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Abstract—Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer

vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various

2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of

point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods

being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of

recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object

detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets,

together with insightful observations and inspiring future research directions.

Index Terms—Deep learning, point clouds, 3D data, shape classification, shape retrieval, object detection, object tracking, scene flow,

instance segmentation, semantic segmentation, part segmentation

Ç

1 INTRODUCTION

WITH the rapid development of 3D acquisition technolo-
gies, 3D sensors are becoming increasingly available

and affordable, including various types of 3D scanners,
LiDARs, and RGB-D cameras (such as Kinect, RealSense and
Apple depth cameras) [1]. 3D data acquired by these sensors
can provide rich geometric, shape and scale information [2],
[3]. Complemented with 2D images, 3D data provides an
opportunity for a better understanding of the surrounding
environment for machines. 3D data has numerous applica-
tions in different areas, including autonomous driving,
robotics, remote sensing, andmedical treatment [4].

3D data can usually be represented with different formats,
including depth images, point clouds, meshes, and volumet-
ric grids. As a commonly used format, point cloud representa-
tion preserves the original geometric information in 3D space
without any discretization. Therefore, it is the preferred repre-
sentation for many scene understanding related applications

such as autonomous driving and robotics. Recently, deep
learning techniques have dominated many research areas,
such as computer vision, speech recognition, and natural lan-
guage processing.However, deep learning on 3Dpoint clouds
still face several significant challenges [5], such as the small
scale of datasets, the high dimensionality and the unstruc-
tured nature of 3D point clouds. On this basis, this paper
focuses on the analysis of deep learning methods which have
been used to process 3Dpoint clouds.

Deep learning on point clouds has been attracting more
and more attention, especially in the last five years. Several
publicly available datasets are also released, such as Model-
Net [6], ScanObjectNN [7], ShapeNet [8], PartNet [9], S3DIS
[10], ScanNet [11], Semantic3D [12], ApolloCar3D [13], and
the KITTI Vision Benchmark Suite [14], [15]. These datasets
have further boosted the research of deep learning on 3D
point clouds, with an increasingly number of methods being
proposed to address various problems related to point
cloud processing, including 3D shape classification, 3D
object detection and tracking, 3D point cloud segmentation,
3D point cloud registration, 6-DOF pose estimation, and 3D
reconstruction [16], [17], [18]. Few surveys of deep learning
on 3D data are also available, such as [19], [20], [21], [22].
However, our paper is the first to specifically focus on deep
learning methods for point cloud understanding. A taxon-
omy of existing deep learning methods for 3D point clouds
is shown in Fig. 1.

Compared with the existing literatures, the major contri-
butions of this work can be summarized as follows:

1) To the best of our knowledge, this is the first sur-
vey paper to comprehensively cover deep learning
methods for several important point cloud under-
standing tasks, including 3D shape classification,
3D object detection and tracking, and 3D point
cloud segmentation.

2) As opposed to existing reviews [19], [20], we specifi-
cally focus on deep learning methods for 3D point
clouds rather than all types of 3D data.
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3) This paper covers the most recent and advanced pro-
gresses of deep learning on point clouds. Therefore, it
provides the readerswith the state-of-the-artmethods.

4) Comprehensive comparisons of existing methods on
several publicly available datasets are provided (e.g.,
in Tables 2, 3, 4, 5), with brief summaries and insight-
ful discussions being presented.

The structure of this paper is as follows. Section 2 intro-
duces the datasets and evaluation metrics for the respective
tasks. Section 3 reviews the methods for 3D shape classifica-
tion. Section 4 provides a survey of existing methods for 3D
object detection and tracking. Section 5 presents a review of
methods for point cloud segmentation, including semantic
segmentation, instance segmentation, and part segmenta-
tion. Finally, Section 6 concludes the paper. We also provide
a regularly updated project page on: https://github.com/
QingyongHu/SoTA-Point-Cloud.

2 BACKGROUND

2.1 Datasets

A large number of datasets have been collected to evaluate
the performance of deep learning algorithms for different
3D point clouds applications. Table 1 lists some typical data-
sets used for 3D shape classification, 3D object detection and
tracking, and 3D point cloud segmentation. In particular,
the attributes of these datasets are also summarized.

For 3D shape classification, there are two types of data-
sets: synthetic datasets [6], [8] and real-world datasets [7],
[11]. Objects in the synthetic datasets are complete, without
any occlusion and background. In contrast, objects in the
real-world datasets are occluded at different levels and
some objects are contaminated with background noise.

For 3D object detection and tracking, there are two types
of datasets: indoor scenes [11], [25] and outdoor urban
scenes [14], [28], [30], [31]. The point clouds in the indoor
datasets are either converted from dense depth maps or
sampled from 3D meshes. The outdoor urban datasets are
designed for autonomous driving, where objects are spa-
tially well separated and these point clouds are sparse.

For 3D point cloud segmentation, these datasets are
acquired by different types of sensors, including Mobile
Laser Scanners (MLS) [15], [34], [36], Aerial Laser Scanners
(ALS) [33], [38], static Terrestrial Laser Scanners (TLS) [12],
RGB-D cameras [11] and other 3D scanners [10]. These data-
sets can be used to develop algorithms for various chal-
lenges including similar distractors, shape incompleteness,
and class imbalance.

2.2 Evaluation Metrics

Different evaluation metrics have been proposed to test these
methods for various point cloud understanding tasks. For 3D
shape classification,Overall Accuracy (OA) andmean class accu-
racy (mAcc) are the most frequently used performance crite-
ria. ‘OA’ represents the mean accuracy for all test instances
and ‘mAcc’ represents themean accuracy for all shape classes.
For 3D object detection, Average Precision (AP) is the most fre-
quently used criterion. It is calculated as the area under the
precision-recall curve. Precision and Success are commonly
used to evaluate the overall performance of a 3D single object
tracker.AverageMulti-Object Tracking Accuracy (AMOTA) and
Average Multi-Object Tracking Precision (AMOTP) are the most
frequently used criteria for the evaluation of 3D multi-object
tracking. For 3D point cloud segmentation, OA,mean Intersec-
tion over Union (mIoU) and mean class Accuracy [10], [12], [15],
[36], [37] are themost frequently used criteria for performance
evaluation. In particular, mean Average Precision (mAP) [39] is
also used in instance segmentation of 3D point clouds.

3 3D SHAPE CLASSIFICATION

Methods for this task usually learn the embedding of each
point first and then extract a global shape embedding from
the whole point cloud using an aggregation method. Classi-
fication is finally achieved by feeding the global embedding
into several fully connected layers. According to the data
type of input for neural networks, existing 3D shape classifi-
cation methods can be divided into multi-view based, volu-
metric-based and point-based methods. Several milestone
methods are illustrated in Fig. 2.

Fig. 1. A taxonomy of deep learning methods for 3D point clouds.
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Multi-view based methods project an unstructured point
cloud into 2D images, while volumetric-based methods con-
vert a point cloud into a 3D volumetric representation.
Then, well-established 2D or 3D convolutional networks are
leveraged to achieve shape classification. In contrast, point-
based methods directly work on raw point clouds without
any voxelization or projection. Point-based methods do not
introduce explicit information loss and become increasingly
popular. Note that, this paper mainly focuses on point-
based methods, but also includes few multi-view based and
volumetric-based methods for completeness.

3.1 Multi-View Based Methods

These methods first project a 3D shape into multiple views
and extract view-wise features, and then fuse these features
for accurate shape classification. How to aggregate multiple

view-wise features into a discriminative global representa-
tion is a key challenge for these methods.

MVCNN [40] is a pioneering work, which simply max-
pools multi-view features into a global descriptor. However,
max-pooling only retains the maximum elements from a
specific view, resulting in information loss. MHBN [41] inte-
grates local convolutional features by harmonized bilinear
pooling to produce a compact global descriptor. Yang et al.
[42] first leveraged a relation network to exploit the inter-
relationships (e.g., region-region relationship and view-
view relationship) over a group of views, and then aggre-
gated these views to obtain a discriminative 3D object repre-
sentation. In addition, several other methods [43], [44], [45],
[46] have also been proposed to improve the recognition
accuracy. Unlike previous methods, Wei et al. [47] used a
directed graph in View-GCN by considering multiple views

TABLE 1
A Summary of Existing Datasets for 3D Shape Classification, 3D Object Detection and Tracking, and 3D Point Cloud Segmentation

1The number of classes used for evaluation and the number of annotated classes (shown in brackets).

Fig. 2. Chronological overview of the most relevant deep learning-based 3D shape classification methods.
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as grpah nodes. The core layer composing of local graph
convolution, non-local message passing and selective view-
sampling is then applied to the constructed graph. The con-
catenation of max-pooled node features at all levels is finally
used to form the global shape descriptor.

3.2 Volumetric-Based Methods

These methods usually voxelize a point cloud into 3D grids,
and then apply a 3D Convolution Neural Network (CNN)
on the volumetric representation for shape classification.

Maturana et al. [48] introduced a volumetric occupancy
network called VoxNet to achieve robust 3D object recogni-
tion.Wu et al. [6] proposed a convolutional deep belief-based
3D ShapeNets to learn the distribution of points fromvarious
3D shapes (which are represented by a probability distribu-
tion of binary variables on voxel grids). Although encourag-
ing performance has been achieved, these methods are
unable to scale well to dense 3D data since the computation
andmemory footprint grow cubically with the resolution.

To this end, a hierarchical and compact structure (such as
octree) is introduced to reduce the computational andmemory
costs of these methods. OctNet [49] first hierarchically parti-
tions a point cloud using a hybrid grid-octree structure, which
represents the scene with several shallow octrees along a regu-
lar grid. The structure of octree is encoded efficiently using a
bit string representation, and the feature vector of each voxel is
indexed by simple arithmetic. Wang et al. [50] proposed an
Octree-based CNN for 3D shape classification. The average
normal vectors of a 3Dmodel sampled in the finest leaf octants
are fed into the network, and 3D-CNN is applied on the octants
occupied by the 3D shape surface. Compared to a baseline net-
work based on dense input grids, OctNet requires much less
memory and runtime for high-resolution point clouds. Le et al.
[51] proposed a hybrid network called PointGrid, which inte-
grates the point and grid representation for efficient point
cloud processing. A constant number of points is sampled
within each embedding volumetric grid cell, which allows the
network to extract geometric details by using 3D convolutions.
Ben-Shabat et al. [52] transformed the input point cloud into 3D
gridswhich are further represented by 3DmodifiedFisherVec-
tor (3DmFV) method, and then learned the global representa-
tion through a conventional CNNarchitecture.

3.3 Point-Based Methods

According to the network architecture used for the feature
learning of each point, methods in this category can be
divided into pointwise MLP, convolution-based, graph-
based, hierarchical data structure-based methods and other
typical methods.

3.3.1 Pointwise MLP Methods

These methods model each point independently with several
shared Multi-Layer Perceptrons (MLPs) and then aggregate a
global feature using a symmetric aggregation function, as
shown in Fig. 3.

