Computer Science NEA

Name: Bradley Makinson
Candidate Number:

Centre Name: Ashton Sixth Form College
Centre Number:

Contents:

(O] 1 (=1 01 YU UPURRUP 2
Introduction/outling Of ProOJecCt..........uueeeeeeeeeieeceeseeieeireiveiresveirenas 3
ANALYSIS SECTION
Why have | used a computational approach?........................ 3
Y 0] (=1 1 1] Lo =] TR 4
EXIStiNgG SOIULIONS......ccuveeeeeieeeeeeeceeeceteeccteecsvee e evveeeaeveans 7
MQIN fEATUIES.....c..eeeeee ettt e stesste e setessesesseere e 14
LIMIEATIONS.c.....eeeeeereeeeeeeee ettt eet et eeset e e e et ee e sanaaessaaea e 17
Stakeholder ReqQUirementscceeeeeeeeeeeeceieciesseeseeeeeanne, 17
RV (ool =X O | =1 4 [R USROS 19
QUESTIONNQITES....ceeeeseeeeeseie e eeseeeeeeesse e aessss st aeaeeaeseaes 22
DESIGN SECTION
System diagram.... eeerttre e —e e e —era——eraeaera.aas .23
Systematic breakdown of problem .. 24
Structure Of SOIULION.......c..eeecveeeeeeeceeeieeeceeeseeesreesvee e 25
SYStemMS AlGOIItAMS.......ooeeveeeeeeeeeeeeee ettt eer e 28
USQDIlity fEATUIES......uceeeeeeeeeeeeceeeecee et eeieeseeeesrressveeeaees 38
Key Variables and Additional Files................ccoveeeevvvevvvvvernnnn. 39
Iterative Development.............ceeeeeeeeeveeeiieeeieeeiiresievesieesssnnns 43
Post-development Stage...........cccccvveeevveevvvveesiieeeiieessvennnnnn. 56
DEVELOPMENT SECTION
Lo 1T R0 A o] o O 65
SEAIt MENU...eoeeeeeeeeee ettt ettt sttt e e 65
R [0 12 o USRS 70
oo N | EO PSR 95
MAIN MENU....cueeaeaeeteeee et eee ettt ee e st ctetee e e st sae e aea e 102
O/ =To | 4] 1[0 XY =1 KT 108
Adding flashcards tO SetS..........ueevveeevveeeieveeceieieeevveesrvene, 114
ReVvising flaSNCArdS...........ccveeeeeeveeeeieeieveiieeereiceeereese e 122
EVALUATION SECTION
Post-development testing/success criteria evaluation......139
Usability features/user feedback.............cccueveeveeveevvervevunne. 151
Limitations and how they could be addressed................... 158
MQAINEENANCE [SSUCS....cccceeeeieeeeeeecieee e ecsieeeeesessteieeeeesiaens 160

| will be creating a revision app for my NEA using Python with a few other
frameworks, such as PySimpleGUI. It will have similar features to some other revision
apps that already exist (i.e. Quizlet), such as virtual flashcards, quizzes to test your
knowledge, a progress tracker and more that will be discussed further later on. The
key purpose of this app is to help students revise effectively for exams.

ANALYSIS SECTION

In this section, | will start to investigate the problem in order to start planning a
suitable solution for the revision app | plan to create. The problem is students’ needs
to revise for upcoming exams and assessments, and my program will aim to provide
a solution to that by allowing students to create their own revision sets and track
their own progress.

Why have | used a computational approach?

A computational approach is most suitable for my solution for many reasons.

Firstly, there are many mathematical processes that need to be carried out that
would be much quicker and accurate if carried out by a computer system as the CPUs
multiple cores can carry out many tasks quickly and simultaneously, whereas a
human could only carry out one task at once. For example, calculating the average
score, percentage and time taken to complete a quiz would take much longer for a
human to carry out and would be less accurate - these features will be required to
allow the user to track their progress. Specifically, calculating the average percentage
of the user’s test results will be calculated using the following calculation: (achieved
score/maximum possible score) x 100, and this calculation will be carried out many
times throughout the user’s time on the app. It would take a human much longer to
type this into a calculator, and there would be the potential for some inaccuracies in
the results, so therefore a computational approach is more useful here. The purpose
of the app is to provide a quick and easy way for the user to revise efficiently, and
displaying statistics like these on the screen instantly helps achieve this goal by
reducing the time needed to revise a topic as the user will not have to carry out
these calculations themselves. By using a computational approach, repetitive,
mathematical processes like these are guaranteed to be quick and accurate.

Furthermore, with virtual flashcards, the user cannot lose or damage them by
accident as they are stored virtually in the computers memory, making this a much
more reliable way of storing and using your revision materials. | plan to store the
flashcards themselves in an external (.csv) file, meaning the user will not have to
worry about having the resources to create real-life flashcards (e.g. paper, pens etc)
or losing/damaging them as they are securely stored within memory rather than
being a physical item.

There are also certain aspects of my revision app that would be impossible to
implement in any other way than computationally. For example, sending tweets and

email notifications would become extremely complicated, and therefore take much
longer, if it wasn’t done with the press of a button on the app itself. This is why | plan
to use the Twitter API to automatically post a pre-written tweet by the press of a
button.

My solution lends itself to the idea of abstraction — breaking down the problem into
smaller, more manageable chunks — as will be described later in my design section.
There will be a lot of different areas in my program, and breaking them down and
solving them modularly via computational methods will make the solution as a whole
a lot more manageable, and make my solution easier to create as the functions and
subroutines | need to use will be laid out clearly.

Overall, a computational approach makes my solution easier to use, quicker to run
and more convenient and organised for the user. Many of the processes that need to
take place in my solution would simply be impractical and too time-consuming for a
human to carry out repetitively.

Stakeholders

As my application will be for academic and revision purposes, | have identified my
stakeholders to be students, mainly under the age of 25. My application will allow
the user to create their own sets of revision materials, and these can be of any level
of complexity, in any subject area. For that reason, the students my application is
aimed at can be of any age, but mainly at GCSE and A-level students who have high
amounts of content to remember, and a very short amount of time to memorise it.
My application will be most useful for students who are close to sitting their exams
and revise frequently, as the progress tracker feature will encourage students to
return to the app frequently and build up their knowledge. Additionally, the user
interface will be very simple, user-friendly and easy to understand, meaning there
will be no confusion in terms of how to use the application, and therefore using the
application should not be an issue for those students with very little IT knowledge.

In order to make my solution more tailored to the needs of my stakeholders, | will
qguestion three of my stakeholders about what they would expect in a revision app
and how they would use it.
My three stakeholders are:
e Marcus, who is a 19 year old university student studying business.
e Vivek, whois a 17 year old A-level student studying Maths, Computer Science
and English Language.
e Sam, who is a 15 year old GCSE student with an interest in studying physics at
a higher level.
| feel this is a good range of ages and study levels, helping me to get a better general
understanding of the needs of students at all levels, and all of these stakeholders will
need to revise for upcoming exams in their various subjects.

Question 1: How would you like to log into the revision app?
Marcus: “Email and password”

Vivek: “Username and Password”

Sam: “Using the default username and password fields”

From the answers given to question 1, | am going to stick with my decision to use a
username and password to log in. The users email will be entered when they sign up
for email notification purposes.

Question 2: What features do you expect in a revision application?

Marcus: “Different sections for different subjects etc and a testing section for your
subjects, as well as a social media page (I use Twitter most often)”

Vivek: “Creating Question Sets, Quizzes, Progress Tracker, Twitter updates,
flashcards, quick and easy to use”

Sam: “topic grid so | know what’s revised so far and what’s not yet, a range of
questions and topics and flashcards to revise them etc...”

Many of the responses given to question 2 link heavily with what | was already
planning to include — creating revision material, revising that material using
flashcards, quizzes/tests on that material, and a progress tracker/topic grid, as well
as including the ability to post results to social media (namely Twitter)

Question 3: How would you use a revision application with these features (e.g. how
often, how you would test your knowledge etc.)?

Marcus: “End of every week and before a test/exam”

Vivek: “Create Question Sets after writing notes, do quizzes before doing past papers
on a topic in order to refresh my mind”

Sam: “Nightly sessions, test on topics I’'m not as sure about and redo it for a few
nights until I'm good at it”

The answers to question 3 will help me design my solution in a way that allows the
user to have the best experience.

Question 4: Have you used any revision apps before, and if so, what were they and
which features did you like best?

Marcus: “Yes — Quizlet. My favourite feature about it is the way you can test your
knowledge with a quiz.”

Vivek: “No prefer paper. Mostly use flashcards because they are portable.”

Sam: “Quizlet and Memrise, | liked the ability to see which parts have been covered
and which haven’t”

In question 4, the idea of portability was mentioned in one of the responses — my
solution will be available on any computer system that meets the software and
hardware requirements (discussed later). | am also planning to include a quiz feature
in my app as mentioned by Marcus.

Question 5: Why would you use a revision app?

Marcus: “In case | had a test coming up (especially because of my uni exams) and it
would refresh my memory about certain topics”

Vivek: “To access a way to revise on the go and to remember key definitions before
exams / last minute practice”

Sam: “Easier and more convenient revision”

The idea of revision of key ideas just before an exam was brought up in question 5,
suggesting the application may be used on a more short-term basis by some
students, perhaps removing the need for a long-term progress tracker.

Question 6: How would you like the program to look, and what would be the best
form of inputs for you?

Marcus: “Not overly complicated, clear instructions and input boxes/buttons as |
don’t want to spend ages figuring out how to use the app rather than revising”
Vivek: “Just be as easy to use as possible, prefer inputs via presses of a button than
textual inputs for example”

Sam: “Having used many revision apps before, | always preferred apps that were
simple and you could revise content or test your knowledge via the press of a
button”

Its clear that my stakeholders want a simple and easy-to-use solution, with buttons
seemingly being the preferred source of user input.

Question 7: How long before your exams would you start using a revision app?
Marcus: “2 weeks at a minimum”

Vivek: “6 months before”

Sam: “A few weeks before rather than months because a revision app is for more
quick, snappy revision”

The idea of quick and snappy revision came up again in question 7, although the
times that my stakeholders would start revision before an exam varied massively —
from 2 weeks to 6 months. For this reason, | will still keep my long-term progress
tracker as some students may wish to use the application over a longer period of time
than others.

These questions and answers from my stakeholders will help me improve my
solution and amend it to include anything that my stakeholders say they would find

useful in a revision app. They will help me to understand which features are most
useful for my stakeholders based on their past usage and experience of revision
apps, and thus ensures my solution is designed with my stakeholders’ needs in mind.

Existing solutions
There are many already existing revision apps available, and | will research and
investigate these to ensure | understand what my stakeholders need in my solution.

Solution 1: Quizlet

Quizlet is a free-to-use revision app for students that allows the user to create sets of
terms and definitions on a particular subject, and then revise these in many ways.
Link: https://quizlet.com/en-gb

Features:

J | | | This is the sign up screen on Quizlet. You have to enter your date of birth, choose a

‘ username and password, and then enter your email.

My solution will require the user to choose both a username and password for log in

‘ purposes (these will be stored in a secure .csv file), and the user’s email for email

notifications (this will be discussed in more detail later).

| will not require the user to enter their date of birth for any reason, and hence this
will not be included. Similarly, | will not have any reason to ask the user to accept
any terms or conditions, and so this will not be included either.

Already have an account?

https://quizlet.com/en-gb

This is the log-in screen on Quizlet. You can either log in via

Google/Facebook/Apple, or simply log in with your username and password.

G Log In with Google

My solution will only offer the option to log in with your username and password,
£ Log In with Facebaok and these will be stored in a secure .csv file. Your email will still be required later in
the program for email notifications.

L] Log In with Apple

Remember to log out of shared devices t a magic link inst

Price: Quizlet is free, but you can pay £19.99

A Home .
a year to get access to premium content
(e.g. images on flashcards).
nl Progress
My solution will be completely free (no
il Premium Content premium content)
@ Settings
On the menu, the user can view all of
@ Sets (42) their sets, and folders, as well as look

-
at their progress.

B Folders (7)
This will be similar for my solution in

A-Level Computer Scien... order to create a user interface and
A level Physics menu which will be simple and user-
Media Studies friendly.

View more

B Create a folder

A Home

Progress

ul Progress

Premium Content

SORT

£ Settings
A Level Physics - Module 2 (Foundations of Physics)
W Sets (42) e 5
B Folders (7)
A-Level Physics - Module 4.2 - Energy, Power and
A-Level Computer Scien... Resistance
A level Physics erm 60
Media Studies
Boolean Alaebra
3 term 2%
& Classes(2) A-level Physics - Module 5.1 - Thermal Physics
GCSE Sciences 20/ ke 70

/

On the progress page, the user can see each of their sets, how many of the flashcards
they have learnt and how many they haven’t. They can then view these flashcards
individually.

| will include a progress tracker in my solution too, and it will display time spent revising it,
average score and average time taken to complete the quiz on a particular topic. These
will be recorded as variables and so can be changed and displayed as needed.

| will also provide the option to post results on social media platforms, namely Twitter,
using the Twitter APl in order to create a further incentive for my stakeholders to keep
competing with each other.

24

Users can create their own sets of
flashcards, as well as browse sets of
flashcards made by other people.

My solution will include the ability
for the user to create their own sets
of flashcards, which they can
amend or delete at any point,
allowing for a more personalised
experience. These flashcards will be
saved to a .csv file, and then | can
write to and read from this file
whenever necessary.

| am not planning to include the
feature of sharing your sets with
others, as this is not a web app, and
| would like this to be a more
personalised application.

Quizlet Q Search I\ Browse [% Create

A-level Physics - Module 5.1 - Therm

Flashcards

(; Leamn
Z Write
G Spell
B Tt Thermal energy
=) Match
@@ Gravity
® Live BETA
170 > =
There are also some mini
games that can be played
Users can then revise the set of to help the user learnin a
flashcards in many ways — either in the more fun and interactive
form of traditional flashcards, by writing way.

out the definitions, or by taking a quiz to

test their knowledge on that particular | will not be including any

of these mini games in my

set.

program, as | believe there
My solution will include the ability to are already enough
revise flashcards in the traditional way features for effective and
(look at term, say definition, check engaging revision.

definition), as well as a quiz feature,

which will allow the user to check their
understanding and track their progress
on a particular topic.

Advantages Disadvantages

Effective flashcard feature Only raw numbers on the progress

tracker rather than a visual
representation (e.g. a graph)

Simple GUI and layout

Browser app will require internet access

sets.

Unlimited sets/classes, and can share

10

Solution 2: StudyBlue

Link: https://www.studyblue.com/online-flashcards

StudyBlue is another
free-to-use revision
tool that has many
similar features to
Quizlet.

Features:

You have questions,
we have answers.

Sign up with Google or Facebook

or
Name

I First Name Last Name]

Email

I name@example.com ‘

Password

Enter a password I

Birthday @

Month v | Day v | Year v

By signing up | agree to StudyBlue's
Terms of Use and Privacy Policy

Already have an account? Log in

The sign up page on StudyBlue asks for the full
name of the user, their email, a password and
their date of birth.

My solution will only require the user to enter
their username and password (for log-in
purposes) and their email (for email
notifications). | will have no need for the user’s
full name or date of birth, and thus these will
not need to be entered.

The log-in page for StudyBlue requires the
user’s email and password.

Alternatively, my solution will require the
user’s username and password as this is
quicker and easier for the user to enter

flashcards).

Similarly to Quizlet, StudyBlue allows the user to both browse sets of flashcards made by other students,
and make their own sets on whatever subject they like. They can also edit their sets (remove/add

As stated earlier, my solution will allow the user to create their own sets of flashcards and edit them
whenever they like, but | am not planning to include the ability to share sets between users as | want this
to be a very personalised application.

10

Aangom

) Least Sucled

Bvanthing Hamisst-0-Easest

The user has the option to either revise the set as
flashcards (‘flipcards’) or take a quiz to test their
knowledge.

Both of these will be features in my solution as | believe
these are the 2 most effective methods for revision, and
they will be the easiest ways to track the users’ progress
on a particular topic. The layout will consist of the
flashcard itself, then a ‘next’, ‘previous’ and ‘flip’ button
underneath — a simple and clean GUI design that will
cause no confusion for the user.

11

https://www.studyblue.com/online-flashcards

Done Bio 103 Final

Study Session Score

64"

10 Wrong

All-time Progress

O (0

Study Wrongs

/

A Set Reminder

There is also the ability for the user to study solely the definitions they got
right/wrong, and set reminders.

My solution will show the user which definitions they got right and wrong, and will
send the user reminders to revise via email notifications. These will only be able to
be sent whilst the program is running, however.

The progress tracker on StudyBlue is relatively similar to Quizlet — for each revision
session the user completes, the percentage score, and a graph of their percentage
scores in that particular subject, appear on the screen. It also shows exactly how
many definitions the user got right/wrong.

The progress tracker in my solution will give an average score and percentage for a
given set of flashcards. | will do this by creating two variables for each set that will
be updated every time the user takes a quiz on that set.

Advantages

Disadvantages

Detailed progress tracker with visual
representations

Browser app requires internet access

Can list your interests when creating an
account so the app can recommend
more relevant sets for you to study.

Slightly more complex layout than
Quizlet, but many GUI features are the
same.

Unlimited sets/classes, and can share
sets.

12

Solution 3: Real-life flashcards

My solution is heavily based on the concept of flashcards — one side of the card has a

term/question on it, the other side has the definition/answer on it. My solution
allows users to do everything they would be able to do with real flashcards, but
virtually.

Real-life flashcards are a more feasible solution for those without consistent access
to a computer, due to the technological requirements of revision apps.

But why would my stakeholders choose to use a virtual app over actual flashcards?
What are the advantages and disadvantages of a virtual app compared to paper
flashcards?

Advantages Disadvantages
All in one place — cannot lose the Hardware and software requirements
flashcards
No cost (do not need to buy resources, Power consumption by running a
such as card, pens etc.) computer system
Quick and automatic test scores and Cannot access anywhere — only
progress checking accessible on a computer.

13

Main features of my proposed solution

1.) Log-in/Sign-up screen — on this screen, the user can either log-in to their account
(if they have already created one) or create an account if they haven’t already by
signing up. They can choose either of these options by pressing either the ‘Log-in’
button, or the ‘Sign-up’ button. When the user signs up, they will be asked to enter
their desired username, password and email into the textual input boxes, and these
will be saved into a .csv document, which can then be referred to and read from in
the future when the user logs back in. On the log in screen, the user will have to
enter their username and password into the two free input boxes labelled
‘username’ and ‘password’ — these will then be checked to see if they’re correct by
checking the corresponding boxes in the .csv document (l.e. if person 1’s username is
found in box A1, then box A2 will contain their password and A3 will contain their
email. When the username in box Al is entered into the ‘username’ input box, the
password in A2 is checked, and if it matches what the user has entered in the
‘password’ input box, they will be allowed in. If not, a message will appear that says
‘incorrect password’). | have included this as it adds personalisation to my program
and allows the user to have their own account — it is a simple and user-friendly
design that will cause no confusion.

2.) Menu screen — Once the user has logged in, they will be taken to the menu
screen. Here, they have the option to create a new set of revision material, edit an
already existing set by adding and removing flashcards, revise a set, take a test on a
set of their choice, or review their progress via the progress tracker. If | decide to add
the ability for the user to set exam deadlines in order to keep them motivated to
revise, this will also be a ‘Set Deadline’ button on the menu screen. These will all be
buttons that can be pressed. There will also be an option to log out and exit the
application (which will automatically log you out), both of which will both be buttons
which can be pressed. Once again, this is a simple design that is easy to use.

3.) Flashcard screen — If the user chooses the option to revise a set, the flashcard
screen will appear. In the centre of the screen, there will be the ‘flashcard’ itself, and
then underneath there will be a ‘next’ and ‘previous’ button to allow the user to go
to the next/previous flashcard. There will also be and a “flip” button, which will “flip’
the flashcard (i.e. if the user is looking at the term on the flashcard and then presses
the flip button, it will show the definition, and vice versa). There will also be a button
to delete the flashcard the user is currently looking at, and one to add a new
flashcard at the end of the set. If | decide to implement the functionality to allow the
user to edit the content on already existing flashcards, there will be a button for this
too. Each of these buttons will be a picture of the appropriate symbols (e.g. arrows)
to make it quicker and easier for the user to recognise their functionality. Once all of
the flashcards in the set have been gone through, it will go back to the start of the
set. | will do this to make it much quicker to go from the end of the set of flashcards

14

to the start, and vice versa. The user will be able to exit revising that set at any point
via an ‘Back’ button.

4.) Quiz screen — This aspect of my solution is designed to allow the user to check
their knowledge on a particular subject to check whether they fully understand it or
not. The layout will consist of the question in text at the top of the window, and then
4 multiple choice answers underneath. These multiple-choice answers will be in the
form of buttons, so the user can press the button that they think has the correct
answer on it, and then the screen updates with the next question and 4 possible
answers. At the end of the quiz, the final score, percentage and time taken will be
displayed, as well as an option to share the result on the applications twitter page. It
is during and after the quiz that most of the complex processing will be done — the
score and percentage will be calculated and updated on the progress tracker, and the
questions will be randomly chosen. | could also decide to add the option for a text-
based quiz rather than multiple choice, where the user would have to type in the
answers into a free input rather than press a button.

5.) Progress Tracker — The user will be able to track their progress here — they will be
able to see their best to worst sets (in terms of test percentages), their highest scores
and their exam deadlines all in the form of textual outputs on the screen, with
different colours to represent good (green) and bad (red) test scores. | could also
decide to implement this in the form of a line graph in order to give the user a better
visual representation of their progress, showing a general trend of how they are
doing and thus allowing the user to see more clearly which areas they need to
improve in.

Summary of key/essential features and their justification:
Feature Justification
User can create an account So that their individual progress can be
saved. A username, password and email
will be required to be entered, as these
were the fields mentioned by my
stakeholders.

User can log into an already existing So that the user can return to their work
account using their username and when the application is re-run.
password All revision apps | researched had the

create an account/log-in feature, and it
is something my stakeholders wanted
when | questioned them earlier on.
User can manage their account This feature gives the user the ability to
change their details or even delete their
account, allowing for improved security

15

User can create sets of flashcards with a
term and a definition

User can revise sets of flashcards

User can test their knowledge on a
particular set of material via a quiz, and
see their results.

User can view their progress via a
progress tracker within the app.

User can send email notifications of
their progress.

User can post their progress to social
media, namely Twitter.

as passwords and emails can be
changed.

So that the user can make use of the
application’s other features such as
revising sets and tracking progress.

All other researched solution also
included this ability in order to allow the
user to tailor their revision.

This is the main purpose of all revision
apps — to allow the user to revise. My
stakeholders also mentioned that
flashcards were a method of revision
they have found effective before.

This is another method of the user
consolidating their knowledge that |
found was consistent with all revision
apps | researched. It was also a feature
my stakeholders mentioned they would
benefit from.

The existing solutions that | researched
all included this feature in one way or
another. My progress tracker will
include both visual representations of
data (e.g. graphs) and raw numbers.
This will help the user to effectively
track their progress and see where they
can improve, which was mentioned to
be beneficial to my stakeholders.

This will serve as a reminder to the user,
and is a feature that is quite unique to
my solution as none of my researched
solutions included it.

This is a way to motivate students to
revise more as they will be competing
with each other, and this is another
feature that is relatively unique to my
solution but that is because my
researched solutions were designed for
a much larger scale rather than a single
class/school size.

16

Limitations

One limitation of my proposed solution is that there may be a maximum number of 5
sets of flashcards per user (this may yet be increased or even entirely removed). This
will be to limit the number of sheets in the .csv file and make the program more
manageable and reduce the amount of memory needed.

Another limitation of my proposed solution, as | mentioned earlier on in the report,
is that email notifications will only be able to be sent whilst the program is running.
This is because the way email notifications will be sent out is when the user passes a
quiz, or when they press the ‘email notification’ button in order to send out a
reminder via email. This means that when the application is not being ran on a
computer system, email notifications cannot be sent out. The email notifications will
also only be for gmail accounts as | will be using the Google API.

My proposed solution will also not allow users to share their sets with each other as
many other already existing revision apps do. This is because my solution is an
individual revision app. However, due to the limit of 30 users, | may decide to make
my solution tailored towards being a class application, where the whole class can
sign up and create an account. As part of this, | would have to allow the users to
share their sets with each other and create a leaderboard feature.

Design Requirements

Requirement Why it is required
GUI layout that is easy to use and To make it a more user-friendly
understand experience
Clear and obvious instructions and So that the user knows exactly how to
buttons do what they want to do.
Reasonable image and font sizes So that the text/images are not too

small to see, but also not so large that
they are taking up the whole display.

Colour coding Whilst not an essential requirement,
some colour coding (e.g. green text for a
correct answer and red text for an
incorrect answer) will improve the
experience for the user.

Functionality Requirements

Requirement Why it is required

17

Usernames and passwords need to save
to an external .csv file

Flashcards created by the user also need
to save to an external .csv file

When certain buttons are pressed, the
correct display needs to appear (e.g. if
the ‘Flashcards’ button is pressed, the
program needs to take the user to the
flashcard screen).

Quizzes need to display random
guestions in a random order

Test score percentages and times need

to be consistently recorded

A main menu once the user logs in

Software Requirements

Requirement

So that the user can successfully log in
to their account again when they next
come to use the application.

So that the user can revise using the
flashcards they have created by using
the ‘flashcard’ functionality.

So that my stakeholders can use the
solution correctly and effectively, and
use the wide range of features available.

So that they do not become repetitive
and to ensure that the user has a full
knowledge of all the content they need
to revise.

To ensure that the progress tracker
works correctly and gives the user a
reliable measure of their progress in a
certain topic (so they know where they
need to improve).

The main menu will contain buttons for
all of the available features that the user
can use — all in one place.

Why it is required

An operating system compatible with
running Python 3.x.x
(Window/MacOS/Linux)

A gmail account

Python 3.x.x installed with the
PySimpleGUI library

To run the finished program

To be able to send email notifications,
as these notifications will be sent using
the Google API, so the user would need
a gmail account.

This is required to run the application as
this is the framework it has been
created with.

18

Hardware Reguirements

Requirement

Why it is required

Mouse

Speakers

Keyboard

Monitor/screen

Success Criteria

No. Criteria

In order to be able to click buttons and
navigate around the GUI, and input data
to the computer system.

This is one way data/information is
outputted to the user. It is required in
order to be able to hear some of the
sound effects | will be adding, such as a
‘ding’ sound when the user passes a

quiz etc...

This requirement however is NOT

essential.

In order to input important details when
signing up or logging in (such as
usernames and passwords), as well as
for text based quizzes (if | decide to add
them) where the user would have to
type in their answers. The app requires
a keyboard input for the password,
username and email features.

This is how the application and its data
is outputted to the user.

Justification

How it can be proved

1 The stakeholder would

like the system to allow

them to create an
account if they haven’t
already got one.

2 The stakeholder would

like the system to allow

them to log in to their
account if they have
already created one.

This is the first thing
the user will have to
do when they use
the application.

This is the first thing
the user will have to
do when they use
the application, and
both this and the
sign-up feature
were requested by

Screen record a stakeholder
entering their details into
the sign-up page, which then
takes them to the menu if
their details are all
valid/haven’t been used
before.

Screen record a stakeholder
entering their username and
password into the log-in
page, which then takes them
to their menu if the details
they entered are all correct

19

The stakeholder would
like the system to allow

them to create their

own sets of flashcards.

The stakeholder would
like the system to view
sets of flashcards they

have already created.

The stakeholder would
like the system to allow

them to revise sets of
flashcards they have
created.

The stakeholder would
like the system to allow

them to test their
knowledge on a
particular set of
flashcards.

The stakeholder would
like the system to keep
track of their progress

and show it in a clear
and concise way.

my stakeholders
and were common
features among
already existing
solutions.

So the user can
revise whatever
content they wish —
the main purpose of
the app.

So that the user
knows what
revision material
they have/haven’t
already created.
This is the main
purpose of the
revision app —
allowing the user to
revise. Flashcards
were a popular
method of revision
among my
stakeholders.

This is an extremely
important way of
the user seeing
where they need to
improve, and was a
common feature
among my
stakeholders
requests and
already existing
revision apps.

Once again, thisis a
way for my
stakeholders to see
which areas they
aren’t scoring highly
in, and the ability to
track progress over
a ranging period of

and valid. If not, an error
message will appear.

Screen record a stakeholder
creating a flashcard, then
show a screenshot of this
flashcard saved into an
external .csv file.
Screenshot of the screen
showing a stakeholder’s
already existing sets of
flashcards.

Screen recording of a
stakeholder going through a
set of flashcards and using
all of the available features
(next/previous flashcard, flip
flashcard)

Screen record a stakeholder
taking part in a quiz and
reviewing their score and
time taken to complete the
quiz.

Screenshot of the progress
tracker feature showing a
range of statistics (discussed
earlier) about their progress.

20

10

The stakeholder would
like the system to allow
them to share their
results and progress on
social media.

The stakeholder would
like the system to have
a clear main menu.

The stakeholder would
like the system to be
user-friendly and easy
to understand.

time was a feature
mentioned by all of
my stakeholders
earlier on in this
section.

This adds an
incentive for the
user to keep
revising and
compete with other
students. Twitter
was a commonly
mentioned social
media platform
among my
stakeholders and is
a popular platform
among teenage
students.

Makes the program
easier to navigate
which is crucial to
providing a user-
friendly experience.
The user should not
be confused at any
point whilst using a
revision app —it
should be
extremely user-
friendly. This links
to how my
stakeholders
preferred a revision
app that can be
used for quick,
snappy revision, so
my solution needs
to be easy to use so
the user is not
spending too long
figuring out how to
use the app.

Screenshot of tweet that has

been shared by a
stakeholder.

Screenshot of the main
menu.

Screen recording of some
general use of the
application (e.g. logging in,
navigating the main menu
etc.)

21

11

12

13

The stakeholder would
like the system to allow
them to edit already
existing sets of
flashcards.

The stakeholder would
like the system to allow
them to set exam
dates/deadlines.

The stakeholder would
like the system to send
them email
notifications when
prompted to.

This allows the user
to add to their
revision material as
they go, helping to
keep the
application
organised and
effective.

This is to help keep
the user organised
and aware of when
they need to have
revised material for
—these will show
up on the user’s
reminders list on
the main menu.
This serves as a
method of
reminding my
stakeholders that
they need to revise
on a consistent
basis.

Screen recording of a
stakeholder editing
(adding/removing) some
flashcards from an already
existing set that they have
created.

Screen recording of a

stakeholder setting an exam

date / screenshot of exam
dates set by a stakeholder.

Screenshot of email sent to
a stakeholder.

22

Questionnaires
| have created multiple questionnaires about my solution in order to monitor user
feedback throughout my project to measure the degree of success.

Questionnaire 1: Sign-up/Log-in

1.) Can you successfully create an account on the app?

2.) Can you successfully log back into this account using the same details?
3.) Was this an easy process to understand and carry out?

4.) Do error messages appear when incorrect details are entered?

Questionnaire 2: Creating/editing/revising a set of flashcards

1.) Can you successfully create a set of flashcards with a given name?
2.) Can you then add flashcards to this set?

3.) Can you remove flashcards?

4.) Can you ‘flip’ flashcards for revision purposes?

5.) Is the process easy to understand and carry out?

6.) Do you feel the revision is efficient?

Questionnaire 3: Quizzes

1.) Does the program allow you to take a quiz on a set of flashcards you have
created?

2.) Was the quiz thorough enough?

3.) Were the questions in a random order?

4.) Did the multiple choice/written quiz work correctly and were you given a valid
score, percentage and time taken upon completion?

Questionnaire 4: Progress Tracker

1.) Can you successfully access and view the progress tracker feature?

2.) Are the statistics shown correct?

3.) Do you feel this feature is helping you?

4.) Can you successfully set exam dates/deadlines, and do these show on the main
menu?

5.) Are email notifications successfully sent and received when you prompt the
program to send one?

6.) Can you successfully share your results on the application’s Twitter page?

Questionnaire 5: General
1.) Is the app easy to use and navigate?
2.) Is the GUI layout simple and not confusing?

3.) Are there any errors/problems you encountered whilst using the app? If so, what

were these?
4.) Did the sound effects work correctly?
5.) Is the colour scheme easy on the eye?

23

Design Section

In this section | will design my solution by decomposing it into smaller subroutines,
planning out each of these subroutines, and describing any variables which may be
needed and how my solution may be tested during and after the development
phase.

After analysing my solution, | will first break my problem down into smaller
subroutines to make my solution easier to create and test later on.

Systems diagram

START
MENU
CREATE AN
ACCOUNT ¥ EXIT
LOG IN
Y
» MAIN
EXIT o« = LOG OUT
| MENU |
I CREATE A NEW
DELETE MANAGE Cl:;?gi A SET OF
ACCOUNT ACCOUNT L ASHCARDS FLASHCARDS
UPDATE i 1‘ ‘L
ACCOUNT ADD REVISE
DETAILS FLASHCAFEDS] FLASHCARDS T’E‘HEAQUE]
| l
v ¥ v
FLIP DELETE NEXT PREVIOUS
ROGRESS [FLASHCHRD][FLASHCHRD FLASHCARD FLASHGAHD]

TRACKER

VIEW QUIZ SEND EMAIL
SCORES v REMINDER
SHARE TO
SOCIAL
MEDIA

24

Systematic breakdown of problem:

The start menu is required to show up first and be the first display the user sees
because this is where the user has the option to either create an account or log in to
an already existing account. This step is required first because each account is
personalised, so in order to make the experience as tailored to the user as possible,
they will need to log into their account before they use any other features of the
app. Creating an account/logging in before anything else is an authentic feature of
almost all revision apps, so following this in my program is key to making my solution
as simple and easy to use as possible.

There will also be an option to exit the app from the start menu.

Once logged in to their account, the user will be taken to the main menu. This is the
main hub of the application from the user’s point of view as it will be where they can
access all of the features of the application. Each of the options (exit, manage
account, progress tracker etc) will be displayed as clear buttons on a contrasting
background, making my solution as clear and user-friendly as possible. | have shown
the main menu to be separate from the start menu in my systems diagram (above)
because a user can only advance to the main menu once they have logged into their
account, and their inputs to the username and password fields need to be validated.

There will be various different features of my program that you can access from the
main menu. You will be able to exit the program, which will automatically log the
user out, or log out manually, which will take you back to the start menu as shown in
my systems diagram. There will also be an option to manage your account, where
the user can change account details (such as their email address) or even delete their
account. | have broken down ‘Manage account’ into the two smaller problems
‘Delete account’ and ‘Update account details’ because each of these problems will
require a different subroutine — updating account details will involve re-writing to
the user details file, whereas deleting an account will involve removing all of the
information associated with that account as well as any sets of flashcards or progress
that user has made.

The progress tracker contains many features itself, each of which will require a
separate subroutine. A user’s quiz scores will be saved to a file whenever they
complete a quiz, and these will be viewable via the progress tracker. There will also
be options to post your progress on the applications Twitter page using the Twitter
APl and send an email reminder of your progress to yourself using the Google API. |
have abstracted these three features of the progress tracker separately because each
of them have a completely different purpose, and will be programmed using
separate subroutines.

There will also be options from the main menu to use existing sets of flashcards or
create a new set.

25

Creating a new set of flashcards will simply involve the user entering the name of the
new set, the name of which will be saved to an external .csv file and will be saved to
the main menu. They can add flashcards to this new set via returning to the main
menu and clicking on the set name.

