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Abstract

The generalized integrate-and-fire (GIF) neuron model accounts for some of the most fundamental
behaviours of neurons within a compact and extensible mathematical framework. Here, we introduce
the main concepts behind the design of the GIF model in terms that will be familiar to electrophysiolo-
gists, and show why its simple design makes this model particularly well-suited to mimicking behaviours
observed in experimental data. Along the way, we will build an intuition for how specific neuronal
behaviours, such as spike-frequency adaptation, or electrical properties, such as ionic currents, can be
formulated mathematically and used to extend integrate-and-fire models to overcome their limitations.
This chapter will provide readers with no previous exposure to modelling a clear understanding of the
strengths and limitations of GIF models, along with the mathematical intuitions required to digest more
detailed and technical treatments of this topic.

Keywords: Single neuron model, Generalized integrate-and-fire model, Electrophysiology, Neuro-
science, Optimization.

1 Introduction to leaky integrate-and-fire models

From an electrical perspective, a neuron is like a rubber balloon in the process of being inflated. The cell
membrane of the neuron separates electrically charged ions inside and outside the cell just as the balloon
separates molecules of air, and there is a difference in the distribution of charges (i.e., voltage) across the
membrane of a cell just at there is a difference in pressure across the membrane of the balloon. Synaptic
inputs to the neuron alter the voltage across the membrane just as adding or removing air from the balloon
alters the pressure difference. The amount of air needed to appreciably change the pressure inside the balloon
depends on its size, just as the number of charges needed to change the membrane voltage depends on the
surface area of the membrane. If the balloon is not tied shut, the air inside will slowly leak out, just as
charges leak across the cell membrane. Finally, if the difference in pressure across the rubber membrane
of the balloon becomes too great, the balloon will pop, just as a neuron will fire an action potential, also
called a spike, if the voltage exceeds a threshold. Once the balloon pops, the process restarts with a new,
uninflated balloon, just as a neuron will reset to a lower voltage after firing an action potential.

This rubber balloon neuron model captures several of the most important electrical features of neurons,
but some important details related to spiking behaviour are still missing. We will see how these can be
addressed in Section 2. For now, however, we will focus on developing a mathematical description of our
rubber balloon model which will serve as a foundation for the rest of the chapter.

The leaky integrate-and-fire (LIF) neuron model first introduced by Stein (1965), rooted in the work of
Lapicque (1907) from over a century ago, captures the same properties of neurons as our rubber balloon
analogy. The LIF models the membrane voltage V (t) in terms of its rate of change dV/dt and behaviour at
spike threshold VT as follows

dV

dt
=

1

C
(−gl(V (t)− El) + Iext(t)) , V (t) < VT (1){

V (t+ tref) ← Vreset

t ← t+ tref

, V (t) ≥ VT (2)

where gl represents the leakiness of the membrane, which is equivalent to 1/Rm, where Rm is the membrane
resistance; El represents its equilibrium voltage, also called the resting membrane potential; Iext(t) represents
external inputs to the neuron; C is the membrane capacitance, which reflects the membrane surface area;
and tref is the duration of the absolute refractory period after a spike. According to Eq. 1, the membrane
voltage relaxes towards its equilibrium El in the absence of any input Iext(t). This happens more quickly if
the membrane is very leaky (dV/dt increases with gl) or if the voltage is far from equilibrium (dV/dt increases
with V (t)−El), and more slowly if the membrane surface area is very large (dV/dt decreases with increasing
C), consistent with our balloon analogy. Whenever the voltage reaches VT a spike occurs instantaneously,
like the popping of a balloon, and the dynamics of Eq. 1 no longer apply. Instead, Eq. 2 specifies that the
voltage should be reset to a lower value Vreset after a short refractory period tref. Unlike in many other
neuron models, the membrane voltage during the spike is not defined—for a LIF model, a “spike” is not
spike-shaped at all, it has no shape because the voltage is not defined. This simplification takes advantage
of the fact that the shape of the action potential does not carry any meaningful information.
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Comparison of LIF and Hodgkin-Huxley models

The decision not to model the dynamics of the membrane voltage during the action potential is one
of the most important conceptual differences between LIF models, which have their roots in the
early 20th-century work of Lapicque (1907), and the biophysically-realistic models first introduced
by Hodgkin and Huxley (1952) half a century later.
Hodgkin and Huxley’s account of the biological mechanisms of action potential generation in squid
axon included a model of membrane voltage dynamics as a sum of voltage-dependent ionic currents

C
dV

dt
= INa(t) + IK(t) + Iext(t),

where INa(t) and IK(t) are voltage-dependent sodium and potassium currents, respectively. Unlike
in Lapicque’s LIF model, the membrane voltage in Hodgkin and Huxley’s model is always defined,
including during the action potential. This detailed and realistic approach to modelling the voltage
dynamics of neurons has been enormously influential, to the point that neuron models that are based
on detailed descriptions of ionic currents are commonly referred to as Hodgkin-Huxley-style models.
With the advent of more realistic and detailed Hodgkin-Huxley models, are simplified LIF models
still of any use? When comparing these two types of models, it is important to keep in mind that
they were created for different purposes. The original model of Hodgkin and Huxley was designed to
explain how the interactions of two specific ionic currents give rise to voltage spikes with a particular
shape, which we call action potentials. The original model of Lapicque, on the other hand, was
created to describe how different electrical stimuli impacted the rate of action potential discharge in
frog nervous tissue. For Lapicque’s work, a description of the shape of the action potential (and the
biophysical mechanisms responsible for it) was not necessary, and LIF models continue to be used
in cases when the relationship between electrical input and the timing or rate of output spikes is of
primary interest.
The negative consequences of omitting necessary biological components from a model are obvious, but
there are also more subtle drawbacks of including unnecessary detail. More complicated models are
usually more difficult to design and constrain to mimic specific neurons of interest, and can be liable
to produce inaccurate predictions as a result (for reasons we will touch on in Section 3.1). Highly
detailed models also take more time to simulate simply because more calculations are required per
time step.
To summarize, LIF and Hodgkin-Huxley models each describe neurons at different levels of detail
because they were created for different purposes, and each style of model comes with its own com-
promises.

