TMS Physics: Quasi-Static E Field within a Spherical
Conductor Due to an External Current Source

Known externally

applied current J(r) ——— J =
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Homogeneous isotropic
spherically symmetric conductor

spherical volume of radius = a

See [6] for typical material constants



The Physics

Time varying current supplied by the TMS unit induces a primary electric field in the conductor which
produces a distribution of charge via an ohmic current which gives rise to a secondary electric field.

Quasi-static approximation: Typical TMS frequency of 10 KHz so system behaves as though it
reaches equilibrium on a time-scale much less than the period of the characteristic temporal
frequency. As a consequence any charge build up will reside only at the surface of the conductor as
is the case with a conductor in equilibrium. Also since V [1J(r,t) = 0 for a conductor at equilibrium
then, at the surface of a conductor with homogeneous isotropic conductivity, ie E (r,t) =0 atr = a.

The vector potential, A(r,t), is determined by the current within the stimulation coils only. The skin
depth for an arbitrary conductor is given by [6]
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Using the assumed constants the skin depth is 0.8 m at f = 10 MHz. Such a relatively large skin
depth (compared to sphere diameter) means that the ohmic current in the conductor is not a
significant contributor to A(r,t). As a consequence the condition V x B(r,t) = 0 applies within the
conducting sphere when calculating A(r,t).




The Physics

e We want to determine E(r,t) within the conducting sphere therefore we need to determine the scalar
potential ®(r,t) and magnetic vector potential A(r,t). The E field is then given by

E(r,t) = —VO(r,t) — %JA{{}_;‘f)
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The Math: The Vector Potential

For quasi-static approximation the vector potential is given everywhere by

A=

Where the current density is that due to the TMS coils only. Using a vector spherical harmonic expansion [5] of

the integrand
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wherej=0, ..., ;[=j jt1andm=-, ..., 0, ] Which can be rewritten as.
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The Math: The Vector Potential
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Since the applied current is assumed to be known then the coefficients given above are known as well.
Applying the previously mentioned constraint V x B(r,t) = V x V x A(r,t) = 0 one finds that

where
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The Math: The Scalar Potential

The scalar potential in quasistatic approximation is given by
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Spherical harmonic expansion applicable to interior of the sphere
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Assuming the charge is distributed on the surface of the sphere only:
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The Math: The Scalar Potential

and integrating with respect to » we get
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which can be rewritten as
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The Math: Applying Boundary Condition

Our job is to find the ij(t) in terms of the known the A'J.m(t). We do this by using the boundary condition on
the component of E normal to the surface (the radial component) at r = a:
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First we calculate the E field inside sphere
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The Math: Applying Boundary Condition

And then we apply the boundary condition on the radial component of E and find

Cim(t) = 1 2j +104],
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Putting it all together the E field inside the sphere is:
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where the particular vector spherical harmonic above is given by
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Discussion

The electric field has no radial component.
The magnitude of the electric field decreases as r decreases (as we move toward sphere’s center).

The magnitude of spatially small-scale components of the field fall off faster with respect to r.
Therefore any focal angular distribution the field magnitude near the surface will blur as r decreases.
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