The menu will also display each of the users sets of flashcards they have already
created (I am planning for there to initially be a maximum of 5 flashcard sets per
user, although this may be increased or even entirely removed later on). They will be
able to click on one of the sets, which will be displayed in the form of a button, and
there will be 3 options:

e Revise that set — in the form of traditional flashcards (this will involve reading
from the .csv file and displaying the terms/definitions on screen) — meaning
the user can ‘flip’ a flashcard and go to the next or previous flashcard. | have
also added the ability for the user to delete the displayed flashcard from this
screen. These will all use separate subroutines to carry out their functions and
hence | have abstracted them separately.

e Add flashcards — this will involve the user adding flashcards to an existing set.
This feature will involve writing to (changing) the .csv file, so | have abstracted
it separately. This has been shown separate to revising a set because revising
a set will involve reading from the file, so this will require a different
subroutine.

e Take a quiz — this allows the user to test their knowledge by answering
qguestions about a set of content. Whilst this involves reading from the .csv
file, it is abstracted separately to revising a set because the purpose of the
two functions is completely different, and the quiz will involve randomly
reading from the file rather than doing it in a set order.

Structure of solution:

Start menu — this will be the first screen the user sees when they start the app. It will
have 3 buttons for either logging in, creating an account or exiting the app, as well as
a short paragraph of text explaining the functionality of the app and who it is best
for. This is a simple, easy to navigate layout that will appeal to my stakeholders, and
will be achieved using PySimpleGUI’s ‘Button’ and ‘Text’ features. The ability to log in
or create an account will be linked via the press of a button, which will take the user
to a different layout where there will be text fields where the user can either log in
or sign up by entering the relevant information.

Create an account — here the user will enter their desired username, password and
gmail account into the relevant input boxes, which will be clearly labelled. | chose the
username and password method of user verification after consulting my
stakeholders in the analysis section, as they found usernames and passwords to be
the easiest and most secure method of user verification. The user will be asked to
enter their password twice to ensure there are no typos (and if the two entries do
not match, the user will be notified in red text at the bottom of the screen). Once all

26

of this information has been entered and is correct, they will be able to press the
‘Create’ button, which will store their data into a .txt file. Passwords will be hashed
before they are stored in order to make my app more secure. | have decided to store
the users account information into an external file so that their information is saved
even when the app is re-run, and the user can log in again using the account they
have previously created. The user will then be automatically navigated to the main
menu.

Log-in — if the user has already created an account in the past, they can log in using
the same username and password, and then these will be verified to see if they are
correct by reading the data saved into the external file when the user made their
account. If the username and corresponding password entered into the input boxes
do not match any username and password in the .txt file, then an error message in
red text saying “Invalid username/password” will appear at the bottom of the
window, prompting the user to re-enter their username and password. If the
username and password is correct for a certain account, then the user will be
directed to the main menu, and the email variable will be set to the users email
address.

Exit application — This will be an option from both the start and main menu which
allows the user to exit the application. Exiting from the main menu will automatically
log the user out. | will implement this by breaking the event loop whenever the exit
button is pressed.

Main menu — this will be main ‘hub’ of the app, and it is where the user will be taken
once they have logged into their account. It will be laid out in a simple way with
buttons for each of the user’s sets, as well as options to create a new set, manage
their account, access the progress tracker and exit the application, all of which will
also be in the form of buttons, once again via the use of PySimpleGUI’s ‘Button’
feature. This once again links to how my stakeholders wanted a simple, quick and
snappy GUI design allowing them to fully focus on their revision rather than working
out how to use the app.

Manage account — When this button is pressed, it will take the user to a layout
where they can either:

¢ Delete their account — this will delete all of their information stored in the
external files, including their username, password, email and any sets of
flashcards/progress they have made.

e Edit account details — this will allow my stakeholders to change their
password, username or email address, meaning that if they change their email
at any point, they can continue using the app on the same account so that
their progress/sets are not lost. This will be done be writing to the external file
which stores all of the users’ usernames, passwords and email addresses.

27

There will also be a ‘BACK’ button on this display, as well as at most points
throughout the application, so that the user can go back to the main menu (if they
accidently clicked on this button for example) via a press of this button.

Log out — This option will take the user back to the start menu and reset the email
variable, ready for another user to use the app.

Create a set of flashcards — Accessible from the main menu, pressing this button will
take the user to a screen where they can enter the name of the new set they wish to
create, which will be written to a different external file. The user can then return to
the main menu and click on the new set to add new flashcards to it. | added the
ability for the user to create their own sets rather than revising from pre-made sets
as my stakeholders wanted to be able to personalise their revision to their own
needs. The data saved to an external file from this process will be required for the
user to be able to use the other features of the revision app, because they will not
have anything to revise if they do not create a set.

Choose a set of flashcards — each of the users created sets of flashcards (max of 5,
possibly more) will be viewable from the main menu by the click of a button. Once
the user has chosen a set by clicking on the button with its name on it, they will be
able to do three things:

e Revise the set — this will be in the form of traditional flashcards; it will work by
the program reading from the .csv file, and displaying the term on screen.
There will be a button for the user to ‘flip’ the flashcard, which will then
display the definition. | will most likely use a variable which changes between
‘term’ and ‘definition’ to implement this. The user can revise their set of
flashcards via this method, which is similar to how other revision apps
(discussed in analysis section), as well as real-life flashcards, work and this is
what my stakeholders wanted. There will also be the option to delete the
flashcard being viewed from this screen, also via a button. The next and
previous flashcard to allow the user to navigate through their set will also be
displayed here. These features will be implemented by using counter variables
to track how far into the set the user is.

e Edit set — this will give the user the ability to add flashcards to the set as they
feel is necessary. The changes they make will be written to the .csv file and
this data will then be used when the user chooses to revise the amended set.

e Take a quiz —the user will be able to use this feature to test their knowledge
on a particular set of material. The variables ‘score’ and ‘time’ taken to
complete will be recorded and this data will be stored in an external file, ready
to be used in the progress tracker. This was a commonly wanted feature
among my stakeholders and so | am including it and integrating the results
into the progress tracker. Sound effects may also be added when the user is
taken to the summary screen after the quiz (such as a ‘ding’) to indicate

28

whether they passed (80%) or failed. This is more of an aesthetic touch rather
than a requirement.

Progress Tracker — Data from the quizzes will be required for this feature — it will
show a user’s quiz scores in the form of raw numbers and also on a graph. This
was a feature requested by all of my stakeholders as they wanted the ability to
track their scores and see where they need to improve. All of this information will
be in one place, making it easy to compare and deduce which subjects/areas the
user is strong in, and the areas they need to improve in.

e Post results to social media — the app will have a shared Twitter page
where users can post their progress and test scores along with other
members of the app (designed for class use). This adds a sense of
competition to the app which will add to the user’s motivation to revise. |
have decided to use Twitter as it is the social media platform that a couple
of my stakeholders said they use regularly. | will be using the Twitter API,
and tweets will follow the rough template “[username] scored [score] on a
quiz about [set name]! Well done!”. Data from the quizzes/progress
tracker will be read from the external file for this feature.

¢ Send email reminder — this feature requires the users email address,
which they would have entered when signing up to the app, and will send
an email reminder via the press of a button. It is designed to ensure my
stakeholders do not forget about their progress, and it encourages them to
stay on top of their revision. Whilst this is not a scheduled reminder, it will
still be in the users inbox when they next check their emails, which should
still have the same effect. | will be using the Google API to achieve this,
meaning unfortunately only gmail accounts will be able to benefit from
this feature.

Systems Algorithms

Start Menu

layout = STARTMENU

if button == ‘sign_up’ THEN
layout = SIGNUP

if button == ‘log_in’ THEN
layout = LOGIN

if button == ‘Exit’ THEN
break event loop

This feature changes the layout shown to the user via the press of a button, allowing the
user to easily log in and sign up.

Create an account

29

valid_username = True
import hashlib
if button == ‘create_account’ THEN

username = str(USERINPUT)
passwordl = str(USERINPUT)
password_validation = str(USERINPUT)

email = str(USERINPUT)

OPEN FILE ‘userinfo.txt’, READ AND WRITE
foriinrange 1 to (num_of_accounts*4) THEN

if f.read(line i) ==
UPDATE

username THEN
ELEMENT ‘error_message’ TO “Username already taken”

valid_username = FALSE

if valid_username == True THEN
if passwordl == password_validation THEN
if len(email) > 11 AND email[len(email)-11, len(email)-1] == ‘@gmail.com’ THEN

password = hashlib.sha256(password1)

num_of sets=0

user_id +=1

WRITE username TO ‘userinfo.txt’ on line[(num_of_accounts*4)+1]
WRITE password TO ‘userinfo.txt’ on line[(num_of_accounts*4)+2]
WRITE email TO ‘userinfo.txt’ on line[(num_of_accounts*4)+3]
WRITE user_id TO ‘userinfo.txt’ on line[(num_of_accounts*4)+4]
CLOSE FILE ‘userinfo.txt’

CREATE FILE ‘{user_id}.csv’

OPEN FILE “{user_id}.csv’, WRITE

WRITE num_of_sets TO {user_id}.csv’ in D1

num_of_accounts +=1

layout = MAINMENU

break

else THEN

else THEN
UPDATE
PROCEDURE set_names()
CLOSE FILE ‘{user_id}.csv’

UPDATE ELEMENT ‘signup_error_message’ TO “Invalid email”

ELEMENT ‘signup_error_message’ TO “Incorrect password entry”

This algorithm allows the user to textually input their desired username, password and email
address into 3 input boxes, and when they confirm their details via the press of a button,
their account is either created if their inputs are valid (their details are written to and stored
in userinfo.txt), and if they aren’t, an error message is shown at the bottom of the display
informing the user of the problem, which they can then fix and resubmit.

Log in

if button == ‘log_in" THEN

username = str(USERINPUT)

password = str(USERINPUT)

OPEN FILE ‘userinfo.txt’, READ

foriinrange 1 to (hum_of accounts*4) THEN

if f.read(line i) =

= username THEN

if f.read(line i +1) == hashlib.sha256(password) THEN

30

UPDATE ELEMENT ‘login_error_message’ TO “Log-in Successful”

email = f.read(line i +2)

user_id = f.read(line i +3)

CLOSE FILE ‘userinfo.txt’, READ

OPEN FILE ‘{user_id}.csv’, READ

num_of_sets = D1 in ‘{user_id}.csv’

layout = MAINMENU

break

else THEN

UPDATE ELEMENT ‘login_error_message’ TO “Incorrect Password”
PROCEDURE set_names(user_id)
CLOSE FILE “{user_id}.csv’

This feature allows the user to log in to an already existing account via typing their
username and password into the textual input boxes and validating their details via the
press of a button. The details are searched for in userinfo.txt and if they match, the user Is
taken onto their account, and if they don’t the user is notified via an error message at the
bottom of the display.

PROCEDURE set names()

define PROCEDURE set_names(user_id)
OPEN FILE ‘{user_id}.csv’
UPDATE ELEMENT ‘set1’ TO “Set 1 — {f.read[E1]}"
UPDATE ELEMENT ‘set2’ TO “Set 2 — {f.read[E2]}"
UPDATE ELEMENT ‘set3’ TO “Set 3 — {f.read[E3]}"
UPDATE ELEMENT ‘set4’ TO “Set 4 — {f.read[E4]}"
UPDATE ELEMENT ‘set5’ TO “Set 5 — {f.read[E5]}"
CLOSE FILE ‘{user_id}.csv’

This procedure simply updates the text on the set buttons on the users main menu to the
names of the users sets, which are read from their personal .csv file.

Main Menu

if button == ‘log_out’ THEN
PROCEDURE LOGOUT()

if button == ‘manage_account’ THEN
layout = ACCOUNT

if button == ‘progress_tracker’ THEN
layout = PROGRESS
... Shown later on

if button == ‘new_set’ THEN
layout = SETNAME

if button == ‘my_sets’ THEN
layout = SETS

if button == ‘Exit’ THEN

31

break event loop

The main menu is the ‘hub’ of the application, as it is where the user can access all of the
main features of the app via the press of a button. This algorithm simply updates the display
whenever a button is pressed to the relevant layout, or shuts the app down by breaking the
event loop if the ‘Exit’ button is pressed.

Log Out
define PRODECURE LOGOUT()

UPDATE ELEMENT ‘signup_error_message’ TO “”
UPDATE ELEMENT ‘login_error_message’ TO “”
layout = STARTMENU

This algorithms shows how when the ‘log_out’ button is pressed, a procedure is ran which
takes the user back to the start menu and resets the error messages ready for when the next

user uses the application.

Manage Account

if button == ‘update_username’ THEN
new_username = str(USERINPUT)
OPEN FILE ‘userinfo.txt’, READ
valid_username = True
foriinrange 1 to (hum_of accounts*4) THEN
if f.read(line i) == new_username THEN
UPDATE ELEMENT ‘error_message’ TO “Username already taken”
valid_username = False
break
if valid_username == True
CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
foriinrange 1to (num_of accounts*4) THEN
if line(i) IN ‘userinfo.txt’ == username THEN
line(i) in ‘new.txt’ = new_username
else THEN
line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
DELETE FILE ‘userinfo.txt’
RENAME FILE ‘new.txt’ to ‘userinfo.txt’
CLOSE FILE ‘userinfo.txt’

if button == ‘update_password’ THEN
new_password = hashlib.sha256(str(USERINPUT))
OPEN FILE ‘userinfo.txt’, READ
CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
foriinrange 1to (hum_of_accounts*4) THEN
if line(i) IN ‘userinfo.txt’ == username THEN
line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
line(i+1) in ‘new.txt’ = new_password
i+=2
else THEN

32

7

line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt
DELETE FILE ‘userinfo.txt’
RENAME FILE ‘new.txt’ to ‘userinfo.txt’
CLOSE FILE ‘userinfo.txt’

if button == ‘update_email’ THEN
new_email = str(USERINPUT)
OPEN FILE ‘userinfo.txt’, READ
CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
if len(new_email) > 11 AND new_email[len(email)-11, len(email)-1] == ‘@gmail.com’ THEN
foriinrange 1to (hum_of_accounts*4) THEN
if line(i) IN ‘userinfo.txt’ == username THEN
line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
line(i+1) in ‘new.txt’ = line(i+1) IN ‘userinfo.txt’
line(i+2) in ‘new.txt’ = new_email
i+=3
else THEN
line(i) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
DELETE FILE ‘userinfo.txt’
RENAME FILE ‘new.txt’ to ‘userinfo.txt’
CLOSE FILE ‘userinfo.txt’
else THEN
UPDATE ELEMENT ‘update_account_error’ TO “Invalid email”

This algorithm shows the different processes ran if the user decides to update either their
username, password or email. The new username, password or email is validated to ensure
that it is correct/does not already exist, and if it is valid, userinfo.txt is rewritten to update
the new piece of information. If the data entered is invalid, then an error message is
displayed to the user at the bottom of the display.

Delete Account

new_line=1
define PROCEDURE delete_account(username)
OPEN FILE ‘userinfo.txt’, READ
CREATE FILE ‘new.txt’, WRITE (created temporarily for file transfer, then renamed)
foriinrange 1to (num_of_accounts*4) THEN
if line(i) IN ‘userinfo.txt’ == username THEN
i+=4
else THEN
line(new_line) IN ‘new.txt’ = line(i) IN ‘userinfo.txt’
new_line +=1
DELETE FILE {user_id}.csv’
DELETE FILE ‘userinfo.txt’
RENAME FILE ‘new.txt’ to ‘userinfo.txt’
CLOSE FILE ‘userinfo.txt’

This algorithm re-writes userinfo.txt to include everything in the original file apart from the
information associated with the deleted account, and deletes the users personal .csv file. By

33

doing this, no data has to be stored from deleted accounts (thus reducing the storage space
needed by the app).

Create a hew set of flashcards

if button == ‘new_set’ THEN
layout = SETNAME

if button == ‘confirm_name’ THEN
if num_of_sets == 5 THEN
UPDATE ELEMENT ‘create_error_message’ TO “Max number of sets reached”
else THEN
OPEN FILE ‘{user_id}.csv’, WRITE
set_name = str(USERINPUT)
num_of sets+=1
E[num_of_sets] in ‘{user_id}.csv’' = set_name
D1 in {user_id}.csv' = num_of_sets
CLOSE FILE ‘{user_id}.csv’
PROCEDURE set_names(user_id)
layout = FLASHCARDSET

This algorithm allows the user to enter the name of a new set they wish to create, which is
then written to the users .csv file as long as they have not already reached their 5 set limit.

The buttons on the ‘My Sets’ page are then updated to show the name of this new set.

Choose a set of flashcards

if button == ‘setl’ THEN
set=1
layout = SETMENU
if button == ‘set2’ THEN
set=2
layout = SETMENU
if button == ‘set3’ THEN
set=3
layout = SETMENU
if button == ‘set4’ THEN
set=4
layout = SETMENU
if button == ‘set5’ THEN
set=5
layout = SETMENU

This algorithm changes the layout shown to the user via the press of a button, and updating

the ‘set’ variable to the relevant set so that the program knows which set to search for in the
.csv file.

34

Add flashcards

if button = ‘new_flashcard’ THEN
layout = NEWFLASHCARD

if button = ‘add’ THEN
term = str(USERINPUT)
definition = str(USERINPUT)
num_of flashcards +=1
OPEN([{user_id}.csv] to append) = user_file
write = csv.writer[user_file]
write.addnewrow(term, definition, set)
CLOSE FILE ‘{user_id}.csv’
CLEAR INPUTS ‘term’ AND ‘definition’

This algorithm takes 2 user inputs as strings and stores them in the users .csv file along with
the relevant set number. This is so these flashcards can be read from the file and displayed

on the screen for other features of the app.

Revise flashcards

if button == ‘revise’ THEN
layout = FLASHCARD
flashcard_number =1
OPEN FILE ‘{user_id}.csv’, READ
PROCEDURE next_flashcard(flashcard_number)
CLOSE FILE ‘{user_id}.csV’

define PROCEDURE next_flashcard(flashcard_number)
for flashcard_number in range 1 to (num_of_flashcards) THEN

if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN
term = A[flashcard_number] in ‘{user_id}.csv’
definition = B[flashcard_number] in ‘{user_id}.csv’
UPDATE ELEMENT ‘flashcard_text’ TO term
flashcard_number +=1
break

else THEN
flashcard_number +=1

if button == ‘flip’ THEN
UPDATE ELEMENT ‘flashcard_text’ TO definition

if button == ‘next’ THEN
OPEN FILE ‘{user_id}.csv’, READ
PROCEDURE next_flashcard(flashcard_number)
CLOSE FILE ‘{user_id}.csv’

35

if button == ‘previous’ THEN
flashcard_number -=2
OPEN FILE ‘{user_id}.csv’, READ
for flashcard_number in range 1 to (num_of_flashcards) THEN
if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN
term = A[flashcard_number] in ‘{user_id}.csv’
definition = B[flashcard_number] in ‘{user_id}.csv’
UPDATE ELEMENT ‘flashcard_text’ TO term
flashcard_number -=1
break
else THEN
flashcard_number -=1
CLOSE FILE ‘{user_id}.csv’

This algorithm sequentially searches through the users .csv file to find flashcards with the
relevant set number associated to them, and when one is found, the search is paused and
the flashcard is displayed on screen. The term and definition are stored as variables so that
when the flashcard is ‘flipped’ the definition is shown instead of the term (and vice versa).
When the user decides to move on to the next flashcard, the search is resumed and this
whole process goes on until the algorithm has searched all of the users created flashcards in
the .csv file. The ‘previous’ button works the same way except it searches up the file rather
than down it.

Delete flashcards

if button == ‘delete’ THEN
OPEN FILE ‘{user_id}.csv’, READ + WRITE
position A[flashcard_number] = “"”
position B[flashcard_number] =
position C[flashcard_number] =
PROCEDURE next_flashcard(flashcard_number)
CLOSE FILE ‘{user_id}.csv’

o n

awn

This algorithm simply deletes a flashcard (term, definition, and its set number) from the
users .csv file, and then updates to the next flashcard in the same way as stated in the
previous algorithm.

Quiz

if button == ‘quiz’ THEN
layout = QUIZ
start_time recorded
num_of_questions =0
flashcard_number =1
PROCEDURE update_question()

define PROCEDURE update_question()
random_answers =[]
random_answer_slot =[0,1,2,3]
OPEN FILE ‘{user_id}.csv’, READ
foriin range 1 to num_of_flashcards THEN
if position C[flashcard_number] in ‘{user_id}.csv’ == set THEN

36

term = A[flashcard_number] in ‘{user_id}.csv’
definition = B[flashcard_number] in ‘{user_id}.csv’
APPEND flashcard_number to random_answers
UPDATE ELEMENT ‘question’ TO definition
random_slot = random.randint(0,len(random_answer_slot)-1)
correct_answer = random_answer_slot[random_slot]
UPDATE ELEMENT ‘answer{correct_answer} TO term
REMOVE random_answer_slot[correct_answer]
while len(random_answers) < 4 THEN
random_ans = random.randint(1,num_of_flashcards)
if random_ans NOT IN random_answers THEN
APPEND random_ans TO random_answers
random_slot = random_answer_slot[random.randint(0,len(random_answer_slot)-1)]
UPDATE ELEMENT ‘answer{random_slot} TO B[random_ans} in ‘{user_id}.csv’
REMOVE random_answer_slot[random_slot]
flashcard_number +=1
num_of_questions += 1
END PROCEDURE
else THEN
flashcard_number +=1
end_time recorded
time_taken = start_time — end_time
percentage = (score/num_of_questions) x100
num_of_quizzes += 1
WRITE num_of_quizzes TO D1 in ‘{user_id}.csv’
WRITE time_taken TO F[num_of_quizzes] in ‘{user_id}.csv’
WRITE percentage TO G[num_of_quizzes] in ‘{user_id}.csv’
WRITE set TO H[num_of_quizzes] in ‘{user_id}.csv’
UPDATE ELEMENT ‘SCORE’ TO score
UPDATE ELEMENT ‘TIME’ TO time_taken
layout = QUIZRESULTS
CLOSE FILE “{user_id}.csv’
if percentage > 80 THEN
play ‘ding.mp4’

if button == ‘answer0’ THEN
chosen_answer =0
if chosen_answer == correct_answer THEN
score +=1
PROCEDURE update_question()

if button == ‘answerl’ THEN
chosen_answer =1
if chosen_answer == correct_answer THEN
score +=1
PROCEDURE update_question()

if button == ‘answer2’ THEN
chosen_answer =2
if chosen_answer == correct_answer THEN
score +=1
PROCEDURE update_question()

if button == ‘answer3’ THEN
chosen_answer =3
if chosen_answer == correct_answer THEN
score +=1
PROCEDURE update_question()

This algorithm works in a similar way to the revise feature in the sense that it sequentially
searches through the users .csv file to find the next term and definition for the chosen set,
and then it displays the term/question at the top of the display, and places the correct
definition/answer into one of the 4 multiple choice buttons. The algorithm then fills the other
3 buttons with 3 other randomly chosen definitions/answers from the .csv file. If the correct
answer is chosen (via a button press) by the user, the score variable increments by one, and
whenever any answer is chosen, the display is updated to show the next question and 4
possible answers. This process repeats until the algorithm has gone through all of the

37

flashcards in the users .csv file, at which point a summary screen is shown with the users
final score, percentage and time taken.

Progress Tracker

import matplotlib.pyplot as plt

if button == ‘progress_tracker’ THEN
layout = PROGRESS
OPEN FILE “{user_id}.csv’, READ
UPDATE ELEMENT ‘resultl’ TO “Set [H[num_of_quizzes]] — [G[num_of_quizzes]] in [F[num_of_quizzes]]”
UPDATE ELEMENT ‘result2’ TO “Set [H[num_of_quizzes -1]] — [G[num_of_quizzes -1]] in [F[num_of_quizzes -1]]”
UPDATE ELEMENT ‘result3’ TO “Set [H[num_of_quizzes -2]] — [G[num_of_quizzes -2]] in [F[num_of_quizzes -2]]
UPDATE ELEMENT ‘result4’ TO “Set [H[num_of_quizzes -3]] — [G[num_of_quizzes -3]] in [F[num_of_quizzes -3]]”
UPDATE ELEMENT ‘result5’ TO “Set [H[num_of_quizzes -4]] — [G[num_of_quizzes -4]] in [F[num_of_quizzes -4]]”
x=[1,2,3,4,5]
y = [G[num_of_quizzes], G[num_of_quizzes -1], G[num_of_quizzes -2], G[num_of_quizzes -3], G[num_of_quizzes -4]]
plt.plot(x, y)
plt.xlabel(‘Attempt (most recent to least recent)’)
plt.ylabel(‘Percentage’)
plt.title(‘Percentage Graph’)
UPDATE ELEMENT ‘graph’ TO plt.show()
CLOSE FILE ‘{user_id}.csv’

”

import tweepy
if button == ‘twitter’ THEN
OPEN FILE “{user_id}.csv’, READ
Authenticate consumer_key and consumer_secret_key
Authenticate access_token and secret_access_token
Create API Object
APl.update_status(show 5 most recent percentages in same method as above)
CLOSE FILE ‘{user_id}.csv’

if button == ‘email_reminder’ THEN

try:
sender = revisionapp@gmail.com
recipient = email
subject = “REMINDER TO CONTINUE REVISION!”
message = “Keep up the good work!”
SEND subject WITH message FROM sender TO recipient
except:

UPDATE ELEMENT ‘progress_tracker_error_message’ TO “An error occurred”

This algorithm takes the user to the progress tracker screen. When the button is pressed, the
features of the progress tracker are updated and displayed. 5 raw number results will be
shown on the left along with their respective set number, and on the right there will be a
graph created and displayed of percentage against attempt. There will also be a button
which sends a tweet of the users 5 most recent scores to the applications Twitter page, as
well as a button to send an email reminder to the users email address via the Google API.

Back
Throughout my application, there will be a back button in the bottom corner of the screen
with will simply update the layout to the layout that was previously visible to the user.

Algorithm Summary
All of these algorithms link together and cover all areas and features of my program,
allowing the user to use every feature as easily and effectively as possible, and navigate

38

mailto:revisionapp@gmail.com

between areas of my solution as logically and fluently as possible in a way that will allow the

user to gain a fast understanding of how to use the app.
Therefore, all the algorithms form a complete solution because they correspond to and link

together in the same way as the systems diagram.

39

Usability features

Layout Diagram

I have designed my application to be as simple to understand and use as possible. | made
this decision with my stakeholders in mind — they asked for a simple and quick-to-use app
that would allow them to revise effectively using a wide range of features in as little time as
possible. To allow this, | have reduced the number of layouts | am using to approximately
one layout per feature to reduce the time the user has to spend navigating in between
features and around the app. This also lowers the storage space needed by the program to

40

as small an amount as possible, as storage space will need to be saved for the .txt and .csv
files that will store all of the users data and information.

The only sources of user input in my application will be via buttons and textual inputs,
linking to how the main hardware requirements for my solution are a mouse and keyboard.
This also means that the user can run the application on almost any device, as all devices
nowadays allow the user to press buttons (either via a mouse click or touchscreen) and
input text (either via keyboard hardware or a digital keyboard). The log-in/sign-up features
will require textual inputs via a keyboard so that the user can enter their username,
password etc, and textual inputs will also be required when the user creates flashcards and
updates account details. However, apart from that, most of the user inputs are buttons (as
seen primarily in the start menu and main menu), as this is a quick way of navigating around
the app. | also opted for multiple choice answers involving buttons rather than textual
inputs for the quiz feature, as | felt that again pressing a button to choose your answer is a
lot quicker than having to type an answer in to an input box whilst being no less effective in
terms of revision.

The ‘Exit’ buttons will be red in colour as this makes them stand out and is a common
convention among most apps nowadays, not just revision apps. The error messages will also
be in red text for this reason. Other text around the app, such as the instructions on the
start menu, will be in bold, and will be as large as possible in the window so that the user
does not have to struggle to read the text. The text itself will be as brief and short as
possible, once again to reduce the amount of time the user would have to spend reading it.

Key Variables

Variable Name Data Type | Purpose

username String To store the current users plaintext username. This
may be changed if the user decides to
change/update their username via the ‘Manage
Account’ feature.

password String To store the users hashed password (increased
security). This may be changed if the user decides
to change/update their password via the ‘Manage
Account’ feature.

email String To store the users email address. This may be
changed if the user decides to change/update their
email via the ‘Manage Account’ feature, and it will
also be used as the address that email reminders

are sent to.

user_id Integer This is the users unique user ID, and is used to
identify their own personal .csv file.

num_of sets Integer Stores the number of sets a user has created, and

this value is stored in their own .csv file and
updated whenever the variable changes value. This

41

num_of_accounts

valid_username

new_username

new_password

new_email

set

term

definition

flashcard_number

Integer

Boolean

String

String

String

Integer

String

String

Integer

variable is used to ensure the user does not exceed
their 5 set limit.

Stores the number of accounts on the application,
and it is used to stop the search for a
username/password/email in userinfo.txt
becoming infinite (creates a limit in the for loop)
Used to confirm whether a username is valid when
entered before being written to the .csv file (i.e.
that it has not already been used by another user)
whenever a user creates a new account or updates
their account details.

Stores the new username a user enters into the
relevant input box when updating their account
details, and the contents of this variable are then
written to the .csv file if it is valid.

Stores the new hashed password a user enters into
the relevant input box when updating their
account details, and the contents of this variable
are then written to the .csv file if it is valid.

Stores the new email a user enters into the
relevant input box when updating their account
details, and the contents of this variable are then
written to the .csv file if it is valid.

Stores the integer value of the set that the user is
currently revising from/editing/adding to/taking a
quiz from. This is so that each term and definition
the user adds to a set is stored in the .csv file along
with the set they are created for. This is so that
when the program is reading back from the file, it
can validate which flashcards should be shown to
the user for a particular set by sequentially
searching for that set number in the database, and
when a row with that set number is found, the
corresponding term and definition are allocated to
the term and definition variables (below).

Stores the term of flashcard to be written to the
.csv file or stores the term which has been read
from the .csv file which will be displayed to the
user.

Stores the definition of flashcard to be written to
the .csv file or stores the definition which has been
read from the .csv file which will be displayed to
the user.

Stores the row number from the .csv file of the
term/definition which is being searched to check
whether it is in a particular set.

42

num_of questions

score

random_answers

random_answers_slot

random_slot

correct_answer

random_ans

start_time
end_time
time_taken

percentage
num_of quizzes

Integer

Integer

Integer
array

Integer
array

Integer

Integer

Integer

Time
Time
Time

Integer
Integer

This stores the total number of questions the user
has answered in a quiz.

Stores the number of questions a user has gotten
correct in a quiz. This can then be used along with
the num_of_questions variable to calculate the
percentage.

Stores the row numbers of the correct answer to a
guestion in a quiz along with the other 3 randomly
chosen answers. This is to ensure the same answer
does not appear twice in a multiple choice
guestion, as if the row number of a randomly
chosen answer is already in the array, it is rejected
and another random number is generated.

Stores 4 integers —0,1,2,3 —and each randomly
chosen answer to a question is randomly assigned
one of these numbers (which is then removed from
the array), which determines which of the 4
multiple choice boxes the answer is placed in. This
ensures that correct answers are not always in the
same box, and helps make sure that the quiz is
never repetitive and so properly tests the users
knowledge.

Generates a random integer between 1 the length
of the random_answers_slot array, which is used
as the index position of an integer in the list which
is then used to determine which multiple choice
box an answer will be in.

Holds the integer of the answer box which holds
the correct answer, so that if this answer is chosen,
the users score is incremented by 1.

Holds the row number of a randomly chosen
definition from the users .csv file. The definition on
this row is then used as one of the four multiple
choice question answers.

Records the time a quiz was started at.

Records the time a quiz was completed.

Time taken to complete a quiz (end_time —
start_time).

Holds the percentage a user achieves in a quiz.
The number of quizzes a user has completed is
stored in the users .csv file, and this variable is
used to update this value — if the number of
quizzes a user has completed changes, the original
value is read from the .csv file and stored as this
variable, the variable is incremented by 1, and then
the value the variable holds is then written back to
the .csv file. This is needed for the progress tracker.

43

Used to store the values that will go on the x axis

(quiz attempt number) of the progress tracker

X Integer
array
graph.
y Integer
array

Additional Files

File Name

Used to store the values that will go on the y axis

(percentage) of the progress tracker graph.

Use

File Size

userinfo.txt

A .csv file for each user
named ‘{user_id}.csv’
e.g. user with ID 1 would
have a .csv file named
‘l.csv’

ding.mp3

Stores all of the users’
information for their
accounts (usernames,
hashed passwords, emails,
IDs etc)

Stores all of a users
individual flashcards, sets,
quiz scores and results,
number of
quizzes/flashcards etc

Sound effect for when a
user passes a quiz.

PER USER assuming:

e max 20 character long
username — 20 bytes

e password - fixed 64
bit SHA 256 value

e email — max 30 bytes

e user ID —max 2 bytes

- TOTAL = 116bytes

- 30 USERS (class size) =
around 3500bytes = 3.5KB
PER USER FILE:

e max 5 sets, assuming
each is 20 characters
long — 100 bytes

e number_of flashcards
variable — 2 bytes max

e 3 columns for terms,
definitions and
corresponding set
numbers, assuming 50
flashcards, and each
term/definition being
an average of 20
characters = 3000
bytes

e 3 columns for test
percentages, times
and sets, assuming 10
guiz results are stored
= 60 bytes

TOTAL = 3162 bytes = 3.2KB
47KB (stated in file manager)

44

Iterative development

This section will include test tables for each algorithm previously written to ensure my
solution is robust and effective.

Start Menu — 15 Iteration

Test Test ltem Test Expected Result Justification Actual Result
Number Data
1.1.1 Selection of = Mouse Nothing will happen as = Checking whether
option via click the functionality of the | the buttons appear
‘Sign_up’ button has not been on the screen as
button implemented yet, and intended and are
the SIGNUP layout has = pressable.
not been defined.
1.1.2 Selection of | Mouse Nothing will happen as | Checking whether
option via click the functionality of the | the buttons appear
‘log_in’ button has not been on the screen as
button implemented yet, and intended and are
the LOGIN layout has pressable.
not been defined.
1.1.3 Selection of = Mouse Nothing will happen as | Checking whether
option via click the functionality of the | the buttons appear
‘Exit’ button button has not been on the screen as
implemented yet. intended and are
pressable.
Start Menu — 2" iteration
Test Test Item Test Expected Result Justification Actual Result
Number Data
1.2.1 Selection of Mouse | Layout will be To check whether the
option via click updated to sign-up screen is
‘Sign_up’ ‘SIGNUP’ accessible via a button
button press from the start
menu.
1.2.2 Selection of Mouse | Layout will be To check whether the
option via click updated to ‘LOGIN’ | log-in screen is
‘log_in’ accessible via a button
button press from the start
menu.
1.2.3 Selection of Mouse | App will close as To check whether the
option via click event loop is Exit button functions as
‘Exit’ button broken. intended from the start
menu.
Sign up — 1% iteration
Test Test Item Test Data Expected Justification Actual
Number Result Result
2.1.1 Entering String ‘username123’ | App will allow = Checking whether
username, String ‘password123’ user to enter | the user can enter a
password and | String these strings | string into the
email into ‘bradleymak2003 into the textual input boxes
relevant fields = @gmail.com’ relevant that should appear
VALID DATA input boxes. on screen.

The password

should be
dotted.

2.1.2 Selection of Mouse click Nothing, as To check whether
button to functionality | the button on
confirm of button has | screen appears in
account not been the correct place
details implemented | and allows user

yet. interaction.

Sign up — 2" iteration

Test Test Item Test Data Expected Justification Actual
Number Result Result

221 Entering String ‘username123’ | App will allow = Checking whether
username, String ‘password123’ | user to enter the user can enter
password String ‘password123’ | these strings a string into the
(twice) and String into the textual input boxes
email into ‘bradleymak2003 relevant input | that should appear
relevant @gmail.com’ boxes. The on screen.
fields VALID DATA password

should be
dotted.

2.2.2 Selection of Mouse click Entry fields To check whether
button to will clear and details entered
confirm strings will be into the input
account written to boxes by the user
details ‘userinfo.txt’, are stored to an

but app will external file via a

remain on the | button press so

same screen. they can be
referenced at any
later date.

