the submit
(or back) button
are pressed as
the functionality
of these buttons
has not been
implemented
yet.

Success Criteria Review
I am working towards success criteria 1, but I have not fully met it yet. The functionality of
the submit button needs to be coded before this criteria has been fully met.

I have next added another textual user input field for password re-entry. The program will
check whether the 2 passwords the user has entered are the same and if they are (and there

https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-mask-user-input-in-PySimpleGUI
https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-mask-user-input-in-PySimpleGUI

75

are no other invalid details entered) their account will be successfully created. This will be
implemented later.
This is the code I added (highlighted) to create the extra textual input box for the user to re-
enter their desired password:

The result was the SIGNUP interface now appearing like this:

Sign Up – Stage 2
I have next created the file ‘userinfo.txt’ and placed it in the correct
directory so it can be referred to in my program.

I am going to start by creating the functionality of the back button. I have first changed the
key of the back button on the SIGNUP layout as there will be many back buttons throughout
my program and each will need their own unique key as they will all update the layout in
different ways.

I then wrote the following piece of code in the event loop which updates the layout when
the back button is pressed (by making the ‘Signup’ layout visible and the ‘StartScreen’ layout
visible):

76

The back button now works as intended. This is not included as part of my iterative testing
however as it is a simple feature that will be repeated multiple times throughout the
program so I didn’t think there was much point testing it all the time.

I will next implement the functionality of the submit button.
I have started by writing the following code which takes the users inputs and writes them to
the userinfo.txt file. The program does not yet validate the inputs or check the password re-
entry.

The file is opened to append (rather than write) so that nothing is overwritten and errors
are avoided.
I tested my program using the inputs stated in test 2.2.1:

And the following was written to ‘userinfo.txt’:

77

The issue here is that all of the inputs are being written one after another on the same line,
which is an issue as my program needs to be able to read information from the file line by
line.
To attempt to fix the issue, I used string manipulation to add a line break to every user input
before it is written to the file.

I manually cleared the text file and then re-ran the program with the same inputs and the
result was this:

To test that it worked after more than one submission, I pressed the submit button again
and the information entered was again written correctly to the file on separate lines as
intended:

I had originally planned for each user to have their own unique user ID (which would just be
an integer), however since every user has a unique username (which will be checked when
they create their account), there is not really much need for the user ID. Therefore, I am not
going to include it as it will just take more processing time to produce a unique user ID for
each user and will take up more storage space. I am just going to use the users username as
their unique identifier instead. This will not change the view of the app from the users end,
it just makes the implementation simpler and more space and time efficient (hence it is an
example of abstraction being used in my development).
In the userinfo.txt file, users’ information will now be stored in blocks of 3 rather than 4 like
originally planned (as I have reduced the amount of information that needs to be stored for
each user).

Now that the program is correctly storing all of the entered information, the password
needs to be hashed before it is stored in order to again increase the security of my app and
avoid any serious data breaches.

78

First, I imported hashlib:

I then hashed the two

password entries using the SHA-256 hashing algorithm:
Then, when I ran the program with the inputs in test 2.2.1, I received the following error:

I had a look online as this is something I do not have experience coding before, and I found
the following website: https://stackoverflow.com/questions/7585307/how-to-correct-
typeerror-unicode-objects-must-be-encoded-before-hashing.
It explained that it has to be encoded into the 8 bit Unicode format before being hashed
because the hashing algorithm uses Unicode to produce the hash value (as mathematical
operations can be performed on Unicode).

Using this advice, I updated my code to now look like this:

The passwords the user entered have both been ran through the SHA-256 hashing algorithm
to produce a fixed length hash value specific to that password. It is only the hash value
which is stored in the file rather than the actual password which makes my app much more
secure because even if there was a data breach, the hashed values cannot be reversed back
into their original form using the hashing algorithm. The passwords have then been
converted into hexadecimal to shorten them and thus reduce the amount of storage space
needed.

I then ran the program again with the inputs in test 2.2.1, and the result was the following
being written to the file ‘userinfo.txt’:

Therefore, the user inputs are now successfully being written to ‘userinfo.txt’ in the correct
form.

Once the user has entered their details, the input fields need to be cleared ready for the
next user (as it would be insecure to leave the input fields filled with the previous users log
in details).

https://stackoverflow.com/questions/7585307/how-to-correct-typeerror-unicode-objects-must-be-encoded-before-hashing
https://stackoverflow.com/questions/7585307/how-to-correct-typeerror-unicode-objects-must-be-encoded-before-hashing

79

To do this, I have used each of the input fields IDs to locate them and update their contents
to contain nothing (so that they appear blank to the next user that wishes to log in on the
same device):

I will now test this feature to check whether it is working (testing evidence for tests 2.2.1
and 2.2.2 can be found in the testing evidence PowerPoint).

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.2.1 Entering
username,
password
(twice) and
email into
relevant fields

String ‘username123’
String ‘password123’
String ‘password123’
String ‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings
into the relevant
input boxes. The
password
should be
dotted.

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

The program
allowed me to
enter these
details into
the available
input boxes.

2.2.2 Selection of
button to
confirm
account details

Mouse click Entry fields will
clear and strings
will be written
to ‘userinfo.txt’,
but app will
remain on the
same screen.

To check whether
details entered into
the input boxes by
the user are stored
to an external file via
a button press so
they can be
referenced at any
later date.

The
information I
entered was
successfully
written to the
file , the
passwords
were hashed
and the input
boxes were
emptied.

Sign up – Stage 3
At this stage, I am going to set up the validation of the user inputs.

To start, I am going to check whether the username the user enters has been used before
(as it has to be unique as it is the users unique identifier) – username verification. I have
created a boolean variable called valid_username which starts as True. This variable will be
updated to false if the username the user enters is already present in ‘userinfo.txt’.

I next need to sequentially search through the file to check whether the username the user
entered has been used before. To do this, instead of using the num_of_accounts variable I
proposed earlier in the design section, I am going to find the length of ‘userinfo.txt’ and
then use that value in a for loop. This is because keeping the num_of_accounts variable up
to date would require it to be saved/re-written to a file every time an account was
made/deleted, which wouldn’t be time efficient and would be more difficult to implement.
I will create a validate_username subroutine which will take the users username as a
parameter, and will check whether that username is present in ‘userinfo.txt’. If it is,
valid_username will be updated to be false and an error message will appear.

80

Initially, I started by calculating the number of lines in the file using the following piece of
code:

I then added the following code to attempt to test the subroutine to see if it worked
correctly:

When I ran this prototype multiple times using ‘123’ for every input field, this was what was
being printed by the print statements, as well as the contents of the file at this point:

As you can see, the ‘9’ output is correct for the length of the file, but the program is
outputting ‘no’ despite the fact that the username entered is clearly already present in the
file (and thus the output should be ‘False’). So I assumed that the program is not reading the
lines from the file as I intended (as the lines from the file are not being printed by the print
statement).

81

I had a look at the forum https://stackoverflow.com/questions/28873349/python-readlines-
not-returning-anything, which helped me with my next steps.
I wrote the following piece of code which outputs all of the lines of data in the file:

When I ran the code, all of the lines of data in the file were outputted:

So, now that I have found a way to extract each individual line from the file, I can use the
same logic as I did in the previous prototype to compare each of the extracted lines to the
username:

I then manually removed the data entered during the test of the previous prototype from
the file to allow for a fair test.

When I run this prototype (again
using ‘123’ as the input for every
field), this is what gets outputted:
This is the same output as the
previous prototype, hence the
program is still not detecting that
there is data in the file that is the
same as the username (when there
clearly is).

To further test this prototype, I add an else statement to check
whether the program is actually even running the if statement
in the first place:

https://stackoverflow.com/questions/28873349/python-readlines-not-returning-anything
https://stackoverflow.com/questions/28873349/python-readlines-not-returning-anything

82

When I run the prototype again this time, I get the following output:

As you can see, ‘no’ is being outputted after
every iteration, so the program must be
entering the loop and the comparison is just
not working correctly.

After thinking about this for some time, I realised that
there is a line break in the outputs after every line
extracted from the file (highlighted in yellow):

This must be why the comparison is not working – the
username does not have the line break whereas the line
extracted from the file does, so they will never be
considered ‘equal’ even if they appear it.

To fix this, I have added a line break to the username before the comparison, which should
ensure that if the characters in the line extracted and the username are the same, they are
considered the same by the program because they will both have the line break:

When I ran the new prototype, I received the
following output:

As you can see, ‘False’ (the new Boolean value of
valid_username) is being outputted because there
is a string/line of data in the file which matches the
username (on multiple occasions in this case).

This now means that the user is successfully
detecting whether there is a line of data in the file
which matches the username (hence suggesting the
username is a duplicate, and should not be
accepted).

83

I also now have no need to determine the number of lines in the file as this is not required
in the new prototype, so I can remove that piece of code. I can also remove the print
statements I used for testing. Therefore, the validate_username subroutine now looks like
this:

I also moved the calling of the subroutine to BEFORE the point at which the information was
written to the file (as it needs to be validated before being added):

I decided to double check whether this was truly working, so I manually cleared
‘userinfo.txt’ (so that it contained nothing and thus on the first input, it cannot possibly be a
duplicate) and added a print(valid_username) statement just underneath the calling of the
subroutine so that I could see the final value of valid_username.
I inputted information 3 times:
First input – ‘123’ for all fields
Second input – ‘987’ for all fields
Third input – ‘123’ for all fields
This will allow me to check whether the subroutine is working correctly. This test can be
found in the testing evidence powerpoint under ‘Sign Up – Stage 3 Test’. The outputs I
received were the following:
First input – True
Second input – True
Third input – False

This is absolutely correct as initially, ‘123’ and ‘987’ are unique usernames and so should be
accepted, but on the third input, the username ‘123’ has already been taken and so
valid_username should have been set to False which it has been.

84

Now that I have completed the username verification subroutine, I am going to create an
error message which should appear if a username is already taken.
I have started by creating a text element on the Signup display which is initially empty but
can be updated to contain the relevant text and will appear centralised in bold, red text to
signify an error.

I have then created the code which updates the element to contain the error message if the
username is already taken (and so valid_username = False):

When a username already present in the file is entered, the following error message
appears on the screen:

Now that the username validation is in place, I can move onto password validation. I am
going to approach this slightly differently than in my original pseudocode. Instead of using a
nested loop, I am going to use a separate subroutine for each part of the validation process
(i.e. validating username, password and email). I believe this will make the development
process easier, allow for quicker error checking and correction, and easier maintenance of
the code in the long term for any future updates.
To start with, I have changed the valid_username variable to valid_details throughout my
program. This is to better the programs space efficiency as I will not need a different
variable for each entry, I can just use this single variable throughout the validation process
and check if it stays true.
If valid_details is true after the username has been validated, the subroutine
validate_password will be called, with the parameters password and password_verification.
I will create this subroutine next.

85

This is the validate_password subroutine, which is required only to check whether the 2
passwords the user entered are the same. This is to avoid a possible typo as the user cannot
actually see their password as password characters are being used in their place to make the
app more secure and avoid shouldering, as mentioned earlier.

I have then made it so that the error message is updated to alert the user to this issue:

This should work as the program goes through the code in logical order (from top to
bottom, so for example the username will always be validated before the password).

I then manually cleared ‘userinfo.txt’ to ensure that
the username I enter will be valid (as I am focusing on
password verification), and entered two different
passwords (‘password12’ and ‘password123’) into the
2 password input boxes, and the error message was
correctly displayed:

(This feature will be tested again in the later iterations
of testing and testing evidence of this will then be put
on the testing evidence powerpoint).

86

At this stage, the input boxes are being cleared when there is an error (which I do not want
to happen), but I will fix this later when I have completed all of the verification.

Next, I will move onto email verification.
Users emails will be required to be gmail (to be able to use the email notifications feature).
Whilst this limitation is still subject to change, at this moment in time emails would have to
include the substring ‘@gmail.com’, and would thus have to also be longer than 10
characters long.
If valid_details is still true after both the username and password have been validated, the
email needs to be validated so the subroutine (which is yet to be defined) needs to be
called:

Next, I need to define the email_verification subroutine. The requirements for emails at this
stage of development were detailed above.

Similar to the other validation stages, I also updated the error message to alert the user to
the invalid email if that is the case:

87

Again, I manually cleared ‘userinfo.txt’ to ensure that there was no duplicate username
being entered (as this test is about the email verification) and entered an invalid email
address ‘bradleymak2003@gml.com’.

However, then I received the following error:

I defined the email as a string:

I also realised that the index values/length I was checking for in my email validation were
slightly incorrect, so I also updated them:

88

I then tried explicitly setting the string indices to integers to try and solve this problem:

I now carried out the test again with the same inputs as before:
‘username123’, ‘password123’, ‘password123’, ‘bradleymak2003@gml.com’.

