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Abstract

Given any eight points in the 3D space, there is a unique trilinear mapping which maps
the reference cube to a “hexahedron” having the eight points as its vertices. In the finite
element method and many other approximation problems, it requires such a trilinear mapping
to be one-to-one and to have a positive Jacobian everywhere. It is a long-time and challenging
problem to find a computable test, which is a both necessary and sufficient condition, to ensure
the global positivity of the Jacobian of such trilinear mappings. In computation, a sufficient
condition may be enough as people would eliminate ill-shaped elements as well as those not
invertible elements. In this paper, we will show a subtetrahedral test, used by engineers, is
neither necessary nor sufficient. We correct this test by extending the number of subtetrahedra
to be checked from 24 to 32. The sufficiency of the new test for a globally positive Jacobian
is proven.
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1 Introduction

In the finite element computation, each element is inversely mapped to a reference element and all
the calculation is done on this reference element. Such a reference mapping must be bijective, and
the Jacobian is usually required to be positive everywhere on the reference element (cf [1, 2, 5].)
The situation for 2D, quadrilateral elements is relatively simple that a bilinear reference mapping
is bijective if and only if the Jacobian is positive at the four corners, i.e., the four corner triangles
are “positive” (cf., for example, [3]). But the problem in 3D is much more complicated. Given 8
points in the 3D space, there is a unique trilinear reference mapping. When would this mapping be
bijective? When would this mapping have a globally positive Jacobian? Mathematically, is there
a necessary and sufficient condition, which can be checked by a computer, for the positivity of
the trilinear Jacobian? Computationally, we need a sufficient condition which can be computable
and and pass all trilinear mappings for well-shaped hexahedral finite elements. Such a sufficient
condition would be called a test by engineers. What is a good test?

Some preliminary studies on the Jacobian of trilinear mappings were done in [7, 8, 9, 6] and
the first three questions above were posted explicitly by some authors of, in particular, [7, 8, 6].
The three questions were answered in a sequence of papers nearly thoroughly by the author in
[13, 14, 15]. In [13] it is proved that a trilinear reference mapping is bijective if its Jacobian is
positive on the boundary. This reduced the conditions for bijectivity in the classic homeomorphism
theorem (cf. [12] and references in [2]) in two directions that (1) the requirement of bijectivity
on the boundary is removed; and (2) the requirement of the global positivity of the Jacobian is
reduced to the boundary positivity. The conjecture of “face-test” in [7] is proved in [14] that if a
Jacobian is positive on the boundary, it is positive everywhere. Further, it is shown in the paper
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that the “edge-test” is valid too provided the reference mapping is bijective on the boundary. The
last result provides a computable necessary and sufficient condition for a Jacobian to be globally
positive (cf. [15]), answering the third question above.

In this paper, we will try to answer the fourth question above. Independent of the analysis
in [13, 14, 15], we will study a test, the subtetrahedral test, presented in a grid-generation bible
book [4]. The subtetrahedral test checks the Jacobians of 24 subtetrahedra at the 12 edges of a
given hexahedron. The test is a natural extension of the 2D test of checking the Jacobian of 4
subtriangles at 4 vertices of a quadrilateral. The test was claimed and widely accepted that it
ensures the global positivity of the Jacobian of the trilinear mapping for any hexahedron (see [4]
and references therein). In this paper, we will disprove this claim. We will show that the test is
neither a sufficient or a necessary condition, i.e., a hexahedron passes the test may fail to have a
globally positive Jacobian, and a hexahedron fails the test may have a globally positive Jacobian.
Of course, such a test needs not to be a necessary condition. But this test fails to be a working
test as it is not a sufficient condition.

We will modify the subtetrahedral test, by adding 8 subtetrahedra (at 8 vertices) to the list of
24 subtetrahedra (at 12 edges) to be tested. We will prove that the new (32) subtetrahedral test
guarantees a positive Jacobian, independent of the analysis and the results of the author’s earlier
work [13, 14, 15]. We remark that, in [10, 11], two different tests were presented and were shown
to be a sufficient condition each for a positive Jacobian. We believe the new subtetrahedral test
is simpler, both in mathematics and in computation, than the two tests in [10, 11]. All three tests
compute Jacobians of some subtetrahedra. The new test computes only 32 Jacobians while the
other two tests needs to compute 64 Jacobians and to check 33 inequalities of the combinations of
the Jacobians. Also, we show by an example that the new test might be more powerful than the
other two, because the other tests, not the new subtetrahedral test, fail to detect the positivity
of the Jacobian for one hexahedron.