Sign up — 3" iteration

Test Test Item Test Data Expected Justification Actual
Number Result Result
2.3.1 Entering String ‘username123’ | App will allow = Checking whether
username, String ‘password123’ user to enter | the user can enter a
password and | String ‘password123’ these strings | string into the
email into String into the textual input boxes
relevant fields = ‘bradleymak2003 relevant that should appear
@gmail.com’ input boxes. on screen.
VALID DATA The password
should be
dotted.
2.3.2 Selection of Mouse click Entry fields To check whether
button to will clear and | the confirm account
confirm strings will be | button takes the
account written to user to the main
details ‘userinfo.txt’, | menu once the
and layout details they have
will be entered have been

updated to validated and
MAIN MENU. | stored.

46

Sign up — 4t iteration

Test Test ltem Test Data Expected Justification Actual
Number Result Result

241 Entering String ‘username123’ App will allow Checking
duplicate String ‘password123’ user to enter whether the user
username String ‘password123’ these strings into can enter a
and invalid String the relevant input | string into the
email ‘bradleymak2003@gml| boxes. The textual input

.com’ password should boxes that
INVALID DATA be dotted. should appear
on screen.

2.4.2 Selection of | Mouse click Error message will To check
button to appear at bottom of | \hether the
confirm screen stating validation
account invalid username at algorithm

. first (as this
details detects an
username was used i _ .
in a previous test), invalid email and
so change username | displays the issue
to ‘111’ and try to the user (and
again, now error does not
message should say proceed to the
invalid email and main menu).
layout will remain
the same.
Sign up — 5% iteration

Test Testltem Test Data Expected Justification Actual

Number Result Result

2.5.1 Entering String ‘123’ App will allow | Checking whether

invalid email | String ‘password123’ | user to enter the user can enter

String ‘password’ these strings a string into the
String into the textual input
‘bradleymak2003 relevant input | boxes that should
@gmail.com’ boxes. The appear on screen.
INVALID DATA password

should be

dotted.

2.5.2 Selection of Mouse click Error message | To check whether
button to will appear at the validation
confirm bottom of algorithm detects
account screen stating | aninvalid
details that the user password re-entry

mistyped their | and displays the
password (i.e. | issue to the user
the 2 (and does not
password proceed to the
input boxes do | main menu).
not match).
Sign up — 6t iteration
Test Test ltem Test Data Expected Justification
Number Result

25.1 Missing field | String ‘12345’
String ‘password123’
String ‘password123’
String “’
INVALID DATA
2.5.2 Selection of Mouse click
button to
confirm
account
details

Log in — 1%t iteration
Test Test Item
Number

Test Data

App will allow
user to enter
these strings
into the
relevant input
boxes. The
password
should be
dotted.

Error message
will appear at
bottom of
screen stating
that all fields
need to be
entered (as
email is
missing)

Expected

Result

3.1.1 Entering String App will allow
username ‘username123’ user to enter
and String ‘password123’ = these strings
password VALID DATA into the
into relevant relevant input
fields boxes

3.1.2 Selection of Mouse click Nothing, as
button to functionality of
confirm button has not
account been
details implemented

yet.
Log in — 2" iteration
Test Test Item Test Data Expected
Number Result

3.2.1 Entering String App will allow
username ‘usernamel23’ user to enter
and String these strings into
password ‘password123’ the relevant
into relevant | VALID DATA input boxes
fields

3.2.2 Selection of Mouse click Layout will be
button to updated to
confirm MAINMENU and
account user will be
details

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

To check whether
the validation
algorithm detects
missing inputs, as
all inputs are
required.

Actual
Result

Justification

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.
To check whether
the confirm
button on screen
appears in the
correct place and
allows user
interaction.

Actual
Result

Justification

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

To check whether
the button takes
the user to the main
menu of the app if
their log-in details

48

taken to the are valid and
main menu. correct.
Log in — 3™ iteration
Test Test Item Test Data Expected Justification Actual
Number Result Result
3.3.1 Entering String App will allow Checking
incorrect ‘username123’ user to enter whether the
password String ‘password1’ these strings into = user can enter a
INVALID DATA the relevant string into the
input boxes textual input
boxes that
should appear
on screen.
3.3.2 Selection of Mouse click Error message To check
button to will appear at whether the
confirm bottom of screen | confirm account
account stating invalid button takes the
details password, and user to the main
layout will menu if the
remain the details they
same. enter are
incorrect.
3.3.3 Entering String ‘usernamel’ App will allow Checking
username String ‘password123’ | user to enter whether the
that doesn’t INVALID DATA these strings into = user can enter a
exist the relevant string into the
input boxes textual input
boxes that
should appear
on screen.
334 Selection of Mouse click Error message To check
button to will appear at whether the
confirm bottom of screen | confirm account
account stating that the button takes the
details username user to the main
doesn’t exist. menu if the
details they
enter are
incorrect.

Main Menu — 1%t iteration

Test
Number
4.1.1

Test Item

Selection of
option via
‘new_set’ button

Test
Data

Mouse
click

Expected Result

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the SETNAME layout
has not been defined.

Justification

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

Actual Result

49

4.1.2 Selection of
option via

‘my_sets’ button

4.1.3 Selection of
option via
‘progress_tracker’

button

41.4 Selection of
option via
‘manage_account’

button

4.1.5 Selection of
option via

‘log_out’ button

4.1.6 Selection of
option via ‘Exit’

button

Main Menu — 2" iteration

Test Test Item
Number
42.1 Selection of option
via ‘new_set’
button
4.2.2 Selection of option
via ‘my_sets’ button
423 Selection of option

via

Mouse
click

Mouse
click

Mouse
click

Mouse
click

Mouse
click

Test
Data

Mouse

click

Mouse

click

Mouse

click

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the SETS layout has not
been defined.

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the PROGRESS layout
has not been defined.

Nothing will happen as
the functionality of the
button has not been
implemented yet, and
the ACCOUNT layout
has not been defined.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Expected Result

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.

Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Layout will be
updated to

Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.
Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.
Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.
Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.
Checking whether
the button
appears in the
correct format on
screen and can be
interacted with by
the user.

Justification

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button

Actual Result

50

‘progress_tracker’
button

42.4 Selection of option Mouse
via click
‘manage_account’
button

4.2.5 Selection of option Mouse
via ‘log_out’ button | click

4.2.6 Selection of option Mouse
via ‘Exit’ button click

PROGRESS, so the
user will be taken to
a different screen.

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.

User will be logged
out and taken back
to the start menu
(layout is updated to
STARTMENU)

App will close as

event loop is broken.

User will be
automatically logged
out.

Creating a new set of flashcards — 1%t iteration

Test Test Item Test Data

Number
5.1.1

Entering

name of set
into textual
input boxes

String ‘Data
Structures’
VALID DATA

5.1.2 Selection of Mouse click
button to

create set

with the

given name

Expected
Result

App will allow
user to enter
these strings into
the relevant input
boxes

Nothing will
happen as the
functionality of
the button has
not been
implemented yet.

Creating a new set of flashcards — 2" iteration

Test Test Item Test Data
Number
5.2.1 Entering String ‘Data
name of set Structures’
into textual VALID DATA
input boxes

Expected

Result

App will allow
user to enter
these strings into
the relevant input
boxes

functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the

layout to the
corresponding
option)
Justification Actual
Result

Checking whether the
user can enter a string
into the textual input
boxes that should
appear on screen
(there is no invalid
string for a set name —
it can be anything).

To check whether the
confirm button on
screen appears in the
correct place and
allows user interaction.

Justification Actual Result

Checking whether the
user can enter a string
into the textual input
boxes that should
appear on screen

(there is no invalid
string for a set name —
it can be anything).

5.2.2

Selection of
button to
create set
with the
given name

Mouse click

Name of set will
be written to the
users personal
.csv file, and the
relevant button
on the choose set
layout will be
updated to show
the new set
name.

To check whether the
button correctly
creates a set for the
user with the given
name, stores the name
in the users .csv file,
updates the button
text on the ‘MYSETS’
layout, and updates
the relevant variables
(i.e. num_of_sets).

Test

Number

Test Item

Adding flashcards — 1%t iteration

Test Data

Expected Result

Justification

Actual
Result

button to add
flashcard to
set

happen as the
functionality of the
button has not
been implemented
yet.

‘add’ button
appears correctly
formatted on the
display and can
be interacted
with by the user.

6.1.1 Entering term | String ‘Static’ App will allow user | To check the user
and definition | String ‘Size to enter these can enter
into textual cannot change strings into the characters into
input boxes during runtime’ | relevant input the two textual
VALID DATA boxes input boxes.
6.1.2 Selection of Mouse click Nothing will To check the

Test

Number

Test Item

Adding flashcards — 24 iteration

Test Data

Expected Result

Justification

Actual Result

button to add
flashcard to
set

will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

6.2.1 Entering term | String ‘Static’ App will allow user | To check the user
and definition | String ‘Size to enter these can enter
into textual cannot change strings into the characters into
input boxes during runtime’ | relevant input the two textual
VALID DATA boxes input boxes.
6.2.2 Selection of Mouse click Term and definition | To check the

‘add’ button
writes the term
and definition to
the correct
positions in the
users .csv file
when pressed.

Revise flashcards — 15t iteration

Test

Number
7.1.1

7.1.2

7.1.3

7.1.4

Test Item Test
Data

Flip flashcard =~ Mouse

via button click

press

Viewing the Mouse

next click

flashcard via

a button

press

Viewing the Mouse

previous click

flashcard via

a button

press

Deleting Mouse

flashcard via click

a button

press

Revise flashcards — 2" iteration

Test

Number
7.2.1

7.2.2

7.2.3

7.24

Test
Data

Test Item

Flip flashcard =~ Mouse
via button click
press

Viewing the Mouse
next flashcard | click
via a button

press

Viewing the Mouse
previous click
flashcard via

a button

press

Deleting Mouse
flashcard via click

Expected Result Justification

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

Expected Result

The flashcard will be
flipped (e.g. if term
was on the screen,
definition will now be
on the screen and vice
versa)

The next flashcard read
from the users .csv file
will appear on the
screen.

The previous flashcard
read from the users
.csv file will appear on
the screen.

The flashcard will be
deleted from the users

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

To check whether
the button appears
in the correct
position on screen
and can be
interacted with by
the user.

Justification

To check whether
the correct
corresponding
definition to the
term (or vice versa)
is displayed on
screen when the
button is pressed.
To check whether a
new flashcard is
displayed on screen

from the correct set.

To check whether
the previously
displayed flashcard
is displayed on
screen when the
button is pressed.
To check whether
pressing the button

Actual Result

Actual Result

53

a button
press

.csv file, and the screen
will turn blank as the
procedure to search
for the next flashcard
has not been ran yet.

to remove a
flashcard removes it
from the users .csv
file.

Revise flashcards — 3" iteration

Test Test Item Test Expected Result Justification Actual Result
Number Data

7.3.1 Flip flashcard = Mouse The flashcard will be Checking this feature
via button click flipped (e.g. if term hasn’t been affected
press was on the screen, by the change to

definition will now be deleting flashcards
on the screen and vice | (test 7.3.4).
versa)

7.3.2 Viewing the Mouse The next flashcard read | Checking this feature
next flashcard | click from the users .csv file | hasn’t been affected
via a button will appear on the by the change to
press screen. deleting flashcards

(test 7.3.4).

7.3.3 Viewing the Mouse The previous flashcard = Checking this feature
previous click read from the users hasn’t been affected
flashcard via .csv file will appear on by the change to
a button the screen. deleting flashcards
press (test 7.3.4).

7.3.4 Deleting Mouse The flashcard will be To check whether
flashcard via click deleted from the users | the next flashcard
a button .csv file and the next automatically
press flashcard procedure is appears on screen

then ran to make the when the user
next term appear on deletes a flashcard.
the screen.
Quiz — 1% iteration
Test Test Item Test Data Expected Result Justification Actual Result
Number

8.1.1 Question and 4 Clicking on A space for the To check whether
multiple choice the ‘Quiz’ question should the format of the
answers should button from = appear on screen, quiz feature is
appear on screen | the set with 4 empty correct before

menu. multiple choice implementing the
buttons. Q and A system.

8.1.2 Choosing answer | Mouse click | Nothing will To check whether

via button press.

happen as the
functionality of the
button has not
been implemented
yet.

the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Quiz — 2" jteration

Test

Number

Test Item

Test Data

Expected
Result

Justification

Actual Result

8.2.1 Question and 4
multiple choice
answers should

appear on screen

8.2.2 Choosing answer

via button press.

Quiz — 3" iteration
Test Test Item
Number

Test Data

Clicking on the
‘Quiz’ button
from the set

A question
should appear on
the screen, with

menu. 4 multiple choice
answers in the
form of buttons.

Mouse click Nothing will

happen as the
functionality of
the button has
not been
implemented
yet.

Expected Result

8.3.1 Question and | Clicking on the | A question should
4 multiple ‘Quiz’ button appear on the
choice from the set screen, with 4
answers menu. multiple choice
should answers in the form
appear on of buttons. These
screen answers should be

randomly placed in
the 4 boxes.

8.3.2 Choosing Mouse click Nothing will happen
answer via as the functionality
button press. of the button has not

been implemented
yet.
Quiz — 4t iteration
Test Test Item Test Expected Result
Number Data

8.4.1 Questionand 4 | Clickingon = A question should
multiple choice | the ‘Quiz’ appear on the
answers should | button screen, with 4
appear on from the multiple choice
screen set menu. | answers in the form

of buttons. These
answers should be
randomly placed in
the 4 boxes.

To check whether
the algorithm is
successfully
reading the
question and
corresponding 4
answers from the
correct set from
the users .csv file.
To check whether
the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Justification Actual Result

To check whether
the 4 multiple
choice answers
being displayed
always contain 1
correct answers
and 3 other
random answers
from the correct
set.

To check whether
the buttons
appear in the
correct places on
screen, are a
good size, and
can be interacted
with by the user.

Justification Actual
Result

To check whether

the 4 multiple

choice answers

being displayed

always contain 1
correct answers
and 3 other
random answers
from the correct
set.

8.4.2

8.43

Choosing
answer via
button press.

Completing
Quiz via

multiple button

presses

Mouse
click

A new question
should appear with 4
randomly placed
multiple-choice
answers. This process
will repeat until the
quiz is complete,
when a summary
screen should appear
with no statistics on
it as the score,
percentage and
time_taken variables
have not been
implemented yet.

A summary screen
should appear with
the correct score,
percentage and time
taken. These should
also be written to the
users csv file.

Mouse
click

Progress Tracker — 1%t iteration

Test

Number

9.1.1

9.1.2

9.1.3

9.1.4

Test Item

Raw numbers
representation
of users data

Visual
representation
of users data

(e.g. graph)

Choosing a
function via a
button press
(post to
Twitter)

Choosing a
function via a
button press
(email
reminder)

Test Data Expected Result
Clicking the The users scores on
‘Progress quizzes should

Tracker’ button
from the main

appear on the
screen, with the

menu. corresponding set
name.

Clicking the The graph should

‘Progress appear but with no

Tracker’ button
from the main
menu.

Mouse click

data plotted.

Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Twitter API) has not
been implemented
yet.

Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not

Mouse click

To check that when
the user chooses an
answer, the next
question is
displayed again
with random
multiple choice
answers. This
feature is key to
allowing the quiz to
progress.

To check that after
the user has gone
through all the
questions, the
correct statistics are
displayed on screen
and written in the
correct positions in
the users .csv file.

Actual
Result

Justification

This is to check
that the algorithm
is correctly reading
the users statistics
from their .csv file
and displaying
them in the correct
position on the
display.

This is to check the
graph is positioned
correctly on the
display, with the
correct axis labels.
To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with it.

To check whether
the button is
formatted
correctly on the
display and

56

Progress Tracker — 2" iteration

Test

Number
9.2.1

9.2.2

9.23

9.24

Test Item

Raw numbers
representation
of users data

Visual
representation
of users data

(e.g. graph)

Choosing a
function via a
button press
(post to
Twitter)

Choosing a
function via a
button press
(email
reminder)

Test Data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Mouse click

Mouse click

Progress Tracker — 3™ ijteration

Test

Number

9.3.1

Test Item

Raw numbers
representation
of users data

Test Data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

been implemented
yet.

Expected Result

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

The graph should
appear on the left
with the correct
data plotted.

Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Twitter API) has not
been implemented
yet.

Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not
been implemented
yet.

Expected Result

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

whether the user
can interact with it.

Actual
Result

Justification

This is to check
that the algorithm
is correctly
reading the users
statistics from
their .csv file and
displaying them in
the correct
position on the
display.

This is to check
that the correct
data has been
plotted on the
graph, and that
the datais clear to
see and make
deductions about
the users progress
from.

To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with
it.

To check whether
the button is
formatted
correctly on the
display and
whether the user
can interact with
it.

Actual
Result

Justification

This is to check that
the algorithm is
correctly reading
the users statistics
from their .csv file
and displaying them
in the correct
position on the
display.

57

9.3.2

9.3.3

9.3.4

Visual
representation
of users data
(e.g. graph)

Choosing a
function via a
button press
(post to
Twitter)

Choosing a
function via a
button press
(email
reminder)

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Mouse click

Mouse click

Progress Tracker — 4t iteration

Test

Number
9.4.1

9.4.2

9.43

Test Item

Raw numbers
representation
of users data

Visual
representation
of users data
(e.g. graph)

Choosing a
function via a
button press
(post to
Twitter)

Test Data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Mouse click

The graph should
appear on the left
with the correct
data plotted.

A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

Nothing should
happen when the
button is pressed as
the functionality of
the button (the
Google API) has not
been implemented
yet.

Expected Result

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

The graph should
appear on the left
with the correct
data plotted.

A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

This is to check that
the correct data has
been plotted on the
graph, and that the
data is clear to see
and make
deductions about
the users progress
from.

This is to check that
the algorithm is
tweeting the correct
information when
the button is
pressed.

To check whether
the button is
formatted correctly
on the display and
whether the user
can interact with it.

Justification

This is to check that
the algorithm is
correctly reading
the users statistics
from their .csv file
and displaying them
in the correct
position on the
display.

This is to check that
the correct data has
been plotted on the
graph, and that the
datais clear to see
and make
deductions about
the users progress
from.

This is to check that
the algorithm is
tweeting the correct
information when
the button is
pressed.

Actual
Result

58

9.4.4 Choosing a

function via a
button press

(email
reminder)

Mouse click

Post-development Phase

An email should be
sent to the users
email address with
the correct subject
and message.

This is to check that
an email is
successfully sent to
the users email
address (which is
already stored by
the ‘email’ variable
in the program),
containing the
relevant
information.

Here | will go through my success criteria and outline how | will test the criteria to
check whether they have been met and to test the robustness of my solution.

The stakeholder would like the system to allow them to create an account if they
haven’t already got one.

Test
Number

Attempting
to submit
valid
account
details

10.1.2 Attempting
to submit
invalid
account
details

10.1.3 Attempting
to submit
incorrect
account

details

Test Item Test Data

String
‘usernamel23’
String
‘password123’
String
‘password123’
String
‘bradleymak2003
@gmail.com’
VALID DATA
String
‘username123’
String
‘password123’
String
‘password123’
String ‘123456789’
INVALID DATA
String
‘username123’
String
‘password123’
String ‘password’
String
‘bradleymak2003
@gmail.com’
INVALID DATA

Expected
Result

The users account
will be created,
their details will
be saved to their
.csv file, and they
will be taken to
the main menu.

An error message
will appear at the
bottom of the
screen notifying
the user of the
problem (invalid
email in this
case).

An error message
will appear at the
bottom of the
screen notifying
the user that the
2 passwords they
entered do not
match (i.e. they
mistyped their
password).

Actual
Result

Justification

Ensures the user
can successfully
create an account
using valid
account details

Checks whether
the system detects
when an invalid
email has been
entered (and does
not crash).

Checks whether
the system detects
when the two
password fields do
not match.

The stakeholder would like the system to allow them to log in to their account if they
have already created one.

59

Expected Result

Actual
)

Justification

11.1.1

11.1.2

Test Item Test Data

Entering String

correct ‘username123’

username String

and password = ‘password123’
VALID DATA

Entering String

incorrect ‘username123’

username String

and ‘passwordl’

password. INVALID DATA

App will verify their
account details and
take the user to the
main menu.

An error message
will appear at the
bottom of the
screen alerting the
user to the problem
(most likely an
incorrect password)

Ensures that the
user can log back
into the system at a
different time using
their already
existing log-in
details.

Ensures the app is
secure by checking
whether the system
detects when the
user has entered a
password that is not
associated with the
entered username.

The stakeholder would like the system to have a clear main menu.
The stakeholder would like the system to be user-friendly and easy to understand.

Test

Number

12.1.1

12.1.2

12.1.3

12.14

12.1.5

12.1.6

12.1.7

Test Item Test
Data
Selection of option Mouse
via ‘Sign_up’ button = click
Selection of option Mouse
via ‘log_in’ button click
Selection of option Mouse
via ‘new_set’ button = click
Selection of option Mouse
via ‘my_sets’ button | click
Selection of option Mouse
via click
‘progress_tracker’
button
Selection of option Mouse
via click
‘manage_account’
button
Selection of option Mouse
via ‘log_out’ button click

Expected Result

Layout will be
updated to ‘SIGNUP’

Layout will be
updated to ‘LOGIN’

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.
Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Layout will be
updated to
PROGRESS, so the
user will be taken to
a different screen.

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.
User will be logged
out and taken back
to the start menu

Justification Actual Result

Ensures the user
can choose to
sign up easily via
a button press.
Ensures the user
can choose to log
in easily via a
button press.
Ensures the user
can choose to
create a new set
easily via a
button press.
Ensures the user
can choose to
view their sets
easily via a
button press.
Ensures the user
can choose to
view their
progress easily
via a button
press.

Ensures the user
can choose to
manage their
account easily via
a button press.
Ensures the user
can choose to log

60

(layout is updated to out easily via a

STARTMENU) button press.
12.1.8 Selection of option Mouse App will close as Ensures the user
via ‘Exit’ button click event loop is broken. | can choose to
exit the app
easily via a

button press.

The stakeholder would like the system to allow them to create their own sets of
flashcards.

Test Testltem Test Data Expected Result Justification Actual Result
Number
13.1.1 Entering String ‘Data Name of set will be Ensures the user can
name of set Structures’ | written to the users create a new set of
into textual VALID personal .csv file, and = flashcards under
input boxes DATA the relevant button whatever name they
on the choose set want, and that this
layout will be name is written to
updated to show the the users .csv file
new set name. and the buttons on

the ‘MYSETS’ menu
are updated to
include this new set.

The stakeholder would like the system to allow them to view sets of flashcards they
have already created.

Test Test Item Test Data Expected Result Justification Actual Result
Number
14.1.1 Viewing Clicking the The names of the To ensure that the
names of sets ‘My Sets’ users sets should set names
of flashcards button from be displayed on the = displayed are
the user has the main buttons on the correct and up-to-
already menu. MYSETS display. date.
created

The stakeholder would like the system to allow them to revise sets of flashcards they
have created.

Test Test Item Expected Result Justification Actual Result
Number
15.1.1 Flip flashcard = Mouse The flashcard will be Ensures that the user
via button click flipped (e.g. if term can ‘flip’ flashcards
press was on the screen, (i.e. alternate

definition will now be between the term and
on the screen and vice definition) via a

versa) button press.

15.1.2 Viewing the Mouse The next flashcard read = Ensures that the next
next flashcard | click from the users .csv file | flashcard displayed is
via a button will appear on the from the correct set
press screen. and is not repeated.

15.1.3 Viewing the Mouse | The previous flashcard Ensures that when tis
previous click read from the users button is pressed, the
flashcard via previous flashcard is

61

a button
press

.csv file will appear on
the screen.

suc

cessfully displayed

to the user.

The stakeholder would like the system to allow them to edit already existing sets of

flashcards

Test

Number

16.1.1

16.1.2

16.1.3

Test Item

Submitting a
term and
definition to
be created as
a flashcard via
2 textual
inputs and a
button press.

Submitting a
term and
definition to
be created as
a flashcard via
2 textual
inputs and a
button press.

Deleting
flashcard via a
button press

Test Data

String ‘Static’
String ‘Size
cannot
change during
runtime’
VALID DATA

String ‘12*4’
String ‘48’
VALID DATA

Mouse click

Expected Result

will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.
Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.
The flashcard will
be deleted from
the users .csv file
and the next
flashcard
procedure is then
ran to make the
next term appear
on the screen.

Justification Actual Result

Term and definition

Ensures that any
term/definition can
be entered and
written to the .csv
file without an
error occurring.

Ensures that any
term/definition can
be entered and
written to the .csv
file without an
error occurring.

Ensures that the
user can
successfully delete
a flashcard from a
set (by checking
whether it has
been removed
from the users .csv
file).

The stakeholder would like the system to allow them to test their knowledge on a

Test

Number
17.1.1

particular set of flashcards.

Test Item Test
Data
Question and 4 Clicking
multiple choice the ‘Quiz’
answers should button
appear on screen. from the
set menu.
User should be
able to choose an Mouse
answer. click.

Expected Result

A question should
appear on the screen,
with 4 multiple choice
answers in the form of
buttons. When an
answer is chosen, a
new question should
appear with 4
randomly placed
multiple-choice
answers. This process

Actual
RE

Justification

To ensure that
the quiz feature
works correctly
regardless of
which set the
user chooses,
and that the
questions and
answers are
random and not
repeated.

62

17.1.2 Quiz Summary

Visual
output
when quiz
is
complete
via
multiple
button
presses.

will repeat until the
quiz is complete, when
a summary screen
should appear with no
statistics on it as the
score, percentage and
time_taken variables
have not been
implemented yet.

A summary screen
should appear with the
correct score,
percentage and time
taken. These should
also be written to the
users csv file.

To ensure that
the quiz ends
after all of the
guestions have
been answered.

To ensure that
the correct
statistics are
displayed on
screen when
the quiz ends.

The stakeholder would like the system to keep track of their progress and show it in

a clear and concise way.

The stakeholder would like the system to allow them to share their results and

progress on social media.

The stakeholder would like the system to send them email notifications when

prompted to.

Test Test Item
Number
18.1.1 Raw numbers
representation of
users data
18.1.2 Visual
representation of
users data (e.g.
graph)
18.1.3 Choosing a

function via a
button press
(post to Twitter)

Test Data

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Clicking the
‘Progress
Tracker’
button from
the main
menu.

Mouse click

Expected Result

The users scores on
quizzes should
appear on the
screen, with the
corresponding set
name.

The graph should
appear on the left
with the correct
data plotted.

A tweet should be
sent out containing
the users
percentage, time
taken and set name
in a logical
sentence.

Actual
Result

Justification

To ensure that
the statistics
displayed on
screen are
correct.

To ensure that
the graph is
plotted correctly
and is easy for the
user to see and
deduce their
progress from.

To ensure that
the user can
successfully tweet
their progress
onto the
applications
Twitter page via a
button press.

63

18.1.4

Choosing a
function via a
button press
(email reminder)

Mouse click

An email should be
sent to the users
email address with
the correct subject
and message.

To ensure that
the user can
successfully send
themselves an
email reminder to
their email
address stored by
the app.

64

Development Section

This section will cover the development of my solution including testing throughout, any
problems encountered and how they were solved, and screenshots/videos of my solution in
action. | will also be asking my stakeholders for feedback and evaluating my success criteria

throughout.

Initialisation
I have first started by importing the PySimpleGUI library in Python and defining the colour
theme for my app:

import PySimpleGUI as sg

#imports PySimpleGUI
sg.theme('DarkBlue')

#sets a colour theme for the program

I have chosen this colour theme after looking online at all of the available colour schemes in
PySimpleGUI, and | think it allows for a good contrast between the background and the
buttons allowing for the app to look sharper. | chose PySimpleGUI as it allows for simple and
easily changeable layout designs and allows for a clear structure in my solution via event
checking in the event loop.

@ rs.

Start Menu
| have next created the start menu layout called ‘StartScreen’ which should consist of 3
centralised buttons for each of the functions available at this point.

StartScreen = [[sg.Text('Welcome to the revision app! Please log in, or create a new account to continue.', justification='center', size=(33, 3))I],
Creates a centred title for the layout which will appear at the ftop of the screen
[sg.Button('Log In', key='LOGIN', border_width=5, size=(13, 3), justification="'center')],
[sg.Button('Create an account', key='SIGNUP', border_width=5, size=(13, 3), justification='center')],
[sq.Button("EXIT', key="EXIT', border_width=5, size=(13, 3), button_color=('white', 'red'), justification='center'}]]

65

| also defined the first column (I will be using columns in my solution to allow the program
to ‘switch’ between layout by making the relevant columns visible/invisible) and a window
for the GUI to be displayed on.

window = sg.Window('Revision App', layout)

" 1 2 4 L I ; J

#Lrea

reates a winaow with a given name jyor The Layout To be aisplayved on whilst che program 1S runnin
- J I / -

layout = [[sg.Column{StartScreen, key="-COL1-', visible=True)]]

#Defines the initial layout of the program as StartScreen.

| next created the event loop which allows the program to run so | can check the layout as
part of my first iteration of testing:

while True: # event loop fo allow the pr
event, values = window.read()
print(event, wvalues)

if event == None:
break

However, when | run this code | receive an error shown here:

Traceback (most recent call last):
File "C:/Users/bradl/PycharmProjects/Projects/MEA - Revision App.py", line 8, in <module=
[sg.Button('Log In', key='LOGIN', border_width=5, size=(13, 3), justification='center')],
TypeError: __init__() got an unexpected keyword argument 'justification’

This is due to the fact that there is no ‘center’ justification for buttons, so | tried putting the
justification in the column element instead of defining it for each individual button/text
element, and whilst | now got no error, the buttons and text were not actually centralised.

layout = [[sg.Column(StartScreen, key='-COL1-', visible=True, justification='center')]]

2 Revision App - X

As you can see from the screenshot on the left,
the buttons all look correct (i.e. correct size,
colour and text) but are not appearing in the
correct positions on the display (central).

Welcome to the revision app! Please log in, or
create a new account to continue

Create an account

To solve this problem | have started by giving the window a fixed size, meaning that it will
appear the same on all devices:

66

window = sg.Window('Revision App', layovut, size=(500,400))

| have next used empty text elements to centralise the buttons on the display, which
because of the fixed display size, will mean that the buttons always appear central on all
devices, allowing for convenient, on the go usage of the app on any device which was a
feature requested by my stakeholders. The ‘center’ justification worked for the text
element.

StartScreen = [[sg.Text('Welcome to the revision app! Please log in, or create a new account to continve.', size=(57, 3), justification='center')],

[sg.Text("

[sg.Text("

entralised buttons on different 'layer of the s text t stat

"), sg.Button('Log In', key='LOGIN', border_width=5, size=(17, 4))],
"), sg.Button('Create an account', key='SIGNUP', border_width=5, size=(17, 4))1,
"), sg.Button('EXIT', key="EXIT', border_width=5, size=(17, 4), button_color=('white', 'red

)11

The result is a layout with the buttons all correctly formatted and positioned in order to
make the display as user friendly and easy to use as possible in line with my success criteria |
set out in the analysis section.

2 Revision App

Welcome to the revision app! Please log in, or create a new account to

continue

Create an account

| can now carry out the first iteration of my testing for the start menu (clip shown in testing

evidence powerpoint):

Test

Test Item

Number
1.1.1

Selection of
option via
‘Sign_up’
button

Selection of
option via

Expected Result Justification Actual Result

Mouse click = Nothing will happen as Checking Buttons appears
the functionality of the whether the correctly on the
button has not been buttons appear interface but is not
implemented yet, and the = on the screen as functioning as of yet.
SIGNUP layout has not intended and
been defined. are pressable.

Mouse click | Nothing will happen as Checking Buttons appears
the functionality of the whether the correctly on the
button has not been buttons appear

67

‘log_in’
button

Selection of Mouse click

option via
‘Exit’ button

Start Screen — Review 1
Success Criteria Review

implemented yet, and the

LOGIN layout has not
been defined.

Nothing will happen as
the functionality of the
button has not been
implemented yet.

on the screen as
intended and
are pressable.
Checking
whether the
buttons appear
on the screen as
intended and
are pressable.

interface but is not

functioning as of yet.

Buttons appears
correctly on the
interface but is not

functioning as of yet.

The development so far shows | am focusing on the success criteria of offering a user
friendly design (success criteria 10 in analysis section) and allowing my app to be used and
appear the same on a wide range of devices, allowing for convenience as requested by my

stakeholders.

Stakeholder feedback

| asked one of my stakeholders, Vivek, for his opinions on the layout and whether he

thought it was easy to use and understand. He said “The layout is good and the functionality

is clear but it would be nice if the text was a bit bigger/bolder.”
After hearing this feedback, | have increased the font size of both the text and button

elements (along with some adjustment of the size of the elements in order to keep them
centralised) and made the text at the top of the screen bold in order to make it stand out

and easier to read.

StartScreen = [[sg.Text('Welcome to the revision app! Please log in, or create a new account to continve.', fTont=("Helvetica", 13, "bold"), size=(45, 3), justification='center')],
[sg.Text(" "), sg.Button('Log In', font=("Helvetica", 13), key='LOGIN', border_width=5, size=(14, 4))],
[sg.Text(" "), sg.Button('Create an account', font=("Helvetica", 13), key="SIGNUP', border_width=5, size=(16, 4))],

[sg.Text("

"), sg.Button("EXIT', font=("Helvetica", 13), key="EXIT', border_width=5, size=(16, 4), button_color=('white',

‘red'))]]

? Revision App

Welcome to the revision app! Please log in, or create a

new account to continue.

Create an account

This is how the layout now looks.

68

| have quickly defined the sign up and log in layouts to allow me to test the functionality of
my buttons. These are not the final layouts, but they are sufficient to allow me to carry out
iteration 2 of the start menu testing.:

Login = [[sg.Text('Log In')]]
[[sq. Text(Sign Up’]]]

=]

TR T |

oo T n v T
m L r" LiTe's LITE LUy LT anda SLUTT R L

5110
LLLFEFEF L

]
~t
[
=1
=]
i
et
~t
~t
]
3
Y
~t
[
£+
~t
[
=1

o oW Lite JUITT

| have also added the two new layouts as columns which, as stated earlier, can be made
visible/invisible as required to give the impression of the program switching interfaces.

+he 'rn A an he m ricihl invisible to the user as r G o g e S
Defines the 'column' layou hich can be made visible/invisible t he user as reguired to give he impression of tf prograr witching layo

layout = [[sg. Column(StartScreen kev— -COL1-', wvisible= True] sg Culumn(Lugln visible= False key— —CULZ '), sg. Culumn(51gnup u151ble False, key— -coL3-')11]

| have started by implementing the functionality of the ‘Exit’ button by adding the following
piece of code, which tells the program that if the button with the ID ‘Exit’ is pressed (or if
the window is closed) the event loop should break and thus the app will close.

if event in (None, '"EXIT'):
break

e T |n w3 el o - - ~T mcord A | e b
H I the window 1is closed or the exit button is pressed, the event Loop |

| ha awon Tann hranlke ono ha nNraoram cFane PURnG RO
[N T [| 7 Dredaxs ana The program STops unning

| then tested the functionality of the button (test 1.2.3 in testing evidence powerpoint) and
it worked as intended with no issues.

Next, | implemented the functionality of the signup button. To do this, when the button is
pressed, the Start Screen layout is made invisible and simultaneously the Sign Up layout is
made visible to the user. This gives the impression of the program switching layouts when in
reality all of the layouts are there, some are just invisible and so only the visible layout is
shown on the screen to the user.

if event == 'SIGNUP":
window[f'-COL1-'].update(visible=False)
w1ndow[f' coL3-']. update(v151nle True)

iy Ir o I.— .— " I P I.— o i Crmoan! T P i Tatal= Tnwvicihl o e TaTsl h o
If the user presses the sign vp button, the 'StartScreen' layout is made invisible and the

After coding this, | tested the functionality of the button (test 1.2.1 in testing evidence
powerpoint) and the test was successful with no issues — the correct layout was displayed
upon pressing the button.