Typical deep learning methods for 2D images cannot be
directly applied to 3D point clouds due to their inherent data
irregularities. As a pioneeringwork, PointNet [5] directly takes
point clouds as its input and achieves permutation invariance
with a symmetric function. Specifically, PointNet learns

pointwise features independently with several MLP layers
and extracts global features with a max-pooling layer. Deep
sets [53] achieves permutation invariance by summing up all
representations and applying nonlinear transformations. Since
features are learned independently for each point in PointNet
[5], the local structural information between points cannot be
captured. Therefore, Qi et al. [54] proposed a hierarchical net-
work PointNet++ to capture fine geometric structures from
the neighborhood of each point. As the core of PointNet++
hierarchy, its set abstraction level is composed of three layers:
the sampling layer, the grouping layer and the PointNet based
learning layer. By stacking several set abstraction levels, Point-
Net++ learns features from a local geometric structure and
abstracts the local features layer by layer.

Because of its simplicity and strong representation ability,
many networks have been developed based on PointNet [5].
The architecture of Mo-Net [55] is similar to PointNet [5] but it
takes a finite set of moments as its input. Point Attention Trans-
formers (PATs) [56] represents each point by its own absolute
position and relative positionswith respect to its neighbors and
learns high dimensional features through MLPs. Then, Group
Shuffle Attention (GSA) is used to capture relations between
points, and a permutation invariant, differentiable and train-
able end-to-end Gumbel Subset Sampling (GSS) layer is devel-
oped to learn hierarchical features. Based on PointNet++ [54],
PointWeb [57] utilizes the context of the local neighborhood to
improve point features using Adaptive Feature Adjustment
(AFA). Duan et al. [58] proposed a Structural Relational Net-
work (SRN) to learn structural relational features between dif-
ferent local structures using MLP. Lin et al. [59] accelerated the
inference process by constructing a lookup table for both input
and function spaces learned by PointNet. The inference time on
theModelNet and ShapeNet datasets is sped up by 1.5 ms and
32 times over PointNet on a moderate machine. SRINet [60]
first projects a point cloud to obtain rotation invariant represen-
tations, and then utilizes PointNet-based backbone to extract a
global feature and graph-based aggregation to extract local fea-
tures. In PointASNL, Yan et al. [61] utilized an Adaptive Sam-
pling (AS) module to adaptively adjust the coordinates and
features of points sampled by the Furthest Point Sampling
(FPS) algorithm, andproposed a local-non-local (L-NL)module
to capture the local and long range dependencies of these
sampled points.

3.3.2 Convolution-Based Methods

Compared with kernels defined on 2D grid structures (e.g.,
images), convolutional kernels for 3D point clouds are hard

Fig. 3. A lightweight architecture of PointNet. n denotes the number of input
points,M denotes the dimension of the learned features for each point.
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to design due to the irregularity of point clouds. According
to the type of convolutional kernels, current 3D convolution
methods can be divided into continuous and discrete con-
volution methods, as shown in Fig. 4.

3D Continuous Convolution Methods. These methods
define convolutional kernels on a continuous space, where
the weights for neighboring points are related to the spatial
distribution with respect to the center point.

3D convolution can be interpreted as a weighted sum over
a given subset. As the core layer of RS-CNN [62], RS-Conv
takes a local subset of points around a certain point as its
input, and the convolution is implemented using an MLP by
learning themapping from low-level relations (such as euclid-
ean distance and relative position) to high-level relations
between points in the local subset. In [63], kernel elements are
selected randomly in a unit sphere. An MLP-based continu-
ous function is then used to establish relation between the
locations of the kernel elements and the point cloud. InDense-
Point [64], convolution is defined as a Single-Layer Perceptron
(SLP) with a nonlinear activator. Features are learned by
concatenating features from all previous layers to sufficiently
exploit the contextual information. Thomas et al. [65] pro-
posed both rigid and deformable Kernel Point Convolution
(KPConv) operators for 3D point clouds using a set of learn-
able kernel points. ConvPoint [66] separates the convolution
kernel into spatial and feature parts. The locations of the spa-
tial part are randomly selected from a unit sphere and the
weighting function is learned through a simpleMLP.

Some methods also use existing algorithms to perform
convolution. In PointConv [67], convolution is defined as a
Monte Carlo estimation of the continuous 3D convolution
with respect to an importance sampling. The convolutional
kernels consist of a weighting function (which is learned
with MLP layers) and a density function (which is learned
by a kernelized density estimation and an MLP layer). To
improve memory and computational efficiency, the 3D con-
volution is further reduced into two operations: matrix mul-
tiplication and 2D convolution. With the same parameter
setting, its memory consumption can be reduced by about
64 times. In MCCNN [68], convolution is considered as a
Monte Carlo estimation process relying on a sample’s den-
sity function (which is implemented with MLP). Poisson
disk sampling is then used to construct a point cloud hierar-
chy. This convolution operator can be used to perform con-
volution between two or multiple sampling methods and
can handle varying sampling densities. In SpiderCNN [69],
SpiderConv is proposed to define convolution as the product
of a step function and a Taylor expansion defined on the k

nearest neighbors. The step function captures the coarse
geometry by encoding the local geodesic distance, and the
Taylor expansion captures the intrinsic local geometric varia-
tions by interpolating arbitrary values at the vertices of a
cube. Besides, a convolution network PCNN [70] is also pro-
posed for 3D point clouds based on the radial basis function.

Several methods have been proposed to address the rota-
tion equivariant problem faced by 3D convolution net-
works. Esteves et al. [71] proposed 3D Spherical CNN to
learn rotation equivariant representation for 3D shapes,
which takes multi-valued spherical functions as its input.
Localized convolutional filters are obtained by parameteriz-
ing spectrum with anchor points in the spherical harmonic
domain. Tensor field networks [72] are proposed to define
the point convolution operation as the product of a learn-
able radial function and spherical harmonics, which are
locally equivariant to 3D rotations, translations, and permu-
tations. The convolution in [73] is defined based on the
spherical cross-correlation and implemented using a gener-
alized Fast Fourier Transformation (FFT) algorithm. Based
on PCNN, SPHNet [74] achieves rotation invariance by
incorporating spherical harmonic kernels during convolu-
tion on volumetric functions.

To accelerate computing speed, Flex-Convolution [75]
definesweights of convolution kernel as standard scalar prod-
uct over k nearest neighbors, which can be accelerated using
CUDA. Experimental results have demonstrated its competi-
tive performance on a small dataset with fewer parameters
and lowermemory consumption.

3D Discrete Convolution Methods. These methods define
convolutional kernels on regular grids, where the weights
for neighboring points are related to the offsets with respect
to the center point.

Hua et al. [76] transformed non-uniform 3D point clouds
into uniform grids and defined convolutional kernels on
each grid. The proposed 3D kernel assigns the same weights
to all points falling into the same grid. For a given point, the
mean features of all the neighboring points that are located
on the same grid are computed from the previous layer.
Then, mean features of all grids areweighted and summed to
produce the output of the current layer. Lei et al. [77] defined
a spherical convolutional kernel by partitioning a 3D spheri-
cal neighboring region into multiple volumetric bins and
associating each bin with a learnable weighting matrix. The
output of the spherical convolutional kernel for a point is
determined by the non-linear activation of the mean of
weighted activation values of its neighboring points. In
GeoConv [78], the geometric relationship between a point
and its neighboring points is explicitly modeled based on six
bases. Edge features along each direction of the basis are
weighted independently by a direction-associated learnable
matrix. These direction-associated features are then aggre-
gated according to the angles formed by the given point and
its neighboring points. For a given point, its feature at the cur-
rent layer is defined as the sum of features of the given point
and its neighboring edge features at the previous layer.

PointCNN [79] transforms the input points into a latent
and potentially canonical order through a x-conv transfor-
mation (which is implemented through MLP) and then
applies typical convolutional operator on the transformed
features. By interpolating point features to neighboring

Fig. 4. An illustration of a continuous and discrete convolution for local
neighbors of a point. (a) represents a local neighborhood qi centered at
point p; (b) and (c) represent 3D continuous and discrete convolution,
respectively.

4342 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Aizu University. Downloaded on October 21,2023 at 05:49:42 UTC from IEEE Xplore.  Restrictions apply. 



discrete convolutional kernel-weight coordinates, Mao et al.
[80] proposed an interpolated convolution operator Inter-
pConv to measure the geometric relations between input
point clouds and kernel-weight coordinates. Zhang et al. [81]
proposed a RIConv operator to achieve rotation invariance,
which takes low-level rotation invariant geometric features
as input and then turns the convolution into 1D by a simple
binning approach. A-CNN [82] defines an annular convolu-
tion by looping the array of neighbors with respect to the
size of kernel on each ring of the query point and learns the
relationship between neighboring points in a local subset.

To reduce the computational and memory cost of 3D
CNNs, Kumawat et al. [83] proposed a Rectified Local Phase
Volume (ReLPV) block to extract phase in a 3D local neigh-
borhood based on 3D Short Term Fourier Transform (STFT),
which significantly reduces the number of parameters. In
SFCNN [84], a point cloud is projected onto regular icosahe-
dral latticeswith aligned spherical coordinates. Convolutions
are then conducted upon the features concatenated from
vertices of spherical lattices and their neighbors through
convolution-maxpooling-convolution structures. SFCNN is
resistant to rotations and perturbations.

3.3.3 Graph-Based Methods

Graph-based networks consider each point in a point cloud
as a vertex of a graph, and generate directed edges for the
graph based on the neighbors of each point. Feature learn-
ing is then performed in spatial or spectral domains [85]. A
typical graph-based network is shown in Fig. 5.

Graph-Based Methods in Spatial Domain. These methods
define operations (e.g., convolution and pooling) in spatial
domain. Specifically, convolution is usually implemented
through MLP over spatial neighbors, and pooling is adopted
to produce a new coarsened graph by aggregating informa-
tion from each point’s neighbors. Features at each vertex are
usually assigned with coordinates, laser intensities or colors,
while features at each edge are usually assignedwith geomet-
ric attributes between two connected points.