The paper is organized as follows. In section 2, trilinear reference mappings are defined
and some preliminary lemmas are presented. In section 3, the subtetrahedral test of [4] will be
introduced. We will show that the test won’t guarantee the positivity of a Jacobian. We will also
give an example showing that a hexahedron with a positive Jacobian may fail the test. In the last
section, we will extend the subtetrahedral test and we will show that the new subtetrahedral test
guarantees the positivity of a Jacobian. We then compare the test with other two existing tests.

2 The 3D Q1 and P1 mappings.

In this section, we define the 3D Q1 mapping, i.e., the trilinear mapping, and the hexahedral
element. We will present some simple lemmas concerning Jacobians.

Given 8 points, vi = (xi, yi, zi), i = 1, 2, . . . , 8, anywhere in the 3D space (see Figure 1), we
define an 8-vertex hexahedral finite element by the following 3D Q1 mapping:

F : Q̂ → Q := F (Q̂), F : (x̂, ŷ, ẑ) 7→ (x, y, z),

where




x
y
z



 =

8
∑

i=1

vibi(x̂, ŷ, ẑ)

= a000 + a100x̂ + a010ŷ + a001ẑ + a110x̂ŷ + a101x̂ẑ + a011ŷẑ + a111x̂ŷẑ. (1)

Here the Q1 nodal basis functions, bi(·, ·, ·), defined on the reference element Q̂ = [−1, 1]3 in 3D
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are






















b1 = (1 − x̂)(1 − ŷ)(1 − ẑ)/8, b5 = (1 − x̂)(1 − ŷ)(1 + ẑ)/8,

b2 = (1 + x̂)(1 − ŷ)(1 − ẑ)/8, b6 = (1 + x̂)(1 − ŷ)(1 + ẑ)/8,

b3 = (1 + x̂)(1 + ŷ)(1 − ẑ)/8, b7 = (1 + x̂)(1 + ŷ)(1 + ẑ)/8,

b4 = (1 − x̂)(1 + ŷ)(1 − ẑ)/8, b8 = (1 − x̂)(1 + ŷ)(1 + ẑ)/8.

(2)

Therefore we can find the coefficients in (1),



















































































1 : a000 = (v5 + v6 + v7 + v8)/8 + (v1 + v2 + v3 + v4)/8,

x̂ : a100 = (v2 + v3 + v6 + v7)/8 − (v1 + v4 + v5 + v8)/8,

ŷ : a010 = (v3 + v4 + v7 + v8)/8 − (v1 + v2 + v5 + v6)/8,

ẑ : a001 = (v5 + v6 + v7 + v8)/8 − (v1 + v2 + v3 + v4)/8,

x̂ŷ : a110 = (v5 + v7 − v6 − v8)/8 + (v1 + v3 − v2 − v4)/8,

x̂ẑ : a101 = (v4 + v7 − v3 − v8)/8 + (v1 + v6 − v2 − v5)/8,

ŷẑ : a011 = (v2 + v7 − v3 − v6)/8 + (v1 + v8 − v4 − v5)/8,

x̂ŷẑ : a111 = (v5 + v7 − v6 − v8)/8 − (v1 + v3 − v2 − v4)/8

= (v4 + v7 − v3 − v8)/8 − (v1 + v6 − v2 − v5)/8

= (v2 + v7 − v3 − v6)/8 − (v1 + v8 − v4 − v5)/8.

(3)

Figure 1: The reference cube and a general hexahedron (non-flat surface).

�

�

Q̂ :

�? �
��

�
��

�
��

v̂2(1,−1,−1)

v̂1 (−1,−1,−1) v̂4(−1, 1,−1)

v̂3(1, 1,−1)

v̂6

(1,−1, 1)

v̂5(−1,−1, 1) v̂8(−1, 1, 1)

v̂7(1, 1, 1)

Q : v2

v1

v3

v4

A
A
A
A
A
A
A
A

�
�
�
�
�
�

�
�
�
�
�
�
�
�

A
A

((((
((

v7

v6

v8
v5

Q
Q

Q
�
�
�
�
��

J
J
J
J
J
J
J
J
JJ

��������

(A) (B)

We note that 4 vertices, for example, the top 4 in Figure 1(B), of a face “quadrilateral” of Q
may not be on a same plane. Therefore, the “hexahedra” under the study may not have planar
faces, as each of the six faces is the image of some nonlinear (Q1) functions. The Jacobian matrix
of the mapping F in (1) is defined by

DF (x̂, ŷ, ẑ) =















∂x

∂x̂

∂x

∂ŷ

∂x

∂ẑ
∂y

∂x̂

∂y

∂ŷ

∂y

∂ẑ
∂z

∂x̂

∂z

∂ŷ

∂z

∂ẑ















, (4)
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and the Jacobian (determinant) of F by

J := JF = det(DF )(x̂, ŷ, ẑ).