Finally, | implemented the functionality of the login button. This works in an identical way to
the signup button, except the layout which is made visible is the LOGIN layout rather than
the SIGNUP layout.

if event == 'LOGIN':
window[f'-COL1-'].update(visible=False)
window[f'-coL2-"1]. update(v151nle Truel

s he user or he log in b . he 'StartScreen
If the uvser presses the log in button, the 'StartScreen

=]
3
1
]
3
]
+
5
]
4
]
!
i
=]
d

Again, | tested the functionality of the login button (test 1.2.2 in testing evidence
powerpoint) and the test was successful with no issues — the correct layout was displayed
on screen to the user.

Test Test Item Test Expected Result Justification Actual Result
Number Data

69

1.21 Selection of Mouse Layout will be To check whether the The correct layout

option via click updated to ‘SIGNUP’ sign-up screen is (‘SIGNUP’) was
‘Sign_up’ accessible via a button displayed on
button press from the start menu. i

1.2.2 Selection of Mouse | Layout will be To check whether the log- | The correct layout
option via click updated to ‘LOGIN’ in screen is accessibleviaa | (‘LOGIN’) was
‘log_in’ button button press from the displayed on

start menu. screen.

1.2.3 Selection of Mouse | App will close as To check whether the Exit | App closes as
option via ‘Exit” | click event loop is broken. button functions as event loop is
button intended from the start broken.

menu.

Start Screen — Review 2

Success Criteria

| am now partway through success criteria 1 and 2 about allowing the user to log in/sign up.
Creating the functional buttons which allow the user to access the page to log in/sign up is
part of this success criteria and thus whilst success criteria 1 and 2 are not fully complete
yet, | am now partway there.

Sign up — Stage 1

| have next decided to develop the sign-up feature of my app, as this feature will be
required before the log in feature can be tested. It is also the first feature a user will come
across when they start using the app (as they will first need to create an account).

Firstly, | need to create the proper SIGNUP layout rather than the test layout | used for the
previous iteration of tests. This is the code | have written for the SIGNUP layout after some
minor changes to the size of elements (via trial and error) to ensure they were properly
positioned:

Login = [[sg.Text('Log In')]]

Signup = [[sg.Text('Please enter the username and password you would like for your new account below:', font=("Helvetica", 13,
[sg.InputText(default_text='Username', key='newusername', size=(145,
[sg.InputText(default_text='Password', key='newpassword', size=(145
[sg.InputText(default_text='Email Address', key='newemail', size=(145,

[sg.Button('BACK', key='BACK', bufton_color:('red', 'white')), sg.Text('', size=(16,2)), sg.Button('Submit', key="NewAccount',6)]]

"bold"), justification='center', size=(45,3))1,

70

I ran the app and when | clicked on the Signup button, this was the display which appeared:

After my previous conversation with one of my stakeholders, Vivek, | decided to make the
block of text at the top of the screen large and bold to make it easy to read.

The input boxes are sufficiently large and the submit/back buttons are properly positioned
and coloured as | intended.

2 Revision App — x

Please enter the username and password you would like
for your new account below:

Usermame

Pas

Email

Sign Up — Review 1

Stakeholder feedback

| sent this prototype to one of my stakeholders, Marcus, to try out for his feedback on the
design of the SIGNUP layout. He said “I like the text at the top, I'd prefer the input boxes to
appear empty so | don’t have to clear the text from them before | type something and have
the purpose of each input box as text to the left of it. It'd also be better if the buttons were
a bit bigger. Other than that | like it”.

| followed up on Marcus’ request for the 2 Revision App — X
input boxes to be made larger, and |]

. L. Please enter the username and password you would like
increased their size so that the layout for your new account below:

now appears like this:

Username

Pa

Signup = [Text('Please enter the username and password you would like for your new account below:', font=("Helvetica", 13, "bold"), justification='center', size=(45,3))],

qg.

[s

[sg.InputText(default_text='Username', key='newusername', size=(
[sg.InputText(default_text='Password', key='newpassword', size=(145,2))],
[sg.InputText(default_text="Email Address',6 key='newemail®',6 size=(145,2))1,
[s

g.Button('BACK', font=("Helvetica", 15), key='BACK', button_color=('red', 'white')), sg.Text('', size=(12,2)), sg.Button('Submit', key='NewAccount', font=("Helvetica", 15))]]

71

Marcus also requested that the input boxes had the text outside of the box rather than
inside so that he didn’t have to clear the text every time he wanted to enter his details. |
contacted Sam and Vivek about this issue too as | was interested to hear their opinions on it.
Sam wasn’t overly bothered but Vivek also said he’d prefer the text outside the input box
rather than inside for the same reason (to allow for quicker and easier account creation).
Therefore, | have decided that | am going to change this prototype in line with the feedback

from my stakeholders.

Firstly, | have removed the default text 2 Revision App

from each input text element, so they Please enter the username and password you would like
. for your new account below:

now just appear blank when the program

is ran as shown here:

signup = [[sg.Text('Please enter the username and password you would like for your new account below:', Tont=("Helvetica", 13, "bold"), justification='center', size=(45,3))]
[sg.InputText(key='newusername', size=(145,2
[sg.InputText(key="newpassword",
[sg.InputText(key='newemail’, si

[sg.Button('BACK', font=("Helvetica", 15), key='BACK', button_color=('red’, 'white')), sg.Text('®', size=(12,2)), sg.Button('Submit', key='NewAccount’, font=("Helvetica", 15))]]

| have next added a text element before each input box, each displaying the required field
to be entered in each box:

Login = [[sg.Text('Log In')]]
Signup = [[sg.Text('Please enter the username and password you would like for your new account below:', font=("Helvetica", 13, "bold"), justification='center', size=(45,3))],

g.Text("Username"), sg.InputText(key='newusername', size=(145,
g.Text("Password"), sg.InputText(key='newpassword', size=(145,
g.Text("Email Addresﬂ”), sg.InputText(key="newemail', size=(145,

s key='BACK"', button_color=('red', 'white')), sg.Text('', size=(12,2)), sg.Button('Submit', key='NewAccount', font=("Helvetica", 15))1]

—m——
o W o

.Button('BACK', funt:(”HelvetiEa

@8

.. ? Revision App — X
The result was this interface when the

program was ran: Please enter the username and password you would like

for your new account below:

Usermname

Password

Email Address

72

| decided to increase the text size in order to make it easier to read (in line with an earlier
request from my stakeholders) and aligned the input boxes by setting each text element to
a given size:

Signup = [[sg.Text(Please enter the username and passw0|d you would llke f0| _your new account below

. font & Heluetlca 13, "pold"), Justlflcatlon ‘center', size=(45,3))1,

size= (i&c 23]] o
size=(100,2))1,
1, size= (1mm,2]]],

fsg.Text(Uselname ', size= (12 1), font (Heluetlca 13]] sg. InpUTText(key newusername'
[sg.Text("Password:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key= newpasswold
[sg.Text("Email Aﬂﬂless ', size= (12 1), font=("HelvEtica . 13]] sg InputText(key newe

[sg.Button('BACK', ont (" Helvetlca

', whlte)J 59. ext(. size=(12,2)), sg.EuTTon(‘Submit' font= (Heluetlca . 1511

key= MewAccount

2 Revision App - X

The result is an interface which looks clean,
simple and effective and has my stakeholders
requests in mind:

Please enter the username and password you would like
for your new account below:

Username
Password:
Email Address:

Now that the design of the SIGNUP interface has been finalised in line with my stakeholders
requests, | can begin the first iteration of testing of this prototype.

Test Test Item Test Data Expected Justification
Result

Actual Result

Number

2.1.1 Entering String ‘username123’ | App will allow Checking whether | Program allows
username, String ‘password123’ user to enter the user can enter | yser to enter any
password and String these strings into a string into the data type into
email |ntq ’bradle:ymak2003 the relevant input | textual input the input boxes
relevant fields @gmail.com’ boxes. The boxes that should .

VALID DATA password should appear on screen. il
be dotted. keyboard.
However, the
password was
not dotted.

2.1.2 Selection of Mouse click Nothing, as To check whether | Nothing happens
button to functionality of the button on when the submit
confirm button has not screen appears in (or back) button
account details been the correct place

implemented yet.

and allows user

are pressed as
the functionality

interaction.
of these buttons

has not been
implemented
yet.

Testing evidence for tests 2.1.1 and 2.1.2 can be found in the testing evidence powerpoint.

However, whilst testing this prototype, | noticed that the password is not dotted whilst it is
being entered. This puts the user at risk of shouldering (where someone steals their
password by looking at it whilst it is being entered) as the password is not dotted (hidden)
as it is being entered.

73

| did a bit of research about how to do this as is it something | have not done before, and |
found the following website: https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-
mask-user-input-in-PySimpleGUI. It turns out it is quite simple and just requires the
password character to be defined within the element (highlighted):

"bold"),]ustlflcatlon ‘center', size=(45,3))1,

signup = [[sg. Text(Please enter the username and password you would like f0| your new account below . font= ("Helvetica", 13
size= (1CC 2)]]

size= (12 1), font (Heluetlca 13]] 9. InputText(kev- newusername"'
password_char="
1 , size=(100,2))1,

[sg Text(Uselname:
[sg.Text("Passwor

[sg Text(Emall A

size=(12,1), fTont=("Helvetica", 13)), sg.InputText(key="' newpasswold %', size=(100,2))],
", size= (12 1), font=(" Helvetlca 13)] sg InuutText(Rev newem.

. kev BACK q. Text(" sg Buttnn(Submlt

[sg Buttnn(BACK fon B size=(12,2]] font=(" Helvetlca

huttun_cu key= NewAccount

Now when a password is entered, the
password appears as asterisks rather than
the actual characters, making my program
much more secure:

Testing evidence of this can be found in the
testing evidence powerpoint (test 2.1.1 re-
run).

Test Item Test Data

? Revision App

- X

Please enter the username and password you would like

for your new account below:

Username
Password:
Email Address:

Expected
Result

Justification

Actual Result

2.1.1 Entering String ‘username123’
username, String ‘password123’
password and String
email into ‘bradleymak2003
relevant fields @gmail.com’

VALID DATA

2.1.2 Selection of Mouse click
button to
confirm

account details

Success Criteria Review

App will allow
user to enter
these strings into
the relevant input
boxes. The
password should
be dotted.

Nothing, as
functionality of
button has not
been
implemented yet.

Checking whether
the user can enter
a string into the
textual input
boxes that should
appear on screen.

To check whether
the button on
screen appears in
the correct place
and allows user
interaction.

Program allows
user to enter any
data type into
the input boxes
via the
keyboard. The
password is now
hidden as it is
entered.

Nothing happens
when the submit
(or back) button
are pressed as
the functionality
of these buttons
has not been
implemented
yet.

| am working towards success criteria 1, but | have not fully met it yet. The functionality of

the submit button needs to be coded before this criteria has been fully met.

| have next added another textual user input field for password re-entry. The program will
check whether the 2 passwords the user has entered are the same and if they are (and there

74

https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-mask-user-input-in-PySimpleGUI
https://python-forum.io/Thread-PyGUI-Hi-All-how-to-hide-mask-user-input-in-PySimpleGUI

are no other invalid details entered) their account will be successfully created. This will be
implemented later.

This is the code | added (highlighted) to create the extra textual input box for the user to re-
enter their desired password:

Signup = [[sg.Text('Please enter the username and password you would like for your new account below:', Tont=("Helvetica", 13, "bold"), justification='center', size=(45,3))1,

[sg.Text("Username:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newusername',6 size=(188,2))],
[sg.Text("Password:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newpassword', password_char='=#', size=(100,2))],
[sg.Text("Re-enter Password:", size=(12,2), font=("Helvetica", 13)), sg.InputText(key='password_re-entry',6 password_char='%', size=(100,2))],
[sg.Text("Email Address:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key="newemail', size=(100,2))1,

[sg.Button('BACK', font=("Helvetica", 15), key='BACK', button_color=('red', 'white')), sg.Text(]', size=(12,2)), sg.Button('Submit', key='NewAccount',

font=("Helvetica", 15))1]

The result was the SIGNUP interface now appearing like this:

2 Revision App - X

Please enter the username and password you would like
for your new account below:

Username
Password:

Re-enter
Password:

Email Address:

Sign Up — Stage 2
| have next created the file ‘userinfo.txt’ and placed it in the correct
directory so it can be referred to in my program.

= userinfo.bct

| am going to start by creating the functionality of the back button. | have first changed the
key of the back button on the SIGNUP layout as there will be many back buttons throughout
my program and each will need their own unique key as they will all update the layout in
different ways.

Signup = [[sg.Text('Please enter the username and password you would like for your new account below:', font=("Helvetica", 13, "bold"), justification='center', size=(45,3))],

[sg.Text("Username: size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newusername', size=(100,2))],

[sg.Text("Password:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newpassword',6 password_char='%', size=(100,2))],
[sg.Text("Re-enter Password:", size=(12,2), font=("Helvetica", 13)), sg.InputText(key='password_re-entry', password_char='%', size=(108,2))],
[sg.Text("Email Address:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newemail',6 size=(100,2))1,

[sg.Button('BACK', font=("Helvetica", 15), key="BACK1', button_color=('red', 'white')), sg.Textt", size=(12,2)), sg.Button('Submit', key='NewAccount', Tont=("Helvetica", 15))]]

| then wrote the following piece of code in the event loop which updates the layout when
the back button is pressed (by making the ‘Signup’ layout visible and the ‘StartScreen’ layout
visible):

if event == 'BACK1':
window[f'-COL3-'].update(visible=False)
window[f'-coL1-'].update(visible=True)

75

The back button now works as intended. This is not included as part of my iterative testing
however as it is a simple feature that will be repeated multiple times throughout the
program so | didn’t think there was much point testing it all the time.

| will next implement the functionality of the submit button.

| have started by writing the following code which takes the users inputs and writes them to
the userinfo.txt file. The program does not yet validate the inputs or check the password re-
entry.

if event == "MNewAccount':

F

—h =

username
password
email

values['newusername']
values['newpassword"]
values['newemail']

open('userinfo.txt', 'a+')

.write(usérname]
.write(password)
write(email)

.close()

The file is opened to append (rather than write) so that nothing is overwritten and errors
are avoided.
| tested my program using the inputs stated in test 2.2.1:

? Revision App

Please enter the username and password you would like
for your new account below:

Username
Password:

Re-enter
Password:

Email Address:

bradley

And the following was written to ‘userinfo.txt’:

| *userinfo - Notepad
File Edit Format View Help
usernamel23passwordl23bradleymak2ee3@gmail.com

76

The issue here is that all of the inputs are being written one after another on the same line,
which is an issue as my program needs to be able to read information from the file line by
line.

To attempt to fix the issue, | used string manipulation to add a line break to every user input
before it is written to the file.

if event == 'NewAccount':

username = values['newusername']
password = values['newpassword']
email = values['newemail’]

f = open('uvserinfo.txt', 'a+')
f.write(username + "\n")
f.write(password + "\n")
f.write(email + "\n")

t tent f the 3 variables declared earlier to the file. The "\n" ensures all info is written on seperate lines

f.oloseO)
I manually cleared the text file and then re-ran the program with the same inputs and the
result was this:
3
File Edit Format View Help
usernamel23
passwordl23

bradleymak2ee3@gmail.com

To test that it worked after more than one submission, | pressed the submit button again
and the information entered was again written correctly to the file on separate lines as
intended:

| userinfo - Notepad

File Edit Format View Help
username123

passwordl23
bradleymak2e@3@gmail.com
usernamel23

password123
bradleymak20@3@gmail.com

| had originally planned for each user to have their own unique user ID (which would just be
an integer), however since every user has a unique username (which will be checked when
they create their account), there is not really much need for the user ID. Therefore, | am not
going to include it as it will just take more processing time to produce a unique user ID for
each user and will take up more storage space. | am just going to use the users username as
their unique identifier instead. This will not change the view of the app from the users end,
it just makes the implementation simpler and more space and time efficient (hence it is an
example of abstraction being used in my development).

In the userinfo.txt file, users’ information will now be stored in blocks of 3 rather than 4 like
originally planned (as | have reduced the amount of information that needs to be stored for
each user).

Now that the program is correctly storing all of the entered information, the password

needs to be hashed before it is stored in order to again increase the security of my app and
avoid any serious data breaches.

77

First, | imported hashlib: | import hashlib

| then hashed the two

vsername = values['newusername"’]

password = hashlib.sha256(values['newpassword'])
password_validation = hashlib.sha256(values['password_re-entry'])
email = values['newemail"]

password entries using the SHA-256 hashing algorithm:
Then, when | ran the program with the inputs in test 2.2.1, | received the following error:

TypeError: Unicode-objects must be encoded before hashing

| had a look online as this is something | do not have experience coding before, and | found
the following website: https://stackoverflow.com/questions/7585307/how-to-correct-
typeerror-unicode-objects-must-be-encoded-before-hashing.

It explained that it has to be encoded into the 8 bit Unicode format before being hashed
because the hashing algorithm uses Unicode to produce the hash value (as mathematical
operations can be performed on Unicode).

Using this advice, | updated my code to now look like this:

username = values['newusername']
password = hashlib.sha256(str(values['newpassword']).encode('vtf-8')).hexdigest()

password_validation = hashlib.sha25&(str(values['password_re-entry']).encode('vtf-8')).hexdigest()

email = values['newemail']

The passwords the user entered have both been ran through the SHA-256 hashing algorithm
to produce a fixed length hash value specific to that password. It is only the hash value
which is stored in the file rather than the actual password which makes my app much more
secure because even if there was a data breach, the hashed values cannot be reversed back
into their original form using the hashing algorithm. The passwords have then been
converted into hexadecimal to shorten them and thus reduce the amount of storage space
needed.

| then ran the program again with the inputs in test 2.2.1, and the result was the following
being written to the file ‘userinfo.txt’:

_'| userinfo - Notepad —

File Edit Format View Help

bsernamel23
ef92b778bafe771e89245b8%echc@8a44a4e166C066599118811383d4473e94f
bradleymak2@e3@gmail.com

Therefore, the user inputs are now successfully being written to ‘userinfo.txt’ in the correct
form.

Once the user has entered their details, the input fields need to be cleared ready for the

next user (as it would be insecure to leave the input fields filled with the previous users log
in details).

78

https://stackoverflow.com/questions/7585307/how-to-correct-typeerror-unicode-objects-must-be-encoded-before-hashing
https://stackoverflow.com/questions/7585307/how-to-correct-typeerror-unicode-objects-must-be-encoded-before-hashing

To do this, | have used each of the input fields IDs to locate them and update their contents
to contain nothing (so that they appear blank to the next user that wishes to log in on the
same device):

window.FindElement('newusername').update('")
window.FindElement('newpassword').update('"')
window.FindElement('password_re-entry').update("')

window.FindElement('newemail').vupdate('")

T amgme anqrh aFf Fho + Fialde kR nadntinag Fhaim rantante 0 nnthEnn
Liedrs edcn d rine ut 1edlds oYy uvupaating Thneir cantents Tao natThn

| will now test this feature to check whether it is working (testing evidence for tests 2.2.1
and 2.2.2 can be found in the testing evidence PowerPoint).

Test Test Item Test Data
Number
2.2.1 Entering String ‘username123’
username, String ‘password123’
password String ‘password123’
(twice) and String ‘bradleymak2003
email into @gmail.com’
relevant fields = VALID DATA
2.2.2 Selection of Mouse click
button to
confirm

account details

Expected

Result

App will allow
user to enter
these strings
into the relevant
input boxes. The
password
should be
dotted.

Entry fields will
clear and strings
will be written
to ‘userinfo.txt’,
but app will
remain on the

Justification

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

To check whether
details entered into
the input boxes by
the user are stored
to an external file via
a button press so

Actual

Result

The program
allowed me to
enter these
details into
the available
input boxes.

The
information |
entered was
successfully
written to the

same screen. they can be file, the
referenced at any passwords
later date. were hashed
and the input
boxes were
emptied.

Sign up — Stage 3
At this stage, | am going to set up the validation of the user inputs.

To start, | am going to check whether the username the user enters has been used before
(as it has to be unique as it is the users unique identifier) — username verification. | have
created a boolean variable called valid_username which starts as True. This variable will be
updated to false if the username the user enters is already present in ‘userinfo.txt’.

I next need to sequentially search through the file to check whether the username the user
entered has been used before. To do this, instead of using the num_of accounts variable |
proposed earlier in the design section, | am going to find the length of ‘userinfo.txt’ and
then use that value in a for loop. This is because keeping the num_of_accounts variable up
to date would require it to be saved/re-written to a file every time an account was
made/deleted, which wouldn’t be time efficient and would be more difficult to implement.
| will create a validate_username subroutine which will take the users username as a
parameter, and will check whether that username is present in ‘userinfo.txt’. If it is,
valid_username will be updated to be false and an error message will appear.

79

valid_username = True

validate_username(username)

Initially, | started by calculating the number of lines in the file using the following piece of
code:

def validate_vsername(username):
file = open('vserinfo.txt', 'r')

file_length = B

for 1 in file:
file_length += 1
print(file_length)

| then added the following code to attempt to test the subroutine to see if it worked
correctly:

def validate_username(username):
file = open('userinfo.txt', 'r')

file_length = 0

for 1 in file:
Tile_length += 1

print{file_length)

for i in range (file_length):
if (file.readline()) == username:

print(file.readline())
global valid_username
valid_vsername = False

print(valid_usernamé]
else:
print{"no")

When | ran this prototype multiple times using ‘123’ for every input field, this was what was
being printed by the print statements, as well as the contents of the file at this point:

Q) userinfo - Notepad - O X
no Fllegdmrmat View Help
e

no a665a459PP422f9d417e4867efdcafbsandalf3fff1fan7eo98e86f7f7a27ae3
no
no a665a4592p422f9d417e4867efdcafbgandalf3fff1fan7e008e86f7f7a27ae3
no

a665a45920422f9d417e4867efdcafb8aodalf3fff1fao7e998e86f7f7a27ae3
no 23
no
no
no

As you can see, the ‘9’ output is correct for the length of the file, but the program is
outputting ‘no’ despite the fact that the username entered is clearly already present in the
file (and thus the output should be ‘False’). So | assumed that the program is not reading the
lines from the file as | intended (as the lines from the file are not being printed by the print
statement).

80

| had a look at the forum https://stackoverflow.com/questions/28873349/python-readlines-
not-returning-anything, which helped me with my next steps.
| wrote the following piece of code which outputs all of the lines of data in the file:

with open('userinfo.txt', 'r') as file:
for line in Tile.readlines():
print(line)

When | ran the code, all of the lines of data in the file were outputted:

12
123

a665a459204227T9d417e4867eTdc4ThBa4alfiffTlTa0T7e998e86T7T7a27ae3

123

123

a665a459204227T9d417e4867efTdc4Th8a04alT3TTT1Ta07e998e86T7T7a27ael

123

So, now that | have found a way to extract each individual line from the file, | can use the
same logic as | did in the previous prototype to compare each of the extracted lines to the
username:

with open('vserinfo.txt', 'r') as file:

for line in file.readlines():

print(line]

if line == username:
global valid_username
valid_username = False
print(valid_username)

| then manually removed the data entered during the test of the previous prototype from
the file to allow for a fair test.
When | run this prototype (again

5]

123 using ‘123’ as the input for every
2665a4592042279d417e486TeTdc4Th8ab4alT3TFT1Ta07e998e86TTF7a27aes3 field), this is what gets outputted:
123 This is the same output as the

previous prototype, hence the
program is still not detecting that
there is data in the file that is the
same as the username (when there
clearly is).

123

a665a4592042279d417e4867eTdc4ThB8a04alf3iTIT1Ta07e998e86TTT7a27aed

123

To further test this prototype, | add an else statement to check " =
whether the program is actually even running the if statement |815€% £ C"no™)
in the first place: print("no

81

https://stackoverflow.com/questions/28873349/python-readlines-not-returning-anything
https://stackoverflow.com/questions/28873349/python-readlines-not-returning-anything

When | run the prototype again this time, | get the following output:

9
123

no
a665a459204227%9d417e4867efdc4ThBa04alT3ffT1fal7e998e86T7T7a27aed

As you can see, ‘no’ is being outputted after

no

1 every iteration, so the program must be

123 entering the loop and the comparison is just
T 50459204221 00417 04867 P4 ThBA0 4173 £ £ 1T 20700808657 F 702700 not working correctly.

123

123

no
a665a459204227%9d417e4867efdc4ThBa04alT3fFT1fa07e?%8e86T7T7a27aed

no
123

no

5
123

no
266584592062219041784867870C4TDRR04E1T3TIT1T20789982B6TTT 7227883

After thinking about this for some time, | realised that
there is a line break in the outputs after every line @
extracted from the file (highlighted in yellow):

4592042279041 7e4BaTe Tdod fbBa04al fIT {1 FaBTe008eB6T T 722 a0d

This must be why the comparison is not working — the
username does not have the line break whereas the line |z,
extracted from the file does, so they will never be =
considered ‘equal’ even if they appear it.

To fix this, | have added a line break to the username before the comparison, which should
ensure that if the characters in the line extracted and the username are the same, they are
considered the same by the program because they will both have the line break:

if line == (username + "\n"):
by is esent becauvse the line ext te T the ile - ine g

global valid_username
valid_username = False
print{valid_username)

else:
print("no")

12
123

When | ran the new prototype, | received the

False

fo”owing Output: a665a4592042279d417e4867efdc4Th8a04a1T3TIT1Fa07e99886T7T7a27ae3
123
As you can see, ‘False’ (the new Boolean value of i

valid_username) is being OUtpUtted because there 22;::45?204221‘90417e4Bb?efdc4fn830431f3fff1fe07&998&!861‘71‘73273&3
is a string/line of data in the file which matches the =

username (on multiple occasions in this case). Fotse
. . 22;22459104221’%417&4Bb'/efdc&fh&aodaiﬂffflfa07&998&85f7f7327323
This now means that the user is successfully ne
123
detecting whether there is a line of data in the file ~
. . 123
which matches the username (hence suggesting the

a665a4592042279d417e4867efdc4ThBa04alf3TfT1fa07e998e86T7T7227a03

username is a duplicate, and should not be
accepted).

no
123

False

82

| also now have no need to determine the number of lines in the file as this is not required
in the new prototype, so | can remove that piece of code. | can also remove the print
statements | used for testing. Therefore, the validate_username subroutine now looks like
this:

def walidate_username(username):
with open('userinfo.txt', 'r') as file:

for line in file.readlines():

if line == (username + "\n"):

global valid_username
valid_username False

| also moved the calling of the subroutine to BEFORE the point at which the information was
written to the file (as it needs to be validated before being added):

if event == ‘'NewAccount':
username = values['newusername']
password = hashlib.sha256(str(values['newpassword']).encode('vtf-8')) . hexdigest()

password_validation = hashlib.sha256(str(values['password_re-entry']).encode('utf-8')).hexdigest()

email = values['newemail']

valid_username = True

validate username(uvsername)
f= open('hserinfo.txt', fat')

£

.write(username + "\n")

f.write(password + "\n")

f.write(email + "\n")

f.close()
window.FindElemenT('newusernane‘).Update("]
window.FindElement('newpassword').update('")
window.FindElement (' password_re-entry').update('")
window

.FindElement('newemail').update('")

| decided to double check whether this was truly working, so | manually cleared
‘userinfo.txt’ (so that it contained nothing and thus on the first input, it cannot possibly be a
duplicate) and added a print(valid_username) statement just underneath the calling of the
subroutine so that | could see the final value of valid_username.

| inputted information 3 times:

First input — ‘123’ for all fields

Second input — ‘987’ for all fields

Third input — ‘123’ for all fields

This will allow me to check whether the subroutine is working correctly. This test can be
found in the testing evidence powerpoint under ‘Sign Up — Stage 3 Test’. The outputs |
received were the following:

First input — True

Second input — True

Third input — False

This is absolutely correct as initially, ‘123’ and ‘987’ are unique usernames and so should be

accepted, but on the third input, the username ‘123’ has already been taken and so
valid_username should have been set to False which it has been.

83

Now that | have completed the username verification subroutine, | am going to create an
error message which should appear if a username is already taken.

| have started by creating a text element on the Signup display which is initially empty but
can be updated to contain the relevant text and will appear centralised in bold, red text to
signify an error.

.Text('', key='signup_error', font=("Helvetica", 15, "bold"), text_color='red', justificafion:'center', size=(45,3))]]

.Text('Please enter the username and password you would like for your new account below:', font=({"Helvetica", 13, "bold"), justification='center', size=(45,3))],

.Text("Username:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key="newusername', size=(1008,2))],

.Text("Password:", size=(12,1), font=("Helvetica", 13)), sg.InputText(key='"newpassword', password_char='%', size=(188,2))],
.Text("Re-enter Passw
.Text("Email Address:

rd:", size=(12,2), font=("Helvetica", 13)), sg.InputText(key='password_re-entry',6 password_char='#', size=(180,2))],
, size=(12,1), font=("Helvetica", 13)), sg.InputText(key='newemail', size=(100,2))],

.Button('BACK', font=("Helvetica", 15), key="BACK1l', button_color=('red', ‘'white')), sg.Texti“, size=(12,2)), sg.Button('Submit', key='NewAccount', Tont=("Helvetica", 15))],

e details ey e eat ei

| have then created the code which updates the element to contain the error message if the
username is already taken (and so valid_username = False):

if walid_username == False:
window.FindElement('signup_error') .vupdate('Error: Username already taken'')

When a username already present in the file is entered, the following error message
appears on the screen:

2 Revision App - X

Please enter the username and password you would like
for your new account below:

Username:
Password:

Re-enter
Password:

Email Address:

Now that the username validation is in place, | can move onto password validation. | am
going to approach this slightly differently than in my original pseudocode. Instead of using a
nested loop, | am going to use a separate subroutine for each part of the validation process
(i.e. validating username, password and email). | believe this will make the development
process easier, allow for quicker error checking and correction, and easier maintenance of
the code in the long term for any future updates.

To start with, | have changed the valid_username variable to valid_details throughout my
program. This is to better the programs space efficiency as | will not need a different
variable for each entry, | can just use this single variable throughout the validation process
and check if it stays true.

If valid_details is true after the username has been validated, the subroutine
validate_password will be called, with the parameters password and password_verification.
| will create this subroutine next.

84

if event == 'NewAccount':

Uﬁername = values['newusername"']
password = hashlib.sha256(str(values['newpassword']).encode('vtf-8')).hexdigest()
password_validation = hashlib.sha25é6(str(values['password_re-entry']).encode('utf-8')).hexdigest()

email = values['newemail']

valid_detalils = True

validate_username(username)

if valid_details == False:
window.FindElement('signup_error').update('Error: Username already taken!')

else:
validate_password(password, password_validation)

This is the validate_password subroutine, which is required only to check whether the 2
passwords the user entered are the same. This is to avoid a possible typo as the user cannot
actually see their password as password characters are being used in their place to make the
app more secure and avoid shouldering, as mentioned earlier.

def validate_password(password, password_validation):
if password !'= password_wvalidation:

global walid_details

valid_detalls = False

| have then made it so that the error message is updated to alert the user to this issue:

if valid_details == False:
window.FindElement('signup_error').update('Error: Username already taken!')

else:
validate_password(password, password_validation)

if valid_details == False:
window.FindElement('signup_error').update('Error: Passwords do not match!')

This should work as the program goes through the code in logical order (from top to
bottom, so for example the username will always be validated before the password).

| then manually cleared ‘userinfo.txt’ to ensure that 2 Revision App - X
the username | enter will be valid (as | am focusing on Please enter the username and password you would like
password verification), and entered two different hao St g
passwords (‘password12’ and ‘password123’) into the Username
2 password input boxes, and the error message was Password
correctly displayed: dedicis

Email Address
(This feature will be tested again in the later iterations

of testing and testing evidence of this will then be put
on the testing evidence powerpoint).

85

At this stage, the input boxes are being cleared when there is an error (which | do not want
to happen), but | will fix this later when | have completed all of the verification.

Next, | will move onto email verification.

Users emails will be required to be gmail (to be able to use the email notifications feature).
Whilst this limitation is still subject to change, at this moment in time emails would have to
include the substring ‘@gmail.com’, and would thus have to also be longer than 10
characters long.

If valid_details is still true after both the username and password have been validated, the
email needs to be validated so the subroutine (which is yet to be defined) needs to be
called:

if event == 'NewAccount':

username values['newusername']
password hashlib.sha256(str(values['newpassword']).encode('utf-8')) . .hexdigest()
password_ 56(str(valves['password_re-entry']).encode('utf-8'))

validation = hashlib.sha2 .hexdigest()
emalil

= values['newemail']

valid_details = True

validate_username(username)

if valid_details == False:
window.FindElement('signup_error').vpdate('Error: Username already taken!')

else:

validate_password(password, password_validation)

if valid_details == False:
window.FindElement('signup_error').update('Error: Passwords do not match!')

else:
validate_email(email)

Next, | need to define the email_verification subroutine. The requirements for emails at this
stage of development were detailed above.

def validate_email(email):
global wvalid_details

it len(email)>11 and emaill(len(email)-11), (Llen(emaill)-1)] == '@Egmail.com':
valid_details = True

glse:
valid_d =

etails

False

b=

Similar to the other validation stages, | also updated the error message to alert the user to
the invalid email if that is the case:

86

if event == 'Newhccount"

Uﬁername vaLues[‘newusePname']
password hashlib.sha256(str(values['newpassword']).encode('utf-8')).hexdigest()

password validation = hashllb shazﬁé(str(values['passw0|d r —entlv]J encode(Utf 8 JJ hexdlgest()

emai values['newemall]

valid detalls = True

valldate Username(usernameJ

1f valld detalls == False
w1nd0w F1ndElement(51gnup e||0|'J update(" E||0| Uselname already taken"]

else.
validate_password(password, password_validation)

it valid detélls == False:
w1nd0w F1ndElement(51gnup e||0|'J uvpdate('Error: Passwords do not match!')

else.
validate_email(email)

if wvalid_details == False:
w1nd0w F1ndElement(signup_error').update('Error: Invalid email address"]

to the fact that the email they entered is invalid

Tt +F message te alert the

Updates the error 255age e user

Again, | manually cleared ‘userinfo.txt’ to ensure that there was no duplicate username
being entered (as this test is about the email verification) and entered an invalid email
address ‘bradleymak2003@gml.com’.

? Revision App

However, then | received the following error:

Please enter the username and password you would like

for your new account below: Traceback (most recent call last):

File "C:/Users/bradl/PycharmProjects/Projects/NEA - Revision App.py", line 105, in <module>
validate_email(email)

File "C:/Users/bradl/PycharmProjects/Projects/NEA - Revision App.py", line 57, in validate_email

Password S it len(email)=11 and email[(len(email)-11), (len(email)-1)] == '@gmail.com':

TypeError: string indices must be integers

Username

Re-enter

Password
Email Address: br

swoni]

| defined the email as a string:

it event == 'Newkccount"

username = vaLues['newuselname]
password = hashlib.sha?586(str(values['newpassword']).encode('utf-8')).hexdigest()
password \.ralldatlon = hashlib. shazﬁé(str(values[passwm d_re- entl]].encode('utf—a']J.hexdigest(]

hashes.the [s the ser entered g the SHA

emall = str(values['newemall]J

| also realised that the index values/length | was checking for in my email validation were
slightly incorrect, so | also updated them:

def validate_email({email):
glnhal valld detalls

" akes valid_details

if len(email)>18 and emall[(len(emallj -18), (len({email)-1)] == '@gmail.com’
valid_details = True

else:
valld _details = False

87

| then tried explicitly setting the string indices to integers to try and solve this problem:

def validate_email(email):
global valid_details

if len(email)=10 and emaill(int(len{email)-108)), (int{len(email)-1))] == 'GEgmail.com’:
valid_details = True
glse:
valid_details = False

| now carried out the test again with the same inputs as before:
‘username123’, ‘password123’, ‘password123’, ‘bradleymak2003@gml.com’.