As a pioneering work, Simonovsky et al. [85] considered
each point as a vertex of the graph, and connected each
vertex to all its neighbors by a directed edge. Then, Edge-
Conditioned Convolution (ECC) is proposed using a filter-
generating network (e.g., MLP). Max pooling is adopted to
aggregate neighborhood information and graph coarsening is
implemented based on VoxelGrid [86]. In DGCNN [87], a
graph is constructed in the feature space and dynamically
updated after each layer of the network. As the core layer of
EdgeConv, anMLP is used as the feature learning function for
each edge, and channel-wise symmetric aggregation is applied
onto the edge features associated with the neighbors of each
point. Further, LDGCNN [88] removes the transformation net-
work and links the hierarchical features from different layers

in DGCNN [87] to improve its performance and reduce the
model size. An end-to-end unsupervised deep AutoEncoder
network (namely, FoldingNet [89]) is also proposed to use the
concatenation of a vectorized local covariance matrix and
point coordinates as its input. Inspired by Inception [90] and
DGCNN [87], Hassani and Haley [91] proposed an unsuper-
vised multi-task autoencoder to learn point and shape fea-
tures. The encoder is constructed based onmutli-scale graphs.
The decoder is constructed using three unsupervised tasks
including clustering, self-supervised classification and recon-
struction, which are trained jointly with a mutli-task loss. Liu
et al. [92] proposed a Dynamic Points Agglomeration Module
(DPAM) based on graph convolution to simplify the process
of points agglomeration (sampling, grouping and pooling)
into a simple step, which is implemented through multiplica-
tion of the agglomeration matrix and points feature matrix.
Based on the PointNet architecture, a hierarchical learning
architecture is constructed by stackingmultipleDPAMs.Com-
pared with the hierarchy strategy of PointNet++ [54], DPAM
dynamically exploits the relation of points and agglomerates
points in a semantic space.

To exploit the local geometric structures, KCNet [93] learns
features based on kernel correlation. Specifically, a set of
learnable points characterizing geometric types of local struc-
tures are defined as kernels. Then, affinity between the kernel
and the neighborhood of a given point is calculated. In G3D
[94], convolution is defined as a variant of polynomial of adja-
cency matrix, and pooling is defined as multiplying the Lap-
lacian matrix and the vertex matrix by a coarsening matrix.
ClusterNet [95] utilizes a rigorously rotation-invariant mod-
ule to extract rotation-invariant features from k nearest
neighbors for each point, and constructs hierarchical struc-
tures of a point cloud based on the unsupervised agglomera-
tive hierarchical clustering method with ward-linkage
criteria [96]. The features in each sub-cluster are first learned
through an EdgeConv block and then aggregated through
max pooling.

To address the time-consuming problem of current data
structuring methods (such as FPS and neighbor points que-
rying), Xu et al. [97] proposed to blend the advantages of
volumetric based and point based methods to improve the
computational efficiency. Experiments on the ModelNet
classification task demonstrate that the computational effi-
ciency of the proposed Grid-GCN network is 5� faster than
other models in average.

Graph-Based Methods in Spectral Domain. These methods
define convolutions as spectral filtering, which is imple-
mented as the multiplication of signals on graph with eigen-
vectors of the graph Laplacian matrix [98], [99].

RGCNN [100] constructs a graph by connecting each
point with all other points in the point cloud and updates
the graph Laplacian matrix in each layer. To make features
of adjacent vertices more similar, a graph-signal smoothness
prior is added into the loss function. To address the chal-
lenges caused by diverse graph topology of data, the SGC-
LL layer in AGCN [101] utilizes a learnable distance metric
to parameterize the similarity between two vertices on the
graph. The adjacency matrix obtained from graph is nor-
malized using Gaussian kernels and learned distances.
HGNN [102] builds a hyperedge convolutional layer by
applying spectral convolution on a hypergraph.

Fig. 5. An illustration of a graph-based network.
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Aforementioned methods operate on full graphs. To
exploit local structural information, Wang et al. [103] pro-
posed an end-to-end spectral convolution network Local-
SpecGCN to work on a local graph (which is constructed
from the k nearest neighbors). This method does not require
any offline computation of the graph Laplacian matrix and
graph coarsening hierarchy. In PointGCN [104], a graph is
constructed based on k nearest neighbors from a point cloud
and each edge is weighted using a Gaussian kernel. Convo-
lutional filters are defined as Chebyshev polynomials in
graph spectral domain. Global pooling and multi-resolution
pooling are used to capture global and local features of the
point cloud. Pan et al. [105] proposed 3DTI-Net by applying
convolution on the k nearest neighboring graphs in spectral
domain. The invariance to geometry transformation is
achieved by learning from relative euclidean and direction
distances.

3.3.4 Hierarchical Data Structure-Based Methods

These networks are constructed based on different hierar-
chical data structures (e.g., octree and kd-tree). In these
methods, point features are learned hierarchically from leaf
nodes to the root node along a tree.

Lei et al. [77] proposed an octree guidedCNNusing spheri-
cal convolutional kernels (as described in Section 3.3.2). Each
layer of the network corresponds to one layer of the octree
and a spherical convolutional kernel is applied at each layer.
The values of neurons in the current layer are determined as
the mean values of all relevant children nodes in the previous
layer. Unlike OctNet [49] which is based on octree, Kd-Net
[106] is built using multiple K-d trees with different splitting
directions at each iteration. Following a bottom-up approach,
the representation of a non-leaf node is computed from repre-
sentations of its children using MLP. The feature of the root
node (which describes the whole point cloud) is finally fed to
fully connected layers to predict classification scores. Note
that, Kd-Net shares parameters at each level according to the
splitting type of nodes. 3DContextNet [107] uses a standard
balancedK-d tree to achieve feature learning and aggregation.
At each level, point features are first learned through MLP
based on local cues (which models inter-dependencies
between points in a local region) and global contextual cues
(which models the relationship for one position with respect
to all other positions). Then, the feature of a non-leaf node is
computed from its child nodes using MLP and aggregated by
max pooling. For classification, the above process is repeated
until the root node is attained.

The hierarchy of SO-Net network is constructed by per-
forming point-to-node k nearest neighbor search [108]. Spe-
cifically, a modified permutation invariant Self-Organizing
Map (SOM) is used to model the spatial distribution of a
point cloud. Individual point features are learned from nor-
malized point-to-node coordinates through a series of fully
connected layers. The feature of each node in SOM is
extracted from point features associated with this node
using channel-wise max pooling. The final feature is then
learned from node features using an approach similar to
PointNet [5]. Compared to PointNet++ [54], the hierarchy of
SOM is more efficient and the spatial distribution of the
point cloud is fully explored.

3.3.5 Other Methods

In addition, many other schemes have also been proposed.
RBFNet [113] explicitly models the spatial distribution of
points by aggregating features from sparsely distributed
Radial Basis Function (RBF) kernels with learnable kernel posi-
tions and sizes. 3DPointCapsNet [112] learns point indepen-
dent features with pointwise MLP and convolutional layers,
and extracts global latent representation with multiple max-
pooling layers. Based on unsupervised dynamic routing, pow-
erful representative latent capsules are then learned. Qin et al.
[116] proposed an end-to-end unsupervised domain adapta-
tion network PointDAN for 3D point cloud representation. To
capture semantic properties of a point cloud, a self-supervised
method is proposed to reconstruct the point cloud,whose parts
have been randomly rearranged [117]. Li et al. [118] proposed
an auto-augmentation framework, PointAugment, to automat-
ically optimize and augment point cloud samples for network
training. Specifically, shape-wise transformation and point-
wise displacement for each input sample are automatically
learned, and the network is trained by alternatively optimizing
and updating the learnable parameters of its augmentor and
classifier. Inspired by shape context [119], Xie et al. [109] pro-
posed a ShapeContextNet architecture by combining affinity
point selection and compact feature aggregation into a soft
alignment operation using dot-product self-attention [120]. To
handle noise and occlusion in 3D point clouds, Bobkov et al.
[121] fed handcrafted point pair function based 4D rotation
invariant descriptors into a 4D convolutional neural network.
Prokudin et al. [122] first randomly sampled a basis point set
with a uniform distribution from a unit ball, and then encoded
a point cloud asminimal distances to the basis point set. Conse-
quently, the point cloud is converted to a vector with a rela-
tively small fixed length. The encoded representation can then
be processedwith existingmachine learningmethods.

RCNet [115] utilizes standard RNN and 2D CNN to con-
struct a permutation-invariant network for 3D point cloud
processing. The point cloud is first partitioned into parallel
beams and sorted along a specific dimension, and each beam
is then fed into a shared RNN. The learned features are further
fed into an efficient 2D CNN for hierarchical feature aggrega-
tion. To enhance its description ability, RCNet-E is proposed
to ensemble multiple RCNets along different partition and
sorting directions. Point2Sequences [114] is another RNN-
basedmodel that captures correlations betweendifferent areas
in local regions of point clouds. It considers features learned
from a local region at multiple scales as sequences and feeds
these sequences from all local regions into an RNN-based
encoder-decoder structure to aggregate local region features.

Several methods also learn from both 3D point clouds
and 2D images. In PVNet [110], high-level global features
extracted from multi-view images are projected into the sub-
space of point clouds through an embedding network, and
fusedwith point cloud features through a soft attentionmask.
Finally, a residual connection is employed for fused features
and multi-view features to perform shape recognition. Later,
PVRNet [111] is further proposed to exploit the relation
between a 3D point cloud and its multiple views by a relation
score module. Based on the relation scores, the original 2D
global view features are enhanced for point-single-view
fusion and point-multi-view fusion.
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3.4 Summary

The ModelNet10/40 [6] datasets are the most frequently used
datasets for 3D shape classification. Table 2 shows the results
achieved by different point-based networks. Several observa-
tions can be drawn:

� Pointwise MLP networks are usually served as the
basic building block for other types of networks to
learn pointwise features.

� As a standard deep learning architecture, convolution-
based networks can achieve superior performance on
irregular 3D point clouds. More attention should be
paid to both discrete and continuous convolution net-
works for irregular data.

� Due to its inherent strong capability to handle irregu-
lar data, graph-based networks have attracted increas-
inglymore attention in recent years. However, it is still
challenging to extend graph-based networks in the
spectral domain to various graph structures.

4 3D OBJECT DETECTION AND TRACKING

In this section, we will review existing methods for 3D object
detection, 3D object tracking and 3D scene flow estimation.

4.1 3D Object Detection

A typical 3D object detector takes the point cloud of a scene
as its input and produces an oriented 3D bounding box

TABLE 2
Comparative 3D Shape Classification Results on the ModelNet10/40 Benchmarks

Here, we only focus on point-based networks. ‘#params’ represents the number of parameters of a model, ‘OA’ represents the mean accuracy for all test instances
and ‘mAcc’ represents the mean accuracy for all shape classes in the table. The symbol ‘-’ means the results are unavailable.
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around each detected object, as shown in Fig. 6. Similar to
object detection in images [123], 3D object detection meth-
ods can be divided into two categories: region proposal-
based and single shot methods. Several milestone methods
are presented in Fig. 7.

4.1.1 Region Proposal-Based Methods

These methods first propose several possible regions (also
called proposals) containing objects, and then extract region-
wise features to determine the category label of each proposal.
According to their object proposal generation approach, these
methods can further be divided into three categories: multi-
viewbased, segmentation-based and frustum-basedmethods.

Multi-View Based Methods. These methods fuse proposal-
wise features from different view maps (e.g., LiDAR front
view, Bird’s Eye View (BEV), and image) to obtain 3D
rotated boxes, as shown in Fig. 8a. The computational cost
of these methods is usually high.