The highly simplified LIF model provides an intuitive account of some of the most basic electrical fea-
tures of neurons. In particular, the one-to-one correspondence between model parameters and fundamental
properties such as resting membrane potential and spike threshold makes the LIF model straightforward to
interpret. In the coming sections, we will first discuss how the LIF model can be extended to account for
spike-frequency adaptation and stochastic firing in a similarly intuitive way, then show how these intuitive
definitions lend themselves particularly well to being fitted to data.

2 Generalizing the leaky integrate-and-fire model

2.1 Spike-triggered adaptation

In response to a step stimulus, many neurons initially fire action potentials at a high rate which then
decreases gradually to a lower rate. This phenomenon, known as spike-frequency adaptation (SFA), plays
many important roles in neural systems such as enhancing the detection of weak stimuli and computing the
rate of change of an input (Lundstrom et al. 2008). SFA arises from the effects of spike-triggered adaptation
currents, which tend to push membrane voltage away from spike threshold, as well as the inactivation of the
biophysical mechanisms that cause spiking, resulting in an effective change in the spike threshold. In this
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Figure 1: The generalized integrate-and-fire model. A current input I(t) produces a subthreshold voltage
V (t) which is translated into a probability of emitting a spike Pr[spike]. Spikes are emitted stochastically and
cause the voltage to reset to a lower value after a short delay, as in the leaky integrate-and-fire model. Spike
frequency adaptation is caused by the spike-triggered adaptation current H(t) and threshold movement G(t).
Notice that spikes introduce discontinuities into the spike probability and adaptation mechanisms because
the dynamics of the GIF model during a spike are not defined. There are also discontinuities in the membrane
voltage V (t) for the same reason; however, to improve clarity, here we have set the voltage to an arbitrary
high value during each spike. The dashed gray lines in G(t) and H(t) indicate zero.
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section, we will show how to extend the LIF model to incorporate these ideas in an explicit and intuitive
way.

On a conceptual level, SFA mechanisms can be divided into two categories: mechanisms which move
the membrane voltage away from threshold, such as adaptation currents; and mechanisms which move the
threshold away from the membrane voltage, such as inactivation of spiking mechanisms. We can capture
these two categories mathematically in terms of a pair of functions η(x) (adaptation current) and γ(x)
(threshold movement) for x > 0 where x is the time since a spike. In general, adaptation currents and
threshold changes are large just after a spike, but fade away over time. In order to give η(x) and γ(x) these
properties, we can define them mathematically using decaying exponentials e−x/τ , which fade away to zero
as x increases at a rate dictated by the timescale τ . Depending on the cell type and even the individual
neuron, these adaptation mechanisms may fade away quickly, slowly, or even over multiple timescales. We
can accommodate this variability by implementing η(x) and γ(x) as weighted sums of exponentials with
different timescales τ

f(x) ≡
∑
i

w
(f)
i e−x/τ

(f)
i , τ

(f)
i > 0, x > 0 (3)

where the w
(f)
i are the weights and f corresponds to η or γ as appropriate. If a particular timescale τ

(f)
i is

not found in a given neuron, its associated weight w
(f)
i can simply be set to zero to remove its contribution

to the overall adaptation function f(x). To allow the effects of adaptation to build up over multiple spikes,
we can define H(t) and G(t) as the sums of η and γ over the set of all past spikes {s ∈ S; s < t}

H(t) ≡
∑

{s∈S;s<t}

η (t− s) (4)

G(t) ≡
∑

{s∈S;s<t}

γ (t− s) (5)

where S is the set of all spike times, s is the time of a specific spike, and t is the current time. This means
that if several spikes occur in quick succession, the adaptation mechanisms H(t) and G(t) will be engaged
more strongly than if fewer spikes had occurred. Additionally, since both η and γ go to zero as the time
since a spike t− s increases, past spikes contribute less and less to the adaptation functions H(t) and G(t)
as time goes on.

The LIF neuron model presented in the previous section does not account for spike-frequency adaptation,
but this is easily remedied by incorporating an adaptation current and spike-triggered threshold movement
into the model via H(t) and G(t). In order to do that, we must first redefine the fixed spike threshold VT to
be a function VT (t) that returns the spike threshold at a specific time t, taking the effects of previous spikes
into account via the threshold movement G(t)

VT (t) ≡ V ∗T +G(t),

where V ∗T is the spike threshold after all adaptation has faded away. This equation shows why we call G(t)
the threshold movement: it gives the amount that the spike threshold has moved as a result of adaptation.

Next, we must incorporate the adaptation current H(t) into the subthreshold dynamics given in Eq. 1
so that it can influence the subthreshold voltage. Simply subtracting H(t) from the other currents in Eq. 1
completes the definition of our LIF model with adaptation

dV

dt
=

1

C
(−gl(V (t)− El)−H(t) + Iext(t)) , V (t) < VT (t) (6){

V (t+ tref) ← Vreset

t ← t+ tref,
V (t) ≥ VT (t). (7)

Notice that Eq. 6 tells us that when the adaptation current H(t) increases after a spike, it is subtracted away
from the input current Iext(t). This means that the adaptation current can effectively reduce the strength
of an input stimulus. Since the LIF fires less rapidly in response to weaker inputs, the adaptation current
H(t) causes the firing rate evoked by constant stimulus to drop off after the first few spikes, consistent with
the SFA effect we seek.
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Figure 2: Typical shape of the spike probability function given in Eq. 8. The vertical axis shows the
probability of spiking within a small time window [t, t + ∆t) and the horizontal axis shows the distance
between the membrane voltage V (t) and spike threshold VT (t). Notice that increasing the stochasticity
scaling factor σ increases the probability of spiking below threshold. The spike probability function shown

here is ρ
(
V (t)−VT (t)

σ

)
= exp

[
−e

V (t)−VT (t)

σ ∆t
]
, which is used by the GIF model as previously described

(Mensi, Naud, et al. 2012; Gerstner et al. 2014; Pozzorini et al. 2015; Mensi, Hagens, et al. 2016; Harkin
et al. 2020).