However, the same error still appeared. After looking at the website
https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-
must-be-integers, | realised that | need to use a colon rather than a comma, so | changed
this and ran my program again:

def validate_email(email):
global wvalid_details

if len(email)>10 and emaill(len(email)-10): (len(email)-1)] == '@gmail.com’':
valid_details = True
glse:
valid_details = False

I manually cleared ‘userinfo.txt’, and carried out another test with the same inputs as

above...
2 Revision App — x
Please enter the username and password you would like And it came up with the correct error
for your new account below: message (again testing proof for this will
[T be shown in the testing evidence
Password powerpoint later).

Re-enter
Password

Email Address:

However, now when | input a duplicate username, | receive an invalid email error. This was
because | am using the same variable for all validations (valid_details), so originally because
the validations were not nested, it would automatically update the error message to the
email error message (as this is validated last, and so is the last validation code to be ran). |
have now nested the inputs which solves this issue:

88

https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-must-be-integers
https://stackoverflow.com/questions/6077675/why-am-i-seeing-typeerror-string-indices-must-be-integers

.

i% event == 'NewAccount':
Ir the 'Svbmit' buiton is pressed...
username = values['newusername"’]
password = hashlib.sha256(str(values['newpassword']).encode("vtf-8")).hexdigest()
password_validation = hashlib.sha256(str(values['password_re-entry']).encode('vtf-8")).hexdigest()

hashes the passwords the vser entered using the SHA-256 hashing algorithm and converts them into hexadecimal to shorten 1
email = str(values['newemail'])
Reads the vsername, password entries (and hashes them) and email the user entered from the display and saves them as variabl
valid_details = True
This variable is initially set to True but will be used to tell the program whether the vusername the user enters is true or
validate_username(username)
Calls the function validate_username with the vsername as a parameter.
if valid_details == False:
window.FindElement('signup_error').update('Error: Username already taken!')
Updates the error message to tell the user the vsername they entered is already taken.
else:
validate_password(password, password_validation)
If valid_details is truwe (i.e. the vusername is valid), the password can then be vaolidated.
if valid_details == False:
window.FindElement('signup_error').update('Error: Passwords do not match!')
Updates the error message to alert the vser to a possible typo as the passwords they entered do not match.
else:

valldate _email(email)

d_details is true at this stage (i.e. salid)
th L next needs to be verified, so the
if valid_details == False:
window.FindElement('signup_error').update("Error: Invalid email address!')
Updates the error message to alert the vser to the fact that the email they entered is invalid.

false.

There was no error when | entered ‘bradleymak2003@gmail.com’ (a valid email address)
into the email entry field, but it displayed the error message ‘Invalid email’. This must be
because the substring | am taking out is incorrect, so | put in a print statement so that the
next time | ran the program | could see what the substring being taken out of the email is:
When | ran the program with the input ‘bradleymak2003 @gmail.com’ -

again, the following was printed: @-

def validate_email(email):
global wvalid_details

makes valid_details global.
print (emaill(len(email)-18): (len(email)-1)1)
if len(email) =10 and emaill(len(email)-10): (len{email)-1)] == '@gmail.com’':
valid_details = True
else:
valid_details = False
if the email the user entered is a valid gmail address, then valid_details remains truve,
otherwise it is set to false

This shows that the substring is being cut off to early so | increased the upper string indices
by 1 (i.e. removed the -1):

89

def validate_email(email):
global valid_details

print (emaill(Llen(email)-108): (len(email))])
it len(email)=>10 and email[(len(email)-18): (len(email))] == '@gmail.com':
valid_details = True

else:
valid_detalls = False

When | then ran the program again with the same inputs, they were accepted and
successfully written to ‘userinfo.txt’.

However, information is still being written to the file if it is incorrect, so to fix this (and stop
clearing the entry fields if there is an error), | have placed all of the writing of information to
the file and clearing of entry fields into an if statement, which required valid_details to be

true:
it valid_details == True:
f = open('vserinfo.txt', '"a+')
f.write(username + "\n")
f.write(password + "\n")
f.write(email + "\n")

f.close()
window.FindElement('newusername').update('"')
window.FindElement('newpassword').update('"')
window.FindElement('password_re-entry').update('"')
window.FindElement('newemail') . .update('")

| also added the following piece of code, which removes the error message on the sign up
screen when the details entered are valid. This ensures the error message will not remain
when the current user logs out and another user goes to create an account.

window.FindElement('signup_error').update('")

elrs e errar messdage Jrhom e s14n I sCINee g e e

| have next created a temporary main menu layout, added it to the column layout so it can
be made visible/invisible as necessary, and told the program to update the layout to the
main menu once there is a successful sign up, to allow me to test whether my app is
working correctly.

MainMenu = [[sg.Text('Main Menu')]]

o TEIRUTWEY FPULTT EITL Ly

layout = [[sg.Column(StartScreen, key='-COL1-', visible=True), sg.Column(Login, visible=False, key='-COL2-'), sg.Column(Signup, visible=False, key='-COL3-'), sg.Column(MainMenu, visible=False, key='-COL4-')]]

if valid_details == True:
T = open('userinfo.txt', "a+')

f.write(username + "\n")
.write(password + "\n")
.write(email + "\n")

- -

) = =

.close()

window.FindElement('newusername').update('"')
window.FindElement (' newpassword').update('"')
window.FindElement('password_re-entry').update('")
window.FindElement('newemail')

window.FindElement('signup_e

window[f'-COL3-'].update(visible=False)

window[f'-COL4-'].update(visible=True)

Updates the layout to the moin menu after a successful Sign Up by making the sign up column invisible and the main menu column visible

90

Now | can begin testing. Testing evidence for all of the following tests can be found in the
testing evidence powerpoint. (The file userinfo.txt was cleared between tests to ensure that
a duplicate username did not get in the way of other tests)

Test Test Item Test Data Expected Justification Actual
Number Result Result

2.3.1 Entering String ‘username123’ App will allow Checking Allows user to
username, String ‘password123’ user to enter whether the successfully enter
password and String ‘password123’ these strings user canentera | gatails into the
email into String ‘bradleymak2003 into the string into the input boxes.
relevant fields @gmail.com’ relevant input textual input

VALID DATA boxes. The boxes that
password should appear
should be on screen.
dotted.

2.3.2 Selection of Mouse click Entry fields will | To check Valid details are
button to clear and whether the written to the file,
confirm strings will be confirm account | ¢ha layout is
account details written to button takes updated to the

‘userinfo.txt’, the user to the .
and layout will main menu main menl.'l and
be updated to once the details the entry fields
MAIN MENU. | they have clear (as shown
entered have earlier).
been validated
and stored.

Number

Test Item

Test Data

Expected Result

Justification

Actual
Result

2.4.1 Entering String App will allow user to Checking whether | Allows user to
duplicate ‘username123’ enter these stringsinto | the user can enter | syccessfully
username String the relevant input a string into the enter details
and invalid ‘password123’ boxes. The password textual input into the input
email String should be dotted. boxes that should

‘password123’ appear on screen. boxes.
String

‘bradleymak2003@g

ml.com’

INVALID DATA

24.2 Selection of Mouse click Error message will To check whether | Both error
button to appear at bottom of the validation messages
confirm screen stating invalid algorithm detects appear
acco.unt us.ername at first (as an |nv.aI|d email correctly and
details this username was used | and displays the

.) . the layout
in a previous test), so issue to the user .
change username to (and does not remains the
‘111’ and try again, now | proceed to the same until all
error message should main menu). of the inputs
say invalid email and are valid.
layout will remain the
same.
Test Test ltem Test Data Expected Justification Actual Result
Number Result

2.5.1 Entering String ‘123’ App will allow user Checking Allows user to
passwords String ‘password123’ | to enter these whether the successfully enter
that do not String ‘password’ strings into the user canentera | {etails into the
match relevant input string into the

input boxes.

String boxes. The textual input
‘bradleymak2003 password should be = boxes that
@gmail.com’ dotted. should appear
INVALID DATA on screen.

252 Selection of Mouse click Error message will To check The error message
button to appear at bottom of | whether the appears correctly
confirm screen stat.ing that validétion and the layout
acco'unt the'user mlstype.d algorithm remains the same.
details their password (i.e. | detects an

the 2 password invalid The layout
input boxes do not password re- changes when the
match). entry and error is fixed and
displays the valid inputs are
issue to the submitted.
user (and does
not proceed to
the main
menu).

Test Test Item Test Data Justification Actual Result

Number

Expected

Result

2.6.1 Missing field String 123’ App will allow Checking whether the | Allows user to
String user to enter user can enter a successfully enter
‘password123’ | these strings string into the textual | jatails into the input
String into the input boxes that Py
‘password123’ | relevant input should appear on
String “’ boxes. The screen.
INVALID DATA = password
should be
dotted.

2.6.2 Selection of Mouse click Error message To check whether the | Error message does
button to will appear at validation algorithm appear stating invalid
confirm bottom of detects missing email. But if | leave
acco.unt screen s'Fatlng inputs, as all inputs the password fields
details that all fields are required. .

need to be empty instead, the

entered (as program advances

email is missing) when it shouldn’t do
as the field hasn’t
been filled.

The issue with test 2.6.2 was that it allowed me to advance and wrote the details | did enter
to the file even though | didn’t fill the password fields (which shouldn’t happen as you
obviously need a password). To fix this, | wrote the code below:

if username == '' or password == '' or password_validation == '' or email == '':
If any of the entry fields are left empty..
valid_details = False

window.FindElement('signup_error').update('Error: Please fill all fields!')

...set valid_details to False so the user does not advance and alert them to the error.
else:
validate_username(username)
Calls the function validate_user ne with the vsername as a p

if valid_details -= False:
window.FindElement('signup_error').update('Error: Username already taken!')

Updates the error message to tell the wser the wsername they entered is already taken.
else:
validate_password(password, password_validation)
If valid_details is true (i.e. the vsername is valid}, the password can then be validated

if valid_details -= False:

window.FindElement('signup_error') .update('Error: Passwords do not match!')

Updates the error
else:

validate_email(email)

maccage to aler he user to o pocciple - he o p—— heu entered do no aateh
message To alertT The user To a possiole Typo as Thne passwords They entered do notT matchn.

1 If v etai (i ne and passwords were valid)
the il next needs to b tine is called.
if valid_details == False:

window.FindElement('signup_error').update("Error: Invalid email address!')

5 Hndate he errar
H# uvpdatles LThe error

ressgge to aler he er to the fac her he email theu entered is invalid
message To alert The vser o thne jact thnal the emall They entered 1s 1nvalld.

92

When | ran my program with the inputs ‘username12345’, ‘password123’, “ and
‘bradleymak2003@gmail.com’, the error message came up with ‘passwords do not match’
rather than ‘Fill all fields’. | looked at the variables | was using and realised that | am
checking if the hash value of the password is equal to nothing, which cannot be the case as
the SHA-256 hashing algorithm produces a has value even for an empty string. So, to fix this,
| went on the website https://xorbin.com/tools/sha256-hash-calculator and got the hash
value for an empty string
(e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855), and used
this in my code:

if username == '' or passliuurd == 'eZSDEIl:442981‘:10149afbf4|:8996fD92427ae4ie4ba‘?b‘)}&caﬂﬁ?‘?lb'i’ﬂﬁzbﬂﬁf;' or password_validation == 'e3b0c44298fclcl49afbf4c8996Tb92427ae41e4649b934cad95991b7852b855" or email == '':
valid_details = False
window.FindElement('signup_error').update('Error: Please fill all fields!')
else: -
validate_username(usernane)

if valid_details == False: B
window.FindElement('signup_error').update('Error: Username already taken!')

else:
validate_password(password, passwerd_validation)

if valid_details == False:

window.FindElement('signup_error').update('Error: Passwords do not match!')
else:

validate_email(email)

if valid_details == False:
window.FindElement('signup_error').update('Error: Invalid email address!')

When | ran the program again with the same inputs as previously, the app successfully
notified me that an input field was missing:

2 Revision App = X

Please enter the username and password you would like
for your new account below:

Username usemname123
Password:

Re-enter
Password:

Email Address: bradleyma

Emn

| also noticed that when the back button is pressed and the user goes back onto the signup
screen, the information entered remains there. This should not happen as this is a security
issue, as if another user goes to sign up, the previous users entry details will be there if they
forgot to manually clear them before pressing the back button. To fix this, | cleared all of the
entry fields when the back button is pressed:

if event == "BACK1':
window[f'-COL3-'].update(visible=False)
window[f'-COL1-'].update(visible=True)

If the user presses the back buttom on the sign wp screen, the 'Signup' layout is de invisible and the 'StartScreen Layout 1is de visibl
window.FindElement('newusername').update('")
window.FindElement('newpassword').vupdate('"')
window.FindElement('password_re-entry').update("')
window.FindElement('newemail').update('")
window.FindElement('signup_error').update('")

0 the entry fields on the signup page, as well as the error message, are cleared

93

https://xorbin.com/tools/sha256-hash-calculator

Sign up — Review 2
Success Criteria
At this point, the sign-up feature is not fully completed, so | have not yet fully met success
criteria 1 yet. | have so far met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

Stakeholder feedback

Now that | have completed the sign-up feature and extensively tested it, | sent this new
prototype of my solution (along with the external files) to one of my stakeholders, Vivek, to
get his opinion on the sign-up process and to test how robust it is.

He said that the layout looked clean and simple and the program was easy to use. The only
issue he encountered was that he used an outlook email (and my program only allows gmail
addresses to be entered at this point), so he was confused as to why his email wasn’t
working as the error message just says ‘invalid email’, so | have changed the error message
top notify the user that it has to be a gmail address to avoid this confusion in the future:

2 Revision App - X

Please enter the username and password you would like
for your new account below:

Username:
Password:

Re-enter
Password:

Email Address: bradley

Summary of progress made and how this prototype compares to the previous

I now have an effective sign up system that is robust and does not crash no matter what the
inputs are, as tested by my stakeholders. It can deal with duplicate usernames, passwords
that do not match, invalid emails and missing fields all together, and has a clear interface
and method of notifying the user of the issue so they can fix their inputs. The stakeholder
feedback has made my program more suited to its target audience and has improved my
solution to make it more appealing to students.

94

Login—Stage 1
Next, | am going to develop the log in feature, to allow the user to log in to an account they
have previously created.

To start, | am going to create the layout for the log in screen. In order to continue meeting
success criteria 10, this layout needs to be user friendly, clear and easy to use. In order to
achieve this, | have coded the following:

Login = [[sg.Text('Log-in details:', font=("Helvetica", 13, "bold"), justification='center',6 size=(45,3))],

[sg.Text("Username:", size=(12,1), fonf:(”Helvetica",
[sg.Text("Password:", size=(12,1), font=("Helvetica",
[sg.Button('BAC

[sg.Text('', key='login_error', font=("Helvetica", 15

13)), sg.InputText(key='username_entry', size=(100,2))1,
13)), sg.InputText(key='password_entry', password_char='%', size=(100,2))],

, Tont=("Helvetica", 15), Key='BACK2', button_color=('red',

hite')), sg.Text('', size=

, sg.Button('Log In', Key='LogIn', font=("Helvetica", 15))1,
"bold"), text_culur:‘red'; justification='center', size=(38,3))]] i

The result is a layout which looks like this:

2 Revision App - X

Log-in details:

Username

Password

BACK

Test Test Item
Number
3.1.1 Entering
username and
password into
relevant fields
3.1.2 Selection of
button to
confirm

account details

Test Data

String ‘username123’
String ‘password123’
VALID DATA

Mouse click

Expected

Result

App will allow
user to enter
these strings into
the relevant
input boxes

Nothing, as
functionality of
button has not
been
implemented
yet.

Justification

Checking whether
the user can enter a
string into the
textual input boxes
that should appear
on screen.

To check whether
the confirm button
on screen appears in
the correct place
and allows user
interaction.

Actual

Result
Program
allowed the
user to enter
their details
successfully.

Nothing
happened
upon pressing
the button.

Testing evidence for these tests can be found in the testing evidence powerpoint.

Log in — Review 1
Success Criteria

| have not met any new success criteria since the last review. Currently | have met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.

e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.

95

Stakeholder feedback

| asked one of my stakeholders, Marcus, for feedback on the layout of the log in screen. He
said that it “looks ok but it’d be clearer if the text was a bit bigger and filled a bit more of the
screen, because for example there is a large gap between the title at the top and the input
boxes”.

Following his feedback, | have increased the size of the text to make it clearer and take up a
bit more of the screen. However, | do not want to increase the text size too much as it will
begin to look unauthentic.

This is the new layout after | have made these minor changes:

2 Revision App — X

Log-in details:
Username:
Password:

Log in — Stage 2
Now that the interface is created and has been approved by stakeholders, | can begin work
on implementing the functionality of the buttons.

| will start with the back button. This is a very similar process to the back button on the sign
up screen —if it is pressed it updates the layout to the start screen by making the log in
layout invisible and making the start screen layout visible. Again, similar to the sign up back
button, | have cleared the input fields on the login screen upon pressing the back button.
This is again for security reasons.

if event == 'BACK2':
window[f'-cOL2-'].update(visible=False)
window[f'-COL1-'].vpdate(visible=True)

window.FindElement('username_entrv'].Update(']]
window.FindElement('password_entry').update('")
window.FindElement('Llogin_error').update('"')

96

2 Revision App - X 2 Revision App — %

Welcome to the revision app! Please log in, or create a

Log-in details: new account to continue.

Username:

Password:

Create an account

Now | will work on the functionality of the button to validate your details and log into your
account.

It will work by sequentially searching through the file ‘userinfo.txt’ for the username the
user enters, and then checking the next line in the file as this should be the password. This is
because the way the information in the file has been stored is in blocks of three. For
example:

Line 1: User 1 username

Line 2: User 1 hashed password

Line 3: User 1 email

Line 4: User 2 username

Line 5: User 2 hashed password

Line 6: User 2 email

Line 7: User 3 username

Line 8: User 3 hashed password

Line 9: User 3 email

So the program will search the first line in the file, if it is the password, the next line will be
checked to see if it matches the password the user entered, if not it will add 3 to the
counter and thus check the next username. This process will repeat until either the
username is found and the password entered is correct (if it is not this will be notified to the
user) or it does not exist and this will be notified to the user.

| have started by saving the username and password entered by the user as variables, with
the password being hashed using the same hashing algorithm (SHA-256) as it was hashed
with when the account was created (so it can be compared fairly).

if event == 'LogIn':

username = \-.ralues['usel*nane_entl*v']
password = hashlib.sha256(str{values['password_entry']).encode('vtf-8')).hexdigest()

Next, | used the same logic as in the password validation subroutine, by sequentially going
through the lines in the file and if they are equal to the username, the next line in the file
has to equal to the password for the user to successfully log in.

97

with open('userinfo.txt', 'r') as file:

for line in Tile.readlines():

_ ;‘\'r_1"'i:'

if line == (username +
if file.readline() == (password + "\n"):
print("correct details")
else:
print("incorrect password")

However, when | create an account with the username ‘username123’ and password
‘password123’, and then enter these details to the log in screen, incorrect password is being
printed to the console. This means that the program is detecting that the username is there

but not detecting that the line after it is the same as the hash value of the password |
entered

LogIn {'username_entry': 'usernamel23', 'password_entry': 'passwordl23', 'newusername': '', 'newpassword': ''

, 'password_re-entry': '', ‘newemail': ''}
incorrect password

| rewrote my code using a different approach of saving each line as a variable first and use a
while loop:

file = open('userinfo.txt', 'r')

line = file.readline()

while line != (username + "\n"):
line = file.readline()

if file.readline() == (password + “\n“]:
print("correct details")

lse:
print("incorrect password")

®

| then tested my new approach to see if, when | entered the correct username
(‘usernamel123’) and password (‘password123’), ‘correct details’ was printed.
This was the contents of ‘userinfo.txt’:

| userinfo - Notepad - O *

File Edit Format View Help

|username123
ef92b778bafte771e89245b89%echc@8a44a4e166CcR66599118811383d4473e94F
bradleymak2@e3@gmail.com

usernamel23q

efo2b778bate771e89245b8%ecbc@8a44a4e166CcP66599118811383d4473e94f
bradleymak2ee3@gmail.com

This was what was printed when | entered the details:

LogIn {'username_entry': 'usernamel23', ‘'password_entry': 'password123', 'newusername': '’
correct details

, 'newpassword': '',
Log-in details:
Username:

Password:

98

You can see that ‘correct details’ is printed when a username and corresponding password
that are in the file are entered.

| then tried this again usmg anincorrect password (‘password12’):

LogIn {'username entrv
incorrect password

'usernamel23’ passwurd entry' 'passwordl2', 'newusername'’ "', 'newpassword’ ", 'password_rej

Usemame:

Password:

As you can see, ‘incorrect password’ is correctly stated.

| then tried this again with a username that did not exist in the file (‘123’) and the program
crashed (‘Initial Log In Test 1’ in testing evidence powerpoint). This is because the program
enters an infinite loop as the username can never be found. To limit this, | have edited the
whole loop to add a condition to keep searching until an empty line is found (as this will be
the end of the information in the file, as a user has to enter something for all fields when
they sign up):

open(USeIlnfO txt' 'r')

file =

line =

1le readllne(J

while llne '— (Username +

"\n") and line != "'

line = file. readllne(]

it file. readllne(l == (password + \n“):
prlnt(“c0||ect detalls”)

o
|

ellf f11
prlnt(username does not exist']

If all of the info

rmation in the file has been searched through and thus there is nothing left tio search so the next line i T arint Fhot

else
prlnt(“lnc0||ect passw0|d“J

Now when | run the program with the same inputs as in the previous test, the correct
statements are printed (‘Initial Log In Test 2’ in testing evidence powerpoint).

Now | know that the backbone of the log-in process is working, | can replace the print
statements with what | actuaIIy want the program to do in each of the scenarios:

iT event == ‘LogIn

username = Values[username entlv]
password = hashllb 5h3256(str(values[passw0|d entlv]) encode(Utf 8]).hexdigest()
file = open(USellnfO txt' 'l')

line = flle.readllne()

while line '= (username.+ "\n") and line !'= '':
line = file.readline()

if file.readline() == (password + "\n"):
window[f'-cOL2-'].update(visible=False)
window[f'-COL4-"].update(visible=True)
window.FindElement('vsername_entry').update('")
window.FindElement('password_entry').update('")
window.FindElement('login_error').update('")

ellf flle readl1ne() == '
w1ndow F1ndElement(logln error] Update(Error: Username does not exist!’

else
window. F1ndElement(logln error'). Update(E||0| Incorrect password!')

99

Now when the correct details are entered, this prototype should take the user to the main
menu and reset the inputs/error message ready for the next user.

| also need to assign the email variable upon logging in so that it can be used in features that
| will develop in the future. The way the information is stored, as stated earlier, means the
email will be the data in the line after the password, so once the password has been read
from the file and verified, if it | correct | can then just read the next line and set the email
variable equal to it:

email = file.readline()
defines the email variaoble to the wsers email which they inputted when signing up.
print{email)

However, when | run the program, the email which is saved includes a line break (which it
cannot do as it needs to be referenced for future features, such as email notifications).
Therefore, | need to remove the line break before it is saved to the variable. | did some
research and found the website https://stackoverflow.com/questions/15233340/getting-
rid-of-n-when-using-readlines, which said that | have to use the .rstrip() function to remove
the line break from the line which has been read from the file. This is it implemented:

file.readline().rstrip('\n")

rmrsph a - R -
variaole To users en

email

daFfina Lo amm] h o T ad whan
derlnes ThNne emall rne 1nputTTed wnen

e ey T amve el E v 3 1o hea T4 Mo named o h o = 7
removes The Line oDreds jrom The L1ine reaa jrom tne |

—
LT

And now the correct email is printed with no line break,
so | can remove the print statement as | know that this
feature is working.

|bradleymak2993@gmail.cum

Test Test Item Test Data Expected Justification Actual
Number Result Result
3.2.1 Entering String App will allow user | Checking whether the = Allows the
username and | ‘usernamel23’ to enter these user can enter a string = yser to enter
password into String strings into the into the textual input these details
relevant fields | ‘password123’ relevant input boxes that should into the input
VALID DATA boxes appear on screen.
boxes
successfully.
3.2.2 Selection of Mouse click Layout will be To check whether the | Layout is
button to updated to button takes the user updated to
confirm MAINMENU and to the main menu of

account details

user will be taken
to the main menu.

the app if their log-in
details are valid and
correct.

Testing evidence can be found in the testing evidence powerpoint.

Test Test Item Test Data

Number

Expected
Result

Justification

main menu if
correct details
are entered.

Actual
Result

3.3.1 Entering String ‘username123’ App will allow user | Checking whether | Allows the
incorrect String ‘passwordl’ to enter these the user can enter | yser to enter
password INVALID DATA strings into the a string into the these details

relevant input
boxes

textual input
boxes that should
appear on screen.

into the input

100

https://stackoverflow.com/questions/15233340/getting-rid-of-n-when-using-readlines
https://stackoverflow.com/questions/15233340/getting-rid-of-n-when-using-readlines

boxes
successfully.

3.3.2 Selection of Mouse click Error message will | To check whether | Error message
button to appear at bottom the confirm appears telling
confirm of screen stating account button the user their
account details invalid passw_ord, takes the user tg password is

and layout will the main menu if . .
remain the same. the details they invalid.
enter are
incorrect.

3.3.3 Entering String ‘usernamel’ App will allow user | Checking whether | Allows the
username that = String ‘password123’ to enter these the user can enter | yser to enter
doesn’t exist INVALID DATA strings into the a string into the these details

relevant input textual input into the input
boxes boxes that should
boxes
appear on screen.
successfully.

3.34 Selection of Mouse click Error message will | To check whether | Error message
button to appear at bottom the confirm appears telling
confirm of screen stating account button the user their

account details

that the username
doesn’t exist.

takes the user to
the main menu if
the details they
enter are
incorrect.

Testing evidence can be found in the testing evidence powerpoint.

username
doesn’t exist.

Log in — Review 2
Success Criteria
| have now completed the log in feature which allows the user to log into their account if
they have created one and the details they enter are correct. It is robust and provides
correct error messages in the correct scenarios. So far | have met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.
e SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.

Stakeholder feedback

| sent this prototype of my solution to two of my stakeholders, Sam and Vivek, to test and
provide feedback on any errors/issues they may occur. Vivek had no issues and said that the
system worked perfectly and provided the correct error messages and did not crash when
he tried to crash the app. Sam said the same but said that he feels it'd be more secure to
provide the error message ‘Invalid username/password’ for both if the username doesn’t
exist or if the password is incorrect. He thought this because it makes the app less secure to
tell a potential hacker whether it is the password or username that is incorrect (for example,
if the ‘password incorrect’ message appears, the hacker will know there is an account with
the username they entered, whereas if there was the same message for both scenarios the
hacker would not know).

101

| agree with same idea and so | have changed the error message to ‘Invalid
username/password’ for both when the user enters a username that doesn’t exist and when
the user enters an incorrect password in order to make my solution even more secure.

elif file.readline() == '':
window.FindElement('login_error').update('Error: Invalid username/password!")
TE 1T nE the snen tion in the file has been searched throvah fand thus there is nothing left to search so the ne ine

else:
window.FindElement('login_error') .update('Error: Invalid username/password!')

The error message now appears like this on the interface:

2 Revision App — X

Log-in details:

Username:

Password:

Main Menu — Stage 1

Next, | am going to create the main menu for my program. As stated earlier, this is the main
hub of the app as it is where all of the main features can be accessed from via a button
press. To start with, | have created the layout:

MainMenu = [[sg.Text('Welcome (username)!', key='welcomemsg', font=("Helvetica", 18, "bold"), size=(45, 2), justification='center')],

[sg.Text(" "), sg.Button('Create Set’, font=("Helvetica", 13), key='CREATESET', border_width=5, size=(16, 4)), sg.Button('My Sets’, font=("Helvetica”, 13), key='MYSETS', border_width=5, size=(16
[sg.Text(" "), sg.Button('Hy Progress', font=("Helvetica", 13), key='PROGRESS', border_widt size=(16, 4)), sg.Button('Hanage Account', font=("Helvetica", 13), key='ACCOUNT', border_width=s,

[sg.Text(" "), sg.Button('Log Out', font=("Helvetica", 13), key='"LOGOUT', border_width=5, size=(16, 4), button_color=('white', 'red'))]]

| have used a similar design to the final Start Menu design as this was a layout my
stakeholders liked and was created after consulting them for their feedback (i.e. larger text
and buttons).

This layout is also placed in the column layout so that it can be made visible/invisible as
required:

layout = [[sg.Column(StartScreen, key='-COL1-', visible=True), sg.Column(Login, visible=False, key='-COL2-'), sg.Column(Signup, visible=False, key='-COL3-'), sg.Column(MainMenu, visible=False, key='-COL4-')]]

Now when the program is ran and | log in using an existing account, this is the main menu
layout which appears on the screen:

102

? Revision App

My Progress

Welcome (username)!

Create Set

Manage Account

The username has not been inserted
into the welcome message yet, but this
will be implemented later. For now, |
have used a placeholder (username) to
represent where the user’s username
would appear.

| have decided to remove the exit button from the main menu as it is already present on the
start screen and it makes more logical sense to sign out before exiting the application, and
thus it makes the menu look less cluttered and reduces the amount of code needed to be

written.

Test

Number
411

4.1.2

4.13

Test Item

Selection of option
via ‘new_set’
button

Selection of option
via ‘my_sets’ button

Selection of option
via
‘progress_tracker’
button

Selection of option
via
‘manage_account’
button

Mouse
click

Mouse
click

Mouse
click

Mouse
click

I am now ready to carry out the first iteration of my main menu testing:
Justification

Expected

Result

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the SETNAME
layout has not been
defined.

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the SETS layout
has not been
defined.

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the PROGRESS
layout has not been
defined.

Nothing will happen
as the functionality
of the button has
not been
implemented yet,
and the ACCOUNT
layout has not been
defined.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Actual Result

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

103

4.1.5 Selection of option Mouse
via ‘log_out’ button | click

4.1.6 Selection of option Mouse
via ‘Exit’ button click

Main Menu — Stage 2

Nothing will happen
as the functionality
of the button has
not been
implemented yet.

Nothing will happen
as the functionality
of the button has
not been
implemented yet.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Checking whether the
button appears in the
correct format on
screen and can be
interacted with by the
user.

Nothing happens as
functionality not
implemented yet but
button is visible in
correct position and
pressable.

Button not present
due to a change in
my original plan (as
detailed in the
development
section).

Next, | am going to implement the functionality of the main menu. First, | need to update
the text at the top of the screen to display the user’s username. First, | have given the text
element a key so it can be identified and updated using using the update element

command:

MainMenu = [[sg.Text('Welcome (username)!’,

[sg.Teif&”.
[sg.Text("
[sg.Text("

"), sg.Buttén(‘Ereata Ss%‘, font=("Helvetica", 13), key='CREATESET', border_width=5, size=(16, 4)),
"), sg.Button('My Progress’, font=("Helvetica", 13), key='PROGRESS', border_width=5,
"), sg.Button('Leg Out', font=("Helvetica", 13), key='LOGOUT', border_width=5,

size=(16, 4)),

key='welcomemsg®, font=("Helvetica", 18, "bold"), size=(45, 2), justification='center')],

sg.Button('My Sets', font=("Helvetica", 13), Kkey='MYSETS', border_width=5,
sg.Button('Manage Account', font=("Helvetica”, 13), Key='ACCOUNT', border_width=5,
size=(16, 4), button_color=('white', 'red'))]]

size=(16

| have then updated the element whenever the user successfully creates an account/logs in

to show their username:

104

if valid_details == True:
file = open('userinfo.txt', 'a+')

file.write(username + "\n")
file.write(password + "\n")
file.write(email + "\n")

file.close()

window.FindElement('newusername').update('")
window.FindElement(*newpassword').update('*)
window.FindElement('password_re-entry').update('"')
window.FindElement('newemail®).update(" ")

window.FindElement('signup_error').update('")
window['-COL3-'].update(visible=False)
window[f'-COL4-'].update(visible=True)

window.FindElement('welcomensg') .update(f Welcome {username}')

ccessfully signs up and is take

if event == 'LogIn': i

values['username_entry'] i
hashlib.sha256(str(values['password_entry']).encode('vtf-8')).nhexdigest()

username
password

file = open('vserinfo.txt', 'r')

line = e.readline()
while line '= (username + "\n") and line != "':
line = file.readline()

if file.readline() == (password + "\n"):
window[f'-COL2-'].update(visible=False)
window[f'-COL4-"].update(visible=True)
window.FindElement('username_entry').update('*)
window.FindElement('password_entry').update("')

email = Tile.readline() .rstrip(*\n')

window.FindElement("

elif file.readline() ==
window.FindElement('login_error').update('Error: Invalid username/password!')

else:
- window.FindElement('login_error').update('Error: Invalid usel‘name/passwm‘:l!|’)

Now, when | log into the account with the username ‘username123’, the message is
correctly displayed at the top of the screen:

2 Revision App - *

Welcome username123

Create Set

Next, | have created temporary
placeholder layouts for each of the
features to allow me to test the

functionality of the buttons: ManageAccount = [sg.Text('Manage Account')]

CreateSet = [sg.Text('Create Set')]
MySets = [sg.Text('MySets')]
ProgressTracker = [sg.Text('Progress Tracker')]

105

| have also added these layouts as columns:

Isg.Column(CreateSet, key='-COL5-', visible=False), sg.Column(MySets, key='-COL6-', visible=False), sg.Column(ProgressTracker, key='-COL7-', visible=False), sg.Column(ManageAccount, key='-COL8-',

visible=False)]]

| have then told the program that if one of the buttons is pressed, the relevant columns
(layouts) should be made visible/invisible:

if event == 'CREATESET':
window[f'-COL4-'].update(visible=False)
window[f'-COL5-'].update(visible=True)

if event == "MYSETS':
window[f'-COL4-'].update(visible=False)
window[T'-COL6-'].update(visible=True)

it event == 'PROGRESS':
window[f'-COL4-'].update(visible=False)
window[f'-COL7-'].update(visible=True)
if event == "ACCOUNT':
window[f'-COL4-'].update(visible=False)
window[f'-COL8-'].update(visible=True)

| have next implemented the functionality of the log out button, by updating the layout to
the Start Screen and setting all of the variables to empty strings (for security reasons):

if event == 'LOGOUT':
window[f'-COL4-"'].vupdate(visible=False)
window[f'-COL1-'].vupdate(visible=True)

Username v
password
password_wvalidation = "'
email =

When | then ran the program to carry out the second iteration of testing for the main menu,
| ran into an error:

2 Error creating Column layout — X

Error creating Column layout
Your row is not an iterable (e.g. a list)

Instead of a list, the type found was <class

‘PySimpleGUI.PySimpleGUI.Text™

The offensive row =
<PySimpleGUI.PySimpleGUI.Text object at 0x000002811BA964C0>
This item will be stripped from your layout

Error

106

| realised that this was because | hadn’t put two square brackets around the temporary
layouts | made earlier, so | added them and it solved this issue:

CreateSet =
MySets
ProgressTracker =
ManagelAccount =

[[sg.Text('Create Set')]]
[[sg.Text(MySets')]]

[[sg.Text('Progress Tracker')]]
[[sg.Text('Manage Account')]]

Now when | ran the program and carried out the following tests (evidence for which can be
found in the testing evidence PowerPoint), there were no errors.

Test

Number

4.2.1

4.2.2

4.2.3

42.4

4.2.5

4.2.6

Test Item

Selection of option
via ‘new_set’
button

Selection of option

via ‘my_sets’ button

Selection of option
via
‘progress_tracker’
button

Selection of option
via
‘manage_account’
button

Selection of option
via ‘log_out’ button

Selection of option
via ‘Exit’ button

Test

Data
Mouse
click

Mouse
click

Mouse
click

Mouse
click

Mouse
click

Mouse
click

Expected Result

Layout will be
updated to
SETNAME, so the
user will be taken to
a different screen.

Layout will be
updated to SETS, so
the user will be taken
to a different screen.

Layout will be
updated to
PROGRESS, so the
user will be taken to
a different screen.

Layout will be
updated to
ACCOUNT, so the
user will be taken to
a different screen.

