
affix version

version:

 {

 minimum: 0.0.14,

 maximum: 0.0.14 # this should NOT be made a variable, but should be tested

after every tag is created

 }

Choose the model parameters here

model:

 {

 dimension: 4, # the dimension of the model and dataset: defines

dimensionality of computations

 base_filters: 30, # 30 is for a GPU with 11GB VRAM - can be

decreased/increased appropriately

 architecture: unet, # options: unet, resunet, fcn, uinc

 final_layer: sigmoid, # can be either sigmoid, softmax or none (none ==

regression)

 class_list: [0,1,2,3,4], # Set the list of labels the model should train

on and predict

 amp: True, # Set if you want to use Automatic Mixed Precision for your

operations or not - options: True, False

 # n_channels: 3, # set the input channels - useful when reading RGB or

images that have vectored pixel types

 }

metrics to evaluate the validation performance

metrics:

 - 'dice'

Set the Modality : rad for radiology, path for histopathology

modality: rad

weighted_loss: True

Patch size during training - 2D patch for breast images since third

dimension is not patched

patch_size: [128,128]

uniform: UniformSampler or label: LabelSampler

patch_sampler: uniform

Number of epochs

num_epochs: 500

Set the patience - measured in number of epochs after which, if the

performance metric does not improve, exit the training loop - defaults to the

number of epochs

patience: 50

Set the batch size

batch_size: 1 # change according to available GPU memory - this is for 11GB

Set the initial learning rate

learning_rate: 0.1

Learning rate scheduler - options: triangle, exp, reduce-on-lr, step, more

to come soon - default hyperparameters can be changed thru code

scheduler: triangle_modified

Set which loss function you want to use - options : 'dc' - for dice only,

'dcce' - for sum of dice and CE and you can guess the next (only lower-case

please)

options: dc (dice only), dc_log (-log of dice), ce (), dcce (sum of dice and

ce), mse () ...

mse is the MSE defined by torch and can define a variable 'reduction'; see

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELo

ss

use mse_torch for regression/classification problems and dice for

segmentation

loss_function: dcce

#loss_function:

{

'mse':{

'reduction': 'mean' # see

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELo

ss for all options

}

}

Which optimizer do you want to use - adam/sgd

optimizer: adam

this parameter controls the nested training process

performs randomized k-fold cross-validation

split is performed using sklearn's KFold method

for single fold run, use '-' before the fold number

nested_training:

 {

 testing: 5, # this controls the testing data splits for final model

evaluation; use '1' if this is to be disabled

 validation: 5 # this controls the validation data splits for model

training

 }

pre-processing

this constructs an order of transformations, which is applied to all images

in the data loader

order: resize --> threshold/clip --> resample --> normalize

'threshold': performs intensity thresholding; i.e., if x[i] < min: x[i] = 0;

and if x[i] > max: x[i] = 0

'clip': performs intensity clipping; i.e., if x[i] < min: x[i] = min; and if

x[i] > max: x[i] = max

'threshold'/'clip': if either min/max is not defined, it is taken as the

minimum/maximum of the image, respectively

'normalize': performs z-score normalization:

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.ZNormalization

'resample: resolution: X,Y,Z': resample the voxel resolution:

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.Resample

'resample: resolution: X': resample the voxel resolution in an isotropic

manner:

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.Resample

resize the image(s) and mask (this should be greater than or equal to

patch_size); resize is done ONLY when resample is not defined

crop_external_zero_planes: crops all non-zero planes from input tensor to

reduce image search space

data_preprocessing:

 {

 'normalize_nonZero',

 'crop_external_zero_planes',

 }

various data augmentation techniques

options: affine, elastic, downsample, motion, ghosting, bias, blur,

gaussianNoise, swap

keep/edit as needed

all transforms:

https://torchio.readthedocs.io/transforms/transforms.html?highlight=transforms

'kspace': one of motion, ghosting or spiking is picked (randomly) for

augmentation

'probability' subkey adds the probability of the particular augmentation

getting added during training (this is always 1 for normalize and resampling)

data_augmentation:

 {

 'affine':{

 'probability': 0

 },

 'elastic':{

 'probability': 0

 },

 'kspace':{

 'probability': 0

 },

 'bias':{

 'probability': 0

 },

 'blur':{

 'probability': 0

 },

 'noise':{

 'probability': 0

 },

 'rotate_90':{

 'probability': 0

 },

 'rotate_180':{

 'probability': 0

 },

 }

parallel training on HPC - here goes the command to prepend to send to a

high performance computing

cluster for parallel computing during multi-fold training

not used for single fold training

this gets passed before the training_loop, so ensure enough memory is

provided along with other parameters

that your HPC would expect

${outputDir} will be changed to the outputDir you pass in CLI +

'/${fold_number}'

ensure that the correct location of the virtual environment is getting

invoked, otherwise it would pick up the system python, which might not have

all dependencies

#parallel_compute_command: 'qsub -b y -l gpu -l h_vmem=32G -cwd -o

${outputDir}/\$JOB_ID.stdout -e ${outputDir}/\$JOB_ID.stderr `pwd`/sge_wrapper

_correct_location_of_virtual_environment_/venv/bin/python'

queue configuration -

https://torchio.readthedocs.io/data/patch_training.html?#queue

this determines the maximum number of patches that can be stored in the

queue. Using a large number means that the queue needs to be filled less

often, but more CPU memory is needed to store the patches

q_max_length: 100

this determines the number of patches to extract from each volume. A small

number of patches ensures a large variability in the queue, but training will

be slower

q_samples_per_volume: 10

this determines the number subprocesses to use for data loading; '0' means

main process is used

q_num_workers: 16 # change according to available cpu threads

used for debugging

q_verbose: False