2.2 Stochasticity

The LIF model presented here fires a spike instantaneously when the voltage exceeds a threshold VT (t), but
in real neurons this process is less precise (Mainen and Sejnowski 1995). In general, neurons are more likely
to spike when their membrane voltage exceeds a threshold, but it is also possible for spikes to occur when
the voltage is below threshold or vice-versa. It can therefore be helpful to think of the relationship between
voltage and spiking in terms of a probability that depends on the current voltage and threshold, rather than
as a hard cutoff. We can express this idea mathematically in terms of a spike probability function

ρ

(
V (t)− VT (t)

σ

)
= Pr[spike between time t and t+ ∆t | V (t)− VT (t)], (8)

where Pr[x | y] denotes the probability of x given y, σ is a scaling factor that sets the degree of stochasticity,
and ∆t is a small time interval. To capture our intuition that spikes are more likely when V (t) is above

VT (t), ρ
(
V (t)−VT (t)

σ

)
is usually a sigmoidal function that is close to 1 when V (t) − VT (t) > 0 and close to

0 when V (t) − VT (t) < 0, such as the one shown in Fig. 2. The scaling factor σ allows us to control how
quickly the probability of spiking increases when the voltage is above threshold. In more intuitive terms, σ
sets the threshold sharpness.

Incorporating this stochastic spiking behaviour into the LIF model with adaptation will complete our
definition of the generalized integrate-and-fire model (GIF). To accomplish this, we simply need to invoke the
spiking rule given in Eq. 7 probabilistically according to the spike probability function given in Eq. 8 rather
than deterministically whenever the voltage exceeds a given threshold. The pseudocode in Algorithm 1
sketches how this can be done, and an example of a model simulated this way is shown in Fig. 1.

2.3 Simplifications, generalizations, and limitations

The generalized integrate-and-fire model we have presented here accounts for more features of neuronal ex-
citability than the leaky integrate-and-fire model from Section 1, but it is still a highly simplified model.
Compared with the LIF model, the GIF model accounts for two important phenomena related to spiking:
spike-triggered adaptation and a stochastic threshold. However, the GIF model does not account for sub-
threshold adaptation that is not related to spiking, nor does it account for the effects of the mechanisms
that give rise to stochastic spiking on the subthreshold voltage.
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Algorithm 1 Simulation procedure for the GIF model.

Require: Iext(t) . Input current.
Require: C, gl, El, η, γ, V

∗
T , σ, ρ . Model components.

Require: V0,∆t, T . Initial voltage, simulation timestep, and duration of simulation.
Require: ξ(t) . Random number between 0 and 1 sampled at time t.

. Set initial condition.
t← 0
V (t)← V0

S ← {∅}
while t < T do

G(t)←
∑
{s∈S;s<t} γ(t− s) . Compute threshold movement from Eq. 5.

VT (t)← V ∗T +G(t) . Compute spike threshold with adaptation.

if ξ(t) ≤ ρ
(
V (t)−VT (t)

σ

)
then

S ← S ∪ t . Add t to the set of spike times.
. Emit a spike according to Eq. 7.

V (t+ tref)← Vreset

t← t+ tref

else
H(t)←

∑
{s∈S;s<t} η(t− s) . Compute adaptation current from Eq. 4.

. Integrate membrane dynamics from Eq. 6
∆V ← ∆t

C (−gl(V (t)− El)−H(t) + Iext(t))
V (t+ ∆t)← V (t) + ∆V
t← t+ ∆t . Increment time.

end if
end while
return V (t),S for 0 ≤ t < T
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Subthreshold adaptation can be produced by voltage-activated currents that oppose the very changes in
voltage that cause them to activate, creating the appearance of a sag in the voltage response to step inputs.
Prominent examples include the hyperpolarization-activated current Ih and subthreshold voltage-activated
potassium currents. From a functional perspective, the main effect of these currents is to filter out inputs
that produce slow changes in voltage, while letting through inputs that cause the voltage to change quickly.
In real neurons, this frequency filtering effect is specific to the range of subthreshold voltages in which the
current activates — if an input current produces a change in voltage that does not activate the current
causing subthreshold adaptation, no adaptation is produced. In GIF models, subthreshold adaptation is
most easily accounted for by adding a slowly activating leak current. This approach is mathematically
simple to implement but disregards potential voltage-specificity of subthreshold adaptation. An alternative
approach is to augment the GIF model with explicit Hodgkin-Huxley models of the currents that give rise to
adaptation. We will discuss how to augment GIF models with Hodgkin-Huxley components in Section 3.4.

Stochastic firing in real neurons arises partly from the fast but not instantaneous dynamics of the sodium
channels that mediate spiking. In real neurons, sodium channels begin to open when the membrane potential
approaches threshold. This pushes the membrane potential even closer to threshold, creating a positive
feedback loop between membrane potential and sodium channel activation. Eventually, this process passes
a threshold or point of no return and a spike is produced. In the GIF model, this soft positive feedback
process is replaced by a probability of spiking. When the positive feedback process is strong enough to very
rapidly pass the point of no return (i.e., when the threshold is very sharp), the probabilistic threshold of the
GIF model can be a good approximation. However, if this positive feedback process is initially very weak,
the activity of sodium channels can impact the subthreshold voltage dynamics without leading to spiking. In
this case, the probabilistic threshold of the GIF model is a worse approximation because it does not capture
the effects of spiking mechanisms on the subthreshold dynamics.

The GIF model differs from real neurons in one additional important respect: real neurons exhibit a
complex morphological structure, but the GIF model represents a voltage at a single point. The GIF model
is most accurate when only inputs and outputs at the level of the cell body are considered. Fortunately,
an electrode located at the cell body is often both the main source of input and instrument for measuring
output during in vitro electrophysiological experiments. Unfortunately, under physiological conditions, most
of the input to a neuron arrives via synapses located on potentially electrically-distant dendrites, and the
point-neuron simplification of the GIF model may be less appropriate.