User will be logged
out and taken back
to the start menu
(layout is updated to
STARTMENU)

App will close as
event loop is broken.
User will be
automatically logged
out.

Justification

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Checking whether
the button
functions properly
(i.e. updates the
layout to the
corresponding
option)

Actual Result

The layout was
updated
correctly.

The layout was
updated
correctly.

The layout was
updated
correctly.

The layout was
updated
correctly.

The layout was
updated
correctly, and
the user was
logged out.

Button not
present due to
a change in my
original plan (as
detailed in the
development
section).

107

Main Menu — Review

Stakeholder feedback

| consulted two of my stakeholders, Vivek and Marcus, about the main menu design as this
is an important feature of my program and it a key success criterion. They both said they like
the layout as it matches their requests made earlier for previous layouts. They also said that
the buttons work as intended.

Success Criteria
After creating the layout of the main menu, | have met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.
e SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.
e SC9 - The stakeholder would like the system to have a clear main menu.

Changes made to original plan

| have removed the Exit button from the main menu (as stated earlier) to reduce the
amount of code that needs to be written, reduce clutter and increase security (by
encouraging the user to log out before exiting the program), as it is not needed anyway.

Create Set — Stage 1
Firstly, | need to create the CreateSet layout. The layout will follow the general convention
of previous layouts as this is what my stakeholders appear to like.

CreateSet = [[sgq.Text('Create your revision set:', font=("Helvetica", 18, "bold"), size=(45, 2), justification='center')],

[sg.Text("Set Name:", sizé=(12,l), foni:(“Helvetica“, 13)), sg.InpuTText(kev:'newsetnaﬁe‘, size=(100,2))1,
[sg.Button('Back’, font=("Helvetica", 13), key='BACK3', border_width=5, size=(6, 1), button_color=('white', 'red')), sg.Text("
sg.Button('Confirm', font=("Helvetica", 13), key='confirmset', border_width=5, size=(é, 1))1,

sg.Text('', key="newset_error', font=("Helvetica", 15, "bold"), text_color='red',K justification='center',6 size=(38,3))1]

The result is a layout looking like this:

2 Revision App — X

Create your revision set:

Set Name:

108

| have also created the MySets layout to allow me to test whether the names of sets being
created are being written to the csv file successfully and the set names are displayed on the
screen correctly.

MySets = [[sqg.Text('My Sets', font=("Helvetica", 13, "bold"), size=(45, 1), justification='center')],

, font=("Helvetica", 13), key='SET1', border_width=5, size=(50, 2
, Tont=("Helvetica", 13), key='SET2', border_width=5, size
[sg.Button('Set , font=("Helvetiea", 13), key='SET3', border_width=5, size

[sg.Button('set _
[sg.Button('Set , font=("Helvetica", 13), key="SET4", border:width:E, size

[sg.Button('Set

(L ST

r
:
r
:

[sg.Button('Set , Tont=("Helvetica", 13), key='SET5', border_width=5, size

2))1
2131
2))]
2)]]
2131
[sg.Button('Back', font=("Helvetica", 13), key='BACK4', border_width=5, size , 1), button_color=('white', 'red'))]1]

The resultant layout is as shown here (the set buttons are so big to allow room for the name
of sets to be added once they are created):

2 Revision App — X

These layouts follow the same design as
previous layouts which have been decided
and modified by my stakeholders, and so |
do not feel the need to contact my
stakeholders about the design of these
layouts.

| have also realised that no CSV file is being made upon account creation, so to fix this, |
need to add a line of code that creates a CSV file specific to that user once their account has
been created. Firstly, | have imported the csv library to allow us to use csv files in python:
import cswv

109

| have then added a piece of code which creates a CSV file called the users username (which
must be unique) upon account creation:

if valid_details == True:
file = open(Iusellnfo txt', 'at+')

fiLe.write(username + \n]
file.write(password + "\n")
file.write(email + "\n")
fiLe.close(J

file = open(f {username} csv", "x")

file.close(]

creates a CSV file specific to that uvser.

window.FlndElement(newusername').update(*'"')

window.FindElement (' newpassword').update(*")

window.FindElement('password_re-entry').update('")

window.FlndElement(newemall J Update()

window.

w1ndow[f —coL3-] update(v151hle FaLEeJ
w1nd0w[f COLd-] update(v151hle True)

w1ndow F1ndElement(welcomemsg J update(f Nelcome {username}' J)

| have tested this and when | create a new account with the username ‘123’, a new CSV file
is created called ‘123.csv’ as intended:

Bradley Makinson MEA
= 123.csv

. MNEA - Revision App.py

= userinfo.bxt

The way | am planning the CSV file for each user to be structured is as follows:

no of sets,setlname,set2name,set3name,setdname,set5name
setnumber,term,definition

setnumber,term,definition

setnumber,term,definition

setnumber,term,definition

setnumber,term,definition

setnumber,term,definition

etc..J

So therefore, | will need write the initial number of sets (0) and set names (which will be
nothing yet but | need to initialise their presence) to the users CSV file upon account
creation.

file = open(f"{username}.csv", "x")

file.close()

with open(f"{username}.csv", mode="w") as userfile:
userfile = csv.writer(userfile, delimiter=',"')
vserfile.writerow(['0O', "', "', "', "’ "])

However, this then writes a blank line as well as the desired line of information into the file:

110

]

J'iJ'J'J'

| had a look online to solve this issue and found the website
https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-
lines-between-each-row which made me realise that | need to add a newline parameter to
stop this from happening:

with open(f"{u-ser'narne}.c.sv.r"; mode="w", newline="') as userfile:
userfile = csv.writer(userfile, delimiter="',"')

userfile.writerow(['®*, ", "', """, "', '"']]
Opens the vsers CSV file and writes the first row to the file, consisting of the number of sets the user| vas
(initially @), as well as 5 empty slots for set names to be inserted upon creation.

I am now ready to carry out iteration 1 of my testing of the create set feature (testing
evidence of this can be found in the testing evidence powerpoint):

Test
Item

Test
Number

Justification Actual Result

Expected

Result

5.1.1 Entering String App will allow Checking whether the user | The program
name of ‘Data user to enter can enter a string into the successfully allows the
set into Structures’ | these strings into = textual input boxes that user to input a name for
jcextual VALID the relevant input should.appe.ar or.1 scrgen their set into the input
input DATA boxes (there is no invalid string box
boxes for a set name — it can be ’
anything).
5.1.2 Selection Mouse Nothing will To check whether the The confirm button
of button click happen as the confirm button on screen appears in the correct
to create functionality of appears in the correct place place and is pressable.
set W'Ith the button has and allows user interaction. Nothing happens when
the given not been e
. it is clicked yet because
name implemented yet. .) -
its functionality has not
been implemented.

Create Set — Stage 2
Now that we have everything in place, the next stage involves implementing the
functionality of the create set feature.

| have started by quickly implementing the functionality of both back buttons on the two
displays created in stage 1.

it event == 'BACHK3':

window[f'-COL5-

window[f'-COL4-

I Updates the layout
if event == 'BACH4&4':

window[f'-COL&6-"'].update(visible=False)

window[f'-COL4-"'].update(visible=True)

- b o M M
Tes T MySets di

.update(visible=False)
.update(visible=True)

- -
Lreateset

']
']

E . o J - - T N
from the display

11l | o
= vpaa Che Tihe

LayouwtT Jrom SpLay

111

https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-lines-between-each-row
https://stackoverflow.com/questions/3348460/csv-file-written-with-python-has-blank-lines-between-each-row

| have then decided to remove the number of sets from being stored in the users CSV file as
| feel that it is not necessary and is thus just taking up unnecessary space —the program can
just check for empty spaces in the name slots in the CSV file and if there is an empty space,
the set name can be inserted there, and if not, the set limit has been reached.

vith open(f"{username}.csv", mode="w", newline='') as userfile:
userfile = csv.writer(userfile, delimiter=',"')
vserfile.writerow([* ', "*, "', "'","'])

I next need to add an error message slot to the layout to inform the user if there has been
an error:

CreateSet = [[sg.Text('Create your revision set:', font=("Helvetica", 18, "bold"), size=(45, 2), justification='center')],

[sg.Text("Set Name:", size=(12,1), fTont=("Helvetica", 13)), sq.InputText(key='newsetname',6 size=(100,2))],
[sg.Button('Back', Tont=("Helvetica"”, 13), key='BACK2', border_width=5, size=(&, 1), button_color=('white', 'red')), sg.Text("
sg.Button('Confirm', font=("Helvetica", 13), key='confirmset', border_width=5, size=(&, 1))}1,
[sg.Text('', key='newset_error', font=("Helvetica", 15, "bold"), text_color='red', justification='center', size=(38,3))]1]
- e e S ey Sl Wt |

o Define he CregteSet lau -
Defines the CreateSet layou ich consists entry b the sz 2, confi

| next need to create some validation of the users input for their desired set name — ensure
that the entry field is not left empty upon the confirm button being pressed, and ensure
that the user has not exceeded their 5 set limit before creating the set.

| have started with the simpler of the two — checking if the user has inputted anything:

if event == 'confTirmset':

setname = values['newsetname']

if setname == "':
window.FindElement('newset_error').update('Please enter a set name.')

And when | press the submit button without inputting anything, the error message correctly
displays on screen:

2 Revision App = X

Create your revision set:

Set Name

Next, if the user has entered something as the set name, | have ensured that the user has
not exceeded their 5 set limit:

112

else:
csv_file = open(f"{username}.csv", mode="pr")
rows = list(csv.reader(csv_file))

the rows are extracted from the users file in a 20 array
names = rows[0]
the Ffirst row is saved as the names variable

csv_Tile.close()
csv_Tile = open(f"{username}.csv", mode="w", newline='")
the file is overwritten

averuthing nreviously in
everything previously in

for i in range (0,5):

kg the program iterates through each of the 5 name slots (i.e. the 5 items) in the array.
if names[i] == '' and inserted == False:
names[i] = setname
kg the names array now includes the desired set name
rows[0] = names
kg this array is then vpdated in the 20 array
csv_Tile = (csv.writer(csv_file)).writerows(rows)
bg and the 20 array is fully written back to the file
inserted = True
bg once the name has been inserted, it does not need to be inserted again. the insertied variable is used to ensure this
else:
i+=1
if inserted == False:
window.FindElement('newset_error').update('You have reached your limit of 5 sets.')
csv_Tile = (csv.writer(csv_fTile)).writerows(rows)
bag if the name could not be inserted it indicates all slot e Ffull and so the vser has reachec
bag this is displayed on the e message and then the or [ents of the file are written bac
| then tested my progress so far on the second iteration of the create set feature (testing
evidence can be found in the powerpoint):
Test Expected Justification Actual Result
Number Result

5.2.1 Entering String App will allow user | Checking whether the The program
name of ‘Data to enter these user can enter a string Successfu”y allows the
set into Structures’ | strings into the into the textual input user to input a name for
jcextual VALID relevant input boxes that shoulq appear ., i ot into the input
input DATA boxes on screen (there is no box
boxes invalid string for a set ’

name — it can be
anything).

5.2.2 Selection | Mouse Name of set will be | To check whether the The program correctly
of button | click written to the users | button correctly createsa | stores the set name into
to create personal .csv file, set for the user with the the users csv file but
set W.Ith and the relevant given |:1ame, stores the does not yet update the
the given button on the name in the users .csv buttons on the MvSets
name choose set layout file, updates the button | ¥

will be updated to text on the ‘MYSETS’ ayout.
show the new set layout, and updates the
name. relevant variables (i.e.
num_of_sets).
| realised from these tests | need to clear the entry field whenever a field is created and take
the user back to the main menu:
else:
window[f'-COL5-"'].update(visible=False)
window[f'-COL4-"].update(visible=True)
window.FindElement('newset_error').update('')
window.FindElement('newsetname') .vupdate("")
if @ set is successfully created, the entry field/error messaoge is cleared and the layout is updated to the main me

| have also decided that | am not going to implement the updating of the set buttons yet as
this would be more effective if just done when the user presses the mysets button.
Therefore, | have decided to conclude that the second iteration of my create set testing (test

5.2.2) has been successful.

113

Create Sets — Review

Stakeholder feedback

| contacted one of my stakeholders, Vivek, for his opinions on the overall experience of
creating sets. He said that whilst the 5 set limit could be frustrating (this is something | will
look into increasing further in the future), the program itself works effectively, the
validation is effective, and the layout is simple and easy to understand. As a result, | am not
going to make any changes to this feature as a result of stakeholder feedback.

Success Criteria
I have now completed the feature which allows users to create new sets of flashcards with a
given name. In terms of my success criteria, | have so far met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.
e SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.
e SC9 - The stakeholder would like the system to have a clear main menu.
| have now also partially met:
e SC3 - The stakeholder would like the system to allow them to create their own sets
of flashcards.
However, to fully meet this | will need to allow the user to add flashcards to the sets they
have created (which | will be doing next).

Changes made to original plan

| have decided that | am going to update the text on the buttons on the MySets layout when
the button to take the user to this page is pressed (as | feel this will be more efficient) rather
than every time a new set is made. | have also removed the need for the integer number of

sets being stored in the users CSV file, thus saving space and making my program a bit more
efficient.

Adding flashcards to sets — Stage 1

Now that the user can create sets with a given name, | need to add the ability for them to
actually add flashcards to those sets which can be revised. There will be an ability to add a
flashcard to a set once that set has been clicked on from the MySets menu. However, first |
need to update the text on the buttons on this display to show the set names so the user
knows which set is which.

To do this, | have created a subroutine (as | initially planned to) called set_names that
updates the buttons as this subroutine might be used again later on in my development. If it
is not then | can just go back and put the code in the event loop instead of as a separate
subroutine in order to improve efficiency.

114

def set_names(username):
file = open(f'{username}.csv', mode='r"')
rows = list(csv.reader(file))

names = rows[0]

file.close()

for i in range (0,5):
window.FindElement(f'SET{i+1}').update(f'Set {i+1} - {names[il}')

| have then called this subroutine when the MySets button is pressed, so that now each of
the buttons successfully displays all set names in the correct order.

it event == "MYSETS':
window[f'-COL4-'].update(visible=False)
window[f'-COL6-"'].update(visible=True)

If the "My Seis"' bwition is pressed, the Main Menu layout is made invisible and the 'MYSETS' layout 1
set_names(username)
set_names svbroutine is called to vpdate the set names on the buttons on the MySets layout
Data Structures,Binary,12345,123456789,Hex
? Revision App — x

Set 1 - Data Structures

Set 2 - Binary

Set 3 - 12345

Set 4 - 123456789

Set 5 - Hex

| have then created the general layout for all sets where the user can choose what they
would like to do with a set, which has also then been added to the column layout.

Set = [[sg.Text('Please choose an option for this set:', font=("Helvetica", 18, "bold"), justification='center', size=(45,1))1],

[sg.Text(" . "), sg.Button('Add flashcards', font=("Helvetica"™, 13), key='ADDFLASHCARDS', border_width=5, size=(16, 3))1,

[sg.Text(" "), sg.Button('Revise flashcards', font=("Helvetica", 13), key='REVISE', border_width=5, size=(16, 3))1,
[sg.Text(" "), sg.Button('Quiz', font=("Helvetica", 13), key='QUIZ', border_width=5, size=(16, 3))],

[sg.Button('Back', font=("Helvetica", 13), key='BACK5', border_width=5, size=(5, 1), button_color=('white', 'red'))]]

| have then implemented the functionality of all of the set buttons (so that they take the
user to a screen where they can choose what they wish to do with that set):

115

it event == 'SET1':
window[f'-COL6-'].update(visible=False)
window[f'-COL9-'].update(visible=True)
set = 1

if event == 'SET2':
window[f'-COL&-"'] .update(visible=False)
window[f'-COL9-'].update(visible=True)
set = 2

it event == 'SET3':
window[f'-COL6-"'].update(visible=False)
window[f'-COL9-'].update(visible=True)
set = 3

if event == 'SET4':
window[f'-COL&6-'].update(visible=False)
window[f'-COL9-'].update(visible=True)
set = 4

it event == 'SET5':
window[f'-COL6-'].update(visible=False)
window[f'-COL9-'].update(visible=True)
set = 5

The resultant layout looks like this, which is again in line with my stakeholders previous
requests regarding layouts:

2 Revision App - X

Add flashcards

Revise flashcards

| have also then implemented the functionality of the back button (in the same way as

previous back buttons).

if event == "BACHS5':
window[f'-COLé-"].update(visible=True)
window[f'-CcOL9-"].update(visible=False)

| next need to create the add flashcard layout before | move onto stage 2 which is where |
will implement the functionality of the add flashcards feature:

AddFlashcard = [[sg.Text('New Flashcard:', font=("Helvetica", 18, "bold"), justification='center', size=(45,1))1,

[sg.Text("Term:", s.ize=(‘?,1], funt=("H.e1.vetica", 14)), sg.InputText(key='term_entry', size=(100,2))1,
[sg.Text("Definition:", size=(9,1), font=("Helvetica", 14)), sg.Multiline(key='definition_entry', size=(100,4))],
[sg.Button('BACK', font:(”Helveti.ca“, 15), key='BACK&é', button_color=('red', 'white')), sg.Text('', size=(15,2)), sg.Button('Add', key='ADD', font=("Helvetica", 15)

[sg.Text('', key='addflashcard_error', funt=("He.'Lvetica'

"bol:l.”J, text_color="red', justification='center', size=(38,3))1]

This layout now appears like this (and the error message will appear underneath in large
bold red text when necessary):

116

? Revision App

Term:

Definition:

Test
Number

New Flashcard:

Test
Item

| can now carry out the first iteration of testing:

Test Data

Expected

Result

Justification

Actual Result

6.1.1 Entering String ‘Static’ App will allow To check the user Allows the user to enter
term and String ‘Size user to enter can enter these details into the
definition cannot these strings into characters into the input boxes.
into textual | change during | the relevant input | two textual input
input boxes | runtime’ boxes boxes.

VALID DATA

6.1.2 Selection of | Mouse click Nothing will To check the ‘add’ The values inputted
button to happen as the button appears remain on the screen and
add functionality of correctly formatted

flashcard to
set

the button has
not been
implemented yet.

on the display and
can be interacted
with by the user.

nothing is written to the
file, as expected.

Adding flashcards to sets — Stage 2

Now that | have everything in place, | can begin implementing the functionality of this
feature.

| have started by again implementing the functionality of the back button:

it event == 'BACHK&6':
window[f'-cOL9-'].update(visible=True)
window[f'-COL10-"].update(visible=False)
window.FindElement('term_entry').update('")
window.FindElement('definition_entry') .update('")

= raKes The user Jrom Tthne Adarlasncard L a Tine 28l Layoul, and cliears Tne 1nputl Jlelds.

| have then written a piece of code which saves the user inputs as variables, and writes a
row to the CSV file containing the set number, and the term and definition, and then clears
the entry fields:

117

if event == "ADD':
term = values['term_entry']
definition = values['definition_entry"']

saves both of the valuves entered by the uvser as variables
file = open(f'{username}.csv', mode = 'a')
opens the vsers CSV file to write to append to.

file = (csv. wrlter{flle]] writerow([set, term, definition])

5 - o - F -
writes the] lashcard data to the _:":.'.

w1nduw.F1ndElement(term_entry') .update('"')
window.FindElement('definition_entry').update('")

I . p——— T A
clears the input Ffields

However, when | add flashcards to set 1, and enter ‘123’ into the term field and ‘12345’ into
the definition field, this is the result in the CSV file:

Data Structures,Binary,12345,123456789, Hex
1,123,"12345

The issue here is, the definition is being written with a line break, and then 2 extra empty
lines after it, as well as quotation marks. | have tried changing the vertical size of the
multiline element to 1 to check if this had an effect, which it did not:

AddFlashcard = [[sg.Text('New Flashcard:', font= ('Helvetica", 18, "bold"), justification='center', size=(45,1))1,

q he fon en which is centralised
1f text atf the "'uu 1f the S een _which 15 centralised.

Creates a block
[sg.Text("Term:
[sg Text(Def

sg.InputText(key="term_entry', size=(100,2))1,

14)),
*definition_entry', size=(106,1))1,

, 59.Button('Add', key='ADD', font=("Helvetica"

hem to their file
m to CSV

', 51ze‘k38 SJJEJ ‘

It still writes extra empty lines. | have next tried using a technique | have learnt previously in
this report — the .strip() function:
if event == '"ADD':
term = values['term_entry']
definition = (values['definition_entry']l).strip("\n")
saves both of the values entered by the vser as variables
print{definition]
file = open(f'{username}.csv', mode = 'a')
opens the users CSVY file to write to append to.
file = (csv.writer(file)).writerow([set, term, definition])
writes the flashcard data to the file
w1nduw.F1ndElement('term_entrv'].update("]
window.FindElement('definition_entry').update("")

H T o AT A
clears the input fields

This has removed one of the empty lines and the quotation marks, but | still have another
empty line being written to the file:

118

Data Structures,Binary,12345,123456789, Hex
1,123,12345

1,123,12345

1,123,12345

| tried putting another line break within the strip function:

definition = (valves['definition_entry']).strip({"\nin")

However, this made no change. | then added the newline parameter to the file opening and
it worked — there were no longer any blank lines left in between rows:
if event == "ADD':

term = values['term_entry']

definition = ((valuves['definition_entry']).strip('\n"))

saves both of the valves entered by the vser aos variables
file = open(f'{username}.csv', mode = 'a', newline='"')

opens the vsers CSV Ffile to write to append To.

file = (csv.writer(file)).writerow([set, term, definition])
writes the flashcard data to the File

window.FindElement('term_entry').update("")
window.FindElement('definition_entry').update('"')

H o~ amr R T E5 mT Al
clears Thne 1npuT Jield

Now that problem is solved, | can add some validation to the user inputs (which on this
occasion will basically just consist of checking whether the user has actually inputted
something, and updating the error message if not).

if event == "BACK&6':

window[f'-COL9-"].update(visible=True)

window[f'-CcOL10-'].update(visible=False)

window.FindElement('term_entry').update('")

window.FindElement('definition_entry').update(""')

window.FindElement('addflashcard_error').update('')
Takes the vuser from the AddFlashcard layout to the Set layout, and clears the input fields and error message.
if event == "ADDFLASHCARDS':

window[f'-coL18-'].update(visible=True)

window[f'-COL9-'].update(visible=False)

Tf the pycer wiche a add Tlasheard a a and theu ore ha hio an a do .- a Tauou vill he wundoted to a ralea n
1y The uvser wisnes To aoo jlashcards To a sert ana They press The DuttTon To do so, The LlayoutrT will pe wvpaatTed To Thne relevantT L

if event == "ADD':
term = values['term_entry']
definition = ((values['definition_entry']).strip('%n'))

sgwes both of the values entered by the vser as variables
if term != '' and definition !='":
file = open(f'{usernamel.csv', mode = 'a', newline='"')
opens the vsers CSV file to write to append to

file = (csv.writer(file)).writerow([set, term, definition])
writes the flashcard data to the file
window.FindElement('term_entry').update('"')
window.FindElement('definition_entry').update("")
clears the inpput fields
window.FindElement('addflashcard_error').update('")
& clears the error message
else:
window.FindElement('addflashcard_error').vupdate('Please fill in both fields.')

displays an error message

The program now check whether the user has inputted something in both fields, and if they
haven’t, an error message is displayed. These error messages are cleared if the user backs
off the page/enters details correctly. No other validation is required for this as the user is

119

allowed to enter whatever they wish as their term and definition, as long as it is not left
blank.

| am now ready to carry out the 2" iteration of my testing on this feature:
Test Test Test Data Expected Justification Actual Result

Number Item Result

6.2.1 Entering String ‘Static’ App will allow To check the user can | Allows the user to enter
term and String ‘Size user to enter enter charactersinto | these details into the
definition cannot these strings into the two textual input input boxes.
into textual | change during @ the relevant input = boxes.
input boxes | runtime’ boxes

VALID DATA

6.2.2 Selection of | Mouse click Term and To check the ‘add’ Term and definition,
button to definition will be button writes the along with set number,
add written to the term and definitionto | 4. successfully written
flashcard to 'relatlve positions 'the correct posm?ns to the file and the input
set in the users in the users .csv file

boxes cleared. Also,

personal .csv file, when pressed. . ’
when an input box is

and the term and

definition textual left blank, the error

input boxes will message correctly

be cleared. displays and then clears
when the issue is
resolved.

Adding flashcards to a set — Review

Stakeholder feedback

| have contacted one of my stakeholders and sent them this prototype of my solution for
them to test. They had no issues with this feature and said that the information they
entered was written to their CSV file successfully. However, he did recommend that straight
after creating a set you are taken to the add flashcard screen so that you can add flashcards
to a set straight after creating it. | agree this would be a good idea to reduce confusion and
make my solution quicker and easier to use for students who want to quickly make a set,
add flashcards, and revise them.

120

To do this, | simply need to update the layout once a set has been successfully created:

if event == 'confirmset':
if the button to confirm the vsers desired set name 1is pressed...

setname = values['newsetname']

the value they entered in the entry field
inserted = False
this is the inser
and thus sh
if setname == '':

window.FindElement('newset_error').update('Please enter a set name.')

rarinble vead 1 er 0 all T ar Fhe a name h haan wri o n ha fille
~ted variaoble vsed later on to tell N whether the set name has been written to the file,
ther the ha

1 e
yoanr h chad thei at 1
whet e vuser has reached their 5 set

if the vser did not enter a name before pressing confirm, the error message is vpdated to alert the vser of this.
else:

csv_file = open(f"{username}.csv", mode="r")

rows = list(csv.reader(csv_file))

the rows are extracted from the users file

names = rows[0]

the first row 1s saved as the names variable

csv_Tile.close()

csv_Tile = open(f"{username}.csv", mode="w", newline='")

in a 20 array

creanJ_.. previovsly in the file is overwritten

for i in range (8,5):

the program iterates through each of the 5 name slots (i.e. the 5 items) in the array.
if names[i] == '" and inserted == False:

names[i] = setname
the names array now includes the desired set name

rows[0] = names

this array is then vpdated in the 20 array
csv_file = (csv.writer(csv_file)).writerows(rows)
and the 20 array is fully written back to the File
inserted = True
once the name has been inserted, it does not need to be inserted again. the inserted variable is vsed to ensure this.
else:
1+=1
if inserted == False:

window.FindElement('newset_error').update('Youv have reached your limit of 5 sets.')
csv_Tile = (csv writer(csv_file)).writerows(rows)
if the name could not be inserted it indicates all slots were full and so the user has

. - o ile o an bock into i
message and then the original contents of the file are written back into It.

mranched thainr o THimi
reached their 5 sef limif.

this is displayed on the eri

else:
window[T'-COL5-"'].update(visible=False)
window[f'-COL10-"].update(visible=True)
window.FindElement('newset_error').update('")
window.FindElement('newsetname').undate(* ')

However, when | then add a flashcard, the set number is not correctly written to the users
CSV file:

1 Data Structures,Binary,12345,123456789, Hex
3 1,5tatic,5ize cannot change during runtime
<gclass 'set'>,123,12345

| realised this is because it has not been declared yet as the user has not clicked on one of
the set buttons to get to the add flashcard screen. To fix this, | ensured | declared the set
variable in the loop as the index position of the insertion + 1:

if names[i] == '' and inserted == False:
names[i] = setname
the names array now Includes the desired set name
rows[0] = names

i T han nundated in the 20 o
Tnis array 1s Thnen upaateda 1n The ZU0 array

csv_Tile = (csv.writer(csv_file)).writerows(rows)

and the 20 array is fully written back to the file

inserted = True

once the name has been inserted, it does not need to be inserted again. the inserted variable is wvsed to ensure this
set =1 + 1

declares the set number so that flashcards are svccessfully written to the vsers CSV File

when they are taken to the add flashcard screen.

And the correct set number is now successfully written to the CSV file:

1 Data Structures,Binary,12345,12345678%, Hex
2 1,5tatic,5ize cannot change during runtime
3 3,123,12345

121

Success Criteria
I have now successfully added the ability for the user to add flashcards to the sets they have
created, as well as received and implemented more feedback from my stakeholders on this
feature. So far | have met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.
e SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.
e SC9 - The stakeholder would like the system to have a clear main menu.
e SC3 - The stakeholder would like the system to allow them to create their own sets
of flashcards.
e SC4 - The stakeholder would like the system to view sets of flashcards they have
already created.

Changes made to my original plan
For this feature, | did not really make any changes to my original plan in terms of the
interface or the functionality of the feature.

Revising flashcards — Stage 1

| first need to set up the layout for this feature, which will be one of the hardest to set up
due to the complexity of its design. | am planning to have a white square in the centre of the
screen which will contain the terms and definitions (meant to mimic a white paper
flashcard, helping to give the user an authentic experience), and then buttons underneath
for next/previous flashcard and ‘flip’ flashcard. | will also be adding a delete flashcard
feature which will also appear as a button here.

| have started by creating the white background text box where the term/definition will be
inserted:

ReviseFlashcard = [[sg.Text("", font=("Helvetica", 14, "bold"), justification="center', key='flashcard_text', border_nidthes, size=(37,10), hackeround_color="white')]]

This appears like this on the screen:

2 Revision App - X

122

| have then created the buttons as well as a back button underneath:

ReviseFlashcard = [[sg.Text('"', font=("Helvetica", 14, "bold"), justification='center', key='flashcard_text', border_width=5, size=(37,10), background_color="white')],
[sg.Text(' '), sg.Button('Previous', key='PREVIOUS', font=("Helvetica", 12), size=(7,1)), sg.Button('Mext', key='NEXT', font=("Helvetica",
sg.Button('Flip', key="FLIP', font=("Helvetica", 12), size=(7,1)), sg.Button('Delete', key='"DELETE', font=("Helvetica", 12), size=(7,1))1,

[sg.Text(''3],
[sg.Button('BACK', font

("Helvetica", 15), key='BACK7', button_color=('red', 'white'))]]

L outT Jor revising nsisting a a wnite Text Do

The layout now appears like this:

2 Revision App - x

Delete

Expected

Result

After testing this prototype, | have filled in the first iteration of testing:
Actual Result

Justification

7.1.1 Flip Mouse | Nothing will To check whether the | Button is pressable and
flashcard click happen as the button appears in the present in the correct position,
via functionality of the | correct position on but nothing happens when it is
button button has not screen and can be pressed.
press been implemented interacted with by the

yet. user.

7.1.2 Viewing Mouse | Nothing will To check whether the | Button is pressable and
the next click happen as the button appears in the present in the correct position,
flashcard functionality of the | correct position on but nothing happens when it is
viaa button has not screen and can be pressed.
button been implemented | interacted with by the
press yet. user.

7.1.3 Viewing Mouse | Nothing will To check whether the | Button is pressable and
the click happen as the button appears in the present in the correct position,
previous functionality of the | correct position on but nothing happens when it is
flashcard button has not screen and can be pressed.
via a been implemented = interacted with by the
button yet. user.
press

7.14 Deleting Mouse | Nothing will To check whether the | Button is pressable and
flashcard | click happen as the button appears in the present in the correct position,
via a functionality of the | correct position on but nothing happens when it is
button button has not screen and can be pressed.
press been implemented | interacted with by the

yet.

user.

123

Revising flashcards — Stage 2
| can now begin to implement the functionality of this feature.

| have started by reading the term and definition from the users CSV file and displaying the
term on the screen. The flashcard_status variable determines whether the flashcard is
currently showing its term or definition (so that the program knows what to flip to when the
flip button is pressed).

it event == 'REVISE':
window[f'-COL11-'] .update(visible=True)
window[T'-COL9-"'].update(visible=False)

flashcard_status-z 'term’

file = csv.reader(open(f'{usernamel}.csv’, moﬂez'r', newline=""))

rows = list(file)

terms = []
definitions = []

for i in range (1, len(rows-1)):

if rows[i][p] == set: -
terms = terms.append(rows[i][1])
definitions = definitions.append(rows[i][2])

print(terms)
print{definitions)

However, when | ran this piece of code and went to revise set 1 with the following contents
in the CSV file,

Data Structures,Binary,12345,123456789,Hex
1,5tatic,5ize cannot change during runtime
1, 12, 123

it came back with the following error:

Traceback (most recent call last):
File "C:/Users/bradl/PycharmProiects/Proiects/Bradley Makinson MWEA/MNEA - Rewision App.py", line 423, in <module>
for 1 in range (1, Llen(rows-1)):
TypeError: unsupported operand type(s) for -: 'list' and 'int'

| realised this was a small error as | was trying to subtract an integer from an array, so | fixed
this by moving the -1 outside of the len() function:

for i in range (1, len(ruwsl—ll:'

Then when | did run the program again, | got no error but nothing was being printed
implying either the program was not entering the for loop or, more likely, not entering the if
statement. To investigate this, | inserted a few print statements so | could track the
program:

124

if event == 'REVISE':
window[f'-COL11-'].update(visible=True)
window[f'-COL9-"].update(visible=False)

updates the Llayout to the revise flashcard layout
flashcard_status = "term'
this variable is to determine whether the

Flashcard is currently displaying its term or definition
file = csv.reader(open(f'{username}.csv', mode='r', newline=""'})
opens the CSV Ffile and creates a CSV reader.
rows = list(file)
extrocts the contents of the file into a 2D
terms = []
definitions = []
these 2 lists will store all of the terms/definitions for a parti
for 1 in range (1, len(rows)-1):
print("entered for loop")
iterates through the file (ignoring the first row as this does not contain
if rows[il[e] == set:
print("entered if statement")
terms = terms.append(rows[i1[1])
definitions = definitions.append(rows[il[2])

appends all terms/definitions associated with the relevant set name to the correct list.
print(terms)

print(definitions)

to test whether things are being put into the correct array

The resultant output was the following:
entered Tor loop

This shows the program is not entering the if statement. This must be because there is an
issue with the parameter | have set, so | changed around the print statements again to
investigate this:

for i in range (1, len(rows)-1):

print(set)
print(rows[il[8])
iterates through the file (ignoring the first row as this does not contain flashcards
if rows[i][08] == set:
terms = terms.append(rows[i][1])
definitions = definitions.append(rows[il1[2])
appends all terms/definitions associanted with the relevant set name to the correct list)|
print{terms)
print(definitions)
to test whether things are being put into the correct array

When | ran the program again, | received the following output:

1
1

This shows that set and rows[i][0] are equal, so it should enter the if statement.
| then added another ‘flashcard’ to the CSV file that was not in set 1:

Data Structures,Binary,12345,123456789,Hex
1,5tatic,5ize cannot change during runtime
1, 12, 123

2, 22, 222

The output | received now was:

125

e e e

This implies that the range in my for loop is incorrect as it is not picking up the final
flashcard in the file, so | removed the -1:

for 1 in range (1, len(rows)):

| then realised the value extracted from the 2D array was not an integer, and so need to be
made one so the comparison could work as intended:

if int(rows[il[8]) == set4

Now when | run the code | get the following outputs ending in an error:

1
1
entered 1T statement
None
None
1
1
entered if statement
Traceback (most recent call last):
File "C:/Users/bradl/PycharmProjects/Projects/Bradley Makinson NEA/NEA - Revision App.py", line 429, in <module>
terms = terms.append(str({rows[i1[11))
AttributeError: 'NoneType' object has no attribute 'append'

I quickly realised this was because I, for some reason, tried to save the new lists as
variables... | changed this so that it just appended the values to the relevant lists:

for i in range (1, len(rows)):

if int(rows[i][6]) == set:
terms.append(rows[i][1])
definitions.append(rows[i][2])

5 _— e e e e aten itk Fha raloaunnt cot mame Fr0 Fho ~anroecd T

print(terms)
print({definitions)

Now when | ran the program with the following contents of the CSV file,

Data Structures,Binary,12345,123456789, Hex
1,5tatic,5ize cannot change during runtime
1, 12, 123

2, 22, 222

1, 555,5547

| get the following output:

['Static']

['Size cannot change during runtime']

['Static', " 12']

['Size cannot change during runtime', ' 123']
['Static', " 12', ' §G5']

['Size cannot change during runtime', ' 123', '55467']

This clearly shows the iterative process with the correct values from the CSV file being
added to the correct list.