Chen et al. [4] generated a group of highly accurate 3D can-
didate boxes from the BEVmap and projected them to the fea-
ture maps of multiple views (e.g., LiDAR front view image,
RGB image). They then combined these region-wise features
from different views to predict oriented 3D bounding boxes,
as shown in Fig. 8a. Although this method achieves a recall of
99.1 percent at an Intersection over Union (IoU) of 0.25 with
only 300 proposals, its speed is too slow for practical

applications. Subsequently, several approaches have been
developed to improve multi-view 3D object detection meth-
ods from two aspects.

First, severalmethods have been proposed to efficiently fuse
the information of different modalities. To generate 3D pro-
posals with a high recall for small objects, Ku et al. [126] pro-
posed a multi-modal fusion-based region proposal network.

Fig. 6. An illustration of 3D object detection. (a) and (b) are originally
shown in [124] and [125], respectively.

Fig. 7. Chronological overview of the most relevant deep learning-based 3D object detection methods.

Fig. 8. Typical networks for three categories of region proposal-based
3D object detection methods. From top to bottom: (a) multi-view based,
(b) segmentation-based and (c) frustum-based methods.

4346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Aizu University. Downloaded on October 21,2023 at 05:49:42 UTC from IEEE Xplore.  Restrictions apply. 



They first extracted equal-sized features from both BEV and
image views using cropping and resizing operations, and then
fused these features using element-wise mean pooling. Liang
et al. [127] exploited continuous convolutions to enable effec-
tive fusion of image and 3D LiDAR feature maps at different
resolutions. Specifically, they extracted nearest corresponding
image features for each point in the BEV space and then used
bilinear interpolation to obtain a dense BEV feature map by
projecting image features into the BEV plane. Experimental
results show that dense BEV feature maps are more suitable
for 3D object detection than discrete image feature maps and
sparse LiDAR feature maps. Liang et al. [128] presented a
multi-task multi-sensor 3D object detection network for end-
to-end training. Specifically, multiple tasks (e.g., 2D object
detection, ground estimation and depth completion) are
exploited to help the network learn better feature representa-
tions. The learned cross-modality representation is further
exploited to produce highly accurate object detection results.
Experimental results show that this method achieves a signifi-
cant improvement on 2D, 3D andBEVdetection tasks, and out-
performs previous state-of-the-art methods on the TOR4D
benchmark [129], [130].

Second, different methods have been investigated to
extract robust representations of the input data. Lu et al. [39]
explored multi-scale contextual information by introducing
a Spatial Channel Attention (SCA) module, which captures
the global and multi-scale context of a scene and highlights
useful features. They also proposed an Extension Spatial
Unsample (ESU) module to obtain high-level features with
rich spatial information by combining multi-scale low-level
features, thus generating reliable 3D object proposals.
Although better detection performance can be achieved, the
aforementioned multi-view methods take a long runtime
since they perform feature pooling for each proposal. Subse-
quently, Zeng et al. [131] used a pre-RoI pooling convolution
to improve the efficiency of [4]. Specifically, they moved the
majority of convolution operations to be ahead of the RoI
pooling module. Therefore, RoI convolutions are performed
once for all object proposals. Experimental results show that
this method can run at a speed of 11.1 fps, which is 5 times
faster than MV3D [4].

Segmentation-Based Methods. These methods first leverage
existing semantic segmentation techniques to remove most
background points, and then generate a large amount of
high-quality proposals on foreground points to save com-
putation, as shown in Fig. 8b. Compared to multi-view
methods [4], [126], [131], these methods achieve higher
object recall rates and are more suitable for complicated
scenes with highly occluded and crowded objects.

Yang et al. [132] used a 2D segmentation network to predict
foreground pixels and projected them into point clouds to
remove most background points. They then generated pro-
posals on the predicted foreground points and designed a
new criterion named PointsIoU to reduce the redundancy
and ambiguity of proposals. Following [132], Shi et al. [133]
proposed a PointRCNN framework. Specifically, they directly
segmented 3D point clouds to obtain foreground points and
then fused semantic features and local spatial features to pro-
duce high-quality 3D boxes. Following the Region Proposal
Network (RPN) stage of [133], Jesus et al. [134] proposed a pio-
neeringwork to leverage GraphConvolutionNetwork (GCN)

for 3D object detection. Specifically, two modules are intro-
duced to refine object proposals using graph convolution. The
first module R-GCN utilizes all points contained in a proposal
to achieve per-proposal feature aggregation. The secondmod-
ule C-GCN fuses per-frame information from all proposals to
regress accurate object boxes by exploiting contexts. Sourabh
et al. [135] projected a point cloud into the output of the
image-based segmentation network and appended the
semantic prediction scores to the points. The painted points
are fed into existing detectors [133], [136], [137] to achieve sig-
nificant performance improvement. Yang et al. [138] associ-
ated each point with a spherical anchor. The semantic score of
each point is then used to remove redundant anchors. Conse-
quently, this method achieves a higher recall with lower
computational cost as compared to previous methods [132],
[133]. In addition, a PointsPool layer is proposed to learn com-
pact features for interior points in proposals and a parallel
IoU branch is introduced to improve localization accuracy
and detection performance.

Frustum-Based Methods. These methods first leverage exist-
ing 2D object detectors to generate 2D candidate regions of
objects and then extract a 3D frustum proposal for each 2D
candidate region, as shown in Fig. 8c. Although these meth-
ods can efficiently propose possible locations of 3D objects,
the step-by-step pipeline makes their performance limited by
2D image detectors.

F-PointNets [139] is a pioneering work in this direction. It
generates a frustum proposal for each 2D region and applies
PointNet [5] (or PointNet++ [54]) to learn point cloud fea-
tures of each 3D frustum for amodal 3D box estimation. In a
follow-up work, Zhao et al. [140] proposed a Point-SENet
module to predict a set of scaling factors, which were fur-
ther used to adaptively highlight useful features and sup-
press informative-less features. They also integrated the
PointSIFT [141] module into the network to capture orienta-
tion information of point clouds, which achieved strong
robustness to shape scaling. This method achieves signifi-
cant improvement on both indoor and outdoor datasets
[14], [25] as compared to F-PointNets [139].

Xu et al. [142] leveraged both 2D image region and its cor-
responding frustum points to accurately regress 3D boxes.
To fuse image features and global features of point clouds,
they presented a global fusion network for direct regression
of box corner locations. They also proposed a dense fusion
network for the prediction of point-wise offsets to each cor-
ner. Shin et al. [143] first estimated 2D bounding boxes and
3D poses of objects from a 2D image, and then extracted
multiple geometrically feasible object candidates. These 3D
candidates are fed into a box regression network to predict
accurate 3D object boxes. Wang et al. [144] generated a
sequence of frustums along the frustum axis for each 2D
region and applied PointNet [5] to extract features for each
frustum. The frustum-level features are reformed to gener-
ate a 2D feature map, which is then fed into a fully convolu-
tional network for 3D box estimation. This method achieves
the state-of-the-art performance among 2D image-based
methods and was ranked in the top position of the official
KITTI leaderboard. Johannes et al. [145] first obtained a pre-
liminary detection results on the BEV map, and then
extracted small point subsets (also called patches) based on
the BEV predictions. A local refinement network is applied
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to learn the local features of patches to predict highly accu-
rate 3D bounding boxes.

Other Methods. Motivated by the success of axis-aligned
IoU in object detection in images, Zhou et al. [146] integrated
the IoU of two 3D rotated bounding boxes into several state-
of-the-art detectors [133], [137], [158] to achieve consistent
performance improvement. Chen et al. [147] proposed a
two-stage network architecture to use both point cloud and
voxel representations. First, point clouds are voxelized and
fed to a 3D backbone network to produce initial detection
results. Second, the interior point features of initial predic-
tions are further exploited for box refinements. Although
this design is conceptually simple, it achieves comparable
performance to [133] while maintaining a speed of 16.7 fps.
Shi et al. [148] proposed PointVoxel-RCNN (PV-RCNN) to
leverage both 3D convolutional network and PointNet-
based set abstraction for the learning of point cloud fea-
tures. Specifically, the input point clouds are first voxelized
and then fed into a 3D sparse convolutional network to gen-
erate high-quality proposals. The learned voxel-wise fea-
tures are then encoded into a small set of key points via a
voxel set abstraction module. In addition, they also pro-
posed a keypoint-to-grid ROI abstraction module to capture
rich context information for box refinement. Experimental
results show that this method outperforms previous meth-
ods by a remarkable margin and is ranked first1 on the Car
class of the KITTI 3D detection benchmark.

Inspired by Hough voting-based 2D object detectors, Qi
et al. [124] proposed VoteNet to directly vote for virtual cen-
ter points of objects from point clouds and to generate a
group of high-quality 3D object proposals by aggregating
vote features. VoteNet significantly outperforms previous
approaches using only geometric information, and achieves
the state-of-the-art performance on two large indoor bench-
marks (i.e., ScanNet [11] and SUN RGB-D [25]). However,
the prediction of virtual center point is unstable for a par-
tially occluded object. Further, Feng et al. [149] added an
auxiliary branch of direction vectors to improve the predic-
tion accuracy of virtual center points and 3D candidate
boxes. In addition, a 3D object-object relationship graph
between proposals is built to emphasize useful features for
accurate object detection. Qi et al. [150] proposed an ImVote-
Net detector by fusing 2D object detection cues (e.g., geo-
metric and semantic/texture cues) into a 3D voting
pipeline. Inspired by the observation that the ground truth
boxes of 3D objects provide accurate locations of intra-object
parts, Shi et al. [151] proposed the Part-A2 Net, which is
composed of a part-aware stage and a part-aggregation
stage. The part-aware stage applies a UNet-like [165] net-
work with sparse convolution and sparse deconvolution to
learn point-wise features for the prediction and coarse gen-
eration of intra-object part locations. The part-aggregation
stage adopts RoI-aware pooling to aggregate predicted part
locations for box refinement.

4.1.2 Single Shot Methods

These methods directly predict class probabilities and
regress 3D bounding boxes of objects using a single-stage

network. They do not need region proposal generation and
post-processing. As a result, they can run at a high speed.
According to the type of input data, single shot methods can
be divided into three categories: BEV-based, discretization-
based and point-basedmethods.

BEV-Based Methods. These methods mainly take BEV repre-
sentation as their input. Yang et al. [129] discretized the point
cloud of a scene with equally spaced cells and encoded the
reflectance in a similar way, resulting in a regular representa-
tion. A Fully Convolution Network (FCN) network is then
applied to estimate the locations and heading angles of objects.
Thismethod outperformsmost single shotmethods (including
VeloFCN [154], 3D-FCN [155] and Vote3Deep [156]) while
running at 28.6 fps. Later, Yang et al. [152] exploited the geo-
metric and semantic prior information provided by High-
Definition (HD)maps to improve the robustness and detection
performance of [129]. Specifically, they obtained the coordi-
nates of ground points from the HD map and then used the
distance relative to the ground for BEV representation to rem-
edy the translation variance caused by the slope of the road. In
addition, they concatenated a binary road mask with the BEV
representation along the channel dimension to focus on mov-
ing objects. Since HDmaps are not available everywhere, they
also proposed an online map prediction module to estimate
the map priors from single LiDAR point cloud. This map-
aware method significantly outperforms its baseline on the
TOR4D [129], [130] and KITTI [14] datasets. However, its gen-
eralization performance to point clouds with different densi-
ties is poor. To solve this problem, Beltr�an et al. [153] proposed
a normalization map to consider the differences among differ-
ent LiDAR sensors. The normalization map is a 2D grid with
the same resolution as the BEV map, and it encodes the maxi-
mum number of points contained in each cell. It is shown that
this normalization map significantly improves the generaliza-
tion ability of BEV-baseddetectors.