However, the same error still appeared. After looking at the website
https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-
must-be-integers, I realised that I need to use a colon rather than a comma, so I changed
this and ran my program again:

I manually cleared ‘userinfo.txt’, and carried out another test with the same inputs as
above…

And it came up with the correct error
message (again testing proof for this will
be shown in the testing evidence
powerpoint later).

However, now when I input a duplicate username, I receive an invalid email error. This was
because I am using the same variable for all validations (valid_details), so originally because
the validations were not nested, it would automatically update the error message to the
email error message (as this is validated last, and so is the last validation code to be ran). I
have now nested the inputs which solves this issue:

https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-must-be-integers
https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-must-be-integers

89

There was no error when I entered ‘bradleymak2003@gmail.com’ (a valid email address)
into the email entry field, but it displayed the error message ‘Invalid email’. This must be
because the substring I am taking out is incorrect, so I put in a print statement so that the
next time I ran the program I could see what the substring being taken out of the email is:
When I ran the program with the input ‘bradleymak2003@gmail.com’
again, the following was printed:

This shows that the substring is being cut off to early so I increased the upper string indices
by 1 (i.e. removed the -1):

90

When I then ran the program again with the same inputs, they were accepted and
successfully written to ‘userinfo.txt’.

However, information is still being written to the file if it is incorrect, so to fix this (and stop
clearing the entry fields if there is an error), I have placed all of the writing of information to
the file and clearing of entry fields into an if statement, which required valid_details to be
true:

I also added the following piece of code, which removes the error message on the sign up
screen when the details entered are valid. This ensures the error message will not remain
when the current user logs out and another user goes to create an account.

I have next created a temporary main menu layout, added it to the column layout so it can
be made visible/invisible as necessary, and told the program to update the layout to the
main menu once there is a successful sign up, to allow me to test whether my app is
working correctly.

91

Now I can begin testing. Testing evidence for all of the following tests can be found in the
testing evidence powerpoint. (The file userinfo.txt was cleared between tests to ensure that
a duplicate username did not get in the way of other tests)

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

2.4.1 Entering
duplicate
username
and invalid
email

String
‘username123’
String
‘password123’
String
‘password123’
String
‘bradleymak2003@g
ml.com’
INVALID DATA

App will allow user to
enter these strings into
the relevant input
boxes. The password
should be dotted.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

Allows user to
successfully
enter details
into the input
boxes.

2.4.2 Selection of
button to
confirm
account
details

Mouse click Error message will
appear at bottom of
screen stating invalid
username at first (as
this username was used
in a previous test), so
change username to
‘111’ and try again, now
error message should
say invalid email and
layout will remain the
same.

To check whether
the validation
algorithm detects
an invalid email
and displays the
issue to the user
(and does not
proceed to the
main menu).

Both error
messages
appear
correctly and
the layout
remains the
same until all
of the inputs
are valid.

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

2.5.1 Entering
passwords
that do not
match

String ‘123’
String ‘password123’
String ‘password’

App will allow user
to enter these
strings into the
relevant input

Checking
whether the
user can enter a
string into the

Allows user to
successfully enter
details into the
input boxes.

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

2.3.1 Entering
username,
password and
email into
relevant fields

String ‘username123’
String ‘password123’
String ‘password123’
String ‘bradleymak2003
@gmail.com’
VALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Checking
whether the
user can enter a
string into the
textual input
boxes that
should appear
on screen.

Allows user to
successfully enter
details into the
input boxes.

2.3.2 Selection of
button to
confirm
account details

Mouse click Entry fields will
clear and
strings will be
written to
‘userinfo.txt’,
and layout will
be updated to
MAIN MENU.

To check
whether the
confirm account
button takes
the user to the
main menu
once the details
they have
entered have
been validated
and stored.

Valid details are
written to the file,
the layout is
updated to the
main menu and
the entry fields
clear (as shown
earlier).

92

String
‘bradleymak2003
@gmail.com’
INVALID DATA

boxes. The
password should be
dotted.

textual input
boxes that
should appear
on screen.

2.5.2 Selection of
button to
confirm
account
details

Mouse click Error message will
appear at bottom of
screen stating that
the user mistyped
their password (i.e.
the 2 password
input boxes do not
match).

To check
whether the
validation
algorithm
detects an
invalid
password re-
entry and
displays the
issue to the
user (and does
not proceed to
the main
menu).

The error message
appears correctly
and the layout
remains the same.
The layout
changes when the
error is fixed and
valid inputs are
submitted.

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

2.6.1 Missing field String ‘123’
String
‘password123’
String
‘password123’
String ‘ ’
INVALID DATA

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Checking whether the
user can enter a
string into the textual
input boxes that
should appear on
screen.

Allows user to
successfully enter
details into the input
boxes.

2.6.2 Selection of
button to
confirm
account
details

Mouse click Error message
will appear at
bottom of
screen stating
that all fields
need to be
entered (as
email is missing)

To check whether the
validation algorithm
detects missing
inputs, as all inputs
are required.

Error message does
appear stating invalid
email. But if I leave
the password fields
empty instead, the
program advances
when it shouldn’t do
as the field hasn’t
been filled.

The issue with test 2.6.2 was that it allowed me to advance and wrote the details I did enter
to the file even though I didn’t fill the password fields (which shouldn’t happen as you
obviously need a password). To fix this, I wrote the code below:

93

When I ran my program with the inputs ‘username12345’, ‘password123’, ‘’ and
‘bradleymak2003@gmail.com’, the error message came up with ‘passwords do not match’
rather than ‘Fill all fields’. I looked at the variables I was using and realised that I am
checking if the hash value of the password is equal to nothing, which cannot be the case as
the SHA-256 hashing algorithm produces a has value even for an empty string. So, to fix this,
I went on the website https://xorbin.com/tools/sha256-hash-calculator and got the hash
value for an empty string
(e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855), and used
this in my code:

When I ran the program again with the same inputs as previously, the app successfully
notified me that an input field was missing:

I also noticed that when the back button is pressed and the user goes back onto the signup
screen, the information entered remains there. This should not happen as this is a security
issue, as if another user goes to sign up, the previous users entry details will be there if they
forgot to manually clear them before pressing the back button. To fix this, I cleared all of the
entry fields when the back button is pressed:

https://xorbin.com/tools/sha256-hash-calculator

94

Sign up – Review 2
Success Criteria
At this point, the sign-up feature is not fully completed, so I have not yet fully met success
criteria 1 yet. I have so far met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

Stakeholder feedback
Now that I have completed the sign-up feature and extensively tested it, I sent this new
prototype of my solution (along with the external files) to one of my stakeholders, Vivek, to
get his opinion on the sign-up process and to test how robust it is.
He said that the layout looked clean and simple and the program was easy to use. The only
issue he encountered was that he used an outlook email (and my program only allows gmail
addresses to be entered at this point), so he was confused as to why his email wasn’t
working as the error message just says ‘invalid email’, so I have changed the error message
top notify the user that it has to be a gmail address to avoid this confusion in the future:

Summary of progress made and how this prototype compares to the previous
I now have an effective sign up system that is robust and does not crash no matter what the
inputs are, as tested by my stakeholders. It can deal with duplicate usernames, passwords
that do not match, invalid emails and missing fields all together, and has a clear interface
and method of notifying the user of the issue so they can fix their inputs. The stakeholder
feedback has made my program more suited to its target audience and has improved my
solution to make it more appealing to students.

95

Log in – Stage 1
Next, I am going to develop the log in feature, to allow the user to log in to an account they
have previously created.

To start, I am going to create the layout for the log in screen. In order to continue meeting
success criteria 10, this layout needs to be user friendly, clear and easy to use. In order to
achieve this, I have coded the following:

The result is a layout which looks like this:

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.1.1 Entering
username and
password into
relevant fields

String ‘username123’
String ‘password123’
VALID DATA

App will allow
user to enter
these strings into
the relevant
input boxes

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

Program
allowed the
user to enter
their details
successfully.

3.1.2 Selection of
button to
confirm
account details

Mouse click Nothing, as
functionality of
button has not
been
implemented
yet.

To check whether
the confirm button
on screen appears in
the correct place
and allows user
interaction.

Nothing
happened
upon pressing
the button.

Testing evidence for these tests can be found in the testing evidence powerpoint.

Log in – Review 1
Success Criteria
I have not met any new success criteria since the last review. Currently I have met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

96

Stakeholder feedback
I asked one of my stakeholders, Marcus, for feedback on the layout of the log in screen. He
said that it “looks ok but it’d be clearer if the text was a bit bigger and filled a bit more of the
screen, because for example there is a large gap between the title at the top and the input
boxes”.

Following his feedback, I have increased the size of the text to make it clearer and take up a
bit more of the screen. However, I do not want to increase the text size too much as it will
begin to look unauthentic.
This is the new layout after I have made these minor changes:

Log in – Stage 2
Now that the interface is created and has been approved by stakeholders, I can begin work
on implementing the functionality of the buttons.

I will start with the back button. This is a very similar process to the back button on the sign
up screen – if it is pressed it updates the layout to the start screen by making the log in
layout invisible and making the start screen layout visible. Again, similar to the sign up back
button, I have cleared the input fields on the login screen upon pressing the back button.
This is again for security reasons.

97

Now I will work on the functionality of the button to validate your details and log into your
account.

It will work by sequentially searching through the file ‘userinfo.txt’ for the username the
user enters, and then checking the next line in the file as this should be the password. This is
because the way the information in the file has been stored is in blocks of three. For
example:
Line 1: User 1 username
Line 2: User 1 hashed password
Line 3: User 1 email
Line 4: User 2 username
Line 5: User 2 hashed password
Line 6: User 2 email
Line 7: User 3 username
Line 8: User 3 hashed password
Line 9: User 3 email
So the program will search the first line in the file, if it is the password, the next line will be
checked to see if it matches the password the user entered, if not it will add 3 to the
counter and thus check the next username. This process will repeat until either the
username is found and the password entered is correct (if it is not this will be notified to the
user) or it does not exist and this will be notified to the user.

I have started by saving the username and password entered by the user as variables, with
the password being hashed using the same hashing algorithm (SHA-256) as it was hashed
with when the account was created (so it can be compared fairly).

Next, I used the same logic as in the password validation subroutine, by sequentially going
through the lines in the file and if they are equal to the username, the next line in the file
has to equal to the password for the user to successfully log in.

98

However, when I create an account with the username ‘username123’ and password
‘password123’, and then enter these details to the log in screen, incorrect password is being
printed to the console. This means that the program is detecting that the username is there
but not detecting that the line after it is the same as the hash value of the password I
entered

I rewrote my code using a different approach of saving each line as a variable first and use a
while loop:

I then tested my new approach to see if, when I entered the correct username
(‘username123’) and password (‘password123’), ‘correct details’ was printed.
This was the contents of ‘userinfo.txt’:

This was what was printed when I entered the details:

99

You can see that ‘correct details’ is printed when a username and corresponding password
that are in the file are entered.

I then tried this again using an incorrect password (‘password12’):

As you can see, ‘incorrect password’ is correctly stated.

I then tried this again with a username that did not exist in the file (‘123’) and the program
crashed (‘Initial Log In Test 1’ in testing evidence powerpoint). This is because the program
enters an infinite loop as the username can never be found. To limit this, I have edited the
whole loop to add a condition to keep searching until an empty line is found (as this will be
the end of the information in the file, as a user has to enter something for all fields when
they sign up):

Now when I run the program with the same inputs as in the previous test, the correct
statements are printed (‘Initial Log In Test 2’ in testing evidence powerpoint).

Now I know that the backbone of the log-in process is working, I can replace the print
statements with what I actually want the program to do in each of the scenarios:

100

Now when the correct details are entered, this prototype should take the user to the main
menu and reset the inputs/error message ready for the next user.

I also need to assign the email variable upon logging in so that it can be used in features that
I will develop in the future. The way the information is stored, as stated earlier, means the
email will be the data in the line after the password, so once the password has been read
from the file and verified, if it I correct I can then just read the next line and set the email
variable equal to it:

However, when I run the program, the email which is saved includes a line break (which it
cannot do as it needs to be referenced for future features, such as email notifications).
Therefore, I need to remove the line break before it is saved to the variable. I did some
research and found the website https://stackoverflow.com/questions/15233340/getting-
rid-of-n-when-using-readlines, which said that I have to use the .rstrip() function to remove
the line break from the line which has been read from the file. This is it implemented:

And now the correct email is printed with no line break,
so I can remove the print statement as I know that this
feature is working.

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.2.1 Entering
username and
password into
relevant fields

String
‘username123’
String
‘password123’
VALID DATA

App will allow user
to enter these
strings into the
relevant input
boxes

Checking whether the
user can enter a string
into the textual input
boxes that should
appear on screen.

Allows the
user to enter
these details
into the input
boxes
successfully.

3.2.2 Selection of
button to
confirm
account details

Mouse click Layout will be
updated to
MAINMENU and
user will be taken
to the main menu.

To check whether the
button takes the user
to the main menu of
the app if their log-in
details are valid and
correct.