126

Now that | have successfully implemented a way to extract the relevant data from the file, |
just need to work with the 2 lists (terms/definitions) to show the correct terms and
definitions on the screen. | have started by initially displaying the first term from the list on
the screen so the user can begin revising:

if event == 'REVISE':
window[f'-c0L11-'].update(visible=True)
window[f'-COL9-'].update(visible=False)

flashcard_status-: "term’

file = csv.reader(open(f'{username}.csv', mode='r', newline='"))

rows = List(file)

terms = []
definitions = []

for 1 in range (1, len(rows)):

if int(rows[i1[0]) == set:

terms.append(rows[i][1])

definitions.append(rows[i][2])

appends all terms/definitions-associated-with the relevant set name to the correct 1ist
window.FindElement (' flashcard_text').update(terms[8])

splays the first term e ee he user can begin revisin

2 Revision App — x

Delete

| now need to add the functionality of the previous, next and flip buttons. | will start with
the next button.

To do this, | need a variable that will store the current index position of the term/definition
being viewed in both lists (so that if a user wants to view a previous flashcard it can be
decremented, and vice versa). This variable will then also be reset every time a user goes to
revise a new set (as they will need to press the revise button).

127

if event == 'REVISE':
window[f'-COL11-"].update(visible=True)
window[f'-coL9-"1]. update(visible:False]

vupdates the layout to the revise flashcard layout
flashcard_status = 'term'
this variable dis to determine whether the flashcard is currently displaying its term or definition.

current_flashcard_index = 8
this variable will be uvsed
- to store the index position of

te
file = csv. Peader(open(f {username} csv', mode—'r', newllne—"]]
"S5V re

h o o ~
opens the CSV file and creates a C

rows = list(file)

extracts the contents of the file into a 20 array.
terms = []

definitions = []

eader

these 2 lists will store all of the terms/definitions for a particular set so they can be iterated through
for i in range (1, len(rows)):

iterates through the file (ignoring the first row as this does not contain flashcards)

1f int(rows[il[e]) == set:

terms.append(rows[1][1])
definitions.append(rows[il[2])

appends all terms/definitions associated with the relevant set name to the correct list.
window.FindElement('flashcard_text').update(terms[8])
displays the first term on the screen so that the vser can be revising.

| now need to add the code to detect when the next button is pressed, and what to do when
it is pressed:

if event == 'NEXT':
current_flashcard_index += 1

increments the variable to point to the index position of the next flashcard.
window.FindElement('flashcard_text').update(terms[current_flashcard_index])

P T e o~ o P - iy Falla
& gisplays The nexXxT Term an sScreen

However, | need to add something that tells the user when they have reached the end of
the set (and so there is no ‘next’ flashcard in the set) to avoid errors occurring. It seems
most logical to implement an if else statement checking whether the current flashcard index
is equal to the maximum index in the list (because if it is, there can be no next flashcard). |
will also need to add an error message to the display which will be updated to alert the user
they have reached the end of the set. This will work in a similar way to alert the user to if
they have reached the start of the set when using the ‘previous’ button. All of this being
implemented is shown below:

ReviseFlashcard = [[sg.Text('', font=("Helvetica", 14, "bold"), text_color='blue', justification='center', key='flashcard_text', border_width=5, size=(37,10), backgrou
[sg.Text(" '), sg.Button('Previous', Key='PREVIODUS', font=("Helvetica", 12), size=(7,1)), sg.Button('Next', key='NEXT', font=("Helvetica"
sg.Button('Flip*', Key='FLIP', font=("Helvetica", 12), size=(7,1)), sg.Button('Delete’', key='DELETE', font=("Helvetica", 12), size=(7,1))1,
[sg.Text('', key='"revise_error', font=("Helvetica", 15, "bold"), text_color='red', justification='center', size=(38,3))],

[sg.Button('BACK", Tont=("Helvetica", 15), key='BACK7', button_color=('red', ‘*white'))]]

Layout for revising flashcards, consisting of a white text box and 4 buttons underneath, as well as an r message and back button.
if event == "NEXT':
if current_flashcard_index == (len(terms)-1):
window.FindElement (' revise_error'). update(You have reached the end of the set.')
if the vuser reaches the end of the set (i.e. the end of the list), they are notified that there are no further| flashcards
else:
current_flashcard_index += 1
increments the variable to point to the index position of the next flashcard

window.FindElement('flashcard_text').update(terms[current_flashcard_index])
displays the next term on screen
window.FindElement (' revise_error').update('"')
clears the error message (so it does not stay
if event == "PREVIDUS':
if current_flashcard_index ==

window.FindElement('revise_error').update('You have reached the start of the set.')

B if tF

here farever
there foi

ever)

- i o E } iFia b har
he vser reaches the start of the set (i.e. the end of the list) tified that thel

3
3
b]

Lashcards.

o
o
o
c
n
[
=
=
0

., they are no

else
current_flashcard_index -= 1

ts th

h e n poin 0 h £
able to point to the index position of

darre
H decremen 1e

window.FlndElement(flashcard_text'].update(terms[current_flashcard_lndex]]

& dienlau ba nreuwdmy -
displays the previous terr

window. FindElement('revise_error'].update("]

clears tf

an screen

ar me naes (<o 3 - nn — here faorevar)
he error message (so it does not stay there forever)

128

| have then implemented the functionality of the flip button, which simply changes what is
displayed on the screen from the term to the definition or vice versa depending on the
flashcard status.

it event == 'FLIP':
if str(flashcard_status) == 'term
window.FindElement('flashcard_text').update(definitions[current_flashcard_index])
flashcard status = ’definition'

g e e = | elng airsplLayeda,

AT 15 Th Ly el 1T 15 cnanged TOo SNoil Cine deJ1nitid

ellf str(flashcard statusj == 'definition’
window.FindElement('flashcard_text').update(terms[current_flashcard_index])
flashcard _status = 'term’

=+ 5 The ._.-_—_' n amn i entiLiy oe1ng adispldyed,

1 15 cmanged To Snol Lne Tel

| have also added a piece of code to reset the flashcard status to term when the
next/previous flashcard is viewed so that the term appears before the definition.

if event == "NEXT':
if current_flashcard_index == (len(terms)-1):
wlndow FindElement('revise_error').update('You have reached the end of the set.')

if the vser reaches the end of the set (i.e the end of the list), they are notified that there

else
current_flashcard 1ndex += 1

1ncrements the righle ain Che 1ndex I The nNex

wlndow FlndElement('flashcald text J update(terms[current flashcard 1ndex]]

wlndow FlndElement(revise e||0|'] update("]

flashcard status = 'term

5 res th . Fiochrand chpwe iFe Fanpm Fipct

if event == 'PREV]OUS"
if current_flashcard_index == B:
wlndow F1ndElement(revise e||0|'J update(’Vou have |eached the stalt of the set. 'J
else .
current flashcard 1ndex -=1

wlndow FlndElement('flashcald text J update(terms[current flashcard 1ndex]]

wlndow FlndElement(

clears the erro

flashcard_status

hcures th "
ensures The pr

evise e||0|'] update("]

Finally, | need to implement the functionality of the delete button. The delete button will
need to remove the flashcard the user is currently looking at from the set (i.e. by deleting it
from the users CSV file), and then display the next flashcard on the screen. | also need to
consider what to do when the user is deleting the last flashcard in the set (as there is no
next flashcard to display, so in this case | will have to display the previous flashcard), and
when the user deletes the last flashcard in the set (as there will be no other flashcards to
display at this point).

129

| have first created the code to delete a flashcard from the users CSV file. This prototype
contains some print statements for me to test it:

if event == 'DELETE':
file = csv.reader(open{f'{username}.csv', mode='r', newline=""'))

rows = list(file)

for i in range(1,len(rows)):
print(rows)
print(rows[il[e])
print(set)
print(rows[i][1])
print(term)
print(rows[i][2])
print(definition)
if str(rows[i][0]) == set and str(rows[i][1]) == term and str{rows[i][2]) == definition:

del rows[i]

However, when | run this piece of code, | receive the following error:

HameError: name 'term' is not defined

This is because term and definition haven’t been defined. | need the if statement with the 3
conditions to ensure the flashcard being deleted is the correct one and not one from
another set. To solve this, | realised | can just use the relevant elements in the terms and
definitions arrays instead of storing them as separate variables:

if event == "DELETE':
file = csv.reader(open{f'{username}.csv', mode='r', newline='"'))

rows

list(File)

print(rows)
for i in range(l, (len(rows)-1)):
print(rows[i]l[e])
print(set)
print(rows[i]1[1])
print(terms[current_flashcard_index])
print(rows[i]1[2])
print({definitions[current_flashcard_index])
if rows[il[e] == str(set) and rows[il[1] == terms[current_flashcard_index] and rows[i][2] == definitions[current_flashcard_index]:
del rows[i]
print(rows)

When | run this, the output is as follows:

['Data Structures', 'Binary', '12345', '123456789', 'Hex'], ['1", 'Static', 'Size cannot change during runtime'], ['1*, ' 12', ' 123'], ['2+, ' 22, ' 222'], [*1', ' &55', '6647']]
1

1

Static

Static

Size cannot change during runtime

Size cannot change during runtime

[['Data structures', 'Binary', '12345', '123456789', 'Hex'],”['1', ' 12', * 123'], [+2', » 22', * 222'], ['1', ' 555', '5567']]

1

22

Static

222

Size cannot change during runtime
1

1
» Run ! Terminal & python Console

The bit within the red line shows that all 3 conditions are being met, and the correct sub-
array is being deleted. | can now remove the print statements as | know this works and
rewrite the new 2D array back to the file:

130

if event == 'DELETE':
file = csv.reader(open(f'{username}.csv', mode='r', newline='"'))
aopens the CSV file and creates a CSV reader.
rows = list(file)
extracts the contents of the file into a 20 array.
for 1 in range(1, (len(rows)-1)):
iterates through the 20 array...
if rows[i]1[0] == str(set) and rows[i][1] == terms[current_flashcard_index] and rows[i][2] == definitions[current_flashcard_index]:
if the flashcard currently being viewed is the same as the flashcard in a particular index position in the 20 array...
del rows[i]
... it is deleted from the 20 array.
file = csv.writer(open(f'{username}.csv', mode='w+', newline=''))
file = file.writerows(rows)
rewrites the new 2D array to the CSV file, overwriting what was there previously.

I am now going to carry out some testing to test this prototype of my solution (testing
evidence for the following tests can be found in the testing evidence PowerPoint):

Test Test Item Expected Result Justification Actual Result
Number

7.2.1 Flip flashcard = Mouse | The flashcard will be To check whether the | The flashcard is
via button click flipped (e.g. if termwas | correct corresponding | successfully ‘flipped’,
press on the screen, definition | definition to the term displaying a terms

will now be on the (or vice versa) is corresponding

screen and vice versa) displayed on screen definition and vice versa
when the button is
pressed.

7.2.2 Viewing the Mouse | The next flashcard read | To check whether a The next flashcard
next click from the users .csv file new flashcard is successfully shows up
flashcard via will appear on the displayed on screen on screen, also alerting
a button screen. from the correct set. the user as to when
press they have reached the

end of the set.

7.2.3 Viewing the Mouse = The previous flashcard To check whether the | The previous flashcard
previous click read from the users .csv | previously displayed successfully shows up
flashcard via file will appear on the flashcard is displayed | screen, also alerting
a button screen. on screen when the the user as to when
press button is pressed. they have reached the

start of the set.

7.2.4 Deleting Mouse | The flashcard will be To check whether The deleted flashcard is
flashcard via | click deleted from the users pressing the button successfully removed
a button .csv file, and the screen to remove a flashcard from the users CSV file.
press will turn blank as the removes it from the

procedure to search for | users .csv file.
the next flashcard has
not been ran yet.

Test Expected Result Justification Actual Result
Number
7.3.1 Flip Mouse | The flashcard willbe | Checking this feature | The flashcard is successfully
flashcard | click flipped (e.g. if term hasn’t been affected ‘flipped’, displaying a terms
via was on the screen, by the change to corresponding definition and
button definition will now be | deleting flashcards e e
press on the screen and (test 7.3.4).
vice versa)
7.3.2 Viewing Mouse | The next flashcard Checking this feature | The next flashcard
the next click read from the users hasn’t been affected successfully shows up on
flashcard .csv file will appear by the change to screen, also alerting the user
viaa on the screen. deleting flashcards as to when they have
button (test 7.3.4). reached the end of the set.
press

131

733 Viewing Mouse | The previous Checking this feature | The previous flashcard
the click flashcard read from hasn’t been affected successfully shows up on

previous the users .csv file will | by the change to screen, also alerting the user

flashcard appear on the screen. | deleting flashcards as to when they have
viaa (test 7.3.4). reached the start of the set.
button
press
7.3.4 Deleting Mouse | The flashcard will be To check whether the | The flashcard is deleted from
flashcard | click deleted from the next flashcard the users CSV file but the
viaa users .csv file and the | automatically appears | oxt flashcard is not
button next flashcard on screen when the displayed.
press procedure is then ran | user deletes a
to make the next flashcard.
term appear on the
screen.

To successfully complete test 7.3.4, | need to create a way for the next flashcard to appear
on screen when a flashcard is deleted, but also if the last flashcard in the list is deleted,
move to the previous flashcard. Now, when an item is deleted from an array, the next item
will automatically fall back into its place, thus | do not need to increment any variables, just
update the text element to display the next flashcard:

if event == 'DELETE':

rows = List(filej

for i in Pange(l,(len(rowél—lllE

if rows[il[e] == str(set) and rows[i][1] == terms[current_flashcard_index] and rows[i][2] == definitions[current_flashcard_index]:

" del rows[il

csv.writer(open(f'{username}.csv', mode='w+', newline='"'))
file.writerows(rows)

Tile
file
rewrites the new 20 array to the CSV file, overwriting hat s there prey
terms.remove (terms[current_flashcard_index])
definitions.remove(definitions[current_flashcard_index])

R . it ian hed lelatad

re es the ter ef m the terms 1 efinition lists

window.FindElement('fiashcard_

text'].update(terms[cufrent_flashcard_index]]

| also need to implement the code for if it is the last item in the array being deleted (as there
will be no further items in the array to fall into its place). All | need to do is decrement the
current flashcard index if this is the case (I have also removed the -1 from the len() function
in for loop (highlighted) as this should not have been there:

132

if event == 'DELETE':
file = csv. reader(dpen(f {Username} csv', mode='r', newline='"'))

opens the CSV file and creates a CSV reader
rows l1st(f1le]
extracts the contents of the file into a 20 array.
for i in range(1, (len(ruws]]]
iterates tr the 20 array.
if rows[i str(set] and rdws[l][l] == terms[current_flashcard_index] and rdws[l][2] == def1n1t1dns[current_flashcard index]:
if the flashcard currently being viewed is the same as the flashcard in a particular index position in thel 20 array...
del rdws[1]
it is deleted from the 20 array.
file = csv. wr1ter(dpen(f {Username} csv', mode— w+', newline='"'))
file = file.writerows(rows)

rewrites the new 20 array to the C5V file, verwriting what was there previously
if terms[len(terms] 1] terms[current flashcard 1ndex]
if it is the last term in the 1list being deleted...

terms. remdue(terms[current flashcard _index])
definitions. remdve(def1n1t1 [current_flashcard_index])

term ists
is is so r'nr the
current flashcard_index -= 1
decrements th irrent flashcard index by 1 (due to he end item being removed)
w1nddw F1ndElement(flashcard text). update(terms[current flashcard 1ndex]]
dates the flashcard text to show the new flashcard in that index position.
else
otherwise...
terms remove(terms[current_flashcard_index])
definitions. remdve(def1n1t1dns[current flashcard 1ndex]]
removes th te : deleted f definiti ists
this 1is so r' appear when pressi us.
w1nddw F1ndElement(flashcard text"'] update(terms[current flashcard_index])
dates the flashcard text to show the new flashcard iIn that iIndex position

However, when testing this | received the following error:

i rows[i][0] == str(set) and rows[i][1] == terms[current_flashcard_index] and rows[i][2] == definitions[current_flashcard_index]:
IndexError: 1ist index out of range

This is because when an item gets removed from rows, its length decreases by 1 but the for
loop still goes to the original length (which is now out of range). To fix this, | inserted a
simple try and except loop, which just increments i whenever this happens to avoid the

error:
for i in range(l (len(rdws]]]
iterates th gh the 20 array...
try:
if rdws[i][O] t1dns[current_flashcard index]:
if th ashcard 20 array. ..
del rdws[i]
it is deleted fr the 20 arra
pr1nt(rdws]
except:
i+=1
avoids an error due to the value of i being out of range when an item is removed from rows (and so its length decreases)
Sl . ra rar d |l -l 3

I now also need to implement a method of displaying to the user if the set has become
empty and thus there is nothing in it to revise. The way | have decided to do this (which will
apply to all sets at all times) is if the user ever decides to ‘revise’ a set which has no
flashcards in it, they will be taken to a separate layout which tells them this and then has a
back button taking them back to the set menu. This stops users revising sets which have no
flashcards. This screen will also appear when the user deletes the last flashcard in a set.
This is the layout:

MoFlashcards = [[sg.Text('There are no flashcards in this set to revise!', font=("Helvetica", 18, "bold"), text_color='red', justification='center', size=(38,3))],
[sg Buttdn(BACK', font:(“Helvetica“, 15] Hev-'BkEKS' bufton color=(" red' 'whlte']]]]

simple layout fo La ds in a seft to revise.

to the e are
o The user nere are no

133

2 Revision App

| have also added this in the column layout.

I now need to implement this into my code so that it is made visible when the user tries to
revise a set with no flashcards in it. | have started by implementing the functionality of the

back button, which will take the user back to the set menu:

| have then made it so that the user is taken to this screen if they initially choose to revise a

set that has nothing in it:

if event == 'REVISE':
file = csv.reader(open(f'{username}.csv', mode='r', newline='"'))

rows = list(file)
terms = []
definitions = []

for i in range (1, len(rows)):

if int(rows[i]1[0]) == set:
terms.append{rows[i]1[1])
definitions.append(rows[i][2])

if len(terms) == 0 or len(definiti

1f there are no flashcards in the set
window[f'-COL12-"].update(visible=True)
window[f'-COL9-'].vupdate(visible=False)

y telling the 1 his se

else:
window[f'-COL11-"].update(visible=True)
window[f'-COL9-'].update(visible=False)

flashcard_status-: "term

current_flashcard_index = B

window.FindElement (' flashcard_text')

.update(terms[0])

| have then added a piece of code which also takes the user to this screen if they delete all

flashcards in a set (and thus there are none left to revise):

134

It event == 'DELETE':
file = csv.reader(open(f'{username}.csv', mode="r', newline='"'))
ens the CSV file and creates a C5V reader.
rows = list(file)
extracts the contents of the file into a 2D array.

for 1 in range(l, (len(rows))):

iterates through the 20 array...
try:
if rows[i][0] == str(set) and rows[il[1] == terms[current_flashcard_index] and rows[i][2] == definitions[current_flashcard_index]:
if the flashcard currently being viewed is the same as the flashcard in a particular index position in the 20 array...
del rows[il
... it is deleted from the 20 array.
print(rows)
except:
i+=1
avoids an error due to the valuve of i being out of range when an item is removed from rows (and so its length decreases).
file = csv.writer(open(f'{username}.csv', mode='w+', newline=''))
file = file.writerows(rows)
rewrites the new 2D array.to the £S5V filte, overwriting what was there previously.
if len(terms) == 1 or len(definitions) ==
1if there is only one fterm left in the sef which is about to be deleted...

terms.remove (terms[current_flashcard_index])
definitions.remove(definitions[current_flashcard_index])

inition being deleted from the terms and definition lists.

emoves the term and de
this is so that they no longer appear when pressing next/previous.
window[f'-c0L12-'].update(visible=True)
window[f'-COL11-'].update(visible=False)
takes the user from the revise flashcards display to the no flashcards display to indicate there are no flashcards left in the set.
else:
if terms[len(terms)-1]

terms[current_flashcard_index]:

if it is the last term in the 1ist being deletfed...
terms.remove(terms[current_flashcard_index])
definitions.remove(definitions[current_flashcard_index])

removes the ferm and defin 19 deleted from the terms and definition lists.

this is so that they no ious.
current_flashcard_index -= 1

decrements the current flashcard index by 1 (due to the end item being removed)
window.FindElement (' flashcard_text').update(terms[current_flashcard_index])

vpdates the flashcard text to show the new flashcard in that index position.
window.FindElement('revise_error').update('')

clears the error message (so it does not stay there forever)

else:

otherwise...
terms.remove(terms[current_flashcard_index])
definitions.remove(definitions[current_flashcard_index])
removes the term and definition being deleted from the terms and definition lists.
this is so that they no longer appear when pressing next/previous.
window.FindElement('flashcard_text').update(terms[current_flashcard_index])
vpdates the flashcard text to show the new flashcard in that index position.
window.FindElement('revise_error').update('"')

clears the error message (so it does not stay there forever)

All of this can be seen working in the following tests, testing evidence for which are
available in the testing evidence PowerPoint.

Test Expected Result Justification Actual Result
Number

7.3.1 Flip Mouse | The flashcard willbe Checking this feature The flashcard is successfully
flashcard = click flipped (e.g. if term hasn’t been affected ‘flipped’, displaying a terms
via was on the screen, by the change to corresponding definition and
button definition will now be | deleting flashcards ;

vice versa
press on the screen and (test 7.3.4).
vice versa)

7.3.2 Viewing Mouse | The next flashcard Checking this feature | The next flashcard
the next click read from the users hasn’t been affected successfully shows up on
flashcard .csv file will appear by the change to screen, also alerting the user
viaa on the screen. deleting flashcards as to when they have
button (test7.3.4). reached the end of the set.
press

733 Viewing Mouse | The previous Checking this feature | The previous flashcard
the click flashcard read from hasn’t been affected successfully shows up on
previous the users .csv file will by the change to screen, also alerting the user
flashcard appear on the screen. | deleting flashcards as to when they have
viaa (test 7.3.4). reached the start of the set.
button
press

135

7.3.4 Deleting Mouse | The flashcard will be To check whether the | The flashcard is deleted from
flashcard | click deleted from the next flashcard the users CSV file and the
viaa users .csv file and the | automatically appears next/previous flashcard is
button next flashcard on screen when the displayed.
press procedure is then ran | user deletes a

to make the next

flashcard.

term appear on the
screen.

Revising flashcards — Review

Stakeholder feedback
| sent this prototype of my solution to all of my stakeholders as | feel this is an integral part
of my app, and they all said they were happy with the functionality but would like the
interface to be a little less bland. All stakeholders said the layout was very clear and the
flashcard was big enough. Marcus suggested putting shapes instead of words on the next,
previous, flip and delete buttons (such as arrows or crosses). | feel this is a good idea to
make the interface look more user friendly, whilst still maintaining its functionality.
However, | will need to get some images off of Google and make them the correct size for
this to work. | have found some images that | will be using, and | have used the website
http://www.simpleimageresizer.com/upload#.YDpr3Gj7RPZ to make all of my images 40x40
(as | feel this is a suitable size for the display).

NS
>0k
| think these images are suitable and self-explanatory. | asked my stakeholders and they
agreed that they would know what these images mean in the context of revising flashcards.

As this is something | have never implemented before, | looked online at the website
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-
make-your-button for help. Following the advice on the website, | first had to convert the
image to base64. | used the website https://base64.guru/converter/encode/image to
convert all of my images to base64. | then had to insert this image data as a parameter in
the button element to make the button display the image, which | then did as shown below:

ReviseFlashcard

= [[sg.Text('', font=("Helvetica", 14, "bold"), text_coler='blue', justification='center',
[sg.Text(" *), sg.Button('',
sg.Button('', key='NEXT', font=("Helvetica",
sg.Button("'
sg.Button('', key='DELETE',
[sg.Text('', key='revise_error', font=("Helvetica", 15, "bold"), text_color='red', justification='center’',
[sg.Button('BACK', font=("Helvetica", 15), key='BACK7', button_color=('red', 'white'))]]

key="Tlashcard_text', border_width=5,

12), size=(7,1),

size=(38,2))1,

The image data strings are very long and so | cannot get all of it on one screenshot. This is
how the layout now looks:

136

size=(37,10), background_c
Key="PREVIOUS', font=("Helvetica", 12), size=(7,1), image_data=b'iVBORWOKGgOAAAANSUREUgGAAACGAAAACCAAAAACDLeeXAAS
image_data=b'iVBORWOKG9oAAAANSUhEUGAAACGAAAAOCADAAAAMSIDMAAAABGABTUEAALGPC/xhBOQAAACBISFI:
, key='FLIP',6 font=("Helvetica", 12), size=(7,1), image_data=b'iVBORWOKGQoAAAANSUhEUQAAACGAAAAOCAYAAACM/rhtAAAAAXNSROIArS4c6QAAAARNQUIBAAL

font=("Helvetica", 12), size=(7,1), image_data=b'iVBORwOKGgoAAAANSUREUQAAACGAAAAOCAAAAACDLeexAAAABGABTUEAALGPC/xhBQAAACB]SE

http://www.simpleimageresizer.com/upload#.YDpr3Gj7RPZ
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-make-your-button
https://pysimplegui.readthedocs.io/en/latest/cookbook/#step-4-use-base64-variable-to-make-your-button
https://base64.guru/converter/encode/image

2 Revision App - X

Static

| sent this new layout to my stakeholders and they were much happier with it and said it
looks a lot nicer. As a result of this feedback, in the future, | may use images instead of
words in other areas of my program, such as the main menu or quiz.

Vivek also noted than when an error message appears, and then the flashcard is flipped, the
error message remains there and it would be better if it went hidden when the user flipped
the flashcard. | have fixed this by adding a single line of code:

if event == 'FLIP':

if str(flashcard_status) == "term':
window.FindElement('flashcard_text').update(definitions[current_flashcard_index])
flashcard_status = 'definition’

elif str{flashcard_status) == ‘'definition’': .
window.FindElement(' flashcard_text').update(terms[current_flashcard_index])
flashcard_status = "term’

winﬂuw.FindElemenf('revise_error']:updaté("]

They also said it would be better if the text size on the flashcards was increased slightly, so |
increased the text size slightly so it now appears like this on the screen:

137

2 Revision App - XK

Size cannot change during runtime

Success Criteria
Now | have fully implemented the ability for users to revise their sets of flashcards, as well
as the ability to fully edit them by adding/deleting flashcards to sets. So far | have met:
e SC10 - The stakeholder would like the system to be user-friendly and easy to
understand.
e SC1 - The stakeholder would like the system to allow them to create an account if
they haven’t already got one.
e SC2 - The stakeholder would like the system to allow them to log in to their account
if they have already created one.
e SC9 - The stakeholder would like the system to have a clear main menu.
e SC3 - The stakeholder would like the system to allow them to create their own sets
of flashcards.
e SC4 - The stakeholder would like the system to view sets of flashcards they have
already created.
e SC5 - The stakeholder would like the system to allow them to revise sets of
flashcards they have created.
e SC11 - The stakeholder would like the system to allow them to edit already existing
sets of flashcards.

Changed made to original plan
Not many massive changes were made in this section, apart from the changes in interface
by using images on buttons instead of text.

138

Evaluation Section

In this section of my report, | will be testing and evaluating my final solution, with input
from my stakeholders on how well success criteria/usability features have been met.
Criteria that have been met will be tested, and the criteria that have not been met will be
justified and | will explain how these features could be met in future development.

Success Criteria post-development testing

| will start by evaluating each of my success criteria lined out in the analysis section and
justifying how well they have been met. Testing evidence for all of the following tests can be
found in the ‘Post development testing evidence’ PowerPoint.

Success Criteria 1: The stakeholder would like the system to allow them to create an
account if they haven’t already got one.
Test Test ltem Test Data

Expected Justification Actual Result

Result

Number

10.1.1 Attempting = String ‘usernamel123’ The users Ensures the usercan The users details
to submit String ‘password123’ account will be successfully create were successfully
valid String ‘password123’ creat.ed, Fheir an .account using . written to the text
acco'unt String details will b'e valid account details. file (with the
details ‘bradleymak2003 saved to their

@gmail.com’ .csv file, and p.aSSWOI:d _haSh,Ed)
VALID DATA they will be since this is valid
taken to the data, and they are
main menu. taken to the main
menu — their
account is now
successfully
created.

10.1.2 Attempting | String ‘usernamel23’ = An error Checks whether the An error message
to submit String ‘password123’ = message will system detects when appears alerting the
invalid String ‘password123’ | appear at the an invalid email has user to the fact that
acco'unt Integer 123456789 bottom of 'th.e been entered (and the email they have
details INVALID DATA screen notifying = does not crash). . .

entered is not valid.
the user of the
problem (invalid
email in this
case).

10.1.3 Attempting = String ‘username123’ An error Checks whether the An error message
to submit String ‘password123’ message will system detects when gppears alerting the
incorrect String ‘password’ appear at the the two password user to the fact that
acco.unt String bottom of .th(.e fields do not match. the two passwords
details ‘bradleymak2003 screen notifying

; Rk they have entered
@gmail.com the user that the
INVALID DATA 2 passwords do not match.
they entered do
not match (i.e.
they mistyped
their password).

10.1.4 Attempting | String An error Checks that the user =~ An error message
to submit String “ message will cannot enter empty appears alerting the
empty String “ appear at the fields for their user to the fact that
fields lStr|ng bottom of 'th(.? username/password. they have left fields

bradlgymak’2003 screen notifying blank and must fill
@gmail.com’ — | the user that

have still entered an
email to ensure the

they have left
fields blank and

them all with valid

139

10.1.5
to create
two
accounts
with the
same
username

Attempting

error does not
appear just because
the email is ‘invalid’,
but rather because
the user hasn’t filled
the username and
password fields.
INVALID DATA
Create one account
with the username
‘username123’, and
then attempt to
create another
account with the
same username.

they must all be
filled.

An error
message will
appear saying
that an account
already exists
with that
username.

Checks the user
cannot create an
account with the
same username as
an already created
account, as this will
cause issues with
other areas of the
program.

details to create an
account.

An error message
appears alerting the
user to the fact that
an account already
exists with that
username.

| have added two new tests to this success criteria than | originally planned in the design
section as some key robustness/features were not originally covered. Firstly, | have added
test 10.1.4 as | feel like testing that the user cannot create an account without entering any
details is a necessary requirement. | have also added test 10.1.5 to ensure that the user
cannot create 2 accounts with the same username (as this will cause issues with other areas
of the program as the user will no longer have unique identification).

All of these tests being completed shows that this feature functions correctly (i.e. when the
user enters valid details — an unused username, 2 passwords that match and a gmail address
—an account is successfully created and the details are written to userinfo.txt, but if the
details are invalid — either a username that has already been used, 2 passwords that don’t
match, or an invalid email address — the relevant error message is correctly displayed on
screen), and is robust (i.e. the program does not crash no matter what the inputs are). This
success criteria has been fully met as it has passed all of the tests | have carried out. As such,
there are no further improvements that would need to be made in later development.

Success Criteria 2: The stakeholder would like the system to allow them to log in to their
account if they have already created one.

Test

Test Item

Test Data

Number
11.1.1 Entering correct String
username and ‘username123’
password String
‘password123’
VALID DATA
11.1.2 Entering String
incorrect ‘username123’
password. String
‘passwordl’
INVALID DATA

Expected

Result

App will verify their
account details and
take the user to
the main menu.

An error message
will appear at the
bottom of the
screen alerting the
user to the
problem

Justification

Ensures that the
user can log back
into the system at a
different time using
their already
existing log-in
details.

Ensures the app is
secure by checking
whether the
system detects
when the user has
entered a password
that is not
associated with the
entered username.

Actual Result

The program
successfully allows
the user to log into
their already
existing account.

The program does
not allow the user
to enter their
account as
password is not
correct, and an
error message
appears alerting
the user to the
issue.

140

11.1.3 Entering a String
username that ‘usernamel’
does not exist. String

‘password123’
INVALID DATA

11.1.4 Entering random = String

symbols/integers = ‘I”£S%"&*()’
Integer
123456789

An error message
will appear at the
bottom of the
screen alerting the
user to the
problem. The error
message should be
the same as the
error message for
11.1.2.

An error message
will appear on
screen telling the
user that these
inputs are invalid.

Ensures the app
recognises when a
username that
does not exist has
been entered.

This is to test for
robustness —
checking whatever
is inputted does
not crash the

The program does
not allow the user
to enter their
account as the
username is not
correct, and an
error message
appears alerting
the user to the
issue.

The program
successfully
displays the error
message on screen

program.

saying that the
inputs are invalid.

| have added test 11.1.3 to ensure that both elements of the log in verification work —the
password and username verification. | have also added test 11.1.4 to check for extra

robustness within this feature — ensuring that the program does not crash even when the
inputs consists of random symbols/integers.

As my solution has passed all tests | have conducted on the log in feature, success criteria 2
has been fully met. The program allows the user to enter their account successfully when
the correct details are entered, and when they are not, an error message is displayed on
screen. Again, this element of my program is robust as it does not crash no matter what the
user inputs are, as shown by test 11.1.4.

Success Criteria 3: The stakeholder would like the system to allow them to create their
own sets of flashcards.

Test

Number
13.1.1

Entering

name of set
into textual
input boxes

13.1.2 Attempting
to submit
empty

input box

13.1.3 Attempting
to create a
set once
the user

has

String
‘Data
Structures’
VALID
DATA

String “
INVALID
DATA

String
‘LmcC’
VALID
DATA

Expected
Result

Name of set will be
written to the users
personal .csv file,
and the relevant
button on the
choose set layout
will be updated to
show the new set
name.

An error message
should appear
telling the user that
they must input
something to be
able to create a set
with that given
name.

An error message
should appear
telling the user that
they have reached
their limit of 5 sets,

Justification

Ensures the user can
create a new set of
flashcards under
whatever name they
want, and that this
name is written to the
users .csv file and the
buttons on the
‘MYSETS’ menu are
updated to include
this new set.

This is to test for
additional robustness
within this feature — it
would be wrong for
the user to be able to
create a set with no
name.

This again tests for
robustness by
ensuring the user
does not go over the
5 set limit, because if

Actual Result

The program successfully
writes the entered set
name to the users csv file
and takes the user to the
add flashcards layout so
they can begin adding
flashcards to the set.

The program successfully
tells the user that they
must enter a set name to
be able to create a set.

The program informs the
user that they have
reached their set limit

141

reached and so cannot they did the new set

the set create another set. they create would not
limit of 5. be visible and would
cause issues in the
solution.
13.14 Deleting a Mouse The set should be Due to the set limit, it =~ The program does not
set click deleted — the set is important users can | zllow the user to delete a
name, and all of the | delete sets once they set as this feature has not
flashcards are finished with been implemented.
associated with the | them to free up a
set should be slot.

removed from the
users CSV file.

| have added test 13.1.2 to test for extra robustness within this feature as the user should
not be able to create a set with no name. There is no further tests | can add for robustness
as technically the user can create any set name of any length/contents as long as they enter
something in the set name textual input field.

As this feature passed most of the tests | have conducted on it, | have

success criteria 3. The user is able to create a set with any set name, which is then
written to the users CSV file. If the user enters nothing and attempts to create the set, an
error message appears alerting the user to this issue. However, the user is not able to
completely delete sets of flashcards they have created (once a set has been created with a
certain name, the name cannot be changed/removed). This has not been implemented as |
did not realise this was a key functionality during the design/development section and |
have only realised in the post development testing that this is necessary. Implementing this
feature in future development would be relatively simple — the first line of the CSV file
would be iterated through to find and delete the set name that the user wants to delete
from the CSV file, and then all of the flashcard lines underneath would be iterated through
and every time a line in the CSV file is found that contains the relevant set number (as each
line in the CSV file takes on the structure ‘set number, term, definition’), that whole line
would be deleted from the file and the next time a flashcard is added to any set it can fill
that slot to ensure that there are no empty spaces (and so extra space being taken up) in
the CSV file.

Success Criteria 4: The stakeholder would like the system to view sets of flashcards they
have already created.