Discretization-Based Methods. These methods convert a
point cloud into a regular discrete representation, and then
apply CNN to predict both categories and 3Dboxes of objects.

Li et al. [154] proposed the first method to use a FCN for 3D
object detection. They converted a point cloud into a 2D point
map and used a 2D FCN to predict the bounding boxes and
confidences of objects. Later, they [155] discretized the point
cloud into a 4D tensor with dimensions of length, width,
height and channels, and extended the 2D FCN-based detec-
tion technologies to 3D domain for 3D object detection. Com-
pared to [154], 3D FCN-based method [155] obtains a gain of
over 20 percent in accuracy, but inevitably costsmore comput-
ing resources due to 3D convolutions and the sparsity of the
data. To address the sparsity problem of voxels, Engelcke
et al. [156] leveraged a feature-centric voting scheme to gener-
ate a set of votes for each non-empty voxel and to obtain the
convolutional results by accumulating the votes. Its computa-
tional complexity is proportional to the number of occupied
voxels. Li et al. [157] constructed a 3D backbone network by
stacking multiple sparse 3D CNNs. This method is designed
to save memory and accelerate computation by fully using
the sparsity of voxels. This 3D backbone network extracts rich
3D features for object detection without introducing heavy
computational burden.

Zhou et al. [136] presented a voxel-based end-to-end
trainable framework VoxelNet. They partitioned a point1. The ranking refers to the time of the submission: 12th June, 2020
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cloud into equally spaced voxels and encoded the features
within each voxel into a 4D tensor. A region proposal net-
work is then connected to produce detection results.
Although its performance is strong, this method is very
slow due to the sparsity of voxels and 3D convolutions.
Later, Yan et al. [158] used the sparse convolutional network
[166] to improve the inference efficiency of [136]. They also
proposed a sine-error angle loss to solve the ambiguity
between orientations of 0 and p. Sindagi et al. [159] extended
VoxelNet by fusing image and point cloud features at early
stages. Specifically, they projected non-empty voxels gener-
ated by [136] into the image and used a pre-trained network
to extract image features for each projected voxel. These
image features are then concatenated with voxel features to
produce accurate 3D boxes. Compared to [136], [158], this
method can effectively exploit multi-modal information to
reduce false positives and negatives. Lang et al. [137] pro-
posed a 3D object detector named PointPillars. This method
leverages PointNet [5] to learn the feature of point clouds
organized in vertical columns (Pillars) and encodes the
learned features as a pesudo image. A 2D object detection
pipeline is then applied to predict 3D bounding boxes.
PointPillars outperforms most fusion approaches (including
MV3D [4], RoarNet [143] and AVOD [126]) in terms of
Average Precision. Moreover, PointPillars can run at a
speed of 62 fps on both the 3D and BEV KITTI [14] bench-
marks, making it highly suitable for practical applications.

Inspired by the observation that partial spatial informa-
tion of a point cloud is inevitably lost in progressively
downscaled feature maps of existing single shot detectors,
He et al. [160] proposed a SA-SSD detector to leverage the
fine-grained structure information to improve localization
accuracy. Specifically, they first converted a point cloud to a
tensor and fed it into a backbone network to extract multi-
stage features. In addition, an auxiliary network with point-
level supervision is employed to guide the features to learn
the structure of point clouds. Experimental results show
that SA-SSD ranks the first2 on the Car class of the KITTI
BEV detection benchmark.

Point-Based Methods. These methods directly take raw
point clouds as their inputs. 3DSSD [161] is a pioneering
work in this direction. It introduces a fusion sampling strat-
egy for Distance-FPS (D-FPS) and Feature-FPS (F-FPS) to
remove time-consuming Feature Propagation (FP) layers
and the refinement module in [133]. Then, a Candidate Gen-
eration (CG) layer is used to fully exploit representative
points, which are further fed into an anchor-free regression
head with a 3D centerness label to predict 3D object boxes.
Experimental results show that 3DSSD outperforms the
two-stage point-based method PointRCNN [133] while
maintaining a speed of 25 fps.

Other Methods. Meyer et al. [162] proposed an efficient 3D
object detector called LaserNet. This method predicts a proba-
bility distribution over bounding boxes for each point and
then combines these per-point distributions to generate final
3D object boxes. Further, the dense Range View (RV) repre-
sentation of point cloud is used as input and a fast mean-shift
algorithm is proposed to reduce the noise produced by per-

point prediction. LaserNet achieves the state-of-the-art perfor-
mance at the range of 0 to 50meters, and its runtime is signifi-
cantly lower than existing methods. Meyer et al. [163] then
extended LaserNet [162] to exploit the dense texture provided
by RGB images (e.g., 50 to 70meters). Specifically, they associ-
ated LiDAR points with image pixels by projecting 3D point
clouds onto 2D images and exploited this association to fuse
RGB information into 3D points. They also considered 3D
semantic segmentation as an auxiliary task to learn better rep-
resentations. Thismethod achieves a significant improvement
in both long-range (e.g., 50 to 70 meters) object detection and
semantic segmentation while maintaining high efficiency of
LaserNet. Inspired by the observation that points on an iso-
lated object part can provide abundant information about
position and orientation of the object, Chen et al. [164] pro-
posed a novel Hotspot representation and the first hotspot-
based anchor-free detector. Specifically, raw point clouds are
first voxelized and then fed into a backbone network to pro-
duce 3D feature maps. These featuremaps are used to classify
hotspots and predict 3D bounding boxes simultaneously.
Note that, hotspots are assigned at the last convolutional layer
of the backbone network. Experimental results show that this
method achieves comparable performance and is robust to
sparse point clouds. Shi et al. [125] proposed a graph neural
network Point-GNN to detect 3D objects from lidar point
clouds. They first encoded an input point cloud as a graph of
near neighbors with a fixed radius and then fed the graph into
Point-GNN to predict both the categories and boxes of objects.

4.2 3D Object Tracking

Given the locations of an object in the first frame, the task of
object tracking is to estimate its state in subsequent frames
[167], [168]. Since 3D object tracking can use the rich geo-
metric information in point clouds, it is expected to over-
come several drawbacks faced by image-based tracking,
including occlusion, illumination and scale variation.

Inspired by the success of Siamese network [169] for
imaged-based object tracking, Giancola et al. [170] proposed a
3D Siamese network with shape completion regularization.
Specifically, they first generated candidates using a Kalman
filter, and encoded model and candidates into a compact
representation using shape regularization. The cosine similar-
ity is then used to search the location of the tracked object in
the next frame. This method can be used as an alternative for
object tracking, and significantly outperforms most 2D object
tracking methods, including STAPLECA [171] and SiamFC
[169]. To efficiently search the target object, Zarzar et al. [172]
leveraged a 2D Siamese network to generate a large number
of coarse object candidates on BEV representation. They then
refined the candidates by exploiting the cosine similarity in
3D Siamese network. This method significantly outperforms
[170] in terms of both precision (i.e., by 18 percent) and success
rate (i.e., by 12 percent). Simon et al. [173] proposed a 3D object
detection and tracking architecture for semantic point clouds.
They first generated voxelized semantic point clouds by
fusing 2D visual semantic information, and then utilized the
temporal information to improve accuracy and robustness of
multi-target tracking. In addition, they introduced a powerful
and simplified evaluation metric (i.e., Scale-Rotation-Transla-
tion score (SRFs)) to speed up training and inference. Com-
plexer-YOLO achieves promising tracking performance and2. The ranking refers to the time of the submission: 12th June, 2020
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can still run in real-time. Further, Qi et al. [174] proposed a
Point-to-Box (P2B) network. They fed template and search
areas into the backbone to obtain their seeds. The search area
seeds are augmented with target-specific features and then
the potential target centers are regressed by Hough voting.
Experimental results show that P2B outperforms [170] by
over 10 percentwhile running at 40 fps.

4.3 3D Scene Flow Estimation

Given two point clouds X and Y, 3D scene flow D ¼ fdigN
describes the movement of each point xi in X to its corre-
sponding position x0

i in Y, such that x0
i ¼ xi þ di. Fig. 9

shows a 3D scene flow between two KITTI point clouds.
Analogous to optical flow estimation in 2D vision, several
methods have started to learn useful information (e.g., 3D
scene flow, spatial-temporary information) from a sequence
of point clouds.

Liu et al. [175] proposed FlowNet3D to directly learn scene
flows from a pair of consecutive point clouds. FlowNet3D
learns both point-level features andmotion features through a
flow embedding layer. However, there are two problemswith
FlowNet3D. First, somepredictedmotion vectors differ signif-
icantly from the ground truth in their directions. Second, it is
difficult to apply FlowNet to non-static scenes, especially for
the scenes which are dominated by deformable objects. To
solve this problem, Wang et al. [176] introduced a cosine dis-
tance loss to minimize the angle between the predictions and
the ground truth. In addition, they also proposed a point-to-
plane distance loss to improve the accuracy for both rigid and
dynamic scenes. Experimental results show that these two
loss terms improve the accuracy of FlowNet3D from 57.85 to
63.43 percent, and speed up and stabilize the training process.
Gu et al. [177] proposed a Hierarchical Permutohedral Lattice
FlowNet (HPLFlowNet) to directly estimate scene flow from
large-scale point clouds. Several bilateral convolution layers
are proposed to restore structural information from raw point
clouds, while reducing the computational cost.

To effectively process sequential point clouds, Fan and
Yang [178] proposed PointRNN, PointGRU and PointLSTM
networks and a sequence-to-sequence model to track moving
points. PointRNN, PointGRU, and PointLSTMare able to cap-
ture the spatial-temporary information and model dynamic

point clouds. Similarly, Liu et al. [179] proposedMeteorNet to
directly learn a representation from dynamic point clouds.
This method learns to aggregate information from spatiotem-
poral neighboring points. Direct grouping and chained-flow
grouping are further introduced to determine the temporal
neighbors. However, the performance of the aforementioned
methods is limited by the scale of datasets. Mittal et al. [180]
proposed two self-supervised losses to train their network on
large unlabeled datasets. Theirmain idea is that a robust scene
flow estimation method should be effective in both forward
and backward predictions. Due to the unavailability of scene
flow annotation, the nearest neighbor of the predicted trans-
formedpoint is considered as pesudo ground truth. However,
the true ground truth may not be the same as the nearest
point. To avoid this problem, they computed the scene flow in
the reverse direction and proposed a cycle consistency loss to
translate the point to the original position. Experimental
results show that this self-supervised method exceeds the
state-of-the-art performance of supervised learning-based
methods.