Layout is
updated to
main menu if
correct details
are entered.

Testing evidence can be found in the testing evidence powerpoint.

Test
Number

Test Item Test Data Expected
Result

Justification Actual
Result

3.3.1 Entering
incorrect
password

String ‘username123’
String ‘password1’
INVALID DATA

App will allow user
to enter these
strings into the
relevant input
boxes

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

Allows the
user to enter
these details
into the input

https://stackoverflow.com/questions/15233340/getting-rid-of-n-when-using-readlines
https://stackoverflow.com/questions/15233340/getting-rid-of-n-when-using-readlines

101

boxes
successfully.

3.3.2 Selection of
button to
confirm
account details

Mouse click Error message will
appear at bottom
of screen stating
invalid password,
and layout will
remain the same.

To check whether
the confirm
account button
takes the user to
the main menu if
the details they
enter are
incorrect.

Error message
appears telling
the user their
password is
invalid.

3.3.3 Entering
username that
doesn’t exist

String ‘username1’
String ‘password123’
INVALID DATA

App will allow user
to enter these
strings into the
relevant input
boxes

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

Allows the
user to enter
these details
into the input
boxes
successfully.

3.3.4 Selection of
button to
confirm
account details

Mouse click Error message will
appear at bottom
of screen stating
that the username
doesn’t exist.

To check whether
the confirm
account button
takes the user to
the main menu if
the details they
enter are
incorrect.

Error message
appears telling
the user their
username
doesn’t exist.

Testing evidence can be found in the testing evidence powerpoint.

Log in – Review 2
Success Criteria
I have now completed the log in feature which allows the user to log into their account if
they have created one and the details they enter are correct. It is robust and provides
correct error messages in the correct scenarios. So far I have met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

• SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

Stakeholder feedback
I sent this prototype of my solution to two of my stakeholders, Sam and Vivek, to test and
provide feedback on any errors/issues they may occur. Vivek had no issues and said that the
system worked perfectly and provided the correct error messages and did not crash when
he tried to crash the app. Sam said the same but said that he feels it’d be more secure to
provide the error message ‘Invalid username/password’ for both if the username doesn’t
exist or if the password is incorrect. He thought this because it makes the app less secure to
tell a potential hacker whether it is the password or username that is incorrect (for example,
if the ‘password incorrect’ message appears, the hacker will know there is an account with
the username they entered, whereas if there was the same message for both scenarios the
hacker would not know).

102

I agree with same idea and so I have changed the error message to ‘Invalid
username/password’ for both when the user enters a username that doesn’t exist and when
the user enters an incorrect password in order to make my solution even more secure.

The error message now appears like this on the interface:

Main Menu – Stage 1
Next, I am going to create the main menu for my program. As stated earlier, this is the main
hub of the app as it is where all of the main features can be accessed from via a button
press. To start with, I have created the layout:

I have used a similar design to the final Start Menu design as this was a layout my
stakeholders liked and was created after consulting them for their feedback (i.e. larger text
and buttons).

This layout is also placed in the column layout so that it can be made visible/invisible as
required:

Now when the program is ran and I log in using an existing account, this is the main menu
layout which appears on the screen:

103

The username has not been inserted
into the welcome message yet, but this
will be implemented later. For now, I
have used a placeholder (username) to
represent where the user’s username
would appear.

I have decided to remove the exit button from the main menu as it is already present on the
start screen and it makes more logical sense to sign out before exiting the application, and
thus it makes the menu look less cluttered and reduces the amount of code needed to be
written.

I am now ready to carry out the first iteration of my main menu testing:

Test
Number

Test Item Test
Data

Expected
Result

Justification Actual Result

4.1.1 Selection of option
via ‘new_set’
button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the SETNAME
layout has not been
defined.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

4.1.2 Selection of option
via ‘my_sets’ button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the SETS layout
has not been
defined.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

4.1.3 Selection of option
via
‘progress_tracker’
button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the PROGRESS
layout has not been
defined.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

4.1.4 Selection of option
via
‘manage_account’
button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the ACCOUNT
layout has not been
defined.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

104

4.1.5 Selection of option
via ‘log_out’ button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

4.1.6 Selection of option
via ‘Exit’ button

Mouse
click

Nothing will happen
as the functionality
of the button has
not been
implemented yet.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Button not present
due to a change in
my original plan (as
detailed in the
development
section).

Main Menu – Stage 2
Next, I am going to implement the functionality of the main menu. First, I need to update
the text at the top of the screen to display the user’s username. First, I have given the text
element a key so it can be identified and updated using using the update element
command:

I have then updated the element whenever the user successfully creates an account/logs in
to show their username:

105

Now, when I log into the account with the username ‘username123’, the message is
correctly displayed at the top of the screen:

Next, I have created temporary
placeholder layouts for each of the
features to allow me to test the
functionality of the buttons:

106

I have also added these layouts as columns:

I have then told the program that if one of the buttons is pressed, the relevant columns
(layouts) should be made visible/invisible:

I have next implemented the functionality of the log out button, by updating the layout to
the Start Screen and setting all of the variables to empty strings (for security reasons):

When I then ran the program to carry out the second iteration of testing for the main menu,
I ran into an error:

107

I realised that this was because I hadn’t put two square brackets around the temporary
layouts I made earlier, so I added them and it solved this issue:

Now when I ran the program and carried out the following tests (evidence for which can be
found in the testing evidence PowerPoint), there were no errors.

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

4.2.1 Selection of option
via ‘new_set’
button

Mouse
click

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

The layout was
updated
correctly.

4.2.2 Selection of option
via ‘my_sets’ button

Mouse
click

Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

The layout was
updated
correctly.

4.2.3 Selection of option
via
‘progress_tracker’
button

Mouse
click

Layout will be
updated to
PROGRESS, so the
user will be taken to
a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

The layout was
updated
correctly.

4.2.4 Selection of option
via
‘manage_account’
button

Mouse
click

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

The layout was
updated
correctly.

4.2.5 Selection of option
via ‘log_out’ button

Mouse
click

User will be logged
out and taken back
to the start menu
(layout is updated to
STARTMENU)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

The layout was
updated
correctly, and
the user was
logged out.

4.2.6 Selection of option
via ‘Exit’ button

Mouse
click

App will close as
event loop is broken.
User will be
automatically logged
out.

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Button not
present due to
a change in my
original plan (as
detailed in the
development
section).

108

Main Menu – Review
Stakeholder feedback
I consulted two of my stakeholders, Vivek and Marcus, about the main menu design as this
is an important feature of my program and it a key success criterion. They both said they like
the layout as it matches their requests made earlier for previous layouts. They also said that
the buttons work as intended.

Success Criteria
After creating the layout of the main menu, I have met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

• SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

• SC9 - The stakeholder would like the system to have a clear main menu.

Changes made to original plan
I have removed the Exit button from the main menu (as stated earlier) to reduce the
amount of code that needs to be written, reduce clutter and increase security (by
encouraging the user to log out before exiting the program), as it is not needed anyway.

Create Set – Stage 1
Firstly, I need to create the CreateSet layout. The layout will follow the general convention
of previous layouts as this is what my stakeholders appear to like.

The result is a layout looking like this:

109

I have also created the MySets layout to allow me to test whether the names of sets being
created are being written to the csv file successfully and the set names are displayed on the
screen correctly.

The resultant layout is as shown here (the set buttons are so big to allow room for the name
of sets to be added once they are created):

These layouts follow the same design as
previous layouts which have been decided
and modified by my stakeholders, and so I
do not feel the need to contact my
stakeholders about the design of these
layouts.

I have also realised that no CSV file is being made upon account creation, so to fix this, I
need to add a line of code that creates a CSV file specific to that user once their account has
been created. Firstly, I have imported the csv library to allow us to use csv files in python:

110

I have then added a piece of code which creates a CSV file called the users username (which
must be unique) upon account creation:

I have tested this and when I create a new account with the username ‘123’, a new CSV file
is created called ‘123.csv’ as intended:

The way I am planning the CSV file for each user to be structured is as follows:

So therefore, I will need write the initial number of sets (0) and set names (which will be
nothing yet but I need to initialise their presence) to the users CSV file upon account
creation.

However, this then writes a blank line as well as the desired line of information into the file:

111

I had a look online to solve this issue and found the website
https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-
lines-between-each-row which made me realise that I need to add a newline parameter to
stop this from happening:

I am now ready to carry out iteration 1 of my testing of the create set feature (testing
evidence of this can be found in the testing evidence powerpoint):

Test
Number

Test
Item

Test
Data

Expected
Result

Justification Actual Result

5.1.1 Entering
name of
set into
textual
input
boxes

String
‘Data
Structures’
VALID
DATA

App will allow
user to enter
these strings into
the relevant input
boxes

Checking whether the user
can enter a string into the
textual input boxes that
should appear on screen
(there is no invalid string
for a set name – it can be
anything).

The program
successfully allows the
user to input a name for
their set into the input
box.

5.1.2 Selection
of button
to create
set with
the given
name

Mouse
click

Nothing will
happen as the
functionality of
the button has
not been
implemented yet.

To check whether the
confirm button on screen
appears in the correct place
and allows user interaction.

The confirm button
appears in the correct
place and is pressable.
Nothing happens when
it is clicked yet because
its functionality has not
been implemented.

Create Set – Stage 2
Now that we have everything in place, the next stage involves implementing the
functionality of the create set feature.

I have started by quickly implementing the functionality of both back buttons on the two
displays created in stage 1.

https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-lines-between-each-row
https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-lines-between-each-row

112

I have then decided to remove the number of sets from being stored in the users CSV file as
I feel that it is not necessary and is thus just taking up unnecessary space – the program can
just check for empty spaces in the name slots in the CSV file and if there is an empty space,
the set name can be inserted there, and if not, the set limit has been reached.

I next need to add an error message slot to the layout to inform the user if there has been
an error:

I next need to create some validation of the users input for their desired set name – ensure
that the entry field is not left empty upon the confirm button being pressed, and ensure
that the user has not exceeded their 5 set limit before creating the set.

I have started with the simpler of the two – checking if the user has inputted anything:

And when I press the submit button without inputting anything, the error message correctly
displays on screen:

Next, if the user has entered something as the set name, I have ensured that the user has
not exceeded their 5 set limit:

113

I then tested my progress so far on the second iteration of the create set feature (testing
evidence can be found in the powerpoint):

Test
Number

Test
Item

Test
Data

Expected
Result

Justification Actual Result

5.2.1 Entering
name of
set into
textual
input
boxes

String
‘Data
Structures’
VALID
DATA

App will allow user
to enter these
strings into the
relevant input
boxes

Checking whether the
user can enter a string
into the textual input
boxes that should appear
on screen (there is no
invalid string for a set
name – it can be
anything).

The program
successfully allows the
user to input a name for
their set into the input
box.

5.2.2 Selection
of button
to create
set with
the given
name

Mouse
click

Name of set will be
written to the users
personal .csv file,
and the relevant
button on the
choose set layout
will be updated to
show the new set
name.

To check whether the
button correctly creates a
set for the user with the
given name, stores the
name in the users .csv
file, updates the button
text on the ‘MYSETS’
layout, and updates the
relevant variables (i.e.
num_of_sets).

The program correctly
stores the set name into
the users csv file but
does not yet update the
buttons on the MySets
layout.

I realised from these tests I need to clear the entry field whenever a field is created and take
the user back to the main menu:

I have also decided that I am not going to implement the updating of the set buttons yet as
this would be more effective if just done when the user presses the mysets button.
Therefore, I have decided to conclude that the second iteration of my create set testing (test
5.2.2) has been successful.

114

Create Sets – Review

Stakeholder feedback
I contacted one of my stakeholders, Vivek, for his opinions on the overall experience of
creating sets. He said that whilst the 5 set limit could be frustrating (this is something I will
look into increasing further in the future), the program itself works effectively, the
validation is effective, and the layout is simple and easy to understand. As a result, I am not
going to make any changes to this feature as a result of stakeholder feedback.

Success Criteria
I have now completed the feature which allows users to create new sets of flashcards with a
given name. In terms of my success criteria, I have so far met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

• SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

• SC9 - The stakeholder would like the system to have a clear main menu.
I have now also partially met:

• SC3 - The stakeholder would like the system to allow them to create their own sets
of flashcards.

However, to fully meet this I will need to allow the user to add flashcards to the sets they
have created (which I will be doing next).

Changes made to original plan
I have decided that I am going to update the text on the buttons on the MySets layout when
the button to take the user to this page is pressed (as I feel this will be more efficient) rather
than every time a new set is made. I have also removed the need for the integer number of
sets being stored in the users CSV file, thus saving space and making my program a bit more
efficient.