Remark 2.1 We note that F maps each line on Q̂, parallel to either x or y or z axis, to a straight
line on Q. For example,

F ({(x̂, ŷ0, ẑ0) | −1 ≤ x̂ ≤ 1}) =

{

F (−1, ŷ0, ẑ0) +
1 + x̂

2
F (1, ŷ0, ẑ0) | −1 ≤ x̂ ≤ 1

}

.

Therefore each column vector in the Jacobian matrix of F is a constant vector along a line in

that direction. For example, the first column vector

(

∂x

∂x̂

∂y

∂x̂

∂z

∂x̂

)

of DF is constant on any

of the following lines
{(x̂, ŷ0, ẑ0) | −1 ≤ x̂ ≤ 1} .

We will relate the Jacobian of a trilinear mapping to that of linear mappings for tetrahedron.
For any tetrahedron Tv1v2v3v4

shown in Figure 2, we define an affine mapping from the reference
tetrahedron T̂ to T by

FT (x̂, ŷ, ẑ) =

4
∑

i=1

viβi(x̂, ŷ, ẑ), (5)

where bi are nodal basis functions on T̂ :

β1 =
1

2
(−1 − x̂ − ŷ − ẑ), β2 =

1

2
(1 + x̂),

β3 =
1

2
(1 + ŷ), β4 =

1

2
(1 + ẑ).

Figure 2: The reference reference tetrahedron T̂ and a general tetrahedron T .
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Lemma 2.1 Let FT be the reference mapping from T̂ to T (Figure 2). The Jacobian matrix of
FT , DFT

is a constant matrix and its determinant, the Jacobian of FT , is related to a box product:

det(DFT
) =

1

8
(

→
v1v2 ×

→
v1v3) ·

→
v1v4.
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Proof From (5), by expanding the nodal basis functions, we get

FT (x̂, ŷ, ẑ) =
−v1 + v2 + v3 + v4

2
+

v2 − v1

2
x̂

+
v3 − v1

2
ŷ +

v4 − v1

2
ẑ. (6)

Therefore, the Jacobian matrix is

DFT
=

1

2

(

v2 − v1 v3 − v1 v4 − v1

)

,

a constant matrix. The determinant, i.e., the Jacobian, is a box product

det(DFT
) =

1

8
(

→
v1v2 ×

→
v1v3) ·

→
v1v4.

If the reference mapping for a tetrahedron Tv1v2v3v4
has a positive Jacobian, i.e.,

Jv1v2v3v4
:=

1

8
(

→
v1v2 ×

→
v1v3) ·

→
v1v4 > 0. (7)

we say the tetrahedron is positive, For any nondegenerate triangle 4v1v2v3 shown in Figure 2, we
define its normal vector as

n4v1v2v3
=

→
v1v2 ×

→
v1v3. (8)

We say a point v4 is on the positive side of a triangle 4v1v2v3, or the positive side of the plane
v1v2v3, if the dot product is positive for any one i = 1, 2, 3,

n4v1v2v3
·

→
viv4 > 0. (9)

By the new language, we have, by (7) and (9), the following lemma.

Lemma 2.2 A tetrahedron Tv1v2v3v4
is positive if and only if the point v4 is on the positive side

of triangle 4v1v2v3.

Lemma 2.3 When we rotate the base triangle 4v1v2v3 of a tetrahedron Tv1v2v3v4
, the result-

ing tetrahedron is still Tv1v2v3v4
physically, but the 3 linear reference mappings F are different.

However, the Jacobian of three P1 mappings remains the same, i.e., (see (7))

Jv1v2v3v4
= Jv3v1v2v4

= Jv2v3v1v4

Proof The normal vector (8) is invariant when we rotate the triangle 4v1v2v3 to 4v2v3v1 and
4v3v1v2. As the point vi is on the plane of triangle 4v1v2v3, therefore

n4v1v2v3
·

→
v1v4 = n4v2v3v1

·
→

v1v4 = n4v3v1v2
·

→
v1v4.