In sum, while the GIF model offers a simple and intuitive description of many of the electrical properties
of neurons, it does not capture all of the properties of neurons equally well. When the subthreshold effects
of ionic currents, spiking mechanisms, or neuronal morphology are of primary interest, it is important to
consider whether the GIF model can be adapted to account for these mechanisms to a satisfactory extent,
or whether an entirely different modelling framework should be chosen.

3 Fitting the generalized integrate-and-fire model

3.1 Finding parameter values: experiments vs. optimization

So far we have presented the GIF model as an intuitive single neuron model formulated in terms of inter-
pretable input and output variables, which include input current, voltage, and spike times, and parameters,
such as membrane leakiness and spike threshold. Next, we turn to the question of how to choose appro-
priate values for the parameters. In practice, there are two main approaches: carry out a series of detailed
electrophysiological experiments to measure each parameter in the model, for example, by applying current
steps of various amplitudes to measure the action potential threshold, or use mathematical optimization
techniques to find the parameter values that cause the output of the model to mimic that of a real neuron.
Choosing between these two approaches involves a trade-off between the interpretation of model parameters
and the accuracy of model predictions. Following the experimental approach, parameter values will have a
precise and familiar physiological interpretation, but the output of the model might not mimic that of any
particular neuron or cell type very closely. Following the optimization-based approach, the parameter values
will represent effective quantities with a potentially less precise physiological interpretation, but the output
predicted by the model will match that of a particular neuron as closely as possible. For readers with a
strong background in experimental neuroscience, it may come as a surprise that models constructed using
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experimentally-measured parameter values can produce poor predictions in common cases. In this section,
we discuss why this happens and present an alternative optimization-based approach.

One situation in which models constructed using experimentally-measured parameter values produce
poor predictions arises when both of the following conditions are met:

1. the true values of the parameters in the neuron population of interest are correlated or are otherwise
not statistically independent, and

2. it is not possible to experimentally determine the values of all of the parameters in a single neuron, or
this data is not available even if it is possible to collect.

This situation arises very often in practice. This is partly because the first condition is surprisingly easy to
meet since it is sufficient for only two of the model parameters to be related (resting membrane potential
and action potential threshold, for instance). The second condition is also usually met because it is often
impractical to measure each of the model parameters in every neuron, even if it is technically possible. If
both conditions are met, the distribution of the experimentally-determined model parameters will not match
the true distribution in the population. Since the behaviour of the GIF model is controlled by its parameters,
this can easily lead to models that exhibit unexpected behaviours that are not found in the population of
neurons they are intended to mimic.

To see why, consider a hypothetical population of neurons with a similar degree of spike frequency
adaptation. Suppose that this adaptation is caused by a variable mixture of an adaptation current and
moving threshold, but that the sizes of the adaptation current and moving threshold are anticorrelated such
that the overall degree of spike frequency adaptation is roughly constant. If it is not possible to measure
both the adaptation current and moving threshold in the same neurons, a researcher might observe that both
the adaptation and moving threshold range from small to large, but not realize that they are anticorrelated.
This might lead them to create a set of models that includes neurons with both a large moving threshold
and adaptation current, even though no such neurons exist in the population. As a result, the models might
exhibit more variable spike frequency adaptation than the neuron population (Balachandar and Prescott
2018). Even if the researcher decides to create a single model of an “average” neuron by setting both the
adaptation current and moving threshold to a moderate amplitude, the degree of spike frequency adaptation
in the model might be very different from any of the neurons in the population. This is because the non-linear
interactions between the adaptation current and moving threshold cause the total amount of spike frequency
adaptation to be different from the sum of its parts. Similarly, the average spike frequency adaptation in a
population can be different from the averages of its parts. This phenomenon is sometimes called the failure
of averaging (Golowasch et al. 2002).

In an alternative approach to parameter estimation, an experimenter records the voltage response of a
neuron to an input current delivered via an intracellular electrode and the output of the model in response
to the same input is forced to match that of the neuron as closely as possible (Pozzorini et al. 2015). This
approach involves defining a mathematical measure of similarity between the output of the model and the
observed behaviour of a neuron and finding a set of parameter values that maximize this measure. In
some cases, it is possible to find the similarity-maximizing parameter values directly by taking advantage of
mathematical properties of the similarity measure. However, it is often necessary to simply take an initial
guess at the values of the model parameters and then adjust them repeatedly in the direction of increasing
similarity until a maximum level of similarity is reached, a process known as gradient ascent. Whether they
are obtained via gradient ascent or found directly, the similarity-maximizing values are referred to as the
optimal values for the corresponding parameters, and the process of finding them is called optimization or
fitting.

The optimization process can be understood more intuitively by visualizing it in terms of a similarity
landscape. If we focus on only two of the model parameters at a time, we can imagine that the two parameters
give the latitude and longitude of a point on this landscape and that the similarity defines the altitude of that
point. Following this analogy, points of maximal similarity correspond to the tops of hills in this landscape.
We can imagine gradient ascent as the process of starting somewhere on the landscape and proceeding uphill.
In the machine-learning literature, it is more common to define a mathematical measure of dissimilarity and
use gradient descent to find optimal points lying at the bottoms of valleys; for the sake of simplicity, we will
focus on similarity/gradient ascent for now. Depending on the model and similarity measure, there can be
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more than one hill in the similarity landscape1. When this is the case, finding the point at the top of the
tallest hill becomes quite difficult because we cannot reach it by proceeding uphill from any starting point.
(Fortunately, in the case of the GIF model, there is only one hill and finding the parameter values that
produce the highest possible similarity is not difficult2.) This process works the same way when there are
more than two parameters, but visualizing a landscape with additional dimensions stretches the imagination.