Adding flashcards to sets – Stage 1
Now that the user can create sets with a given name, I need to add the ability for them to
actually add flashcards to those sets which can be revised. There will be an ability to add a
flashcard to a set once that set has been clicked on from the MySets menu. However, first I
need to update the text on the buttons on this display to show the set names so the user
knows which set is which.
To do this, I have created a subroutine (as I initially planned to) called set_names that
updates the buttons as this subroutine might be used again later on in my development. If it
is not then I can just go back and put the code in the event loop instead of as a separate
subroutine in order to improve efficiency.

115

I have then called this subroutine when the MySets button is pressed, so that now each of
the buttons successfully displays all set names in the correct order.

I have then created the general layout for all sets where the user can choose what they
would like to do with a set, which has also then been added to the column layout.

I have then implemented the functionality of all of the set buttons (so that they take the
user to a screen where they can choose what they wish to do with that set):

116

The resultant layout looks like this, which is again in line with my stakeholders previous
requests regarding layouts:

I have also then implemented the functionality of the back button (in the same way as
previous back buttons).

I next need to create the add flashcard layout before I move onto stage 2 which is where I
will implement the functionality of the add flashcards feature:

This layout now appears like this (and the error message will appear underneath in large
bold red text when necessary):

117

I can now carry out the first iteration of testing:

Test
Number

Test
Item

Test Data Expected
Result

Justification Actual Result

6.1.1 Entering
term and
definition
into textual
input boxes

String ‘Static’
String ‘Size
cannot
change during
runtime’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes

To check the user
can enter
characters into the
two textual input
boxes.

Allows the user to enter
these details into the
input boxes.

6.1.2 Selection of
button to
add
flashcard to
set

Mouse click Nothing will
happen as the
functionality of
the button has
not been
implemented yet.

To check the ‘add’
button appears
correctly formatted
on the display and
can be interacted
with by the user.

The values inputted
remain on the screen and
nothing is written to the
file, as expected.

Adding flashcards to sets – Stage 2
Now that I have everything in place, I can begin implementing the functionality of this
feature.
I have started by again implementing the functionality of the back button:

I have then written a piece of code which saves the user inputs as variables, and writes a
row to the CSV file containing the set number, and the term and definition, and then clears
the entry fields:

118

However, when I add flashcards to set 1, and enter ‘123’ into the term field and ‘12345’ into
the definition field, this is the result in the CSV file:

The issue here is, the definition is being written with a line break, and then 2 extra empty
lines after it, as well as quotation marks. I have tried changing the vertical size of the
multiline element to 1 to check if this had an effect, which it did not:

It still writes extra empty lines. I have next tried using a technique I have learnt previously in
this report – the .strip() function:

This has removed one of the empty lines and the quotation marks, but I still have another
empty line being written to the file:

119

I tried putting another line break within the strip function:

However, this made no change. I then added the newline parameter to the file opening and
it worked – there were no longer any blank lines left in between rows:

Now that problem is solved, I can add some validation to the user inputs (which on this
occasion will basically just consist of checking whether the user has actually inputted
something, and updating the error message if not).

The program now check whether the user has inputted something in both fields, and if they
haven’t, an error message is displayed. These error messages are cleared if the user backs
off the page/enters details correctly. No other validation is required for this as the user is

120

allowed to enter whatever they wish as their term and definition, as long as it is not left
blank.

I am now ready to carry out the 2nd iteration of my testing on this feature:

Test
Number

Test
Item

Test Data Expected
Result

Justification Actual Result

6.2.1 Entering
term and
definition
into textual
input boxes

String ‘Static’
String ‘Size
cannot
change during
runtime’
VALID DATA

App will allow
user to enter
these strings into
the relevant input
boxes

To check the user can
enter characters into
the two textual input
boxes.

Allows the user to enter
these details into the
input boxes.

6.2.2 Selection of
button to
add
flashcard to
set

Mouse click Term and
definition will be
written to the
relative positions
in the users
personal .csv file,
and the term and
definition textual
input boxes will
be cleared.

To check the ‘add’
button writes the
term and definition to
the correct positions
in the users .csv file
when pressed.

Term and definition,
along with set number,
are successfully written
to the file and the input
boxes cleared. Also,
when an input box is
left blank, the error
message correctly
displays and then clears
when the issue is
resolved.

Adding flashcards to a set – Review

Stakeholder feedback
I have contacted one of my stakeholders and sent them this prototype of my solution for
them to test. They had no issues with this feature and said that the information they
entered was written to their CSV file successfully. However, he did recommend that straight
after creating a set you are taken to the add flashcard screen so that you can add flashcards
to a set straight after creating it. I agree this would be a good idea to reduce confusion and
make my solution quicker and easier to use for students who want to quickly make a set,
add flashcards, and revise them.

121

To do this, I simply need to update the layout once a set has been successfully created:

However, when I then add a flashcard, the set number is not correctly written to the users
CSV file:

I realised this is because it has not been declared yet as the user has not clicked on one of
the set buttons to get to the add flashcard screen. To fix this, I ensured I declared the set
variable in the loop as the index position of the insertion + 1:

And the correct set number is now successfully written to the CSV file:

122

Success Criteria
I have now successfully added the ability for the user to add flashcards to the sets they have
created, as well as received and implemented more feedback from my stakeholders on this
feature. So far I have met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

• SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

• SC9 - The stakeholder would like the system to have a clear main menu.
• SC3 - The stakeholder would like the system to allow them to create their own sets

of flashcards.

• SC4 - The stakeholder would like the system to view sets of flashcards they have
already created.

Changes made to my original plan
For this feature, I did not really make any changes to my original plan in terms of the
interface or the functionality of the feature.

Revising flashcards – Stage 1
I first need to set up the layout for this feature, which will be one of the hardest to set up
due to the complexity of its design. I am planning to have a white square in the centre of the
screen which will contain the terms and definitions (meant to mimic a white paper
flashcard, helping to give the user an authentic experience), and then buttons underneath
for next/previous flashcard and ‘flip’ flashcard. I will also be adding a delete flashcard
feature which will also appear as a button here.
I have started by creating the white background text box where the term/definition will be
inserted:

This appears like this on the screen:

123

I have then created the buttons as well as a back button underneath:

The layout now appears like this:

After testing this prototype, I have filled in the first iteration of testing:

Test
Number

Test
Item

Test
Data

Expected
Result

Justification Actual Result

7.1.1 Flip
flashcard
via
button
press

Mouse
click

Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check whether the
button appears in the
correct position on
screen and can be
interacted with by the
user.

Button is pressable and
present in the correct position,
but nothing happens when it is
pressed.

7.1.2 Viewing
the next
flashcard
via a
button
press

Mouse
click

Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check whether the
button appears in the
correct position on
screen and can be
interacted with by the
user.

Button is pressable and
present in the correct position,
but nothing happens when it is
pressed.

7.1.3 Viewing
the
previous
flashcard
via a
button
press

Mouse
click

Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check whether the
button appears in the
correct position on
screen and can be
interacted with by the
user.

Button is pressable and
present in the correct position,
but nothing happens when it is
pressed.

7.1.4 Deleting
flashcard
via a
button
press

Mouse
click

Nothing will
happen as the
functionality of the
button has not
been implemented
yet.

To check whether the
button appears in the
correct position on
screen and can be
interacted with by the
user.

Button is pressable and
present in the correct position,
but nothing happens when it is
pressed.

124

Revising flashcards – Stage 2
I can now begin to implement the functionality of this feature.

I have started by reading the term and definition from the users CSV file and displaying the
term on the screen. The flashcard_status variable determines whether the flashcard is
currently showing its term or definition (so that the program knows what to flip to when the
flip button is pressed).

However, when I ran this piece of code and went to revise set 1 with the following contents
in the CSV file,

it came back with the following error:

I realised this was a small error as I was trying to subtract an integer from an array, so I fixed
this by moving the -1 outside of the len() function:

Then when I did run the program again, I got no error but nothing was being printed
implying either the program was not entering the for loop or, more likely, not entering the if
statement. To investigate this, I inserted a few print statements so I could track the
program:

125

The resultant output was the following:

This shows the program is not entering the if statement. This must be because there is an
issue with the parameter I have set, so I changed around the print statements again to
investigate this:

When I ran the program again, I received the following output:

This shows that set and rows[i][0] are equal, so it should enter the if statement.
I then added another ‘flashcard’ to the CSV file that was not in set 1:

The output I received now was:

126

This implies that the range in my for loop is incorrect as it is not picking up the final
flashcard in the file, so I removed the -1:

I then realised the value extracted from the 2D array was not an integer, and so need to be
made one so the comparison could work as intended:

Now when I run the code I get the following outputs ending in an error:

I quickly realised this was because I, for some reason, tried to save the new lists as
variables… I changed this so that it just appended the values to the relevant lists:

Now when I ran the program with the following contents of the CSV file,

I get the following output:

This clearly shows the iterative process with the correct values from the CSV file being
added to the correct list.

127

Now that I have successfully implemented a way to extract the relevant data from the file, I
just need to work with the 2 lists (terms/definitions) to show the correct terms and
definitions on the screen. I have started by initially displaying the first term from the list on
the screen so the user can begin revising:

I now need to add the functionality of the previous, next and flip buttons. I will start with
the next button.
To do this, I need a variable that will store the current index position of the term/definition
being viewed in both lists (so that if a user wants to view a previous flashcard it can be
decremented, and vice versa). This variable will then also be reset every time a user goes to
revise a new set (as they will need to press the revise button).

128

I now need to add the code to detect when the next button is pressed, and what to do when
it is pressed:

However, I need to add something that tells the user when they have reached the end of
the set (and so there is no ‘next’ flashcard in the set) to avoid errors occurring. It seems
most logical to implement an if else statement checking whether the current flashcard index
is equal to the maximum index in the list (because if it is, there can be no next flashcard). I
will also need to add an error message to the display which will be updated to alert the user
they have reached the end of the set. This will work in a similar way to alert the user to if
they have reached the start of the set when using the ‘previous’ button. All of this being
implemented is shown below:

129

I have then implemented the functionality of the flip button, which simply changes what is
displayed on the screen from the term to the definition or vice versa depending on the
flashcard status.

I have also added a piece of code to reset the flashcard status to term when the
next/previous flashcard is viewed so that the term appears before the definition.

Finally, I need to implement the functionality of the delete button. The delete button will
need to remove the flashcard the user is currently looking at from the set (i.e. by deleting it
from the users CSV file), and then display the next flashcard on the screen. I also need to
consider what to do when the user is deleting the last flashcard in the set (as there is no
next flashcard to display, so in this case I will have to display the previous flashcard), and
when the user deletes the last flashcard in the set (as there will be no other flashcards to
display at this point).

130

I have first created the code to delete a flashcard from the users CSV file. This prototype
contains some print statements for me to test it:

However, when I run this piece of code, I receive the following error:

This is because term and definition haven’t been defined. I need the if statement with the 3
conditions to ensure the flashcard being deleted is the correct one and not one from
another set. To solve this, I realised I can just use the relevant elements in the terms and
definitions arrays instead of storing them as separate variables:

When I run this, the output is as follows:

The bit within the red line shows that all 3 conditions are being met, and the correct sub-
array is being deleted. I can now remove the print statements as I know this works and
rewrite the new 2D array back to the file:

131

I am now going to carry out some testing to test this prototype of my solution (testing
evidence for the following tests can be found in the testing evidence PowerPoint):

Test
Number

Test Item Test
Data

Expected Result Justification Actual Result

7.2.1 Flip flashcard
via button
press

Mouse
click

The flashcard will be
flipped (e.g. if term was
on the screen, definition
will now be on the
screen and vice versa)

To check whether the
correct corresponding
definition to the term
(or vice versa) is
displayed on screen
when the button is
pressed.

The flashcard is
successfully ‘flipped’,
displaying a terms
corresponding
definition and vice versa

7.2.2 Viewing the
next
flashcard via
a button
press

Mouse
click

The next flashcard read
from the users .csv file
will appear on the
screen.

To check whether a
new flashcard is
displayed on screen
from the correct set.

The next flashcard
successfully shows up
on screen, also alerting
the user as to when
they have reached the
end of the set.

7.2.3 Viewing the
previous
flashcard via
a button
press

Mouse
click

The previous flashcard
read from the users .csv
file will appear on the
screen.

To check whether the
previously displayed
flashcard is displayed
on screen when the
button is pressed.

The previous flashcard
successfully shows up
on screen, also alerting
the user as to when
they have reached the
start of the set.

7.2.4 Deleting
flashcard via
a button
press

Mouse
click

The flashcard will be
deleted from the users
.csv file, and the screen
will turn blank as the
procedure to search for
the next flashcard has
not been ran yet.

To check whether
pressing the button
to remove a flashcard
removes it from the
users .csv file.

The deleted flashcard is
successfully removed
from the users CSV file.

Test
Number

Test
Item

Test
Data

Expected Result Justification Actual Result

7.3.1 Flip
flashcard
via
button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and
vice versa)

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The flashcard is successfully
‘flipped’, displaying a terms
corresponding definition and
vice versa

7.3.2 Viewing
the next
flashcard
via a
button
press

Mouse
click

The next flashcard
read from the users
.csv file will appear
on the screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The next flashcard
successfully shows up on
screen, also alerting the user
as to when they have
reached the end of the set.