The lemma follows the formula (7) now.

Lemma 2.4 Let FT be the reference mapping from the reference tetrahedron T̂ (Figure 2) to the
corner tetrahedron v1v2v4v5 of Q in Figure 1. Let F be the reference mapping from the reference
cube Q = [−1, 1]3 to Q shown in Figure 1. The Jacobian of F at vertex v1 is equal to the Jacobian
of FT , i.e.,

det(DF )(−1,−1,−1) = det(DFT
). (10)

Furthermore the two Jacobian matrices are the same:

DF (−1,−1,−1) = DFT
. (11)
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Proof When restrict F on the edge {[−1, 1] × −1 × −1}, it is a linear function. In fact,
F ({[−1, 1] ×−1 ×−1}) = v1v2 and

F (x̂,−1,−1) = FT (x̂,−1,−1) ∀x̂ ∈ [−1, 1].

Therefore, the first column of the Jacobian matrix ∂F/∂x̂ on the edge is a constant vector:

∂F

∂x̂
= a100 − a110 − a101 + a111 =

v2 − v1

2
,

where (1), (3), (5) and (6) are applied. On the other side, for FT , which is a linear function

everywhere, we have ∂FT /∂x̂ =
v2 − v1

2
as FT (−1,−1,−1) = v1 and FT (1,−1,−1) = v2. In the

same fashion, we get the identity for the Jacobian matrices:

DF (−1,−1,−1) =
1

2

(

v2 − v1 v4 − v1 v4 − v1

)

= DFT
.

3 The subtetrahedral test

In this section, we will define a test, used by engineers (cf. [4]), to detect if the Jacobian of a
Q1 reference mapping is globally positive. We will then show by two examples, this test is not a
necessary condition for a globally positive Jacobian, neither is a sufficient condition. Therefore,
this test fails to be a working test.

Figure 3: The 12 edge vectors of a quadrilateral.
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ê5

-
ê6
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v̂6

v̂5 v̂8
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For each hexahedron Qv1v2v3v4v5v6v7v8
shown in Figure 1, we number its 12 edge vectors in

Figure 3. We note that for each of the 12 edges we can form two subtetrahedra using this edge
and two edges, one at each end of this edge. For example, the two such subtetrahedra for edge
e6 are depicted in Figure 4. We list all 24 such subtetrahedra here (see Figure 1 for the vertex
orientation). We note that in the list (12), we do not distinguish Tv1v2v3v7

and Tv2v3v1v7
as their

Jacobians are the same, by Lemma 2.3.

Tv1v2v3v7
, Tv2v3v4v8

, Tv3v4v1v5
, Tv4v1v2v6

, Tv5v8v7v3
, Tv8v7v6v2

,

Tv7v6v5v1
, Tv6v5v8v4

, Tv2v1v5v8
, Tv4v3v7v6

, Tv1v4v8v7
, Tv3v2v6v5

,

Tv1v2v3v5
, Tv2v3v4v6

, Tv3v4v1v7
, Tv4v1v2v8

, Tv5v8v7v1
, Tv8v7v6v4

,

Tv7v6v5v3
, Tv6v5v8v2

, Tv5v1v4v6
, Tv3v7v8v2

, Tv4v8v5v3
, Tv2v6v7v1

.

(12)
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Definition 3.1 The 24-subtetrahedral test is defined as follows [4]. The Jacobian of a trilinear
mapping F defined in (1) is positive on Q̂ = [0, 1]3 if all the 24 Jacobians of P1 mappings for the
edge subtetrahedra in (12) are all positive (see Figures 3 and 4.)

Figure 4: The 2 subtetrahedra at edge ê6 (see Figure 3).
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Theorem 3.1 The 24-subtetrahedral test defined in Definition 3.1 is not a necessary condition
for the positivity of the Jacobian for the reference Q1 mapping of the underlying hexahedron. That
is, there is a tetrahedron Qv1v2v3v4v5v6v7v8

having a globally positive Jacobian on Q̂ while at least
one of the Jacobians for the P1 mappings for the 24 subtetrahedra listed in (12) is negative.

