
Crate gitoxide

This is the documentation of the binaries that come with gitoxide . These are called…

gix

A developer tool to allow using gitoxide algorithms and functionality outside of the test
suite. It will be unstable as long as the gix crate is unstable and is explicitly not to be
understood as git replacement.

ein

A program to eventually become the most convenient way to do typical operations on git
repositories, with all tooling one typically needs built right into it. For now, it’s most useful for
its assorted set of tools which help to build automations or learn something about git
repositories.

Feature Flags

Feature configuration can be complex and this document seeks to provide an overview.

Build Configuration

These combine common choices of building blocks to represent typical builds.

max (enabled by default) — Everything, all at once.

As fast as possible, with TUI progress, progress line rendering with auto-configuration, all
transports based on their most mature implementation (HTTP), all ein tools, CLI colors
and local-time support, JSON output, regex support for rev-specs.
max-pure — Like max , but only Rust is allowed.

This is the most compatible build as it won’t need a C compiler or C toolchains to build. It’s
also not the fastest as or the most feature-rich in terms of available transports as it uses
Rust’s HTTP implementation.

As fast as possible, with TUI progress, progress line rendering with auto-configuration, all
transports available but less mature pure Rust HTTP implementation, all ein tools, CLI
colors and local-time support, JSON output, regex support for rev-specs.
max-control — Like max , but with more control for configuration. See the Package
Maintainers headline for more information.
lean — All of the good stuff, with less fanciness for smaller binaries.

As fast as possible, progress line rendering, all transports based on their most mature
implementation (HTTP), all ein tools, CLI colors and local-time support, JSON output.
small — The smallest possible build, best suitable for small single-core machines.

This build is essentially limited to local operations without any fanciness.

Optimized for size, no parallelism thus much slower, progress line rendering.
lean-async — Like lean, but uses Rusts async implementations for networking.

This build is more of a demonstration showing how async can work with gitoxide , which
generally is blocking. This also means that the selection of async transports is very limited
to only HTTP (without typical git configuration) and git over TCP like provided by the git
daemon .

As fast as possible, progress line rendering, less feature-ful HTTP (pure Rust) and only
git-damon support, all ein tools, CLI colors and local-time support, JSON output.

Due to async client-networking not being implemented for most transports, this one
supports only the ‘git+tcp’ and HTTP transport. It uses, however, a fully asynchronous
networking implementation which can serve a real-world example on how to implement
custom async transports.

Package Maintainers

These features are meant to mimic the normal build configurations, but leave it to you to
configure C libraries, involving choices for zlib , hashing and HTTP implementation.

Additional features can be provided with --features and are handled by the gix-
features crate. If nothing else is specified, the Rust implementation is used. Note that only
one feature of each section can be enabled at a time.

zlib
gix-features/zlib-ng
gix-features/zlib-ng-compat
gix-features/zlib-stock
gix-features/zlib-rust-backend (default if no choice is made)

sha1
gix-features/fast-sha1
gix-features/rustsha1 (default if no choice is made)

HTTP - see the Building Blocks for mutually exclusive networking headline

Building Blocks

Typical combinations of features of our dependencies, some of which are referred to in the
gitoxide crate’s code for conditional compilation.

fast — Makes the crate execute as fast as possible by supporting parallel computation of
otherwise long-running functions as well as fast, hardware accelerated hashing, along with
a faster zlib backend. If disabled, the binary will be visibly smaller.
fast-safe — Makes the crate execute as fast as possible by supporting parallel
computation of otherwise long-running functions as well as fast, hardware accelerated
hashing, along with a faster zlib backend. If disabled, the binary will be visibly smaller.
pretty-cli — Use clap 3.0 to build the prettiest, best documented and most user-
friendly CLI at the expense of binary size. Provides a terminal user interface for detailed
and exhaustive progress. Provides a line renderer for leaner progress display, without the
need for a full-blown TUI.
prodash-render-line-crossterm — The --verbose flag will be powered by an
interactive progress mechanism that doubles as log as well as interactive progress that
appears a$er a short duration.
prodash-render-tui — Progress reporting with a TUI, can then be enabled with the --
progress flag.
prodash-render-line — Progress reporting by visually drawing lines into the terminal
without switching to an alternate window.
cache-efficiency-debug — Prints statistical information to inform about cache
efficiency when those are dropped. Use this as a way to understand if bigger caches actually
produce greater yiedls.
gitoxide-core-tools — A way to enable most gitoxide-core tools found in ein
tools , namely organize and estimate hours .
gitoxide-core-tools-query — A program to perform analytics on a git repository,
using an auto-maintained sqlite database

Building Blocks for mutually exclusive networking

Blocking and async features are mutually exclusive and cause a compile-time error. This also
means that cargo … --all-features will fail. Within each section, features can be
combined.

Blocking

The backends are mutually exclusive, e.g. choose either curl or request .

gitoxide-core-blocking-client — Use blocking client networking.
http-client-curl — Support synchronous ‘http’ and ‘https’ transports (e.g. for clone,
fetch and push) using curl.
http-client-reqwest — Support synchronous ‘http’ and ‘https’ transports (e.g. for
clone, fetch and push) using reqwest.

Async

gitoxide-core-async-client — Use async client networking.

file:///Users/byron/dev/github.com/Byron/gitoxide/target/doc/gitoxide/index.html#
https://docs.rs/gix-features/latest