132

7.3.3 Viewing
the
previous
flashcard
via a
button
press

Mouse
click

The previous
flashcard read from
the users .csv file will
appear on the screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The previous flashcard
successfully shows up on
screen, also alerting the user
as to when they have
reached the start of the set.

7.3.4 Deleting
flashcard
via a
button
press

Mouse
click

The flashcard will be
deleted from the
users .csv file and the
next flashcard
procedure is then ran
to make the next
term appear on the
screen.

To check whether the
next flashcard
automatically appears
on screen when the
user deletes a
flashcard.

The flashcard is deleted from
the users CSV file but the
next flashcard is not
displayed.

To successfully complete test 7.3.4, I need to create a way for the next flashcard to appear
on screen when a flashcard is deleted, but also if the last flashcard in the list is deleted,
move to the previous flashcard. Now, when an item is deleted from an array, the next item
will automatically fall back into its place, thus I do not need to increment any variables, just
update the text element to display the next flashcard:

I also need to implement the code for if it is the last item in the array being deleted (as there
will be no further items in the array to fall into its place). All I need to do is decrement the
current flashcard index if this is the case (I have also removed the -1 from the len() function
in for loop (highlighted) as this should not have been there:

133

However, when testing this I received the following error:

This is because when an item gets removed from rows, its length decreases by 1 but the for
loop still goes to the original length (which is now out of range). To fix this, I inserted a
simple try and except loop, which just increments i whenever this happens to avoid the
error:

I now also need to implement a method of displaying to the user if the set has become
empty and thus there is nothing in it to revise. The way I have decided to do this (which will
apply to all sets at all times) is if the user ever decides to ‘revise’ a set which has no
flashcards in it, they will be taken to a separate layout which tells them this and then has a
back button taking them back to the set menu. This stops users revising sets which have no
flashcards. This screen will also appear when the user deletes the last flashcard in a set.
This is the layout:

134

I have also added this in the column layout.

I now need to implement this into my code so that it is made visible when the user tries to
revise a set with no flashcards in it. I have started by implementing the functionality of the
back button, which will take the user back to the set menu:

I have then made it so that the user is taken to this screen if they initially choose to revise a
set that has nothing in it:

I have then added a piece of code which also takes the user to this screen if they delete all
flashcards in a set (and thus there are none left to revise):

135

All of this can be seen working in the following tests, testing evidence for which are
available in the testing evidence PowerPoint.

Test
Number

Test
Item

Test
Data

Expected Result Justification Actual Result

7.3.1 Flip
flashcard
via
button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and
vice versa)

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The flashcard is successfully
‘flipped’, displaying a terms
corresponding definition and
vice versa

7.3.2 Viewing
the next
flashcard
via a
button
press

Mouse
click

The next flashcard
read from the users
.csv file will appear
on the screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The next flashcard
successfully shows up on
screen, also alerting the user
as to when they have
reached the end of the set.

7.3.3 Viewing
the
previous
flashcard
via a
button
press

Mouse
click

The previous
flashcard read from
the users .csv file will
appear on the screen.

Checking this feature
hasn’t been affected
by the change to
deleting flashcards
(test 7.3.4).

The previous flashcard
successfully shows up on
screen, also alerting the user
as to when they have
reached the start of the set.

136

7.3.4 Deleting
flashcard
via a
button
press

Mouse
click

The flashcard will be
deleted from the
users .csv file and the
next flashcard
procedure is then ran
to make the next
term appear on the
screen.

To check whether the
next flashcard
automatically appears
on screen when the
user deletes a
flashcard.

The flashcard is deleted from
the users CSV file and the
next/previous flashcard is
displayed.

Revising flashcards – Review

Stakeholder feedback
I sent this prototype of my solution to all of my stakeholders as I feel this is an integral part
of my app, and they all said they were happy with the functionality but would like the
interface to be a little less bland. All stakeholders said the layout was very clear and the
flashcard was big enough. Marcus suggested putting shapes instead of words on the next,
previous, flip and delete buttons (such as arrows or crosses). I feel this is a good idea to
make the interface look more user friendly, whilst still maintaining its functionality.
However, I will need to get some images off of Google and make them the correct size for
this to work. I have found some images that I will be using, and I have used the website
http://www.simpleimageresizer.com/upload#.YDpr3Gj7RPZ to make all of my images 40x40
(as I feel this is a suitable size for the display).

I think these images are suitable and self-explanatory. I asked my stakeholders and they
agreed that they would know what these images mean in the context of revising flashcards.

As this is something I have never implemented before, I looked online at the website
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-
make-your-button for help. Following the advice on the website, I first had to convert the
image to base64. I used the website https://base64.guru/converter/encode/image to
convert all of my images to base64. I then had to insert this image data as a parameter in
the button element to make the button display the image, which I then did as shown below:

The image data strings are very long and so I cannot get all of it on one screenshot. This is
how the layout now looks:

http://www.simpleimageresizer.com/upload#.YDpr3Gj7RPZ
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-make-your-button
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-make-your-button
https://base64.guru/converter/encode/image

137

I sent this new layout to my stakeholders and they were much happier with it and said it
looks a lot nicer. As a result of this feedback, in the future, I may use images instead of
words in other areas of my program, such as the main menu or quiz.

Vivek also noted than when an error message appears, and then the flashcard is flipped, the
error message remains there and it would be better if it went hidden when the user flipped
the flashcard. I have fixed this by adding a single line of code:

They also said it would be better if the text size on the flashcards was increased slightly, so I
increased the text size slightly so it now appears like this on the screen:

138

Success Criteria
Now I have fully implemented the ability for users to revise their sets of flashcards, as well
as the ability to fully edit them by adding/deleting flashcards to sets. So far I have met:

• SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

• SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

• SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

• SC9 - The stakeholder would like the system to have a clear main menu.
• SC3 - The stakeholder would like the system to allow them to create their own sets

of flashcards.

• SC4 - The stakeholder would like the system to view sets of flashcards they have
already created.

• SC5 - The stakeholder would like the system to allow them to revise sets of
flashcards they have created.

• SC11 - The stakeholder would like the system to allow them to edit already existing
sets of flashcards.

Changed made to original plan
Not many massive changes were made in this section, apart from the changes in interface
by using images on buttons instead of text.

139

Evaluation Section
In this section of my report, I will be testing and evaluating my final solution, with input
from my stakeholders on how well success criteria/usability features have been met.
Criteria that have been met will be tested, and the criteria that have not been met will be
justified and I will explain how these features could be met in future development.

Success Criteria post-development testing
I will start by evaluating each of my success criteria lined out in the analysis section and
justifying how well they have been met. Testing evidence for all of the following tests can be
found in the ‘Post development testing evidence’ PowerPoint.

Success Criteria 1: The stakeholder would like the system to allow them to create an
account if they haven’t already got one.

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

10.1.1 Attempting
to submit
valid
account
details

String ‘username123’
String ‘password123’
String ‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA

The users
account will be
created, their
details will be
saved to their
.csv file, and
they will be
taken to the
main menu.

Ensures the user can
successfully create
an account using
valid account details.

The users details
were successfully
written to the text
file (with the
password hashed)
since this is valid
data, and they are
taken to the main
menu – their
account is now
successfully
created.

10.1.2 Attempting
to submit
invalid
account
details

String ‘username123’
String ‘password123’
String ‘password123’
Integer 123456789
INVALID DATA

An error
message will
appear at the
bottom of the
screen notifying
the user of the
problem (invalid
email in this
case).

Checks whether the
system detects when
an invalid email has
been entered (and
does not crash).

An error message
appears alerting the
user to the fact that
the email they have
entered is not valid.

10.1.3 Attempting
to submit
incorrect
account
details

String ‘username123’
String ‘password123’
String ‘password’
String
‘bradleymak2003
@gmail.com’
INVALID DATA

An error
message will
appear at the
bottom of the
screen notifying
the user that the
2 passwords
they entered do
not match (i.e.
they mistyped
their password).

Checks whether the
system detects when
the two password
fields do not match.

An error message
appears alerting the
user to the fact that
the two passwords
they have entered
do not match.

10.1.4 Attempting
to submit
empty
fields

String ‘’
String ‘’
String ‘’
String
‘bradleymak2003
@gmail.com’ – I
have still entered an
email to ensure the

An error
message will
appear at the
bottom of the
screen notifying
the user that
they have left
fields blank and

Checks that the user
cannot enter empty
fields for their
username/password.

An error message
appears alerting the
user to the fact that
they have left fields
blank and must fill
them all with valid

140

error does not
appear just because
the email is ‘invalid’,
but rather because
the user hasn’t filled
the username and
password fields.
INVALID DATA

they must all be
filled.

details to create an
account.

10.1.5 Attempting
to create
two
accounts
with the
same
username

Create one account
with the username
‘username123’, and
then attempt to
create another
account with the
same username.

An error
message will
appear saying
that an account
already exists
with that
username.

Checks the user
cannot create an
account with the
same username as
an already created
account, as this will
cause issues with
other areas of the
program.

An error message
appears alerting the
user to the fact that
an account already
exists with that
username.

I have added two new tests to this success criteria than I originally planned in the design
section as some key robustness/features were not originally covered. Firstly, I have added
test 10.1.4 as I feel like testing that the user cannot create an account without entering any
details is a necessary requirement. I have also added test 10.1.5 to ensure that the user
cannot create 2 accounts with the same username (as this will cause issues with other areas
of the program as the user will no longer have unique identification).

All of these tests being completed shows that this feature functions correctly (i.e. when the
user enters valid details – an unused username, 2 passwords that match and a gmail address
– an account is successfully created and the details are written to userinfo.txt, but if the
details are invalid – either a username that has already been used, 2 passwords that don’t
match, or an invalid email address – the relevant error message is correctly displayed on
screen), and is robust (i.e. the program does not crash no matter what the inputs are). This
success criteria has been fully met as it has passed all of the tests I have carried out. As such,
there are no further improvements that would need to be made in later development.

Success Criteria 2: The stakeholder would like the system to allow them to log in to their
account if they have already created one.

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

11.1.1 Entering correct
username and
password

String
‘username123’
String
‘password123’
VALID DATA

App will verify their
account details and
take the user to
the main menu.

Ensures that the
user can log back
into the system at a
different time using
their already
existing log-in
details.

The program
successfully allows
the user to log into
their already
existing account.

11.1.2 Entering
incorrect
password.

String
‘username123’
String
‘password1’
INVALID DATA

An error message
will appear at the
bottom of the
screen alerting the
user to the
problem

Ensures the app is
secure by checking
whether the
system detects
when the user has
entered a password
that is not
associated with the
entered username.

The program does
not allow the user
to enter their
account as
password is not
correct, and an
error message
appears alerting
the user to the
issue.

141

11.1.3 Entering a
username that
does not exist.

String
‘username1’
String
‘password123’
INVALID DATA

An error message
will appear at the
bottom of the
screen alerting the
user to the
problem. The error
message should be
the same as the
error message for
11.1.2.

Ensures the app
recognises when a
username that
does not exist has
been entered.

The program does
not allow the user
to enter their
account as the
username is not
correct, and an
error message
appears alerting
the user to the
issue.

11.1.4 Entering random
symbols/integers

String
‘!”£$%^&*()’
Integer
123456789

An error message
will appear on
screen telling the
user that these
inputs are invalid.

This is to test for
robustness –
checking whatever
is inputted does
not crash the
program.

The program
successfully
displays the error
message on screen
saying that the
inputs are invalid.

I have added test 11.1.3 to ensure that both elements of the log in verification work – the
password and username verification. I have also added test 11.1.4 to check for extra
robustness within this feature – ensuring that the program does not crash even when the
inputs consists of random symbols/integers.

As my solution has passed all tests I have conducted on the log in feature, success criteria 2
has been fully met. The program allows the user to enter their account successfully when
the correct details are entered, and when they are not, an error message is displayed on
screen. Again, this element of my program is robust as it does not crash no matter what the
user inputs are, as shown by test 11.1.4.

Success Criteria 3: The stakeholder would like the system to allow them to create their
own sets of flashcards.

Test
Number

Test
Item

Test
Data

Expected
Result

Justification Actual Result

13.1.1 Entering
name of set
into textual
input boxes

String
‘Data
Structures’
VALID
DATA

Name of set will be
written to the users
personal .csv file,
and the relevant
button on the
choose set layout
will be updated to
show the new set
name.

Ensures the user can
create a new set of
flashcards under
whatever name they
want, and that this
name is written to the
users .csv file and the
buttons on the
‘MYSETS’ menu are
updated to include
this new set.

The program successfully
writes the entered set
name to the users csv file
and takes the user to the
add flashcards layout so
they can begin adding
flashcards to the set.