Figure 5: A hexahedron having globally positive Jacobian, but negative edge subtetrahedra.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

7

6

3

2

8

5

4

1

Proof Let Q be the hexahedron defined by the following 8 vertices (see Figure 1).

v1(0, 0, 0), v2(1, 0, 0.5), v3(1, 1, 0), v4(0, 1, 0.5)

v5(0.3, 0.3, 2), v6(1.5, 0.5, 2), v7(2, 2,−0.1), v8(0.5, 1.5, 2).
(13)
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This is a well-shaped hexahedron, obtained by stretching some edges of the unit cube, and
twisting. The latter is the reason for producing some negative Jacobians for the 24 subtetrahedra.
The 3D pictures of this hexahedron is shown in Figure 5. In the left picture of Figure 5, we did
not plot the front and the back faces so that we can view the 8 vertices better. We rotate Q a
little further in the right picture of Figure 5. The twist of the hexahedron is shown clearly in this
picture.

By many means, we can check that the Jacobian J for Q is positive on the whole reference
cube Q̂. We can compute the Jacobians for the 24 subtetrahedra in (12) and list them below:

Jv1v2v3v7
= −0.10, Jv2v3v4v8

= 2.00, Jv3v4v1v5
= 2.00, Jv4v1v2v6

= 1.00,

Jv5v8v7v3
= 1.93, Jv8v7v6v2

= 5.10, Jv7v6v5v1
= 4.03, Jv6v5v8v4

= 2.10,

Jv2v1v5v8
= 2.25, Jv4v3v7v6

= 2.45, Jv1v4v8v7
= 3.05, Jv3v2v6v5

= 2.05,

Jv1v2v3v5
= 2.00, Jv2v3v4v6

= 2.00, Jv3v4v1v7
= −0.10, Jv4v1v2v8

= 1.00,

Jv5v8v7v1
= 4.03, Jv8v7v6v4

= 5.10, Jv7v6v5v3
= 1.93, Jv6v5v8v2

= 2.10,

Jv5v1v4v6
= 2.25, Jv3v7v8v2

= 2.45, Jv4v8v5v3
= 2.05, Jv2v6v7v1

= 3.05.

The theorem is proven as Jv1v2v3v7
and Jv3v4v1v7

are negative.

Theorem 3.2 The 24-subtetrahedral test defined in Definition 3.1 is not a sufficient condition
for the positivity of the Jacobian for the reference Q1 mapping of the underlying hexahedron. That
is, there is a tetrahedron Qv1v2v3v4v5v6v7v8

having a non-positive Jacobian on Q̂ while all the 24
Jacobians for the P1 mappings for the 24 subtetrahedra listed in (12) are positive.

Figure 6: A negative-Jacobian Q with 24 positive subtetrahedra (top & bottom faces).
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Proof Let Q be the hexahedron defined by the following 8 vertices (see Figure 1 for vertex
orientation).

v1(0, 0.002,−0.01), v2(1, 1, 0), v3(0, 0.3,−0.3), v4(−1, 1, 0),

v5(0, 0.1,−0.1), v6(−1.5, 1.2, 0.02), v7(0, 0.0485,−0.05), v8(1.5, 1.2, 0.02).
(14)

This is a badly-shaped hexahedron. It should not be called a hexahedron probably as its
non-flat faces twist and cross each other so much. The 3D pictures of this hexahedron Q is shown
in Figures 6 and 7. In Figure 6, we plot only the top and the bottom faces of Q so that we
can view the 8 vertices and view the crossing better. From the picture, we can tell that the top
face-quadrilateral goes through the bottom face-quadrilateral twice, and that both are of sharp
saddle shapes. We rotate Q a little further. and plot it in Figure 7. All 6 faces are plotted. The
six faces of the hexahedron cross each other so much and this is shown clearly in Figure 7. We
note that the 4 “diagonal” vertices v1, v3, v5 and v7 are nearly on a same line.