The main advantages of this optimization-based approach over experimentally determining parameter
values are that optimization is less labour intensive and yields models that produce more accurate predic-
tions. On the other hand, a potential drawback of this approach is that the parameter values obtained via
optimization do not necessarily correspond exactly to experimental measurements. To see why, consider a
neuron that is exactly like the GIF model except that it has an additional voltage-dependent conductance

dV

dt
=

1

C
(−gl(V (t)− El)− gv(V )(V (t)− El)−H(t) + I(t)) ,

where gv(V ) is the voltage-dependent conductance. If a researcher were to fit the GIF model to this neuron,
the effect of the voltage-dependent conductance would be mixed into the leak conductance of the GIF model

−gl(V (t)− El)− gv(V )(V (t)− El) = −(gl + gv(V ))(V (t)− El) =⇒ ĝl = gl + gv(V ),

where ĝl is the value obtained by fitting the GIF model. Notice that not only is there a mismatch between
the fitted leak conductance and the true leak conductance of the neuron, ĝl 6= gl, but, since gv(V ) depends on
voltage and ĝl = gl + gv(V ), the value obtained for ĝl depends on the voltage of the neuron! This illustrates
that unless the neuron to which the GIF model is fitted is a GIF model, the optimal parameter values
should not be interpreted as exact substitutes for experimentally-determined values. Instead, they should
be interpreted as effective values, in the sense that they specify how much a particular variable affects the
output of the GIF model within the context of a specific input and set of model components.

The mismatch between optimal model parameter values and experimental measurements is hardly unique
to the GIF model. In fact, it arises to some extent in all models that are not exact copies of the systems they
are intended to mimic. (Such a model would, of course, be of very little use!) Model simplification involves
combining multiple components of a more complex model into a smaller number of components in a simpler
model, often introducing approximations in the process. This might seem to suggest that more accurate
parameter values could be obtained by fitting models with fewer simplifications, but in practice this is not
often the case. Complex neuron models with detailed representations of the elaborate morphology or diverse
ionic composition of real neurons are very difficult to fit to data because these complexities introduce many
hills and valleys into the similarity landscape, making the best parameter values hard to find.

In this chapter, we will focus on an optimization-based approach for determining parameter values mainly
because GIF models constructed in this way yield more accurate predictions of neural output. In addition,
the fact that all of the parameters in the GIF model can be fitted simultaneously to small amounts of data
means that the optimized values of those parameters provide a detailed window into the effective properties
of individual cells. However, the reader should be aware that GIF model parameter estimates obtained via
optimization come with important caveats: value estimates may depend on the conditions under which they
were obtained (for example, the voltage range, as discussed above) and the extent to which the GIF model
resembles the neuron being fitted. In the coming sections, we will show how each of these caveats can be
addressed.

3.2 Choosing an input

Optimization-based methods for choosing GIF model parameter values involve matching the output of the
GIF model to that of a real neuron for a given input. How, then, to choose the input? More importantly, why
does the choice of input matter? In Section 3.1, we saw that the parameter values found via optimization

1In this case, the points at the tops of hills are higher than all points within a small neighbourhood, but not necessarily
all points in the landscape. After all, there might be taller hills elsewhere. Points that are only optimal within a small
neighbourhood are called locally optimal and the point at the top of the tallest hill is called globally optimal.

2Although the measures of similarity and dissimilarity used by the GIF model will be presented briefly in Section 3.3, the
reasons that these measures are associated with landscapes that have a particular structure are beyond the scope of this chapter.
For a thorough introduction, see (Paninski, Simoncelli, and Jonathan W Pillow 2004; Gerstner et al. 2014).
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can depend on the range of voltages experienced by the neuron to which the GIF model is fitted. Since the
voltage of a neuron depends on its input, the parameter values found via optimization depend on the input as
well. This implies that the choice of input is important for two reasons: first, the effective parameter values
found by fitting the GIF model are specific to the input used during fitting; second, since the predictions
made by the GIF model depend on the values of its parameters, the neuronal outputs (i.e., voltage, spike
times) predicted by the GIF model are most accurate for the input used during fitting.

Whether the GIF model is to be used to predict neuronal outputs or gain insight into the effective
properties of individual cells, both goals are more easily accomplished when the input used for fitting the
GIF model is chosen appropriately. Which input is most appropriate depends on the research question at
hand; each researcher must ask themselves whether specific types of input (e.g., synaptic vs. artificial),
frequency bands (e.g., θ oscillations), or voltage ranges (e.g., close to action potential threshold) are most
relevant to their question. In practice, however, noise is often used as input because the fluctuations present
in noise cover a wide range of simpler inputs (slow rise, fast rise, rise-then-fall, etc.). Ornstein-Uhlenbeck
noise is a particularly popular choice because it approximates the random fluctuations produced by the
synaptic bombardment neurons receive in vivo (Pozzorini et al. 2015).

Carefully selecting the input used to fit the GIF model, or simply using noise, mitigates one of the
important caveats associated with GIF models; namely, that parameter estimates — and, by association,
model predictions — are somewhat specific to a given input. The degree of specificity can be quantified
by simply comparing the parameter estimates or predictions on different subsets of data collected from a
given neuron (Pozzorini et al. 2015). In the machine learning literature, it is common to divide a dataset of
independent samples into a portion used for fitting a model and a separate portion for testing the accuracy of
model predictions using new inputs, referred to as the training and test datasets, respectively. In the case of
data used to fit the GIF model, completely independent samples are difficult to obtain due to the long-lasting
effects of adaptation mechanisms. In practice, nearly independent samples of neuronal output are obtained
by applying at least two distinct inputs to each neuron to be fitted, each separated by an equilibration
period of several seconds. The data associated with some of the inputs will be used for fitting while the
rest is reserved for testing, effectively dividing the experiment into separate training and test phases. Since
our goal is to evaluate the accuracy of GIF model predictions on the test input, the experimenter should
attempt to ensure that the training and test phases of the experiment are as similar as possible apart from
the choice of input. For a detailed discussion of the best practices for evaluating the accuracy of GIF models,
see Pozzorini et al. (2015). For a more general treatment of model selection and accuracy estimation, see
Hastie, Tibshirani, and Friedman (2009) and Kohavi (1995).

3.3 Optimization

3.3.1 Quantifying model accuracy

All optimization techniques rely on a precise definition of the similarity or dissimilarity between the actual
and desired outputs of a function. In the case of the GIF model, this means we must define how we will
measure the similarity between the output of the GIF model and that of a real neuron. Because the GIF
model is divided into two parts, each with their own outputs and parameters, we will in fact need to define
two separate measures: one for the subthreshold component of the model, and one for the stochastic spiking
rule.