13.1.2 Attempting
to submit
empty
input box

String ‘’
INVALID
DATA

An error message
should appear
telling the user that
they must input
something to be
able to create a set
with that given
name.

This is to test for
additional robustness
within this feature – it
would be wrong for
the user to be able to
create a set with no
name.

The program successfully
tells the user that they
must enter a set name to
be able to create a set.

13.1.3 Attempting
to create a
set once
the user
has

String
‘LMC’
VALID
DATA

An error message
should appear
telling the user that
they have reached
their limit of 5 sets,

This again tests for
robustness by
ensuring the user
does not go over the
5 set limit, because if

The program informs the
user that they have
reached their set limit

142

reached
the set
limit of 5.

and so cannot
create another set.

they did the new set
they create would not
be visible and would
cause issues in the
solution.

13.1.4 Deleting a
set

Mouse
click

The set should be
deleted – the set
name, and all of the
flashcards
associated with the
set should be
removed from the
users CSV file.

Due to the set limit, it
is important users can
delete sets once they
are finished with
them to free up a
slot.

The program does not
allow the user to delete a
set as this feature has not
been implemented.

I have added test 13.1.2 to test for extra robustness within this feature as the user should
not be able to create a set with no name. There is no further tests I can add for robustness
as technically the user can create any set name of any length/contents as long as they enter
something in the set name textual input field.

As this feature passed most of the tests I have conducted on it, I have mostly met, but not
fully met success criteria 3. The user is able to create a set with any set name, which is then
written to the users CSV file. If the user enters nothing and attempts to create the set, an
error message appears alerting the user to this issue. However, the user is not able to
completely delete sets of flashcards they have created (once a set has been created with a
certain name, the name cannot be changed/removed). This has not been implemented as I
did not realise this was a key functionality during the design/development section and I
have only realised in the post development testing that this is necessary. Implementing this
feature in future development would be relatively simple – the first line of the CSV file
would be iterated through to find and delete the set name that the user wants to delete
from the CSV file, and then all of the flashcard lines underneath would be iterated through
and every time a line in the CSV file is found that contains the relevant set number (as each
line in the CSV file takes on the structure ‘set number, term, definition’), that whole line
would be deleted from the file and the next time a flashcard is added to any set it can fill
that slot to ensure that there are no empty spaces (and so extra space being taken up) in
the CSV file.

Success Criteria 4: The stakeholder would like the system to view sets of flashcards they
have already created.

Test
Number

Test
Item

Test
Data

Expected Result Justification Actual Result

14.1.1 Viewing
names of
sets of
flashcards
the user
has already
created

Clicking
the ‘My
Sets’
button
from the
main
menu.

The names of the users
sets should be displayed
on the buttons on the
MYSETS display. If they
have not used all 5 of
their slots yet, the
unnamed sets will show
up without a name.

To ensure that
the set names
displayed are
correct and up-
to-date.

The names of all of the sets
the user has created are
successfully displayed on
screen. If they have not
used all 5 of their slots yet,
the unnamed sets show up
without a name.

I have not added any tests to my original plan here as I did not feel it was necessary – this is
only a very small success criteria.

143

Since I have met the single test here, I have fully met success criteria 4 – the names of the
users sets are correctly displayed on screen. However, in future development, the program
could be amended to only show the buttons of the sets that the user has created a name for
– this stops users being able to effectively edit and revise sets that haven’t been created yet
(i.e. the sets that don’t have a name given to them), as this doesn’t make much sense and is
an inconsistency with the creating a set process (as creating the set is effectively just naming
the set in the current prototype).

Success Criteria 11: The stakeholder would like the system to allow them to edit already
existing sets of flashcards.
I have done success criteria 11 before success criteria 5 as it makes more sense to test my
program in this order (i.e. testing the user can add to/delete from sets of flashcards before I
test whether they can revise from them).

Test
Number

Test Item Test Data Expected
Result

Justification Actual Result

16.1.1 Submitting a
term and
definition to be
created as a
flashcard via 2
textual inputs
and a button
press.

String ‘Static’
String ‘Size
cannot
change
during
runtime’
VALID DATA

Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

Ensures that any
term/definition
can be entered
and written to the
.csv file without
an error
occurring.

Allows the user to
create the flashcard
and the
term/definition along
with the set number
they belong to are
written to the users
unique CSV file.

16.1.2 Submitting a
term and
definition to be
created as a
flashcard via 2
textual inputs
and a button
press.

String ‘12*4’
String ‘48’
VALID DATA

Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

Ensures that any
term/definition
can be entered
and written to the
.csv file without
an error
occurring.

Allows the user to
create the flashcard
and the
term/definition along
with the set number
they belong to are
written to the users
unique CSV file.

16.1.3 Deleting
flashcard via a
button press

Mouse click The flashcard will
be deleted from the
users .csv file and
the next flashcard
procedure is then
ran to make the
next term appear
on the screen.

Ensures that the
user can
successfully
delete a flashcard
from a set (by
checking whether
it has been
removed from the
users .csv file).

This has to be done
from the revise
flashcard screen – but
when the delete
button is pressed the
program successfully
removes the
term/definition row
from the users CSV
file.

16.1.4 Attempting to
delete a
flashcard when
there are no
flashcards left
in the set.

Mouse click This should not be
possible as the
delete flashcard
button is on the
revise flashcard
screen, and when
there are no
flashcards left in a
set the user is
automatically took
to a screen
informing them that

This ensures the
user cannot
‘delete a
flashcard’ from a
set which has no
flashcards, as this
would cause an
error – it is testing
the robustness of
my solution.

The user is taken to a
screen telling them
that there are no
flashcards remaining
in the set.

144

there are no
flashcards left in
the set.

16.1.5 Attempting to
add a flashcard
with nothing
entered in the
term/definition
boxes

String ‘’
String ‘’

The user should be
notified of when
one of the fields has
not been filled in.

This ensures the
user cannot
create a flashcard
that does not
have a
term/definition,
and also ensures
the program is
robust and cannot
be crashed in this
way.

An error message is
displayed on screen
alerting the user to
the issue, and nothing
is written to the CSV
file.

I have added test 16.1.4 as I feel it is necessary to ensure that the user can only revise a set
which has flashcards in it, and once the final flashcard has been deleted, the user is not left
looking at an empty screen. This is also a test of robustness to ensure that the program does
not crash when this happens. I have also added test 16.1.5 to ensure the user cannot crash
the program by attempting to submit a flashcard with no term/definition – this is another
test of robustness. There is no limit to the number of flashcards in a set, and so there is no
test I need to conduct regarding a maximum number of flashcards in a set.

Since all of the functionality tests have been passed here, I have fully met success criteria 11
– the user can successfully add and delete flashcards to and from a set, and the users CSV
file is manipulated accordingly. This feature is also robust, as the user cannot accidently
crash the program by trying to submit an empty flashcard/deleting a flashcard from a set
with no flashcards.

Success Criteria 5: The stakeholder would like the system to allow them to revise sets of
flashcards they have created.

Test
Number

Test
Item

Test
Data

Expected Result Justification Actual Result

15.1.1 Flip
flashcard
via button
press

Mouse
click

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and
vice versa)

Ensures that the user
can ‘flip’ flashcards (i.e.
alternate between the
term and definition) via
a button press.

The user can successfully
‘flip’ a flashcard, allowing
them to alternate
between the term and
definition (as this is how
flashcards work to help
you revise).

15.1.2 Viewing the
next
flashcard
via a
button
press

Mouse
click

The next flashcard
read from the users
.csv file will appear
on the screen.

Ensures that the next
flashcard displayed is
from the correct set
and is not repeated.

The next flashcard in the
set is successfully
displayed.

15.1.3 Viewing the
previous
flashcard
via a
button
press

Mouse
click

The previous
flashcard read from
the users .csv file will
appear on the screen.

Ensures that when tis
button is pressed, the
previous flashcard is
successfully displayed
to the user.

The previous flashcard in
the set is correctly
displayed.

15.1.4 Pressing
‘next
flashcard’
when the

Mouse
click

An error message
should appear on
screen telling the
user they have

This ensures the
solution is robust and
does not crash when
the user reached the

An error message
appears on screen telling
the user they have

145

user has
reached
the end of
the set.

reached the end of
the set.

end of the set they are
revising.

reached the end of the
set.

15.1.5 Pressing
‘previous
flashcard’
when the
user has
reached
the start of
the set.

Mouse
click

An error message
should appear on
screen telling the
user they have
reached the start of
the set.

This ensures the
solution is robust and
does not crash when
the user reached the
start of the set they are
revising.

An error message
appears on screen telling
the user they have
reached the start of the
set.

I have added tests 15.1.4 and 15.1.5 to test for additional robustness within this feature of
my solution by ensuring that the user cannot break the program by attempting to go
beyond the limits of the set they are revising.

This feature of my solution has passed all of the tests I have conducted on it, so I have fully
met success criteria 5. This part of my solution is also very robust as shown in the new tests I
have added.

Success Criteria 9 and 10: The stakeholder would like the system to have a clear main
menu and should be easy to navigate around/user friendly.

Test
Numb
er

Test Item Test
Data

Expected
Result

Justification Actual Result

12.1.1 Selection of
option via
‘Sign_up’
button

Mouse
click

Layout will be
updated to
‘SIGNUP’

Ensures the user
can choose to sign
up easily via a
button press.

Correct layout is shown upon
button press.

12.1.2 Selection of
option via
‘log_in’
button

Mouse
click

Layout will be
updated to
‘LOGIN’

Ensures the user
can choose to log in
easily via a button
press.

Correct layout is shown upon
button press.

12.1.3 Selection of
option via
‘new_set’
button

Mouse
click

Layout will be
updated to
SETNAME, so the
user will be taken
to a different
screen.

Ensures the user
can choose to
create a new set
easily via a button
press.

Correct layout is shown upon
button press.

12.1.4 Selection of
option via
‘my_sets’
button

Mouse
click

Layout will be
updated to SETS,
so the user will be
taken to a
different screen.

Ensures the user
can choose to view
their sets easily via
a button press.

Correct layout is shown upon
button press.

12.1.5 Selection of
option via
‘progress_trac
ker’ button

Mouse
click

Layout will be
updated to
PROGRESS, so the
user will be taken
to a different
screen.

Ensures the user
can choose to view
their progress easily
via a button press.

Correct layout is shown upon
button press. However,
nothing is created on this
layout as the progress tracker
feature has not been
implemented yet.

12.1.6 Selection of
option via
‘manage_acco
unt’ button

Mouse
click

Layout will be
updated to
ACCOUNT, so the
user will be taken
to a different
screen.

Ensures the user
can choose to
manage their
account easily via a
button press.

Correct layout is shown upon
button press. However,
nothing is created on this
layout as the manage account
feature has not been
implemented yet.

146

12.1.7 Selection of
option via
‘log_out’
button

Mouse
click

User will be
logged out and
taken back to the
start menu
(layout is updated
to STARTMENU)

Ensures the user
can choose to log
out easily via a
button press.

Correct layout is shown upon
button press and the correct
username is shown on the
main menu.

12.1.8 Selection of
option via
‘Exit’ button

Mouse
click

App will close as
event loop is
broken.

Ensures the user
can choose to exit
the app easily via a
button press.

Exits app.

12.1.9 General
navigation
around the
app

Mouse
clicks

The user should
be able to easily
navigate around
the app and the
buttons should all
carry out the
purpose their
labels imply.

This is to ensure
that success criteria
10 has been met –
ensuring that the
program is user
friendly.

The general navigation around
the app is simple, easy and
user-friendly. All navigation
features (buttons) work
correctly.

I have added test 12.1.9 to my original test plan as I feel it is essential to include a clip of
general navigation outside of the main menu to show that success criteria 10 has been met.

The solution successfully passed all of these tests hence success criteria 9 and 10 have been
fully met. I will also consult my stakeholders on the user-friendliness of my solution in the
usability testing section later in the evaluation section to gain more feedback from my
stakeholders on the general usability and intentional simplicity of my solution.

Success Criteria 6: The stakeholder would like the system to allow them to test their
knowledge on a particular set of flashcards.

Test
Number

Test Item Test
Data

Expected Result Justification Actual
Result

17.1.1 Question and 4
multiple choice
answers should
appear on
screen.

User should be
able to choose
an answer.

Clicking
the ‘Quiz’
button
from the
set menu.

Mouse
click.

A question should appear on
the screen, with 4 multiple
choice answers in the form of
buttons. When an answer is
chosen, a new question
should appear with 4
randomly placed multiple-
choice answers. This process
will repeat until the quiz is
complete, when a summary
screen should appear with no
statistics on it as the score,
percentage and time_taken
variables have not been
implemented yet.

To ensure that the
quiz feature works
correctly regardless
of which set the
user chooses, and
that the questions
and answers are
random and not
repeated.
To ensure that the
quiz ends after all
of the questions
have been
answered.

The quiz
button is
present on the
set menu and
takes the user
to a new layout
designed to be
for the quiz,
but the quiz
feature has not
been
implemented
yet so nothing
is present on
this layout.