Figure 7: A negative-Jacobian hexahedron with 24 positive edge-subtetrahedra.
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The trilinear mapping for the hexahedron Q defined in (14) is not one-to-one, and its Jacobian
is negative at most points of Q̂. However, all the 24 Jacobians for the 24 subtetrahedra in (12)
are all positive for the Q defined in (14) and listed below:

Jv1v2v3v7
= .00157, Jv2v3v4v8

= .09200, Jv3v4v1v5
= .00160, Jv4v1v2v6

= .03592,

Jv5v8v7v3
= .00045, Jv8v7v6v2

= .02709, Jv7v6v5v1
= .00040, Jv6v5v8v4

= .00600,

Jv2v1v5v8
= .02544, Jv4v3v7v6

= .07019, Jv1v4v8v7
= .10989, Jv3v2v6v5

= .54400,

Jv1v2v3v5
= .00160, Jv2v3v4v6

= .09200, Jv3v4v1v7
= .00157, Jv4v1v2v8

= .03592,

Jv5v8v7v1
= .00040, Jv8v7v6v4

= .02709, Jv7v6v5v3
= .00045, Jv6v5v8v2

= .00600,

Jv5v1v4v6
= .02544, Jv3v7v8v2

= .07019, Jv4v8v5v3
= .54400, Jv2v6v7v1

= .10989.

As we expected (after seeing Figures 6 and 7), the Jacobian for the hexahedron defined in (14)
is not positive on the whole Q̂. In fact, it is not even positive at some of the 8 vertices:

Jv1v2v4v5
= −0.182, Jv2v3v1v6

= 0.795, Jv3v4v2v7
= −0.501, Jv4v1v3v8

= 0.795,

Jv5v8v6v1
= 0.332, Jv6v5v7v2

= −0.136, Jv7v6v8v3
= 0.916, Jv8v7v5v4

= −0.136.

The theorem is proven by y Lemma 2.4, as Jv1v2v3v4
, for example, is negative.
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Remark 3.1 By Theorem 3.2, the subtetrahedral test of [4] fails to ensure a positive Jacobian
even after a hexahedron passes the test. This is like many other cases in engineering. For example,
the patch test for non-conforming finite elements is not a necessary, nor sufficient condition for a
finite element method to provide a convergent solution. But the patch test is used for so long and
many years to come. We note that the example of (14) is designed very carefully. It seems such
a hexahedron would never be produced by random numbers of computer. It is almost as hard as
to get 3 random points in 2D or 3D so that they on a line. Of course, we checked (14) carefully
to make sure no wrong result is produced by numerical errors.

4 The improved subtetrahedral test

In this section we will modify the subtetrahedral test by extending the list of subtetrahedra
for which the Jacobian is to be checked. We then show the new subtetrahedral is a sufficient
condition to ensure the global positivity of the Jacobian on hexahedral elements. Therefore, the
new subtetrahedral test is truly a working test after the modification. Finally, we will compare
the new test with two other existing tests.

Definition 4.1 The 32-subtetrahedral test is defined as follows. The Jacobian of a trilinear
mapping F defined in (1) is positive on Q̂ = [0, 1]3 if all the 32 Jacobians of the P1 mappings for
the 24 subtetrahedra in (12) and for the 8 corner subtetrahedra of Q, i.e.,

Tv1v2v4v5
, Tv2v3v1v6

, Tv3v4v2v7
, Tv4v1v3v8

,

Tv5v8v6v1
, Tv6v5v7v2

, Tv7v6v8v3
, Tv8v7v5v4

,
(15)

are all positive (see Figures 3 and 4.)

Figure 8: Two face images under the Q1 reference mapping.
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Lemma 4.1 Let F be the Q1 reference mapping for a general hexahedron Q shown in Figure 1
such that

F (v̂i) = vi, i = 1, 2, ..., 8, a, b, c,

where v̂a = (x̂0, 1,−1), v̂b = (x̂0,−1,−1), and v̂c = (x̂0,−1, 1), for some −1 < x̂0 < 1. If (cf.
Figure (8) for notations)

Jv1v2v3v5
> 0, Jv1v2v4v5

> 0, Jv1v2v4v6
> 0, Jv1v2v3v6

> 0

then

Jv1vbvav5
> 0, and Jv1vbvavc

> 0.
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Proof Because Jv1v2v3v5
> 0, the point v5 is on the positive side of triangle 4v1v2v3, by Lemma

2.2. As Jv1v2v3v6
> 0, v6 is on the positive side of 4v1v2v3 too. See Figure 8. Therefore every

point on the line segment v5v6 is on the positive side of 4v1v2v3. In particular, vc is on the
positive side of 4v1v2v3 and

(
→

v1v2 ×
→

v1v3) ·
→

vbvc > 0. (16)

Another way to interpret (16) is that v3 is on the positive side of 4v1vcvb. Repeating above steps
(symmetrically, in fact), by the two other conditions Jv1v2v4v5

> 0 and Jv1v2v4v6
> 0, we conclude

that v4 is also on the positive side of 4v1vcvb. Therefore, a point, va on the line segment v3v4

must be also on the positive side of 4v1vcvb. By Lemma 2.2,

(
→

v1vc ×
→

v1vb) ·
→

v1va > 0. (17)

(17) is the second inequality to be proved in the theorem, which is also 8 times of the Jacobian
J(x̂0,−1,−1) of the trilinear reference mapping F at point v̂b.