The subthreshold component of the GIF model given in Eq. 6 defines the relationship between an external

input Iext(t) and the derivative of the membrane voltage d̂V
dt given the current voltage of the neuron V (t)

and the timing of spikes S. Notice that we have added a hatˆto the voltage derivative to indicate that this
quantity is predicted by the model rather than measured experimentally. We take the subthreshold voltage
V (t) and the set of spike times S to be given because they are easily measured experimentally, and because

doing so allows us to isolate the effect of the parameters of the subthreshold model ĝl, Êl, Ĉ, ŵ
(η)
i , and

τ̂
(η)
i on its output d̂V

dt . Because the voltage derivative is a continuous signal, we can quantify the level of

dissimilarity between the predicted derivative d̂V
dt and the experimentally measured derivative dV

dt using the
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sum of squared errors

J(ĝl, Êl, Ĉ, ŵ
(η)
1 , . . . , ŵ

(η)
k , τ̂

(η)
1 , . . . , τ̂

(η)
k ; I(t),S, V (t)) =

∑
t/∈S′

(
dV

dt
− d̂V

dt

)2

, (9)

where t /∈ S ′ is time excluding a small window around each spike. Notice that if we choose values of the

parameters ĝl, Êl, etc. that cause the predicted voltage derivative d̂V
dt to be far above or below the measured

derivative dV
dt , this dissimilarity function will have a large value. On the other hand, if we choose parameter

values that cause the output of the model to match the measured derivative exactly, the dissimilarity will
be zero. Our objective is therefore to find the parameter values that minimize J(ĝl, . . . ; I(t),S, V (t)), which
can be expressed mathematically as

arg min
ĝl,Êl,Ĉ,ŵ

(η)
1 ,...,ŵ

(η)
k ,τ̂

(η)
1 ,...,τ̂

(η)
k

J
(
ĝl, Êl, Ĉ, ŵ

(η)
1 , . . . , ŵ

(η)
k , τ̂

(η)
1 , . . . , τ̂

(η)
k ; I(t),S, V (t)

)
where arg minx f(x) finds the value of x that minimizes f(x). This notation is common in the machine
learning literature, in which J(x) is referred to as an objective function or loss function.

The stochastic spiking rule given in Eq. 8 defines the probability of emitting a spike at a particular time t
given the subthreshold voltage predicted by the model V̂ (t) and the timing of previous spikes {s ∈ S; s < t}
(indirectly through Eq. 5). Our goal is therefore to find values for the parameters in the spiking rule V̂ ∗T , σ̂,

ŵ
(γ)
i , and τ̂

(γ)
i that maximize the probability that the spikes emitted by the model occur at the same time

as spikes are observed experimentally

arg max
V̂ ∗T ,σ̂,ŵ

(γ)
1 ,...,ŵ

(γ)
k ,τ̂

(γ)
1 ,...,τ̂

(γ)
k

Pr
[
Ŝ = S | V̂ (t)

]
where Ŝ and S are the model predicted and experimentally observed sets of spike times, respectively. More
precisely, we would like to maximize the joint probability that the model emits a spike when a spike is observed
experimentally and that the model does not emit a spike when a spike is not observed experimentally

Pr
[
Ŝ = S | V̂ (t)

]
= Pr

[⋂
t

{
t ∈ Ŝ if t ∈ S
t /∈ Ŝ if t /∈ S

∣∣∣∣∣V̂ (t)

]
.

Unfortunately, the probability that the model emits a spike at a particular time t depends on the timing
of previous spikes {ŝ ∈ Ŝ; ŝ < t} due to spike frequency adaptation induced by the moving threshold G(t)
from Eq. 5. This means that the probabilities that the model does or does not emit a spike at any particular
set of times ti, tj , tk, . . . are not independent, and consequently we cannot write the previous equation as a
product of probabilities. However, if we assume that all of the spikes up to a given time t were emitted at
the correct times {ŝ ∈ Ŝ; ŝ < t} ← {s ∈ S; s < t}, then we can take advantage of the fact that the spiking
probabilities under this assumption are independent to rewrite the previous equation using the product rule

Pr
[
Ŝ = S | V̂ (t)

]
=
∏
t

ρ
(
V̂ (t)−V̂T (t)

σ̂

)
if t ∈ S

1− ρ
(
V̂ (t)−V̂T (t)

σ̂

)
if t /∈ S

(10)

where ρ
(
V̂ (t)−V̂T (t)

σ̂

)
gives the probability of spiking at time t (see Eq. 8). This gives us a concrete expression

for the similarity between the output of the spiking rule of the GIF model and the experimentally observed
spike times which we can maximize.

3.3.2 Solving for parameter values

Now that we have expressed the degree of agreement between the outputs of the GIF model and of a real
neuron, we can turn to the question of how to adjust the model parameters to minimize the dissimilarity in

Eq. 9 and maximize the similarity in Eq. 10. If we fix the timescales τ
(η)
1 , . . . , τ

(η)
k , τ

(γ)
1 , . . . , τ

(γ)
k , we can solve
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for the remaining parameters to minimize this restricted form of Eq. 9 directly, and maximize the restricted
form of Eq. 10 by gradient ascent.