4.4 Summary

The KITTI [14] benchmark is one of the most influential
datasets in autonomous driving and has been commonly
used in both academia and industry. Tables 3 and 4 present
the results achieved by different detectors on the KITTI test
3D benchmarks. The following observations can be made:

� Region proposal-based methods are the most fre-
quently investigated methods among these two cate-
gories, and outperform single shot methods by a large
margin on bothKITTI test 3D and BEV benchmarks.

� There are two limitations for existing 3D object detec-
tors. First, the long-range detection capability of exist-
ing methods is relatively poor. Second, how to fully
exploit the texture information in images is still an
open problem.

� Multi-task learning is a future direction in 3D object
detection. E.g., MMF [128] learns a cross-modality
representation to achieve state-of-the-art detection
performance by incorporating multiple tasks.

� 3D object tracking and scene flow estimation are
emerging research topics, and have gradually
attracted increasing attention since 2019.

5 3D POINT CLOUD SEGMENTATION

3D point cloud segmentation requires the understanding of
both the global geometric structure and the fine-grained
details of each point. According to the segmentation granu-
larity, 3D point cloud segmentation methods can be classi-
fied into three categories: semantic segmentation (scene level),
instance segmentation (object level) and part segmentation
(part level).

5.1 3D Semantic Segmentation

Given a point cloud, the goal of semantic segmentation is to
separate it into several subsets according to the semantic
meanings of points. Similar to the taxonomy for 3D shape
classification (Section 3), there are four paradigms for

Fig. 9. A 3D scene flow between two KITTI point clouds, originally shown
in [175]. Point clouds X , Y and the translated point cloud of X are
highlighted in red, green, and blue, respectively.
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semantic segmentation: projection-based, discretization-
based, point-based, and hybridmethods.

The first step of both the projection and discretization-
based methods is to transform a point cloud to an interme-
diate regular representation, such as multi-view [181], [182],
spherical [183], [184], [185], volumetric [166], [186], [187],
permutohedral lattice [188], [189], and hybrid representa-
tions [190], [191], as shown in Fig. 11. The intermediate seg-
mentation results are then projected back to the raw point
cloud. In contrast, point-based methods directly work on
irregular point clouds. Several representative methods are
shown in Fig. 10.

5.1.1 Projection-Based Methods

These methods usually project a 3D point cloud into 2D
images, including multi-view and spherical images.

Multi-View Representation. Lawin et al. [181] first projected
a 3D point cloud onto 2D planes from multiple virtual cam-
era views. Then, a multi-stream FCN is used to predict
pixel-wise scores on synthetic images. The final semantic
label of each point is obtained by fusing the re-projected

scores over different views. Similarly, Boulch et al. [182] first
generated several RGB and depth snapshots of a point
cloud using multiple camera positions. They then per-
formed pixel-wise labeling on these snapshots using 2D seg-
mentation networks. The scores predicted from RGB and
depth images are further fused using residual correction
[192]. Based on the assumption that point clouds are sam-
pled from locally euclidean surfaces, Tatarchenko et al. [193]
introduced tangent convolutions for dense point cloud seg-
mentation. This method first projects the local surface
geometry around each point to a virtual tangent plane. Tan-
gent convolutions are then directly operated on the surface
geometry. This method shows great scalability and is able
to process large-scale point clouds with millions of points.
Overall, the performance of multi-view segmentation meth-
ods is sensitive to viewpoint selection and occlusions.
Besides, these methods have not fully exploited the under-
lying geometric and structural information, as the projection
step inevitably introduces information loss.

Spherical Representation. To achieve fast and accurate seg-
mentation of 3D point clouds, Wu et al. [183] proposed an
end-to-end network based on SqueezeNet [194] and

TABLE 3
Comparative 3D Object Detection Results on the KITTI Test 3D Detection Benchmark

3D bounding box IoU threshold is 0.7 for cars and 0.5 for pedestrians and cyclists. The modalities are LiDAR (L) and image (I). ‘E’, ‘M’ and ‘H’ represent easy,
moderate and hard classes of objects, respectively. For simplicity, we omit the ‘%’ after the value. The symbol ‘-’ means the results are unavailable.
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Conditional Random Field (CRF). To further improve seg-
mentation accuracy, SqueezeSegV2 [184] is introduced to
address domain shift by utilizing an unsupervised domain
adaptation pipeline. Milioto et al. [185] proposed RangeNet++
for real-time semantic segmentation of LiDAR point clouds.
The semantic labels of 2D range images are first transferred to
3D point clouds, an efficient GPU-enabled KNN-based post-
processing step is further used to alleviate the problem of dis-
cretization errors and blurry inference outputs. Compared to
single viewprojection, spherical projection retainsmore infor-
mation and is suitable for the labeling of LiDAR point clouds.

However, this intermediate representation inevitably brings
several problems such as discretization errors and occlusions.

5.1.2 Discretization-Based Methods

These methods usually convert a point cloud into a dense/
sparse discrete representation, such as volumetric and
sparse permutohedral lattices.

Dense Discretization Representation. Early methods usually
voxelized the point clouds as dense grids and then leverage
the standard 3D convolutions. Huang et al. [195] first divided

TABLE 4
Comparative 3D Object Detection Results on the KITTI Test BEV Detection Benchmark

3D bounding box IoU threshold is 0.7 for cars and 0.5 for pedestrians and cyclists. The modalities are LiDAR (L) and image (I). ‘E’, ‘M’ and ‘H’ represent easy,
moderate and hard classes of objects, respectively. For simplicity, we omit the ‘%’ after the value. The symbol ‘-’ means the results are unavailable.

Fig. 10. Chronological overview of the most relevant deep learning-based 3D semantic segmentation methods.
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a point cloud into a set of occupancy voxels, then fed these
intermediate data to a fully-3D CNN for voxel-wise segmen-
tation. Finally, all points within a voxel are assigned the
same semantic label as the voxel. The performance of this
method is severely limited by the granularity of the voxels
and the boundary artifacts caused by the point cloud parti-
tion. Further, Tchapmi et al. [196] proposed SEGCloud to
achieve fine-grained and global consistent semantic segmen-
tation. This method introduces a deterministic trilinear inter-
polation to map the coarse voxel predictions generated by
3D-FCNN [197] back to the point cloud, and then uses Fully
Connected CRF (FC-CRF) to enforce spatial consistency of
these inferred per-point labels. Meng et al. [186] introduced a
kernel-based interpolated variational autoencoder architec-
ture to encode the local geometrical structures within each
voxel. Instead of a binary occupancy representation, RBFs
are employed for each voxel to obtain a continuous represen-
tation and capture the distribution of points in each voxel.
VAE is further used to map the point distribution within
each voxel to a compact latent space. Then, both symmetry
groups and an equivalence CNN are used to achieve robust
feature learning.

Thanks to the good scalability of 3D CNN, volumetric-
based networks are free to be trained and tested on point
clouds with different spatial sizes. In Fully-Convolutional
Point Network (FCPN) [187], different levels of geometric
relations are first hierarchically abstracted from point
clouds, 3D convolutions and weighted average pooling are
then used to extract features and incorporate long-range
dependencies. This method can process large-scale point
clouds and has good scalability during inference. Dai et al.
[198] proposed ScanComplete to achieve 3D scan comple-
tion and per-voxel semantic labeling. This method leverages
the scalability of fully-convolutional neural networks and
can adapt to different input data sizes during training and
test. A coarse-to-fine strategy is used to hierarchically
improve the resolution of the predicted results.

Overall, the volumetric representation naturally preserves
the neighborhood structure of 3D point clouds. Its regular data
format also allows direct application of standard 3D convolu-
tions. These factors lead to a steady performance improvement
in this area. However, the voxelization step inherently introdu-
ces discretization artifacts and information loss. Usually, a high
resolution leads to high memory and computational costs,
while a low resolution introduces loss of details. It is non-trivial
to select an appropriate grid resolution in practice.

Sparse Discretization Representation. Volumetric representa-
tion is naturally sparse, as the number of non-zero values only
accounts for a small percentage. Therefore, it is inefficient to
apply dense convolution neural networks on the spatially-
sparse data. To this end, Graham et al. [166] proposed submani-
fold sparse convolutional networks based on the indexing
structure. This method significantly reduces memory and
computational costs by restricting the output of convolution to
be only related to occupied voxels.Meanwhile, its sparse convo-
lution can also control the sparsity of the extracted features. This
submanifold sparse convolution is suitable for efficient process-
ing of high-dimensional and spatially-sparse data. Further,
Choy et al. [199] proposed a 4D spatio-temporal convolutional
neural network called MinkowskiNet for 3D video perception.
Ageneralized sparse convolution is proposed to effectively pro-
cess high-dimensional data. A trilateral-stationary conditional
randomfield is further applied to enforce consistency.

On the other hand, Su et al. [188] proposed the Sparse
Lattice Networks (SPLATNet) based on Bilateral Convolu-
tion Layers (BCLs). This method first interpolates a raw
point cloud to a permutohedral sparse lattice, BCL is then
applied to convolve on occupied parts of the sparsely popu-
lated lattice. The filtered output is then interpolated back to
the raw point cloud. In addition, this method allows flexible
joint processing of multi-view images and point clouds. Fur-
ther, Rosu et al. [189] proposed LatticeNet to achieve effi-
cient processing of large point clouds. A data-dependent
interpolation module called DeformsSlice is also introduced
to back project the lattice feature to point clouds.

5.1.3 Hybrid Methods

To further leverage all available information, several methods
have been proposed to learn multi-modal features from 3D
scans. Dai and Nießner [190] presented a joint 3D-multi-view
network to combine RGB features and geometric features. A
3D CNN stream and several 2D streams are used to extract
features, and a differentiable back-projection layer is pro-
posed to jointly fuse the learned 2D embeddings and 3D geo-
metric features. Further, Chiang et al. [200] proposed a unified
point-based framework to learn 2D textural appearance, 3D
structures and global context features from point clouds. This
methoddirectly applies point-based networks to extracts local
geometric features and global context from sparsely sampled
point sets without any voxelization. Jaritz et al. [191] proposed
Multi-view PointNet (MVPNet) to aggregate appearance fea-
tures from 2D multi-view images and spatial geometric fea-
tures in the canonical point cloud space.

5.1.4 Point-Based Methods

Point-based networks directly work on irregular point clouds.
However, point clouds are orderless and unstructured,

Fig. 11. An illustration of the intermediate representation. (a) and (b) are
originally shown in [182] and [183], respectively.
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making it infeasible to directly apply standard CNNs. To this
end, the pioneering work PointNet [5] is proposed to learn
per-point features using shared MLPs and global features
using symmetrical pooling functions. Based on PointNet, a
series of point-based networks have been proposed recently.
Overall, these methods can be roughly divided into pointwise
MLPmethods, point convolutionmethods, RNN-basedmeth-
ods, and graph-basedmethods.