For the first inequality in the theorem, the proof is similar. Because Jv1v2v3v5
> 0, the point

v3 is on the positive side of the triangle 4v1v5v2. Because the point vb is on 4v1v5v2, v3 is on
the positive side of the triangle 4v1v5vb too. Similarly, by Jv1v2v4v5

> 0, v4 is on the positive
side of 4v1v5v2 and on the positive side of 4v1v5vb consequently. Since va is a point on the line
segment v3v4 and both end points are on the positive side of 4v1v5vb, we conclude that va is on
the positive side of 4v1v5vb and Jv1v5vbva

> 0, which is the first inequality, by Lemma 2.3.

Corollary 4.1 Let F be the trilinear reference mapping from Q̂ to any Q. If Q passes the
improved subtetrahedra test defined in Definition 4.1, then the Jacobian for F is positive on all
12 edges of Q̂.

Proof Lemma 4.1 says J(x̂0,−1,−1) =
1

8
Jv1vbvavc

> 0 for any x̂0 ∈ [0, 1], if Q passes the

32-subtetrahedral test. By rotational symmetry, J > 0 on any boundary edge of Q̂.

Corollary 4.2 Let F be the trilinear reference mapping from Q̂ to any Q. If Q passes the
improved subtetrahedra test defined in Definition 4.1, then the subtetrahedra Qv1vbvcv4v5vcvdv8

also
passes the test, see Figure 8, where, for any x̂0 ∈ [0, 1],

vb = F (x̂0,−1,−1), va = F (x̂0, 1,−1), vd = F (x̂0, 1, 1), vc = F (x̂0,−1, 1).

Proof By Lemma 4.1, Jv1vbvav5
> 0, Jv1vbvavc

> 0, i.e., the Jacobian of one edge-subtetrahedra
Tv1vbvav5

of (12) and the Jacobian of a corner subtetrahedron Tv1vbvavc
are positive. By symmetry,

the sub-hexahedron

Qv1vbvcv4v5vcvdv8
= F ({−1 ≤ x̂ ≤ x̂0,−1 ≤ ŷ ≤ 1,−1 ≤ ẑ ≤ 1})

passes the improved subtetrahedra test as all 32 Jacobians in (12) and (15) are positive.

Corollary 4.3 Let F be the trilinear reference mapping from Q̂ to any Q. If Q passes the
improved subtetrahedra test defined in Definition 4.1, then the Jacobian J of F is positive on the
boundary ∂Q̂.

Proof To find the sign of the Jacobian at any boundary point, say, without loss of generality,
(x̂0, ŷ0,−1) on the bottom face of Q̂, we can apply Lemma 4.1 to the sub-hexahedron

Q1 = F ({−1 ≤ x̂ ≤ x̂0,−1 ≤ ŷ ≤ 1,−1 ≤ ẑ ≤ 1})
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of Q, as Q1 passes the improved subtetrahedral test too according to Corollary 4.2. Therefore the
tetrahedron vavevfvg is positive and consequently the Jacobian of J at (x̂0, ŷ0,−1) is positive as it
is a positive multiple of the Jacobian for the subtetrahedron. Here, see Figure 8, va = F (x̂0, 1,−1),
ve = F (−1, ŷ0,−1),vf = F (x̂0, ŷ0,−1), and vg = F (x̂0, ŷ0, 1).

Theorem 4.1 Let F be the trilinear reference mapping from Q̂ to a general Q. If Q passes
the improved subtetrahedra test defined in Definition 4.1, then the Jacobian J of F is positive
everywhere on Q̂.

Proof To the Jacobian is positive at any point (x̂0, ŷ0, ẑ0), we apply Corollary 4.2 to Q, then a
sub-hexahedron, and a sub-subhexahedron:

Q1 = F ({−1 ≤ x̂ ≤ x̂0,−1 ≤ ŷ ≤ 1,−1 ≤ ẑ ≤ 1}) ,

Q2 = F ({−1 ≤ x̂ ≤ x̂0,−1 ≤ ŷ ≤ ŷ0,−1 ≤ ẑ ≤ 1}) .