Test Expected Result Justification Actual Result
Number
14.1.1 Viewing Clicking The names of the users To ensure that The names of all of the sets
names of the ‘My sets should be displayed | the set names the user has created are
sets of Sets’ on the buttons on the displayed are successfully displayed on
flashcards button MYSETS display. If they correct and up- screen. If they have not
the user from the have not used all 5 of to-date. .
. . used all 5 of their slots yet,
has already = main their slots yet, the
created menu. unnamed sets will show th.e unnamed sets show up
up without a name. without a name.

| have not added any tests to my original plan here as | did not feel it was necessary — this is
only a very small success criteria.

142

Since | have met the single test here, | have fully met success criteria 4 —the names of the
users sets are correctly displayed on screen. However, in future development, the program
could be amended to only show the buttons of the sets that the user has created a name for
— this stops users being able to effectively edit and revise sets that haven’t been created yet
(i.e. the sets that don’t have a name given to them), as this doesn’t make much sense and is
an inconsistency with the creating a set process (as creating the set is effectively just naming
the set in the current prototype).

Success Criteria 11: The stakeholder would like the system to allow them to edit already
existing sets of flashcards.
| have done success criteria 11 before success criteria 5 as it makes more sense to test my

program in this order (i.e. testing the user can add to/delete from sets of flashcards before |
test whether they can revise from them).

Test Test Item

Number

Submitting a
term and
definition to be
created as a
flashcard via 2
textual inputs
and a button
press.

16.1.2 Submitting a
term and
definition to be
created as a
flashcard via 2
textual inputs
and a button
press.

16.1.3 Deleting
flashcard via a
button press

16.1.4 Attempting to
delete a
flashcard when
there are no
flashcards left

in the set.

Test Data

String ‘Static’
String ‘Size
cannot
change
during
runtime’
VALID DATA

String ‘12*4’
String ‘48’
VALID DATA

Mouse click

Mouse click

Expected

Result

Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.
Term and definition
will be written to
the relative
positions in the
users personal .csv
file, and the term
and definition
textual input boxes
will be cleared.

The flashcard will

be deleted from the

users .csv file and
the next flashcard
procedure is then
ran to make the
next term appear
on the screen.

This should not be
possible as the
delete flashcard
button is on the
revise flashcard
screen, and when
there are no
flashcards left in a
set the user is
automatically took
to a screen

informing them that

Justification

Ensures that any
term/definition
can be entered
and written to the
.csv file without
an error
occurring.

Ensures that any
term/definition
can be entered
and written to the
.csv file without
an error
occurring.

Ensures that the
user can
successfully
delete a flashcard
from a set (by
checking whether
it has been
removed from the
users .csv file).

This ensures the
user cannot
‘delete a
flashcard’ from a
set which has no
flashcards, as this
would cause an
error — it is testing
the robustness of
my solution.

Actual Result

Allows the user to
create the flashcard
and the
term/definition along
with the set number
they belong to are
written to the users
unique CSV file.
Allows the user to
create the flashcard
and the
term/definition along
with the set number
they belong to are
written to the users
unique CSV file.

This has to be done
from the revise
flashcard screen — but
when the delete
button is pressed the
program successfully
removes the
term/definition row
from the users CSV
file.

The user is taken to a
screen telling them
that there are no
flashcards remaining
in the set.

143

there are no
flashcards left in
the set.

16.1.5 Attempting to String “ The user should be This ensures the An error message is
add a flashcard = String “ notified of when user cannot displayed on screen
with nothing one of the fields has create a flashcard

alerting the user to
the issue, and nothing
is written to the CSV
file.

that does not
have a
term/definition,
and also ensures
the program is
robust and cannot
be crashed in this
way.

| have added test 16.1.4 as | feel it is necessary to ensure that the user can only revise a set
which has flashcards in it, and once the final flashcard has been deleted, the user is not left

looking at an empty screen. This is also a test of robustness to ensure that the program does

entered in the not been filled in.
term/definition

boxes

not crash when this happens. | have also added test 16.1.5 to ensure the user cannot crash
the program by attempting to submit a flashcard with no term/definition — this is another

test of robustness. There is no limit to the number of flashcards in a set, and so there is no
test | need to conduct regarding a maximum number of flashcards in a set.

Since all of the functionality tests have been passed here, | have fully met success criteria 11
—the user can successfully add and delete flashcards to and from a set, and the users CSV
file is manipulated accordingly. This feature is also robust, as the user cannot accidently
crash the program by trying to submit an empty flashcard/deleting a flashcard from a set

with no flashcards.

Success Criteria 5: The stakeholder would like the system to allow them to revise sets of
flashcards they have created.
Expected Result

Justification

Actual Result

15.1.1 Flip Mouse = The flashcard will be Ensures that the user The user can successfully
flashcard click flipped (e.g. if term can ‘flip’ flashcards (i.e. ‘flip’ a flashcard, allowing
via button was on the screen, alternate between the them to alternate
press definition will now be term and definition) via e e TR AT

o.n the screen and a button press. definition (as this is how
vice versa)
flashcards work to help
you revise).

15.1.2 Viewing the | Mouse = The next flashcard Ensures that the next The next flashcard in the
next click read from the users flashcard displayed is set is successfully
flashcard .csv file will appear from the correct set displayed.
viaa on the screen. and is not repeated.
button
press

15.1.3 Viewing the = Mouse The previous Ensures that when tis The previous flashcard in
previous click flashcard read from button is pressed, the the set is correctly
flashcard the users .csv file will previous flashcard is displayed.
via a appear on the screen. successfully displayed
button to the user.
press

15.1.4 Pressing Mouse = An error message This ensures the An error message
‘next click should appear on solution is robust and appears on screen telling
flashcard’ screen telling the does not crash when the user they have
when the user they have the user reached the

144

user has reached the end of end of the set they are reached the end of the
reached the set. revising. set.

the end of

the set.

15.1.5 Pressing Mouse An error message This ensures the An error message
‘previous click should appear on solution is robust and appears on screen telling
flashcard’ screen telling the does not crash when the user they have
when the user they have the user reached the reached the start of the
user has reached the start of start of the set they are

L set.
reached the set. revising.
the start of
the set.

| have added tests 15.1.4 and 15.1.5 to test for additional robustness within this feature of
my solution by ensuring that the user cannot break the program by attempting to go
beyond the limits of the set they are revising.

This feature of my solution has passed all of the tests | have conducted on it, so | have fully
met success criteria 5. This part of my solution is also very robust as shown in the new tests |
have added.

Success Criteria 9 and 10: The stakeholder would like the system to have a clear main
menu and should be easy to navigate around/user friendly.

Test
Numb

er

Test Item

Test
Data

Expected
Result

Justification

Actual Result

12.1.1 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click updated to can choose to sign button press.
‘Sign_up’ ‘SIGNUP’ up easily via a
button button press.

12.1.2 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click updated to can choose to login | putton press.
‘log_in’ ‘LOGIN’ easily via a button
button press.

12.1.3 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click updated to can choose to button press.
‘new_set’ SETNAME, so the create a new set
button user will be taken easily via a button

to a different press.
screen.

12.1.4 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click updated to SETS, can choose to view | pytton press.
‘my_sets’ so the user will be | their sets easily via
button takento a a button press.

different screen.

12.1.5 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click updated to can choose toview pytton press. However,
‘progress_trac PROGRESS, so the their progress easily nothing is created on this
ker’ button user V\.II|| be taken via a button press. layout as the progress tracker

to a different
screen. feature has not been
implemented yet.

12.1.6 Selection of Mouse Layout will be Ensures the user Correct layout is shown upon
option via click Updated to can choose to button press. However’
‘manage_acco ACCOUNT, so the = manage their nothing is created on this

unt’ button

user will be taken
to a different
screen.

account easily via a
button press.

layout as the manage account
feature has not been
implemented yet.

145

12.1.7 Selection of Mouse
option via click
‘log_out’
button

12.1.8 Selection of Mouse
option via click
‘Exit’ button

12.1.9 General Mouse
navigation clicks
around the
app

User will be
logged out and
taken back to the
start menu
(layout is updated
to STARTMENU)
App will close as
event loop is
broken.

The user should
be able to easily
navigate around
the app and the
buttons should all
carry out the
purpose their
labels imply.

Ensures the user
can choose to log
out easily via a
button press.

Ensures the user

Correct layout is shown upon
button press and the correct
username is shown on the

main menu.

Exits app.

can choose to exit

the app easily via
button press.
This is to ensure

that success criteria
10 has been met —

ensuring that the
program is user
friendly.

a

The general navigation around

the app is simple, easy and
user-friendly. All navigation

features (buttons) work

correctly.

| have added test 12.1.9 to my original test plan as | feel it is essential to include a clip of
general navigation outside of the main menu to show that success criteria 10 has been met.

The solution successfully passed all of these tests hence success criteria 9 and 10 have been
fully met. | will also consult my stakeholders on the user-friendliness of my solution in the
usability testing section later in the evaluation section to gain more feedback from my
stakeholders on the general usability and intentional simplicity of my solution.

Success Criteria 6: The stakeholder would like the system to allow them to test their

Test Test Item

Number

Question and 4
multiple choice
answers should
appear on
screen.

User should be
able to choose
an answer.

17.1.2 Quiz Summary

knowledge on a particular set of flashcards.
Expected Result

A question should appear on

choice answers in the form of

choice answers. This process

screen should appear with no

Clicking

the ‘Quiz’ the screen, with 4 multiple

button

from the buttons. When an answer is

set menu. chosen, a new question
should appear with 4

Mouse randomly placed multiple-

click.
will repeat until the quiz is
complete, when a summary
statistics on it as the score,
percentage and time_taken
variables have not been
implemented yet.

Visual A summary screen should

output appear with the correct

when quiz | score, percentage and time

is taken. These should also be

complete written to the users csv file.

via

multiple

button

presses.

Justification

To ensure that the
quiz feature works
correctly regardless
of which set the
user chooses, and
that the questions
and answers are
random and not
repeated.

To ensure that the
quiz ends after all
of the questions
have been
answered.

To ensure that the
correct statistics
are displayed on
screen when the
quiz ends.

Actual

Result

The quiz
button is
present on the
set menu and
takes the user
to a new layout
designed to be
for the quiz,
but the quiz
feature has not
been
implemented
yet so nothing
is present on
this layout.
Feature not yet
implemented.

146

This success criterion has not been met at all yet as it has not been implemented in my
partially complete solution due to time constraints. As such, it is not possible for me to
conduct any of the post development tests that | had planned for this feature.

To implement this in future development, a quiz feature would need to be added, which
displays the term of each flashcard in the chosen set as the ‘question’ and then the correct
answer along with 3 other incorrect answers are shown on the screen in random positions
as 4 possible multiple choice answers. The user would have to choose one of these and their
final score, percentage and time taken to complete would all be recorded and displayed
once they have completed the quiz. Every time a new quiz is taken, the multiple choice
answers would be different and appear in different places. This would be achievable by
writing all of the terms/definitions from a set to separate lists, displaying the string in the
corresponding index position in the definition list for each term randomly in one of the 4
multiple choice slots, and then adding the number of this slot to another list so that another
answer cannot be placed in this slot and override the correct answer, and then randomly
choosing 3 other definitions from the list and displaying them in the other 3 slots in a similar
way. The results would also be written to the users CSV file in the following format:

setnamel, setnamel, setname3, setnamed, setname5s
flashcard,set,term,definition
flashcard,set,term,definition
flashcard,set,term,definition
quiz,set,percentage,time
quiz,set,percentage,time
set,term,definition,set,percentage,time
flashcard,set,term,definition

Each row after the set names contains either a flashcard or quiz result, indicated by the first
element in that row. | would have to edit the flashcard feature to now check for rows with
the string ‘flashcard’ in the first element as well as searching for the set number. This would
allow the results to be displayed on the progress tracker by reading from the file.

Psuedocode for how | originally planned this can be found in the design section.

Success Criteria 7: The stakeholder would like the system to keep track of their progress
and show it in a clear and concise way.

Success Criteria 8: The stakeholder would like the system to allow them to share their
results and progress on social media.

Success Criteria 13: The stakeholder would like the system to send them email
notifications when prompted to.

18.1.1 Raw numbers Clicking the The users scores on To ensure that Button takes
representation of = ‘Progress quizzes should the statistics user to a
users data Tracker’ appear on the displayed on separate

button from screen, with the screen are layout with
correct. no contents

147

the main corresponding set as this
menu. name. feature has
not been
implemented.
18.1.2 Visual Clicking the The graph should To ensure that Button takes
representation of = ‘Progress appear on the left the graph is user to a
users data (e.g. Tracker’ with the correct plotted correctly separate
graph) button from data plotted. and is easy for the = layout with
the main user to see and no contents
menu. deduce their as this
progress from. feature has
not been
implemented.
18.1.3 Choosing a Mouse click A tweet should be To ensure that Feature not
function via a sent out containing the user can implemented.
button press the users successfully tweet
(post to Twitter) percentage, time their progress
taken and set name onto the
in a logical applications
sentence. Twitter page via a
button press.
18.1.4 Choosing a Mouse click An email should be ' To ensure that Feature not

function via a
button press
(email reminder)

sent to the users
email address with
the correct subject
and message.

the user can
successfully send
themselves an
email reminder to
their email
address stored by
the app.

implemented.

Success criteria 7, 8 and 13 have not been met at all as these features have not yet been
implemented in my partially complete solution due to time constraints.

If the progress tracker feature were to be implemented in future development, it would
require a graph to be plotted of all of the users test scores in each set. There would be a
button for each set which would take the user to another screen where the graph of their
results (percentages) on the y axis and the attempt number on the x axis. There would be
another similar graph of time to complete against attempt number. Attempt number does
not need to be stored in the users CSV file as this would be a waste of space as the quiz
results are stored in linear order anyway. On this screen, there would also be an email
reminder button and a share results button. The email reminder button would send an
email from the apps email address to the users email address they entered when signing up
using the Gmail API — | would have to do extra research on this as | have never used the
Gmail API before. The share results button would share a tweet on the applications twitter
page containing the users username, their set name and their 5 most recent scores to
illustrate the progress they have been making — this would be done using the Twitter API
which | have had experience using before.

Success Criteria 12: The stakeholder would like the system to allow them to set exam
dates/deadlines.

148

| decided not to include this success criteria during the design stage as | realised it would be
pretty useless as the app cannot send automated emails/reminders when it is not running,
so | decided to focus my time elsewhere. | also consulted my stakeholders on this decision
and they agreed that this is not a particularly key feature for the revision app and they
would much rather more time be spent improving the revision/quiz features. As such, this
success criterion has intentionally not been met at all.

Other features

The manage account feature has also not been implemented yet due to time constraints,
and whilst this is only a minor feature | felt it would have been necessary to allow the user
to amend their account details either for security reasons (e.g. changing their
username/password), or if they have changed their email address etc. To implement this,
similar validation would have taken part to as in the sign up feature (hence why | made
separate subroutines for the validation procedures), and the userinfo.txt file would have
been rewritten to include the new info if the details entered were valid. There would also be
an account deletion button (which would ask the user for confirmation of this decision
before the account was deleted), and once the decision was confirmed, the userinfo.txt file
would have been rewritten without the deleted account details.

Summary of success criteria

Success Criterion

Successfully
Created?
(partially/fully/not)

Why?

How to fully meet
this criterion.

The stakeholder
would like the
system to allow
them to create an
account if they
don’t already have
one.

The stakeholder
would like the
system to allow
them to login to
their account if
they have already
created one.

The stakeholder
would like the
system to allow
them to create
their own sets of
flashcards.

Fully

Fully

User can successfully
create an account with
valid details, and
inputs are always
validated by the
program.

User can successfully
login to an already
existing account, and
incorrect
usernames/passwords
are always flagged up.

User can create a set
with any given name,
which is then written
to the users CSV file.
However, they cannot
delete sets once they
are created.

N/A

N/A

Add a way to delete
sets (i.e. delete a
given set name and
all of the flashcards
associated with that
set from the users
CSV file.

149

The stakeholder Fully
would like the

system to view sets

of flashcards they

have already

created.

The stakeholder Fully
would like the

system to allow

them to revise sets

of flashcards they

have created.

The stakeholder Not
would like the

system to allow

them to test their
knowledge on a
particular set of
flashcards.

The stakeholder Not
would like the

system to keep

track of their

progress and show

itin a clear and

concise way.

The stakeholder Not
would like the

system to allow

them to share their
results and

progress on social

media.

User can view all of
their sets on the
MySets layout.

User can successfully

navigate their way
through a set of

flashcards and flip the

flashcards. This
feature is robust by

now allowing the user
to go beyond the set

limits.

The quiz feature has
not been
implemented.

Progress tracker has
not been
implemented.

Social media sharing
has not yet been
implemented.

N/A

N/A

Add in a quiz
feature which
displays all of the
terms from a given
set along with 4
random multiple
choice answers, one
of which will be the
correct answer.
Record the users
percentage and
time taken and
write these to their
CSV file.

Add in a progress
tracker which reads
the users quiz
results from their
CSV file and displays
them graphically on
the screen for every
set.

Add in a button on
the progress tracker
which posts a tweet
to the apps Twitter
page displaying the
users username
along with their
results for a given
set.

150

The stakeholder Fully
would like the

system to have a

clear main menu.

The stakeholder Fully
would like the

system to be user-
friendly and easy to
understand.

The stakeholder Fully
would like the

system to allow

them to edit

already existing

sets of flashcards.

The stakeholder Not
would like the

system to allow

them to set exam
dates/deadlines.

The stakeholder Not
would like the

system to send

them email

notifications when
prompted to.

Usability features

The main menu is
simple and easy to
navigate through. The
buttons all clearly
display their purpose
and leave no
ambiguity.

The program is very
easy to navigate
through via buttons.
All buttons clearly
display their purpose.
Users can add
flashcards to a set via
the ‘add flashcards’
button, and delete
flashcards from a set
on the revision screen.
This feature has not
been implemented.

This feature has not
been implemented.

N/A

N/A

N/A

| have decided not
to implement this
feature as it would
be pointless as the
app cannot send
reminders whilst it
is not running (as it
is a locally ran app).
Emails could be sent
from the apps email
address (Gmail) to
the users email
address (Gmail)
they entered when
signing up via a
button press. This
could be done using
the Google API.

In order to test the usability features of my program, | have contacted all three of my
stakeholders and given them my solution to test and use. | have asked each of them to fill
out the questionnaire | set out in the analysis section. There is also a recording of one of my
stakeholders, Marcus, using the program and its features in the post-development testing

evidence PowerPoint.

Questionnaire 1: Sign-up/Log-in

This questionnaire relates to success criteria 1 and 2.

151

1.) Can you successfully create an account on the app?
Vivek: Yes

Marcus: Yes, but | did not have a Gmail account.

Sam: Yes

These responses show that the sign up feature works and the users details are written to a
file if they are valid.

2.) Can you successfully log back into this account using the same details?
Vivek: Yes

Marcus: Yes

Sam: Yes

These responses show that the log in feature works and that the details were correctly
written to the file when the user created their account and are also successfully read from
the file and validated when the user attempts to log in.

3.) Was this an easy process to understand and carry out?

Vivek: Yes, the process is very similar/identical to other apps/sites where you have to create
an account.

Marcus: Yes

Sam: Yes

These responses show that the process of creating an account/logging in is simple as
intended and so the user will not need to spend lots of time figuring out how to do it.

4.) Do error messages appear when incorrect details are entered?

Vivek: Yes

Marcus: Yes, although it would be more practical if more than just Gmail accounts were
allowed to be used as | do not have a Gmail account.

Sam: Yes

These responses show that this element of the program is robust as the validation works as
intended.

Questionnaire 1 shows that the signup/login feature works perfectly, the stakeholders were
happy with the functionality, validation and simplicity of the process. When | asked my
stakeholders whether the passwords being hashed before they are stored to the text file
made them feel more secure about their details, all of them responded ‘yes’. As such, the
ability for the user to create an account or login to an already existing account has been a
success.

Questionnaire 2: Creating/editing/revising a set of flashcards
This questionnaire relates to success criteria 3, 5 and 11.

1.) Can you successfully create a set of flashcards with a given name?

152

Vivek: Yes but not beyond 5 sets.

Marcus: I can only create 5 sets before it says there is a set limit and then theres no option to
delete the sets so I’'m stuck with the same set names forever once they are created.

Sam: Yes, but the 5 set limit is annoying.

It is clear from this feedback that the users did find the 5 set limit annoying and
inconvenient, so in future development | would remove this limit and whilst this would
potentially increase the storage requirements of my solution, the benefits to the
stakeholders here seem to outweigh this. To do this, | would have to store a value in the
users CSV file that indicates how many sets they have created so that the program would
know which index position in the first row to insert a new set name to. However, this could
also create an issue with the buttons on the ‘MySets’ layout as there is only 5 buttons but
the user would now have the ability to create more than 5 sets. | am not immediately sure
how to get around this issue but it could involve having a ‘next page’ button which updates
the 5 buttons to the names of the next 5 sets the user has created.

2.) Can you then add flashcards to this set?

Vivek: Yes, and the amount | can add is seemingly unlimited which is convenient.
Marcus: Yes

Sam: Yes

All stakeholders were happy with the ability to add flashcards to a set they have created and
were pleased with the unlimited nature of this.

3.) Can you remove flashcards?

Vivek: Yes

Marcus: Yes

Sam: Yes, but it would be better if there was a confirmation screen that ensures the user
definitely wants to delete that flashcard in case the delete button is accidently pressed.

Sam has raised a very important point here. | agree it would be beneficial to include a
confirmation screen in case the delete button is accidently pressed, especially considering
that it is located right next to the next, previous and flip buttons. This would ensure that the
user does not have to waste valuable revision time going back and recreating flashcards
they have accidently deleted. This could be implemented in future development by simply
updating the error message whenever the delete button is pressed to display a message
telling the user to press the delete button again if they wish to delete that flashcard. If they
press the delete button again the flashcard will be deleted, and if they do not, the
confirmation message will disappear and the flashcard will not be deleted.

4.) Can you ‘flip’ flashcards for revision purposes?

Vivek: Yes

Marcus: Yes

Sam: Yes, however sometimes the text goes slightly off the screen when it is a longer
term/definition.

153

Sam could have experienced this issue because of the border | placed on the flashcard
textbox in order to make it look more aesthetically pleasing. In future development, this
border could easily be made smaller or even entirely removed to get around this issue if it
becomes too much of an issue.

5.) Is the process easy to understand and carry out?

Vivek: Yes, very simple and effective.

Marcus: Yes similar to real-life flashcards and websites such as Quizlet.
Sam: Yes

Again, the stakeholders were happy with the simplicity of this feature of the app.

6.) Do you feel the revision is efficient?

Vivek: Yes even though | do not use flashcards that often
Marcus: Yes

Sam: Yes

All stakeholders were happy with the way the revision on the app worked even if flashcards
were not their preferred method of revision.

7.) I have also decided to add a question regarding the robustness of this feature (i.e. can
you break the program by deleting all of the flashcards in a set or attempting to go to the
‘next flashcard’ at the end of the set or vice versa? Etc.)

Vivek: I have tried to break the program by deleting all of the flashcards and attempting to
go back and revise the set but a screen is shown telling me there is no flashcards in the set.
The feature seems very robust.

Marcus: Very robust

Sam: Works perfectly and is unbreakable.

The stakeholders have confirmed that the revision feature is robust and errors will not
interrupt a users revision.

The responses to questionnaire 2 show that the process of creating revision material and
revising it is very efficient, simple and robust. The few complaints received could be sorted
in future development, with the biggest issue being the 5 set limit. However, overall the
stakeholders were very happy with the functionality and usability of this feature so this
element of my solution has been a success.

Questionnaire 3: Quizzes
This questionnaire relates to success criteria 6.

1.) Does the program allow you to take a quiz on a set of flashcards you have created?
2.) Was the quiz thorough enough?

3.) Were the questions in a random order?

4.) Did the multiple choice/written quiz work correctly and were you given a valid score,
percentage and time taken upon completion?

154

As explained earlier in the report, the quiz feature has not been implemented and so | will
not be giving this questionnaire to my stakeholders. They all said it would be massively
beneficial for this feature to be implemented in future development as testing your
knowledge is an important part of revision. As such, the quiz feature of my solution has
been a failure. The ways this would be implemented in future development were outlined
earlier in the evaluation section.

Questionnaire 4: Progress Tracker
This questionnaire relates to success criteria 7, 8 and 13.

1.) Can you successfully access and view the progress tracker feature?

2.) Are the statistics shown correct?

3.) Do you feel this feature is helping you?

4.) Can you successfully set exam dates/deadlines, and do these show on the main menu?
5.) Are email notifications successfully sent and received when you prompt the program to
send one?

6.) Can you successfully share your results on the application’s Twitter page?

Similar to questionnaire 3, the progress tracker feature has not been implemented as
explained earlier in the report so it would be pointless giving this questionnaire to my
stakeholders. | did however ask whether they thought it would be beneficial to implement
this feature in future development and they all said yes. As such, the progress tracker
feature of my solution has been a failure. The ways this would be implemented in future
development were outlined earlier in the evaluation section.

Questionnaire 5: General
This questionnaire relates to success criteria 4, 9 and 10.

1.) Is the app easy to use and navigate?

Vivek: Yes, the functionality of the buttons is clear and they work as intended.

Marcus: Yes, although | feel it would be beneficial to have a ‘how to use’ page on the start
menu informing users of the features of the app, as well as things like the 5 set limit.

Sam: Yes, navigation is easy.

In future development, a ‘how to use’ feature could easily be added as Marcus as suggested.
| feel this would be beneficial to ensure that users know about how to use the app, its
features and its limitations before creating an account. It could be added by simply adding a
button on the start menu which takes the user to a new layout containing a block of text
explaining these things, along with a back button to take the user back to the start menu.

2.) Is the GUI layout simple and not confusing?

Vivek: Yes, although it would be better if the GUI was more modern as it looks slightly
outdated.

Marcus: Yes, usability is easy.

Sam: Yes, easy to use but looks a bit old.

155

Vivek and Sam raised the point of making the layout more modern and more like other
revision apps on the market at the moment. | agree with this, and the reason more time was
not dedicated to this during development is because | decided to focus more of my time on
the functionality once the GUI was sufficient for use. Making the GUI more modern in
PySimpleGUI is possible, but difficult. It could be easier to use a different framework to
make the GUI look more modern in future development.

3.) Are there any errors/problems you encountered whilst using the app? If so, what were
these?

Vivek: None apart from the 5 set limit, which is more of an inconvenience rather than an
error.

Marcus: Its not an error with the program but it is annoying that only Gmail accounts are
allowed.

Sam: No errors.

From the stakeholder feedback, it is clear that there are very little to no ‘errors’ in the
program, rather just intentional features such as the 5 set limit that some stakeholders find
inconvenient.

4.) Did the sound effects work correctly?
Vivek: There were no sound effects.
Marcus: No

Sam: | did not hear any sound effects

When programming my solution, | did not include any sound effects so | did not expect the
user to hear anything while using the app. This could be easily implemented using mixer in
future development, but it is not a key feature of the app.

5.) Is the colour scheme easy on the eye?
Vivek: Yes, the colour scheme is fine.
Marcus: Yes

Sam: Yes

All stakeholders were happy with the colour scheme used and did not think it was too
overwhelming and would be suitable for long runs of revision looking at the screen.

6.) | added a new question to my original questionnaire asking the stakeholders whether
they had anything to add/any advice for future development:

Vivek: The app is good and the features that have been implemented work correctly, but the
solution would be massively improved by adding a progress tracker and quiz feature in
future development.

Marcus: The only advice | have is the feedback | have given to previous questions. Apart from
that, the app is good. | also noticed when testing the program that when a new set has been
made, and you are taken to add flashcards to the set, when you press back to go to the
MysSets layout, the new set has not appeared on the button — it only appears when you go
back to the main menu and then back onto the MySets layout. Longer definitions also
appear to go significantly off the screen on the flashcard screen.

156

Sam: A more modern interface and the features that have not yet been implemented would
make the solution better. A way to edit my details once | have create my account would also
be beneficial.

The responses here show that apart from the concerns mentioned earlier, the stakeholders
are mostly happy with the solution. However, when testing the program (the evidence video
for which can be found in the post-development testing evidence PowerPoint), Marcus
noticed that the set names were not being updated on the MySets layout when the user
goes back to it from the flashcard screen when they have made a new set. This means that
success criteria 4 has only been . This could easily be solved in future
development by running the set_names function whenever a new set is made. He also
noticed that longer definitions are significantly cut off the screen when revising flashcards.
This again could be because the text element has been made too large or the border is
obscuring some of the text. Both of these things could be investigated in future
development. However, | do not think it is because of the text element being too large
because when | use a large piece of text as the definition, it does go onto a new line so it
appears that the border is the issue:

2 Revision App - X

An adder is a digital circuit that performsg
dition of numbers. In many computers a
r kinds of processors adders are used i
metic logic units or ALU. They are also
bther parts of the processor, where they
sed to calculate addresses, table indices

ement and decrement operators and si
operations.

This screenshot shows that either the textbox is slightly too large or the border is obscuring
the text.

Sam wanted a way to edit your details after account creation, which links to the ‘manage
account’ feature that | mentioned earlier in the evaluation section that | was unable to
implement for reasons listed earlier. This is a feature | would definitely implement in future
development.

Questionnaire 5 has shown that the users are happy with the functionality of the program,
but think it would be improved by making the interface more modern and implementing the
progress tracker/quiz features.

Overall, the stakeholder feedback here has outlined that the features that have been
implemented mostly work well apart from a couple of small, easily fixable issues. The
general usability and user-friendliness of my solution has been a success.

157

Summary of usability features

Usability
Feature

Successfully
Created?
(partial/fully/not)

Why?

How to fully meet this
feature.

Instructions

Not

There is nowhere in the

Add a button on the

on use program where the user is start menu taking the
given any instructions on user to a screen
how to use the program or containing instructions
its features. for use as well as the

features of the app.

Buttons Fully All buttons have a clear N/A
functionality, work as
intended and are big enough
for the user to easily see,
making the interface much
easier to navigate.

GUI Partially Users said the GUI was Use images on buttons
simple and easy to navigate | to make the layout look
through and understand, but | more modernised, use
looked outdated and would | a different colour
be better if it was more scheme, or even use an
modern like many already entirely different
existing revision apps. framework for the GUI.

Window Partially The window size is good and | Make device-

size is fixed so it appears the dependent layouts

same on all devices, but the
window itself cannot be
reshaped, so on desktops the
layout only covers a small
portion of the screen and so
may appear a bit small.

Limitations of my solution and how they could be addressed

rather than a fixed
layout.

One limitation of my partially complete solution is the 5 set limit. This is a limitation because
it effectively prevents the user from using the app for a wide range of subjects as it limits
them to 5 sets of flashcards. This was an issue mentioned by all my stakeholders as
something they would like to be removed in future development. The main issue with
having more than 5 sets is not a storage related issue, but rather the fact that the set menu
only has 5 buttons, and so can only display 5 sets for the user to interact with. There is no
way | am aware of in PySimpleGUI to automatically create buttons and their functionality
whilst the program is running (the layouts have to be predetermined), so | could work
around this by having a ‘next page’/’previous page’ button on the MySets layout which
updates the buttons on the screen to display the next/previous 5 sets, effectively allowing
for unlimited sets to be displayed. There would also be robustness features added to this to
ensure that the user cannot press ‘next page’/’previous page’ when there are no more sets
to be displayed.

158

Another limitation of my solution is the lack of ability for the user to test their own
knowledge on a set of flashcards (i.e. the quiz feature). This is a limitation because testing
your knowledge is a key part of revision to check whether you fully understand and
remember what you have revised. My stakeholders also agree that not having this feature is
a big limitation to the solution. To address this in future development, as laid out earlier in
the report, a quiz feature would need to be added, which displays the term of each
flashcard in the chosen set as the ‘question’ and then the correct answer along with 3 other
incorrect answers are shown on the screen in random positions as 4 possible multiple choice
answers. The user would have to choose one of these and their final score, percentage and
time taken to complete would all be recorded and displayed once they have completed the
quiz. Every time a new quiz is taken, the multiple choice answers would be different and
appear in different places. This would be achievable by writing all of the terms/definitions
from a set to separate lists, displaying the string in the corresponding index position in the
definition list for each term randomly in one of the 4 multiple choice slots, and then adding
the number of this slot to another list so that another answer cannot be placed in this slot
and override the correct answer, and then randomly choosing 3 other definitions from the
list and displaying them in the other 3 slots in a similar way. However, this would require the
layout of the CSV file to change so that it now includes spaces for the quiz results to be
stored, and there is a way to differentiate between them and the flashcards themselves in
the CSV file:

setnamel, setname?, setname3, setnamed, setname5
flashcard,set,term,definition
flashcard,set,term,definition
flashcard,set,term,definition
quiz,set,percentage,time
quiz,set,percentage,time
set,term,definition,set,percentage,time
flashcard,set,term,definition

Each row after the set names contains either a flashcard or quiz result, indicated by the first
element in that row. | would have to edit the flashcard feature to now check for rows with
the string ‘flashcard’ in the first element as well as searching for the set number.

Another limitation to my solution is the fact that the progress tracker has not been
implemented either due to time constraints. This is a limitation because tracking your
progress is key when doing revision to see where you need to focus your time and which
subjects you are not making as much progress in. To implement this in future development,
as mentioned earlier in the evaluation section, there would have to be graphs displayed on
the screen which display the percentages and time taken to complete quizzes on a particular
set (I would have to do extra research on this as graphing is not a concept | am familiar with
in python). The data for the graphs would be read from the users CSV file.

Another limitation of my solution is the fact that the program only allows Gmail accounts, as
mentioned by one of my stakeholders. This is a limitation because it prevents people who
do not have a Gmail account from creating an account on the app with their email address,
as an error message would appear telling them that their email address is not valid (as it is

159

not Gmail). This could be changed by removing the gmail validation from the sign up feature
and sending emails from the apps Gmail account to non-gmail addresses.

Finally, the last limitation of my solution is the fact that the user cannot change their
account details/delete their account (which creates security issues as users cannot change
their passwords or email addresses) as the manage account feature has not been
implemented. This could be solved in future development by adding a screen that allows a
user to enter their current password (for added security), and if it is correct, allows them to
change the password/email address to something else. The userinfo.txt file would then be
rewritten with this new data in place of the old data. Adding a delete account feature would
be relatively simple — it would just require the users CSV file to be deleted, and all of their
information from the userinfo.txt file to be removed (most likely by rewriting the file
without that information).

Maintenance issues

For users to be able to access their accounts on any device, the userinfo.txt file would have
to be constantly updated, as well as the users CSV file. This maintenance issue could be
solved by storing the users details in a server that uses a database that can save all data.
Then use a python SQL library to get data from this database. | would have to do further
research on finding a python library that handle server traffic in order to choose a suitable
one and learn how to use this library before implementing this change.

In the long term, if the app ever became large-scale, | would have to hire a maintenance
team to deal with the user feedback/support and further updates. | would also have to
implement a user support feature in the app if it were to be rolled out on a large scale so
there is a clear way to ask for support so that the support team can handle the request. This
could be expensive and time-consuming to interview and hire a support team, but it would
be necessary as it would be impossible for mee to single-handedly run all aspects of the app
if it was being used on a large scale.

Furthermore, any updates made to the app in the future would require users to re-
download the app, and if any changes were made to the way the text/CSV files/databases
were laid out, the already existing files/databases would have to be entirely reconfigured to
match the way they are being read. This would be very time consuming and meticulous, and
emphasises the need for a large support team.

End of report summary
Now that | have reached the end of my NEA report and | have analysed, designed,
developed and evaluated my solution, the app can be rolled out for my stakeholders to use.

The elements of my solution that were implemented mostly followed how | planned their
design, and the elements that were not implemented were justified and evaluated in terms
of their importance and how they could be implemented in future development.

Any long-term maintenance issues have been highlighted and | have offered suggestions to
how these could be solved or how the solution could be amended to deal with them.

160