17.1.2 Quiz Summary Visual
output
when quiz
is
complete
via
multiple
button
presses.

A summary screen should
appear with the correct
score, percentage and time
taken. These should also be
written to the users csv file.

To ensure that the
correct statistics
are displayed on
screen when the
quiz ends.

Feature not yet
implemented.

147

This success criterion has not been met at all yet as it has not been implemented in my
partially complete solution due to time constraints. As such, it is not possible for me to
conduct any of the post development tests that I had planned for this feature.

To implement this in future development, a quiz feature would need to be added, which
displays the term of each flashcard in the chosen set as the ‘question’ and then the correct
answer along with 3 other incorrect answers are shown on the screen in random positions
as 4 possible multiple choice answers. The user would have to choose one of these and their
final score, percentage and time taken to complete would all be recorded and displayed
once they have completed the quiz. Every time a new quiz is taken, the multiple choice
answers would be different and appear in different places. This would be achievable by
writing all of the terms/definitions from a set to separate lists, displaying the string in the
corresponding index position in the definition list for each term randomly in one of the 4
multiple choice slots, and then adding the number of this slot to another list so that another
answer cannot be placed in this slot and override the correct answer, and then randomly
choosing 3 other definitions from the list and displaying them in the other 3 slots in a similar
way. The results would also be written to the users CSV file in the following format:

Each row after the set names contains either a flashcard or quiz result, indicated by the first
element in that row. I would have to edit the flashcard feature to now check for rows with
the string ‘flashcard’ in the first element as well as searching for the set number. This would
allow the results to be displayed on the progress tracker by reading from the file.

Psuedocode for how I originally planned this can be found in the design section.

Success Criteria 7: The stakeholder would like the system to keep track of their progress
and show it in a clear and concise way.
Success Criteria 8: The stakeholder would like the system to allow them to share their
results and progress on social media.
Success Criteria 13: The stakeholder would like the system to send them email
notifications when prompted to.

Test
Number

Test Item Test Data Expected Result Justification Actual
Result

18.1.1 Raw numbers
representation of
users data

Clicking the
‘Progress
Tracker’
button from

The users scores on
quizzes should
appear on the
screen, with the

To ensure that
the statistics
displayed on
screen are
correct.

Button takes
user to a
separate
layout with
no contents

148

the main
menu.

corresponding set
name.

as this
feature has
not been
implemented.

18.1.2 Visual
representation of
users data (e.g.
graph)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

The graph should
appear on the left
with the correct
data plotted.

To ensure that
the graph is
plotted correctly
and is easy for the
user to see and
deduce their
progress from.

Button takes
user to a
separate
layout with
no contents
as this
feature has
not been
implemented.

18.1.3 Choosing a
function via a
button press
(post to Twitter)

Mouse click A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

To ensure that
the user can
successfully tweet
their progress
onto the
applications
Twitter page via a
button press.

Feature not
implemented.

18.1.4 Choosing a
function via a
button press
(email reminder)

Mouse click An email should be
sent to the users
email address with
the correct subject
and message.

To ensure that
the user can
successfully send
themselves an
email reminder to
their email
address stored by
the app.

Feature not
implemented.

Success criteria 7, 8 and 13 have not been met at all as these features have not yet been
implemented in my partially complete solution due to time constraints.

If the progress tracker feature were to be implemented in future development, it would
require a graph to be plotted of all of the users test scores in each set. There would be a
button for each set which would take the user to another screen where the graph of their
results (percentages) on the y axis and the attempt number on the x axis. There would be
another similar graph of time to complete against attempt number. Attempt number does
not need to be stored in the users CSV file as this would be a waste of space as the quiz
results are stored in linear order anyway. On this screen, there would also be an email
reminder button and a share results button. The email reminder button would send an
email from the apps email address to the users email address they entered when signing up
using the Gmail API – I would have to do extra research on this as I have never used the
Gmail API before. The share results button would share a tweet on the applications twitter
page containing the users username, their set name and their 5 most recent scores to
illustrate the progress they have been making – this would be done using the Twitter API
which I have had experience using before.

Success Criteria 12: The stakeholder would like the system to allow them to set exam
dates/deadlines.

149

I decided not to include this success criteria during the design stage as I realised it would be
pretty useless as the app cannot send automated emails/reminders when it is not running,
so I decided to focus my time elsewhere. I also consulted my stakeholders on this decision
and they agreed that this is not a particularly key feature for the revision app and they
would much rather more time be spent improving the revision/quiz features. As such, this
success criterion has intentionally not been met at all.

Other features
The manage account feature has also not been implemented yet due to time constraints,
and whilst this is only a minor feature I felt it would have been necessary to allow the user
to amend their account details either for security reasons (e.g. changing their
username/password), or if they have changed their email address etc. To implement this,
similar validation would have taken part to as in the sign up feature (hence why I made
separate subroutines for the validation procedures), and the userinfo.txt file would have
been rewritten to include the new info if the details entered were valid. There would also be
an account deletion button (which would ask the user for confirmation of this decision
before the account was deleted), and once the decision was confirmed, the userinfo.txt file
would have been rewritten without the deleted account details.

Summary of success criteria

Success Criterion Successfully
Created?
(partially/fully/not)

Why? How to fully meet
this criterion.

The stakeholder
would like the
system to allow
them to create an
account if they
don’t already have
one.

Fully User can successfully
create an account with
valid details, and
inputs are always
validated by the
program.

N/A

The stakeholder
would like the
system to allow
them to log in to
their account if
they have already
created one.

Fully User can successfully
login to an already
existing account, and
incorrect
usernames/passwords
are always flagged up.

N/A

The stakeholder
would like the
system to allow
them to create
their own sets of
flashcards.

Partially User can create a set
with any given name,
which is then written
to the users CSV file.
However, they cannot
delete sets once they
are created.

Add a way to delete
sets (i.e. delete a
given set name and
all of the flashcards
associated with that
set from the users
CSV file.

150

The stakeholder
would like the
system to view sets
of flashcards they
have already
created.

Fully User can view all of
their sets on the
MySets layout.

N/A

The stakeholder
would like the
system to allow
them to revise sets
of flashcards they
have created.

Fully User can successfully
navigate their way
through a set of
flashcards and flip the
flashcards. This
feature is robust by
now allowing the user
to go beyond the set
limits.

N/A

The stakeholder
would like the
system to allow
them to test their
knowledge on a
particular set of
flashcards.

Not The quiz feature has
not been
implemented.

Add in a quiz
feature which
displays all of the
terms from a given
set along with 4
random multiple
choice answers, one
of which will be the
correct answer.
Record the users
percentage and
time taken and
write these to their
CSV file.

The stakeholder
would like the
system to keep
track of their
progress and show
it in a clear and
concise way.

Not Progress tracker has
not been
implemented.

Add in a progress
tracker which reads
the users quiz
results from their
CSV file and displays
them graphically on
the screen for every
set.

The stakeholder
would like the
system to allow
them to share their
results and
progress on social
media.

Not Social media sharing
has not yet been
implemented.

Add in a button on
the progress tracker
which posts a tweet
to the apps Twitter
page displaying the
users username
along with their
results for a given
set.

151

The stakeholder
would like the
system to have a
clear main menu.

Fully The main menu is
simple and easy to
navigate through. The
buttons all clearly
display their purpose
and leave no
ambiguity.

N/A

The stakeholder
would like the
system to be user-
friendly and easy to
understand.

Fully The program is very
easy to navigate
through via buttons.
All buttons clearly
display their purpose.

N/A

The stakeholder
would like the
system to allow
them to edit
already existing
sets of flashcards.

Fully Users can add
flashcards to a set via
the ‘add flashcards’
button, and delete
flashcards from a set
on the revision screen.

N/A

The stakeholder
would like the
system to allow
them to set exam
dates/deadlines.

Not This feature has not
been implemented.

I have decided not
to implement this
feature as it would
be pointless as the
app cannot send
reminders whilst it
is not running (as it
is a locally ran app).

The stakeholder
would like the
system to send
them email
notifications when
prompted to.

Not This feature has not
been implemented.

Emails could be sent
from the apps email
address (Gmail) to
the users email
address (Gmail)
they entered when
signing up via a
button press. This
could be done using
the Google API.

Usability features
In order to test the usability features of my program, I have contacted all three of my
stakeholders and given them my solution to test and use. I have asked each of them to fill
out the questionnaire I set out in the analysis section. There is also a recording of one of my
stakeholders, Marcus, using the program and its features in the post-development testing
evidence PowerPoint.

Questionnaire 1: Sign-up/Log-in
This questionnaire relates to success criteria 1 and 2.

152

1.) Can you successfully create an account on the app?
Vivek: Yes
Marcus: Yes, but I did not have a Gmail account.
Sam: Yes

These responses show that the sign up feature works and the users details are written to a
file if they are valid.

2.) Can you successfully log back into this account using the same details?
Vivek: Yes
Marcus: Yes
Sam: Yes

These responses show that the log in feature works and that the details were correctly
written to the file when the user created their account and are also successfully read from
the file and validated when the user attempts to log in.

3.) Was this an easy process to understand and carry out?
Vivek: Yes, the process is very similar/identical to other apps/sites where you have to create
an account.
Marcus: Yes
Sam: Yes

These responses show that the process of creating an account/logging in is simple as
intended and so the user will not need to spend lots of time figuring out how to do it.

4.) Do error messages appear when incorrect details are entered?
Vivek: Yes
Marcus: Yes, although it would be more practical if more than just Gmail accounts were
allowed to be used as I do not have a Gmail account.
Sam: Yes

These responses show that this element of the program is robust as the validation works as
intended.

Questionnaire 1 shows that the signup/login feature works perfectly, the stakeholders were
happy with the functionality, validation and simplicity of the process. When I asked my
stakeholders whether the passwords being hashed before they are stored to the text file
made them feel more secure about their details, all of them responded ‘yes’. As such, the
ability for the user to create an account or login to an already existing account has been a
success.

Questionnaire 2: Creating/editing/revising a set of flashcards
This questionnaire relates to success criteria 3, 5 and 11.

1.) Can you successfully create a set of flashcards with a given name?

153

Vivek: Yes but not beyond 5 sets.
Marcus: I can only create 5 sets before it says there is a set limit and then theres no option to
delete the sets so I’m stuck with the same set names forever once they are created.
Sam: Yes, but the 5 set limit is annoying.

It is clear from this feedback that the users did find the 5 set limit annoying and
inconvenient, so in future development I would remove this limit and whilst this would
potentially increase the storage requirements of my solution, the benefits to the
stakeholders here seem to outweigh this. To do this, I would have to store a value in the
users CSV file that indicates how many sets they have created so that the program would
know which index position in the first row to insert a new set name to. However, this could
also create an issue with the buttons on the ‘MySets’ layout as there is only 5 buttons but
the user would now have the ability to create more than 5 sets. I am not immediately sure
how to get around this issue but it could involve having a ‘next page’ button which updates
the 5 buttons to the names of the next 5 sets the user has created.

2.) Can you then add flashcards to this set?
Vivek: Yes, and the amount I can add is seemingly unlimited which is convenient.
Marcus: Yes
Sam: Yes

All stakeholders were happy with the ability to add flashcards to a set they have created and
were pleased with the unlimited nature of this.

3.) Can you remove flashcards?
Vivek: Yes
Marcus: Yes
Sam: Yes, but it would be better if there was a confirmation screen that ensures the user
definitely wants to delete that flashcard in case the delete button is accidently pressed.

Sam has raised a very important point here. I agree it would be beneficial to include a
confirmation screen in case the delete button is accidently pressed, especially considering
that it is located right next to the next, previous and flip buttons. This would ensure that the
user does not have to waste valuable revision time going back and recreating flashcards
they have accidently deleted. This could be implemented in future development by simply
updating the error message whenever the delete button is pressed to display a message
telling the user to press the delete button again if they wish to delete that flashcard. If they
press the delete button again the flashcard will be deleted, and if they do not, the
confirmation message will disappear and the flashcard will not be deleted.

4.) Can you ‘flip’ flashcards for revision purposes?
Vivek: Yes
Marcus: Yes
Sam: Yes, however sometimes the text goes slightly off the screen when it is a longer
term/definition.

154

Sam could have experienced this issue because of the border I placed on the flashcard
textbox in order to make it look more aesthetically pleasing. In future development, this
border could easily be made smaller or even entirely removed to get around this issue if it
becomes too much of an issue.

5.) Is the process easy to understand and carry out?
Vivek: Yes, very simple and effective.
Marcus: Yes similar to real-life flashcards and websites such as Quizlet.
Sam: Yes

Again, the stakeholders were happy with the simplicity of this feature of the app.

6.) Do you feel the revision is efficient?
Vivek: Yes even though I do not use flashcards that often
Marcus: Yes
Sam: Yes

All stakeholders were happy with the way the revision on the app worked even if flashcards
were not their preferred method of revision.