At the end, the point F (x̂0, ŷ0, ẑ0) is a boundary edge point of Q2.

Theorem 4.1 ensures that the Jacobian is positive globally if a hexahedron passes the subte-
trahedral test, i.e., if 32 Jacobians are positive. Of course, in last section, we have an example
showing that the test is not a necessary condition, i.e., if a hexahedron fails the subtetrahedral
test, its Jacobian may still be positive everywhere. So one may want to have such a test which
works for as more hexahedra as possible, at least, for all well-shaped hexahedra. There are two
other tests in literature [10, 11]. These two tests requires the computation of 64 Jacobians of
subtetrahedra, while the new test needs only 32. In addition, the other tests need to compute
some combinations of the 64 Jacobians and check the positivity of 33 numbers, while our test
needs 32 positive Jacobians. To save space, we do not introduce the notations of the other two
tests here. Readers can check [10, 11] for details. It is apparent that the new test is much simpler.
We will show by an example that the new subtetrahedral test could be powerful than the other
tests, i.e., the subtetrahedral test can declare the positivity of the Jacobian for this hexahedron
while the other tests fail.

Figure 9: A hexahedron for which the subtetrahedral test works but the [10, 11] tests do not.
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We consider the following hexahedron Q (see Figure 1 for vertex orientation).

v1(0, 0, 0), v2(1, 0, 0.5), v3(1, 1, 0), v4(0, 1, 0.5),

v5(0.3, 0.3, 1.5), v6(1.5, 0.5, 2), v7(1.8, 1.8, 0.2), v8(0.5, 1.5, 2).
(18)
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The hexahedron Q defined in (18) is a minor perturbation of the Q in (13). So both hexahedra
are very well shaped. It would pass nearly any mathematical requirements for shape-regularity
of hexahedral elements used in literature. This can be seen from the two pictures in Figure 9.
Again, on the left, we plot only the top and the bottom faces, while the whole hexahedron is
plotted in the right picture of Figure 9.

We then check the Q in (18) by the subtetrahedral test to conclude its Jacobian is globally
positive as all the 32 subtetrahedra in Definition 4.1 are positive:

Jv1v2v3v7
= 0.200, Jv2v3v4v8

= 2.000, Jv3v4v1v5
= 1.500, Jv4v1v2v6

= 1.000,

Jv5v8v7v3
= 1.340, Jv8v7v6v2

= 4.200, Jv7v6v5v1
= 2.640, Jv6v5v8v4

= 1.600,

Jv2v1v5v8
= 1.500, Jv4v3v7v6

= 2.100, Jv1v4v8v7
= 2.600, Jv3v2v6v5

= 1.800,

Jv1v2v3v5
= 1.500, Jv2v3v4v6

= 2.000, Jv3v4v1v7
= 0.200, Jv4v1v2v8

= 1.000,

Jv5v8v7v1
= 2.640, Jv8v7v6v4

= 4.200, Jv7v6v5v3
= 1.340, Jv6v5v8v2

= 1.600,

Jv5v1v4v6
= 1.500, Jv3v7v8v2

= 2.100, Jv4v8v5v3
= 1.800, Jv2v6v7v1

= 2.600,

Jv1v2v4v5
= 1.200, Jv2v3v1v6

= 1.500, Jv3v4v2v7
= 1.000, Jv4v1v3v8

= 1.500,

Jv5v8v6v1
= 1.800, Jv6v5v7v2

= 2.900, Jv7v6v8v3
= 3.200, Jv8v7v5v4

= 2.900.

However, when we apply the two tests in [10, 11], we could not draw any conclusion as one of the
31 numbers to be checked there fails to be positive (see [11] for the definitions for the notations):

αi1i2i3 =1.20, 1.50, 1.00, 1.50, 1.80, 2.90, 3.20, 2.90;
∑

ik

βkik
ilim

=2.50, 4.24, 2.20, 5.54, 2.50, 4.24, 2.20, 5.54, 3.00, 4.40, 4.40, 4.20;

2κ̄000 + 2κ̄111 =12.96;
∑

il,im

γkik
ilim

=2.60, 1.54, 4.90, 5.44, 1.54, 2.60, 5.44, 4.90, −1.12, 4.40, 4.40, 5.28.
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