Pointwise MLP Methods. These methods usually use
shared MLP as the basic unit in their network for its high
efficiency. However, point-wise features extracted by
shared MLP cannot capture the local geometry in point
clouds and the mutual interactions between points [5]. To
capture wider context for each point and learn richer local
structures, several dedicated networks have been intro-
duced, including methods based on neighboring feature
pooling, attention-based aggregation, and local-global fea-
ture concatenation.

Neighboring Feature Pooling. To capture local geometric
patterns, these methods learn a feature for each point by
aggregating the information from local neighboring points.
In particular, PointNet++ [54] groups points hierarchically
and progressively learns from larger local regions, as illus-
trated in Fig. 12a. Multi-scale grouping and multi-resolution
grouping are also proposed to overcome the problems
caused by non-uniformity and varying density of point
clouds. Later, Jiang et al. [141] proposed a PointSIFT module
to achieve orientation encoding and scale awareness. This
module stacks and encodes the information from eight spa-
tial orientations through a three-stage ordered convolution.
Multi-scale features are concatenated to achieve adaptivity
to different scales. Different from the grouping techniques
used in PointNet++ (i.e., ball query), Engelmann et al. [204]
utilized K-means clustering and KNN to separately define
two neighborhoods in the world space and feature space.
Based on the assumption that points from the same class are
expected to be closer in feature space, a pairwise distance
loss and a centroid loss are introduced to further regularize
feature learning. To model the mutual interactions between
different points, Zhao et al. [57] proposed PointWeb to
explore the relations between all pairs of points in a local
region by densely constructing a locally fully-linked web.
An Adaptive Feature Adjustment module is proposed to
achieve information interchange and feature refinement.
This aggregation operation helps the network to learn a dis-
criminative feature representation. Zhang et al. [205] pro-
posed a permutation invariant convolution called Shellconv
based on the statistics from concentric spherical shells. This
method first queries a set of multi-scale concentric spheres,
the max-pooling operation is then used within different
shells to summarize the statistics, MLPs and 1D convolution
are used to obtain the final convolution output. Hu et al.
[206] proposed an efficient and lightweight network called
RandLA-Net for large-scale point cloud segmentation. This
network utilizes random point sampling to achieve remark-
ably high efficiency in terms of memory and computation.
A local feature aggregation module is further proposed to
capture and preserve geometric features.

Attention-Based Aggregation. To further improve segmenta-
tion accuracy, an attention mechanism [120] is introduced to
point cloud segmentation. Yang et al. [56] proposed a group

shuffle attention to model the relations between points, and
presented a permutation-invariant, task-agnostic and differ-
entiable Gumbel Subset Sampling to replace the widely used
FPS approach. This module is less sensitive to outliers and
can select a representative subset of points. To better capture
the spatial distribution of a point cloud, Chen et al. [207] pro-
posed a Local Spatial Aware (LSA) layer to learn spatial
awareness weights based on the spatial layouts and the local
structures of point clouds. Similar toCRF,Zhao et al. [208] pro-
posed an Attention-based Score Refinement (ASR) module to
post-process the segmentation results produced by the net-
work. The initial segmentation result is refined by pooling the
scores of neighboring points with learned attention weights.
This module can be easily integrated into existing deep net-
works to improve segmentation performance.

Local-Global Concatenation. Zhao et al. [112] proposed a
permutation-invariant PS2-Net to incorporate local struc-
tures and global context from point clouds. Edgeconv [87]
and NetVLAD [209] are repeatedly stacked to capture the
local information and scene-level global features.

Point Convolution Methods. These methods tend to propose
effective convolution operators for point clouds. Hua et al.
[76] proposed a point-wise convolution operator, where the
neighboring points are binned into kernel cells and then con-
volved with kernel weights. As shown in Fig. 12b, Wang et al.
[201] proposed a network called PCCN based on parametric
continuous convolution layers. The kernel function of this
layer is parameterized by MLPs and spans the continuous
vector space. Thomas et al. [65] proposed a Kernel Point Fully
Convolutional Network (KP-FCNN) based on Kernel Point
Convolution. Specifically, the convolutionweights of KPConv
are determined by the euclidean distances to kernel points,
and the number of kernel points is not fixed. The positions of
the kernel points are formulated as an optimization problem
of best coverage in a sphere space. Note that, the radius neigh-
bourhood is used to keep a consistent receptive field, while
grid subsampling is used in each layer to achieve high robust-
ness under varying densities of point clouds. In [211], Engel-
mann et al. provided rich ablation experiments and
visualization results to show the impact of receptive field on
the performance of aggregation-based methods. They also

Fig. 12. An illustration of point-based methods. (a)-(d) are originally
shown in [54], [201], [202], [203], respectively.
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proposed a Dilated Point Convolution (DPC) operation to
aggregate dilated neighboring features, instead of theK near-
est neighbours. This operation is demonstrated to be very
effective in increasing the receptive field and can be easily
integrated into existing aggregation-based networks.

RNN-Based Methods. To capture inherent context features
from point clouds, Recurrent Neural Networks (RNN) have
also been used for semantic segmentation of point clouds.
Based on PointNet [5], Engelmann et al. [213] first trans-
formed a block of points into multi-scale blocks and grid
blocks to obtain input-level context. Then, the block-wise
features extracted by PointNet are sequentially fed into
Consolidation Units (CU) or Recurrent Consolidation Units
(RCU) to obtain output-level context. Experimental results
show that incorporating spatial context is important for the
improvement of the segmentation performance. Huang
et al. [212] proposed a lightweight local dependency model-
ing module, and utilized a slice pooling layer to convert
unordered point feature sets into an ordered sequence of
feature vectors. As shown in Fig. 12c, Ye et al. [202] first pro-
posed a Pointwise Pyramid Pooling (3P) module to capture
the coarse-to-fine local structure, and then utilized two-
direction hierarchical RNNs to further obtain long-range
spatial dependencies. RNN is then applied to achieve an
end-to-end learning. However, these methods lose rich geo-
metric features and density distribution from point clouds
when aggregating the local neighbourhood features with
global structure features [220]. To alleviate the problems
caused by the rigid and static pooling operations, Zhao et al.
[220] proposed a Dynamic Aggregation Network (DAR-
Net) to consider both global scene complexity and local geo-
metric features. The inter-medium features are dynamically
aggregated using a self-adapted receptive field and node
weights. Liu et al. [221] proposed 3DCNN-DQN-RNN for
efficient semantic parsing of large-scale point clouds. This
network first learns the spatial distribution and color fea-
tures using a 3D CNN network, DQN is further used to
localize objects belonging to a specific class. The final
concatenated feature vector is fed into a residual RNN to
obtain the final segmentation results.

Graph-Based Methods. To capture the underlying shapes
and geometric structures of 3D point clouds, several meth-
ods resort to graph networks. As shown in Fig. 12d, Land-
rieu et al. [203] represented a point cloud as a set of
interconnected simple shapes and superpoints, and used
an attributed directed graph (i.e., superpoint graph) to cap-
ture the structure and context information. Then, the large-
scale point cloud segmentation problem is spilt into three
sub-problems, i.e., geometrically homogeneous partition,
superpoint embedding, and contextual segmentation. To
further improve the partition step, Landrieu and Boussaha
[214] proposed a supervised framework to oversegment a
point cloud into pure superpoints. This problem is formu-
lated as a deep metric learning problem structured by an
adjacency graph. In addition, a graph-structured contras-
tive loss is also proposed to help the recognition of borders
between objects.

To better capture the local geometric relationships in
high-dimensional space, Kang et al. [222] proposed a Pyr-
amNet based on Graph Embedding Module (GEM) and
Pyramid Attention Network (PAN). The GEM module

formulates a point cloud as a directed acyclic graph and
utilzes a covariance matrix to replace the euclidean distance
for the construction of adjacent similarity matrix. Convolu-
tion kernels with four different sizes are used in the PAN
module to extract features with different semantic intensi-
ties. In [215], Graph Attention Convolution (GAC) is pro-
posed to selectively learn relevant features from a local
neighboring set. This operation is achieved by dynamically
assigning attention weights to different neighboring points
and feature channels based on their spatial positions and
feature differences. GAC can learn to capture discriminative
features for segmentation, and has similar characteristics to
the commonly used CRF model. Ma et al. [223] proposed a
Point Global Context Reasoning (PointGCR) module to cap-
ture global contextual information along the channel dimen-
sion using an undirected graph representation. PointGCR is
a plug-and-play and end-to-end trainable module. It can
easily be integrated into an existing segmentation network
to achieve performance improvement.

In addition, several very recent work tries to achieve
semantic segmentation of point clouds under weak supervi-
sion. Wei et al. [224] proposed a two-stage approach to train
a segmentation network with subcloud level labels. Xu et al.
[225] investigated several inexact supervision schemes for
semantic segmentation of point clouds. They also proposed
a network that is able to be trained with only partially
labeled points (e.g., 10 percent).

5.2 Instance Segmentation

Compared to semantic segmentation, instance segmenta-
tion is more challenging as it requires more accurate and
fine-grained reasoning of points. In particular, it not only
needs to distinguish the points with different semantic
meanings, but also separate instances with the same
semantic meaning. Overall, existing methods can be
divided into two groups: proposal-based methods and pro-
posal-free methods. Several milestone methods are illus-
trated in Fig. 13.

5.2.1 Proposal-Based Methods

These methods convert the instance segmentation problem
into two sub-tasks: 3D object detection and instance mask
prediction.

Hou et al. [226] proposed a 3D fully-convolutional Seman-
tic Instance Segmentation (3D-SIS) network to achieve seman-
tic instance segmentation on RGB-D scans. This network
learns from both color and geometry features. Similar to 3D
object detection, a 3D Region Proposal Network (3D-RPN)
and a 3D Region of Interesting (3D-RoI) layer are used to pre-
dict bounding box locations, object class labels and instance
masks. Following the analysis-by-synthesis strategy, Yi et al.
[227] proposed a Generative Shape Proposal Network
(GSPN) to generate high-objectness 3D proposals. These
proposals are further refined by a Region-based PointNet (R-
PointNet). The final label is obtained by predicting a per-point
binary mask for each class label. Different from direct regres-
sion of 3D bounding boxes from point clouds, this method
removes a large amount of meaningless proposals by enforc-
ing geometric understanding.
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By extending 2D panoptic segmentation to 3D mapping,
Narita et al. [228] proposed an online volumetric 3D map-
ping system to jointly achieve large-scale 3D reconstruction,
semantic labeling, and instance segmentation. They first uti-
lized 2D semantic and instance segmentation networks to
obtain pixel-wise panoptic labels and then integrated these
labels to the volumtric map. A fully-connected CRF is fur-
ther used to achieve accurate segmentation. This semantic
mapping system can achieve high-quality semantic map-
ping and discriminative object recognition. Yang et al. [229]
proposed a single-stage, anchor-free and end-to-end train-
able network called 3D-BoNet to achieve instance segmenta-
tion on point clouds. This method directly regresses rough
3D bounding boxes for all potential instances, and then uti-
lizes a point-level binary classifier to obtain instance labels.
Particularly, the bounding box generation task is formu-
lated as an optimal assignment problem. In addition, a
multi-criteria loss function is also proposed to regularize
the generated bounding boxes. This method does not need
any post-processing and is computationally efficient. Zhang
et al. [230] proposed a network for instance segmentation of
large-scale outdoor LiDAR point clouds. This method learns
a feature representation on the bird’s-eye view of point
clouds using self-attention blocks. The final instance labels
are obtained based on the predicted horizontal center and
the height limits. Shi et al. [231] proposed a hierarchy-aware
Variational Denoising Recursive AutoEncoder (VDRAE) to
predict the layout of indoor 3D space. The object proposals
are iteratively generated and refined by recursive context
aggregation and propagation.