7.) I have also decided to add a question regarding the robustness of this feature (i.e. can
you break the program by deleting all of the flashcards in a set or attempting to go to the
‘next flashcard’ at the end of the set or vice versa? Etc.)
Vivek: I have tried to break the program by deleting all of the flashcards and attempting to
go back and revise the set but a screen is shown telling me there is no flashcards in the set.
The feature seems very robust.
Marcus: Very robust
Sam: Works perfectly and is unbreakable.

The stakeholders have confirmed that the revision feature is robust and errors will not
interrupt a users revision.

The responses to questionnaire 2 show that the process of creating revision material and
revising it is very efficient, simple and robust. The few complaints received could be sorted
in future development, with the biggest issue being the 5 set limit. However, overall the
stakeholders were very happy with the functionality and usability of this feature so this
element of my solution has been a success.

Questionnaire 3: Quizzes
This questionnaire relates to success criteria 6.

1.) Does the program allow you to take a quiz on a set of flashcards you have created?
2.) Was the quiz thorough enough?
3.) Were the questions in a random order?
4.) Did the multiple choice/written quiz work correctly and were you given a valid score,
percentage and time taken upon completion?

155

As explained earlier in the report, the quiz feature has not been implemented and so I will
not be giving this questionnaire to my stakeholders. They all said it would be massively
beneficial for this feature to be implemented in future development as testing your
knowledge is an important part of revision. As such, the quiz feature of my solution has
been a failure. The ways this would be implemented in future development were outlined
earlier in the evaluation section.

Questionnaire 4: Progress Tracker
This questionnaire relates to success criteria 7, 8 and 13.

1.) Can you successfully access and view the progress tracker feature?
2.) Are the statistics shown correct?
3.) Do you feel this feature is helping you?
4.) Can you successfully set exam dates/deadlines, and do these show on the main menu?
5.) Are email notifications successfully sent and received when you prompt the program to
send one?
6.) Can you successfully share your results on the application’s Twitter page?

Similar to questionnaire 3, the progress tracker feature has not been implemented as
explained earlier in the report so it would be pointless giving this questionnaire to my
stakeholders. I did however ask whether they thought it would be beneficial to implement
this feature in future development and they all said yes. As such, the progress tracker
feature of my solution has been a failure. The ways this would be implemented in future
development were outlined earlier in the evaluation section.

Questionnaire 5: General
This questionnaire relates to success criteria 4, 9 and 10.

1.) Is the app easy to use and navigate?
Vivek: Yes, the functionality of the buttons is clear and they work as intended.
Marcus: Yes, although I feel it would be beneficial to have a ‘how to use’ page on the start
menu informing users of the features of the app, as well as things like the 5 set limit.
Sam: Yes, navigation is easy.

In future development, a ‘how to use’ feature could easily be added as Marcus as suggested.
I feel this would be beneficial to ensure that users know about how to use the app, its
features and its limitations before creating an account. It could be added by simply adding a
button on the start menu which takes the user to a new layout containing a block of text
explaining these things, along with a back button to take the user back to the start menu.

2.) Is the GUI layout simple and not confusing?
Vivek: Yes, although it would be better if the GUI was more modern as it looks slightly
outdated.
Marcus: Yes, usability is easy.
Sam: Yes, easy to use but looks a bit old.

156

Vivek and Sam raised the point of making the layout more modern and more like other
revision apps on the market at the moment. I agree with this, and the reason more time was
not dedicated to this during development is because I decided to focus more of my time on
the functionality once the GUI was sufficient for use. Making the GUI more modern in
PySimpleGUI is possible, but difficult. It could be easier to use a different framework to
make the GUI look more modern in future development.

3.) Are there any errors/problems you encountered whilst using the app? If so, what were
these?
Vivek: None apart from the 5 set limit, which is more of an inconvenience rather than an
error.
Marcus: Its not an error with the program but it is annoying that only Gmail accounts are
allowed.
Sam: No errors.

From the stakeholder feedback, it is clear that there are very little to no ‘errors’ in the
program, rather just intentional features such as the 5 set limit that some stakeholders find
inconvenient.

4.) Did the sound effects work correctly?
Vivek: There were no sound effects.
Marcus: No
Sam: I did not hear any sound effects

When programming my solution, I did not include any sound effects so I did not expect the
user to hear anything while using the app. This could be easily implemented using mixer in
future development, but it is not a key feature of the app.

5.) Is the colour scheme easy on the eye?
Vivek: Yes, the colour scheme is fine.
Marcus: Yes
Sam: Yes

All stakeholders were happy with the colour scheme used and did not think it was too
overwhelming and would be suitable for long runs of revision looking at the screen.

6.) I added a new question to my original questionnaire asking the stakeholders whether
they had anything to add/any advice for future development:
Vivek: The app is good and the features that have been implemented work correctly, but the
solution would be massively improved by adding a progress tracker and quiz feature in
future development.
Marcus: The only advice I have is the feedback I have given to previous questions. Apart from
that, the app is good. I also noticed when testing the program that when a new set has been
made, and you are taken to add flashcards to the set, when you press back to go to the
MySets layout, the new set has not appeared on the button – it only appears when you go
back to the main menu and then back onto the MySets layout. Longer definitions also
appear to go significantly off the screen on the flashcard screen.

157

Sam: A more modern interface and the features that have not yet been implemented would
make the solution better. A way to edit my details once I have create my account would also
be beneficial.

The responses here show that apart from the concerns mentioned earlier, the stakeholders
are mostly happy with the solution. However, when testing the program (the evidence video
for which can be found in the post-development testing evidence PowerPoint), Marcus
noticed that the set names were not being updated on the MySets layout when the user
goes back to it from the flashcard screen when they have made a new set. This means that
success criteria 4 has only been partially met. This could easily be solved in future
development by running the set_names function whenever a new set is made. He also
noticed that longer definitions are significantly cut off the screen when revising flashcards.
This again could be because the text element has been made too large or the border is
obscuring some of the text. Both of these things could be investigated in future
development. However, I do not think it is because of the text element being too large
because when I use a large piece of text as the definition, it does go onto a new line so it
appears that the border is the issue:

This screenshot shows that either the textbox is slightly too large or the border is obscuring
the text.

Sam wanted a way to edit your details after account creation, which links to the ‘manage
account’ feature that I mentioned earlier in the evaluation section that I was unable to
implement for reasons listed earlier. This is a feature I would definitely implement in future
development.

Questionnaire 5 has shown that the users are happy with the functionality of the program,
but think it would be improved by making the interface more modern and implementing the
progress tracker/quiz features.

Overall, the stakeholder feedback here has outlined that the features that have been
implemented mostly work well apart from a couple of small, easily fixable issues. The
general usability and user-friendliness of my solution has been a success.

158

Summary of usability features

Usability
Feature

Successfully
Created?
(partial/fully/not)

Why? How to fully meet this
feature.

Instructions
on use

Not There is nowhere in the
program where the user is
given any instructions on
how to use the program or
its features.

Add a button on the
start menu taking the
user to a screen
containing instructions
for use as well as the
features of the app.

Buttons Fully All buttons have a clear
functionality, work as
intended and are big enough
for the user to easily see,
making the interface much
easier to navigate.

N/A

GUI Partially Users said the GUI was
simple and easy to navigate
through and understand, but
looked outdated and would
be better if it was more
modern like many already
existing revision apps.

Use images on buttons
to make the layout look
more modernised, use
a different colour
scheme, or even use an
entirely different
framework for the GUI.

Window
size

Partially The window size is good and
is fixed so it appears the
same on all devices, but the
window itself cannot be
reshaped, so on desktops the
layout only covers a small
portion of the screen and so
may appear a bit small.

Make device-
dependent layouts
rather than a fixed
layout.

Limitations of my solution and how they could be addressed
One limitation of my partially complete solution is the 5 set limit. This is a limitation because
it effectively prevents the user from using the app for a wide range of subjects as it limits
them to 5 sets of flashcards. This was an issue mentioned by all my stakeholders as
something they would like to be removed in future development. The main issue with
having more than 5 sets is not a storage related issue, but rather the fact that the set menu
only has 5 buttons, and so can only display 5 sets for the user to interact with. There is no
way I am aware of in PySimpleGUI to automatically create buttons and their functionality
whilst the program is running (the layouts have to be predetermined), so I could work
around this by having a ‘next page’/’previous page’ button on the MySets layout which
updates the buttons on the screen to display the next/previous 5 sets, effectively allowing
for unlimited sets to be displayed. There would also be robustness features added to this to
ensure that the user cannot press ‘next page’/’previous page’ when there are no more sets
to be displayed.

159

Another limitation of my solution is the lack of ability for the user to test their own
knowledge on a set of flashcards (i.e. the quiz feature). This is a limitation because testing
your knowledge is a key part of revision to check whether you fully understand and
remember what you have revised. My stakeholders also agree that not having this feature is
a big limitation to the solution. To address this in future development, as laid out earlier in
the report, a quiz feature would need to be added, which displays the term of each
flashcard in the chosen set as the ‘question’ and then the correct answer along with 3 other
incorrect answers are shown on the screen in random positions as 4 possible multiple choice
answers. The user would have to choose one of these and their final score, percentage and
time taken to complete would all be recorded and displayed once they have completed the
quiz. Every time a new quiz is taken, the multiple choice answers would be different and
appear in different places. This would be achievable by writing all of the terms/definitions
from a set to separate lists, displaying the string in the corresponding index position in the
definition list for each term randomly in one of the 4 multiple choice slots, and then adding
the number of this slot to another list so that another answer cannot be placed in this slot
and override the correct answer, and then randomly choosing 3 other definitions from the
list and displaying them in the other 3 slots in a similar way. However, this would require the
layout of the CSV file to change so that it now includes spaces for the quiz results to be
stored, and there is a way to differentiate between them and the flashcards themselves in
the CSV file:

Each row after the set names contains either a flashcard or quiz result, indicated by the first
element in that row. I would have to edit the flashcard feature to now check for rows with
the string ‘flashcard’ in the first element as well as searching for the set number.

Another limitation to my solution is the fact that the progress tracker has not been
implemented either due to time constraints. This is a limitation because tracking your
progress is key when doing revision to see where you need to focus your time and which
subjects you are not making as much progress in. To implement this in future development,
as mentioned earlier in the evaluation section, there would have to be graphs displayed on
the screen which display the percentages and time taken to complete quizzes on a particular
set (I would have to do extra research on this as graphing is not a concept I am familiar with
in python). The data for the graphs would be read from the users CSV file.

Another limitation of my solution is the fact that the program only allows Gmail accounts, as
mentioned by one of my stakeholders. This is a limitation because it prevents people who
do not have a Gmail account from creating an account on the app with their email address,
as an error message would appear telling them that their email address is not valid (as it is

160

not Gmail). This could be changed by removing the gmail validation from the sign up feature
and sending emails from the apps Gmail account to non-gmail addresses.

Finally, the last limitation of my solution is the fact that the user cannot change their
account details/delete their account (which creates security issues as users cannot change
their passwords or email addresses) as the manage account feature has not been
implemented. This could be solved in future development by adding a screen that allows a
user to enter their current password (for added security), and if it is correct, allows them to
change the password/email address to something else. The userinfo.txt file would then be
rewritten with this new data in place of the old data. Adding a delete account feature would
be relatively simple – it would just require the users CSV file to be deleted, and all of their
information from the userinfo.txt file to be removed (most likely by rewriting the file
without that information).

Maintenance issues
For users to be able to access their accounts on any device, the userinfo.txt file would have
to be constantly updated, as well as the users CSV file. This maintenance issue could be
solved by storing the users details in a server that uses a database that can save all data.
Then use a python SQL library to get data from this database. I would have to do further
research on finding a python library that handle server traffic in order to choose a suitable
one and learn how to use this library before implementing this change.

In the long term, if the app ever became large-scale, I would have to hire a maintenance
team to deal with the user feedback/support and further updates. I would also have to
implement a user support feature in the app if it were to be rolled out on a large scale so
there is a clear way to ask for support so that the support team can handle the request. This
could be expensive and time-consuming to interview and hire a support team, but it would
be necessary as it would be impossible for mee to single-handedly run all aspects of the app
if it was being used on a large scale.

Furthermore, any updates made to the app in the future would require users to re-
download the app, and if any changes were made to the way the text/CSV files/databases
were laid out, the already existing files/databases would have to be entirely reconfigured to
match the way they are being read. This would be very time consuming and meticulous, and
emphasises the need for a large support team.

End of report summary
Now that I have reached the end of my NEA report and I have analysed, designed,
developed and evaluated my solution, the app can be rolled out for my stakeholders to use.

The elements of my solution that were implemented mostly followed how I planned their
design, and the elements that were not implemented were justified and evaluated in terms
of their importance and how they could be implemented in future development.

Any long-term maintenance issues have been highlighted and I have offered suggestions to
how these could be solved or how the solution could be amended to deal with them.