It is possible to solve for the optimal values of the unknown parameters in Eq. 9 because the term

representing the subthreshold dynamics of the GIF model d̂V
dt can be rewritten as a linear equation. The

parameter values that minimize the sum of squared errors of any linear model can be found using ordinary
least-squares regression. Simple linear models include ŷ = m̂x+ b̂ for a single input variable x, or

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂nxn

for n input variables. The β̂i are called regression coefficients or model parameters. In a geometric interpre-
tation of this equation, β̂0 is called an intercept and β̂1, . . . , β̂n are called slopes. It might not be immediately
obvious that the GIF model is such a linear model, but if the subthreshold dynamics from Eq. 6 are expanded
and rearranged, we obtain the following

d̂V

dt
=
ĝlÊl

Ĉ
+
−ĝl
Ĉ
V (t) +

1

Ĉ
Iext(t) +

−ŵ(η)
1

Ĉ

∑
{s∈S;s<t}

e
s−t

τ
(η)
1 + · · ·+

−ŵ(η)
k

Ĉ

∑
{s∈S;s<t}

e
s−t

τ
(η)
k

which can be rewritten as

ŷ = β̂0 + β̂1V (t) + β̂2Iext(t) + β̂3

∑
{s∈S;s<t}

e
s−t

τ
(η)
1 + · · ·+ β̂k+2

∑
{s∈S;s<t}

e
s−t

τ
(η)
k , (11)

where Ĉ = 1/β̂2, ĝl = −β̂1/β̂2, and so on. This is a linear model where the output ŷ = d̂V
dt is the voltage

derivative; the inputs xi are the injected current Iext(t), the subthreshold voltage V (t), and the exponential
basis functions of the adaptation current η(t − s) from Eq. 3 summated over past spikes {s ∈ S; s < t}
(obtained by decomposing H(t) from Eq. 4); and the regression coefficients β̂i are the unknown parameters.

This linear form of the subthreshold dynamics shows why it is necessary to fix the values of τ
(η)
i : if these

values were not fixed, the dynamics could not be written in terms of known input variables multiplied by
unknown regression coefficients, and it would not be possible to use ordinary least squares regression to
estimate all of the unknown parameters. Importantly, this form also shows that more components can be
added to the subthreshold part of the GIF model as long as they can be written in terms of a known variable
scaled by an unknown amount (this will be discussed in detail in Section 3.4).

Unfortunately, there are no similar techniques to find the values of the threshold parameters that maxi-
mize Eq. 10 directly. Instead, we must begin with a set of initial guesses for the values of these parameters
and incrementally improve them using gradient ascent. In practice, the spike probability function used in

the GIF model, ρ( V̂ (t)−V̂T (t)
σ̂ ) (see Eq. 8), guarantees that gradient ascent will eventually lead us to the best

possible values for these parameters (Paninski, Simoncelli, and Jonathan W Pillow 2004; “Estimating pa-
rameters of probabilistic neuron models” 2014). Similarly to the subthreshold optimization process discussed
above, this guarantee is subject to certain constraints, and the simplest way to satisfy these constraints is

to require that the term inside the spike probability function, V̂ (t)−V̂T (t)
σ̂ in this case, can be written as a

linear function of its parameters. By expanding V̂T (t) and rearranging, we can rewrite the term inside the
spike probability function as

V̂ (t)− V̂T (t)

σ̂
=
−V̂ ∗T
σ̂

+
1

σ̂
V̂ (t) +

−ŵ(γ)
1

σ̂

∑
{s∈S;s<t}

e
s−t

τ
(γ)
1 + · · ·+

−ŵ(γ)
k

σ̂

∑
{s∈S;s<t}

e
s−t

τ
(γ)
k

= β̂0 + β̂1V̂ (t) + β̂2

∑
{s∈S;s<t}

e
s−t

τ
(γ)
1 + · · ·+ β̂k+2

∑
{s∈S;s<t}

e
s−t

τ
(γ)
k ,

where V̂ (t) is the voltage predicted by the subthreshold component of the model. This expression for
V̂ (t)−V̂T (t)

σ̂ is of course linear with respect to the unknown parameters. Just as with the subthreshold
component of the model, this linear form illustrates that additional components can be added to the spiking
rule of the GIF model as long as they can be written as a known variable scaled by an unknown amount.
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Figure 3: A GIF model augmented with a voltage-dependent current.

3.4 Extending the subthreshold model

The GIF model, like all other neuron models, is subject to the No Free Lunch theorem: no single model is
best for all cases (Wolpert and Macready 1997). The simplifications used to construct the GIF model — for
example, that the subthreshold dynamics of neurons are not voltage-dependent — might present problems
for particular cell types or research questions. In this section, we will use the serotonin neurons of the dorsal
raphe nucleus as a case study to illustrate how the GIF model can be extended to address limitations of the
subthreshold model.

The subthreshold electrical properties of serotonin neurons are characterized by an unusually large mem-
brane resistance (equivalent to a very small leak conductance) and a potent voltage-dependent ionic current
(Harkin et al. 2020). These characteristics violate one of the core assumptions of the GIF modelling frame-
work, namely, that the subthreshold electrical properties of neurons are dominated by a voltage-independent
leak conductance. Fortunately, it is possible to augment the subthreshold dynamics of the GIF model with
a voltage-dependent component to account for the specific characteristics of serotonin neurons. To see how,
we will start by adding a voltage-dependent current IV (t) to the subthreshold dynamics of the GIF model
defined in Eq. 6

dV

dt
=

1

C
(−gl(V (t)− El) + IV (t)−H(t) + Iext(t)) . (12)

We can model IV (t) following the usual Hodgkin-Huxley approach

IV (t) = gVm(t)h(t)(V (t)− EV ) (13)

where gV is the maximum conductance; m(t) and h(t) are activation and inactivation gating functions,
respectively; and EV is the reversal potential of the current. The details of the gating functions and re-
versal potential are not important; suffice it to say that these can usually be determined experimentally3

or controlled. With this in mind, we can group together the known terms from Eq. 13 into a new variable

3The gating functions in Hodgkin-Huxley current models are usually expressed in terms of an equilibrium gating function,
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Figure 4: A GIF model augmented with a voltage-dependent current fitted to a serotonin neuron. The
noisy input stimulus at the top was not used during fitting. Notice that the augmented GIF model (teal)
accurately predicts the subthreshold voltage (middle) and spike times (raster, bottom) of the real neuron
(blue). The spike rasters at bottom are for several repetitions of the test stimulus shown at top. These
illustrate that the augmented GIF model captures some of the natural stochasticity of spiking observed in
serotonin neurons.

a(t) = m(t)h(t)(V (t) − EV ). Substituting this back into Eq. 13, we obtain a definition of the voltage-
dependent current in terms of a known variable scaled by an unknown parameter

IV (t) = gV a(t). (14)

Recall from Section 3.3 that the unknown parameters in the subthreshold component of the GIF model can
be found easily as long as the subthreshold dynamics can be written in a linear form; in other words, as a
sum of known variables scaled by unknown parameters. Substituting Eq. 14 back into Eq. 12 and expanding
and rearranging the terms, we obtain the following linear form in analogy with Eq. 11

d̂V

dt
=
ĝlÊl

Ĉ
+
−ĝl
Ĉ
V (t) +

ĝV

Ĉ
a(t) +

1

Ĉ
Iext(t) +

−ŵ(η)
1

Ĉ

∑
{s∈S;s<t}

e
s−t

τ
(η)
1 + · · ·+

−ŵ(η)
k

Ĉ

∑
{s∈S;s<t}

e
s−t

τ
(η)
k .