Overall, proposal-based methods [226], [227], [229], [232]
are intuitive and straightforward, and the instance segmen-
tation results usually have good objectness. However, these
methods require multi-stage training and pruning of redun-
dant proposals. Therefore, they are usually time-consuming
and computationally expensive.

5.2.2 Proposal-Free Methods

Proposal-free methods [233], [234], [235], [236], [237], [238],
[239], [240] do not have an object detection module. Instead,
they usually consider instance segmentation as a subse-
quent clustering step after semantic segmentation. In partic-
ular, most existing methods are based on the assumption
that points belonging to the same instance should have very
similar features. Therefore, these methods mainly focus on
discriminative feature learning and point grouping.

In a pioneering work, Wang et al. [233] first introduced a
Similarity Group Proposal Network (SGPN). This method
first learns a feature and semantic map for each point, and
then introduces a similarity matrix to represent the similarity
between each paired features. To learn more discriminative
features, they use a double-hinge loss to mutually adjust the

similarity matrix and semantic segmentation results. Finally,
a heuristic and non-maximal suppression method is adopted
to merge similar points into instances. Since the construction
of a similarity matrix requires large memory consumption,
the scalability of this method is limited. Similarly, Liu et al.
[237] first leveraged submanifold sparse convolution [166] to
predict semantic scores of each voxel and affinity between
neighboring voxels. They then introduced a clustering algo-
rithm to group points into instances based on the predicted
affinity and the mesh topology. Mo et al. [241] introduced a
detection-by-segmentation network in PartNet to achieve
instance segmentation. PointNet++ is used as the backbone to
predict semantic labels of each point and disjoint instance
masks. Further, Liang et al. [238] proposed a structure-aware
loss for the learning of discriminative embeddings. This loss
considers both the similarity of features and the geometric
relations amongpoints. An attention-based graphCNN is fur-
ther used to adaptively refine the learned features by aggre-
gating different information fromneighbors.

Since the semantic category and instance label of a point
are usually dependent on each other, several methods have
been proposed to couple these two tasks into a single task.
Wang et al. [234] integrated these two tasks by introducing an
end-to-end and learnable Associatively Segmenting Instances
and Semantics (ASIS)module. Experiments show that seman-
tic features and instance features can mutually support each
other to achieve an improved performance through this ASIS
module. Similarly, Zhao et al. [242] proposed JSNet to achieve
both semantic and instance segmentation. Further, Pham et al.
[235] first introduced a Multi-Task Point-wise Network (MT-
PNet) to assign a label to each point and regularized the
embeddings in the feature space by introducing a discrimina-
tive loss [243]. They then fused the predicted semantic labels
and embeddings to a Multi-Value Conditional Random Field
(MV-CRF) model for joint optimization. Finally, mean-field
variational inference is used to produce semantic labels and
instance labels. Hu et al. [244] first proposed a Dynamic
Region Growing (DRG) method to dynamically separate a
point cloud into a set of disjoint patches, and then used an
unsupervised K-means++ algorithm to group all these
patches. Multi-scale patch segmentation is then performed
with the guidance of contextual information between patches.
Finally, these labeled patches are merged into object level to
obtain final semantic and instance labels.

To achieve instance segmentation on full 3D scenes, Elich
et al. [236] presented a hybrid 2D-3D network to jointly learn
global consistent instance features from a BEV representa-
tion and local geometric features of point clouds. The
learned features are then combined to achieve semantic and
instance segmentation. Note that, rather than heuristic
GroupMerging algorithms [233], a more flexible Meanshift
[245] algorithm is used to group these points into instances.
Alternatively, multi-task learning is also introduced for
instance segmentation. Lahoud et al. [246] learned both the
unique feature embedding of each instance and the direc-
tional information to estimate the object’s center. Feature
embedding loss and directional loss are proposed to adjust
the learned feature embeddings in latent feature space.
Mean-shift clustering and non-maximum suppression are
adopted to group voxels into instances. This method
achieves the state-of-the-art performance on the ScanNet

Fig. 13. Chronological overview of the most relevant deep learning-
based 3D instance segmentation methods.
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[11] benchmark. Besides, the predicted directional informa-
tion is particularly useful to determine the boundary of
instances. Zhang et al. [247] introduced probabilistic embed-
dings to instance segmentation of point clouds. This method
also incorporates uncertainty estimation and proposes a
new loss function for the clustering step. Jiang et al. [240]
proposed a PointGroup network, which is composed of a
semantic segmentation branch and an offset prediction
branch. A dual-set clustering algorithm and the ScoreNet is
further utilized to achieve better grouping results.

In summary, proposal-free methods do not require com-
putationally expensive region-proposal components. How-
ever, the objectness of instance segments grouped by these
methods is usually low since these methods do not explic-
itly detect object boundaries.

5.3 Part Segmentation

The difficulties for part segmentation of 3D shapes are two-
fold. First, shape parts with the same semantic label have a
large geometric variation and ambiguity. Second, the num-
ber of parts in objects with the same semantic meanings
may be different.

VoxSegNet [248] is proposed to achieve fine-grained part
segmentation on 3D voxelized data under a limited solu-
tion. A Spatial Dense Extraction (SDE) module (which con-
sists of stacked atrous residual blocks) is proposed to
extract multi-scale discriminative features from sparse volu-
metric data. The learned features are further re-weighted
and fused by progressively applying an Attention Feature
Aggregation module. Kalogerakis et al. [249] combined
FCNs and surface-based CRFs to achieve end-to-end 3D
part segmentation. They first generated images from multi-
ple views to achieve optimal surface coverage and fed these
images into a 2D network to produce confidence maps.
Then, these confidence maps are aggregated by a surface-
based CRF, which is responsible for a consistent labeling of
the entire scene. Yi et al. [250] introduced a Synchronized
Spectral CNN (SyncSpecCNN) to perform convolution on
irregular and non-isomorphic shape graphs. A spectral
parameterization of dilated convolutional kernels and a
spectral transformer network is introduced to solve the
problem of multi-scale analysis in parts and information
sharing across shapes.

Wang et al. [251] first performed shape segmentation on
3D meshes by introducing Shape Fully Convolutional Net-
works (SFCN) and taking three low-level geometric features
as its input. They then utilized voting-based multi-label
graph cuts to further refine the segmentation results. Zhu
et al. [252] proposed a weakly-supervised CoSegNet for 3D
shape co-segmentation. This network takes a collection of
unsegmented 3D point cloud shapes as input, and produces
shape part labels by iteratively minimizing a group consis-
tency loss. Similar to CRF, a pre-trained part-refinement net-
work is proposed to further refine and denoise part
proposals. Chen et al. [253] proposed a Branched AutoEn-
coder network (BAE-NET) for unsupervised, one-shot and
weakly supervised 3D shape co-segmentation. This method
formulates the shape co-segmentation task as a representa-
tion learning problem and aims at finding the simplest part
representations by minimizing the shape reconstruction

loss. Based on the encoder-decoder architecture, each
branch of this network can learn a compact representation
for a specific part shape. The features learned from each
branch and the point coordinate are then fed to the decoder
to produce a binary value (which indicates whether the
point belongs to this part). This method has good generali-
zation ability and can process large 3D shape collections
(up to 5000+ shapes). However, it is sensitive to initial
parameters and does not incorporate shape semantics into
the network, which hinders this method to obtain a robust
and stable estimation in each iteration. Yu et al. [254] pro-
posed a top-down recursive part decomposition network
(PartNet) for hierarchical shape segmentation. Different
from existing methods that segment a shape to a fixed label
set, this network formulates part segmentation as a problem
of cascade binary labeling, and decompose the input point
cloud to an arbitrary number of parts based on the geomet-
ric structure. Luo et al. [255] introduced a learning-based
grouping framework for the task of zero-shot 3D part seg-
mentation. To improve the cross-category generalization
ability, this method tends to learn a grouping policy that
restricts the network to learn part-level features within the
part local context.

5.4 Summary

Table 5 shows the results achieved by existing methods on
public benchmark, including S3DIS [10], Semantic3D [12],
ScanNet [39], and SemanticKITTI [15]. The following issues
need to be further investigated:

� Thanks to the regular data representation, both
projection-based methods and discretization-based
methods can leverage the mature network architec-
ture from their 2D image counterparts. However, the
main limitation of projection-based methods lies in
the information loss caused by 3D-2D projection,
while the main bottleneck for discretization-based
methods is the cubically increased computational
and memory costs caused by the increase of the reso-
lution. To this end, sparse convolution building
upon indexing structures would be a feasible solu-
tion and worth further exploration.

� Point-based networks are the most frequently investi-
gated methods. However, point representation natu-
rally does not have explicit neighboring information,
most existing point-basedmethods resort to expensive
neighbor searching mechanisms (e.g., KNN [79] or
ball query [54]). This inherently limits the efficiency of
these methods, the recently proposed point-voxel joint
representation [256] would be an interesting direction
for further investigation.

� Learning from imbalanced data is still a challenging
problem in point cloud segmentation. Although sev-
eral approaches [65], [203], [205] have achieved a
remarkable overall performance, their performance on
minority classes is still limited. For example, RandLA-
Net [206] achieves an overall IoU of 76.0 percent on the
reduced-8 subset of Semantic3D, but a very low IOU of
41.1 percent on the class of hardscape.

� The majority of existing approaches [5], [54], [79],
[205], [207] work on small point clouds (e.g., 1 m� 1m
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with 4,096 points). In practice, the point clouds
acquired by depth sensors are usually immense and
large-scale. Therefore, it is desirable to further investi-
gate the problem of efficient segmentation of large-
scale point clouds.

� A handful of works [178], [179], [199] have started to
learn spatio-temporal information from dynamic
point clouds. It is expected that the spatio-temporal
information can help to improve the performance of
subsequent tasks such as 3D object recognition, seg-
mentation, and completion.

6 CONCLUSION

This paper has presented a contemporary survey of the
state-of-the-art methods for 3D understanding, including
3D shape classification, 3D object detection and tracking,
and 3D scene and object segmentation. A comprehensive
taxonomy and performance comparison of these methods
have been presented. Merits and demerits of various
methods are also covered, with potential research direc-
tions being listed.
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