Because the subthreshold dynamics can still be written in a linear form, the regression approach to estimating
the unknown model parameters presented in Section 3.3 can still be used, ultimately yielding an augmented
GIF model with a voltage-dependent ionic current (see Fig. 3)4.

Augmenting the GIF model with additional components such as ionic currents can bring the assumptions
of the neuron model into closer agreement with the known features of particular neurons. This improves

which is a sigmoidal function of voltage, and one or more gating time constants, which may themselves depend on voltage.
Readers with a background in whole-cell electrophysiology will likely already be familiar with techniques for measuring these
quantities. For a comprehensive treatment, see Hille (2001).

4For an example of a similar approach used to estimate the parameters of ionic currents in a more detailed model, see Huys,
Ahrens, and Paninski (2006).
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Figure 5: Leak conductance estimated by GIF models fitted to serotonin neurons (circles). Ground-truth
estimates for this parameter based on experimental measurements from a large number of cells are shown
in gray; wider areas indicate a relatively greater proportion of cells. Notice that the estimates produced by
the augmented GIF model are closer to the ground truth.

the interpretability of the model by reducing the extent to which multiple electrical features are mixed
into a single model term. Evidence of this mixing can be seen in the estimated values of ĝl in serotonin
neurons using the GIF model and its augmented counterpart presented above. Even though the leak term
used to estimate ĝl is the same in both models, the values of ĝl in the augmented model are closer to the
corresponding true values gl because the effects of the voltage-dependent current are mixed into it to a lesser
extent (see Fig. 5). Of course, unless the Hodgkin-Huxley model of the current used in the augmented GIF
model is exactly correct, a certain amount of mixing will always occur, which explains why the distribution
of ĝl in Fig. 5 does not exactly agree with the ground truth. This reduced mixing can also increase the
accuracy of model predictions by decreasing the dependence of model parameter estimates on the input used
to fit the model (as discussed in Section 3.1). In the case of serotonin neurons, the augmented GIF predicts
the timing of spikes significantly more accurately than the base GIF model (Harkin et al. 2020), even though
the differences between the two models are limited to the subthreshold dynamics. (See Fig. 4 for an example
of an augmented GIF model fitted to a serotonin neuron.) These results illustrate how adjustments to the
GIF model can improve accuracy and interpretability.

4 Summary

In this chapter, we have seen that generalized integrate-and-fire (GIF) models build on leaky integrate-and-
fire models to capture three of the most fundamental features of neurons: leaky subthreshold integration,
stochastic spiking, and spike-frequency adaptation. The simplified mathematical structure of the GIF model
provides a one-to-one correspondence between model components and electrophysiological features, making
it intuitive to understand. We also saw that the subthreshold and spiking components of the GIF model are
rooted in linear models that are easily fitted to data. This allows the GIF model to be constrained to mimic
the behaviour of individual neurons based on very little data using a two-step optimization procedure, often
with better results than more labour-intensive experimental approaches that require measuring the values
of model parameters one at a time. Finally, we showed how the linear components of the GIF model can be
extended to account for non-linear ionic currents that are not present in the GIF model as it was initially
defined.

5 Further reading

The leaky integrate-and-fire model as it is used today was first introduced by Stein (1965), and the generalized
integrate-and-fire model as it is presented here was introduced by Mensi, Naud, et al. (2012). See Kobayashi
(2009) for an earlier model similar to the GIF model which also captures a wide range of neural behaviours.

15



A detailed derivation of the GIF model and its two-step fitting procedure can be found in Gerstner et al.
(2014). For a very practical description of how to carry out experiments that can be used to constrain the
GIF model, and an overview of how GIF models can be fitted using publicly-available software, see Pozzorini
et al. (2015). For examples of how different variations of the GIF framework can be used to capture the
behaviours of various types of cortical neurons, see Mensi, Hagens, et al. (2016) and Teeter et al. (2018).
The definitive textbook on the physiology of ion channels and neuronal membranes is Hille (2001).

The GIF modelling framework is conceptually related to other classes of neuron models that are based
on linearity assumptions. Like the GIF framework, generalized linear models (GLMs) (Jonathan W. Pillow
et al. 2008) and linear-nonlinear Poisson models (LNPs) (Truccolo et al. 2005) are based on a linear function
of a set of inputs which is then passed through a non-linear link function to produce a firing rate (GLMs)
or spike probability (LNPs). However, unlike GIF models, these models do not attempt to predict the
subthreshold voltage as an intermediate step. This means that GLMs and LNPs are not well-suited to cases
where the subthreshold voltage is of primary interest, or when spiking data is very sparse. On the other
hand, these models can be fitted to spiking data even when the subthreshold voltage is not known, as is the
case during extracellular recording.

In this chapter, we have introduced optimization methods that rely on either exact knowledge of the re-
lationship between model parameter values and predictive accuracy to solve for the best possible parameter
values directly, or that use only local knowledge of this relationship to find the best values within a neigh-
bourhood (gradient-based methods introduced in Section 3.3). Gonçalves et al. (2020) recently introduced
an intermediate approach which uses an artificial neural network to approximate the global relationship
between parameter values and model outputs, allowing approximately optimal parameter values to be found
even for complex models.
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