
# affix version 

version: 

  { 

    minimum: 0.0.14, 

    maximum: 0.0.14 # this should NOT be made a variable, but should be tested 

after every tag is created 

  } 

# Choose the model parameters here 

model: 

  { 

    dimension: 4, # the dimension of the model and dataset: defines 

dimensionality of computations 

    base_filters: 30, # 30 is for a GPU with 11GB VRAM - can be 

decreased/increased appropriately 

    architecture: unet, # options: unet, resunet, fcn, uinc 

    final_layer: sigmoid, # can be either sigmoid, softmax or none (none == 

regression) 

    class_list: [0,1,2,3,4], # Set the list of labels the model should train 

on and predict 

    amp: True, # Set if you want to use Automatic Mixed Precision for your 

operations or not - options: True, False 

    # n_channels: 3, # set the input channels - useful when reading RGB or 

images that have vectored pixel types 

  } 

# metrics to evaluate the validation performance 

metrics: 

  - 'dice' 

# Set the Modality : rad for radiology, path for histopathology 

modality: rad 

weighted_loss: True 

# Patch size during training - 2D patch for breast images since third 

dimension is not patched  

patch_size: [128,128] 

# uniform: UniformSampler or label: LabelSampler 

patch_sampler: uniform 

# Number of epochs 

num_epochs: 500 

# Set the patience - measured in number of epochs after which, if the 

performance metric does not improve, exit the training loop - defaults to the 

number of epochs 

patience: 50 

# Set the batch size 

batch_size: 1 # change according to available GPU memory - this is for 11GB 

# Set the initial learning rate 

learning_rate: 0.1 

# Learning rate scheduler - options: triangle, exp, reduce-on-lr, step, more 

to come soon - default hyperparameters can be changed thru code 

scheduler: triangle_modified 



# Set which loss function you want to use - options : 'dc' - for dice only, 

'dcce' - for sum of dice and CE and you can guess the next (only lower-case 

please) 

# options: dc (dice only), dc_log (-log of dice), ce (), dcce (sum of dice and 

ce), mse () ... 

# mse is the MSE defined by torch and can define a variable 'reduction'; see 

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELo

ss 

# use mse_torch for regression/classification problems and dice for 

segmentation 

loss_function: dcce 

#loss_function: 

#  { 

#    'mse':{ 

#      'reduction': 'mean' # see 

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELo

ss for all options 

#    } 

#  } 

# Which optimizer do you want to use - adam/sgd 

optimizer: adam 

# this parameter controls the nested training process 

# performs randomized k-fold cross-validation 

# split is performed using sklearn's KFold method 

# for single fold run, use '-' before the fold number 

nested_training: 

  { 

    testing: 5, # this controls the testing data splits for final model 

evaluation; use '1' if this is to be disabled 

    validation: 5 # this controls the validation data splits for model 

training 

  } 

## pre-processing 

# this constructs an order of transformations, which is applied to all images 

in the data loader 

# order: resize --> threshold/clip --> resample --> normalize 

# 'threshold': performs intensity thresholding; i.e., if x[i] < min: x[i] = 0; 

and if x[i] > max: x[i] = 0 

# 'clip': performs intensity clipping; i.e., if x[i] < min: x[i] = min; and if 

x[i] > max: x[i] = max 

# 'threshold'/'clip': if either min/max is not defined, it is taken as the 

minimum/maximum of the image, respectively 

# 'normalize': performs z-score normalization: 

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.ZNormalization 

# 'resample: resolution: X,Y,Z': resample the voxel resolution: 

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.Resample 



# 'resample: resolution: X': resample the voxel resolution in an isotropic 

manner: 

https://torchio.readthedocs.io/transforms/preprocessing.html?highlight=ToCanon

ical#torchio.transforms.Resample 

# resize the image(s) and mask (this should be greater than or equal to 

patch_size); resize is done ONLY when resample is not defined 

# crop_external_zero_planes: crops all non-zero planes from input tensor to 

reduce image search space 

data_preprocessing: 

  { 

    'normalize_nonZero', 

    'crop_external_zero_planes', 

  } 

# various data augmentation techniques 

# options: affine, elastic, downsample, motion, ghosting, bias, blur, 

gaussianNoise, swap 

# keep/edit as needed 

# all transforms: 

https://torchio.readthedocs.io/transforms/transforms.html?highlight=transforms 

# 'kspace': one of motion, ghosting or spiking is picked (randomly) for 

augmentation 

# 'probability' subkey adds the probability of the particular augmentation 

getting added during training (this is always 1 for normalize and resampling) 

data_augmentation:  

  { 

    'affine':{ 

      'probability': 0 

    }, 

    'elastic':{ 

      'probability': 0 

    }, 

    'kspace':{ 

      'probability': 0 

    }, 

    'bias':{ 

      'probability': 0 

    }, 

    'blur':{ 

      'probability': 0 

    }, 

    'noise':{ 

      'probability': 0 

    }, 

    'rotate_90':{ 

      'probability': 0 

    }, 

    'rotate_180':{ 

      'probability': 0 

    }, 



  } 

# parallel training on HPC - here goes the command to prepend to send to a 

high performance computing 

# cluster for parallel computing during multi-fold training 

# not used for single fold training 

# this gets passed before the training_loop, so ensure enough memory is 

provided along with other parameters 

# that your HPC would expect 

# ${outputDir} will be changed to the outputDir you pass in CLI + 

'/${fold_number}' 

# ensure that the correct location of the virtual environment is getting 

invoked, otherwise it would pick up the system python, which might not have 

all dependencies 

#parallel_compute_command: 'qsub -b y -l gpu -l h_vmem=32G -cwd -o 

${outputDir}/\$JOB_ID.stdout -e ${outputDir}/\$JOB_ID.stderr `pwd`/sge_wrapper 

_correct_location_of_virtual_environment_/venv/bin/python' 

## queue configuration - 

https://torchio.readthedocs.io/data/patch_training.html?#queue 

# this determines the maximum number of patches that can be stored in the 

queue. Using a large number means that the queue needs to be filled less 

often, but more CPU memory is needed to store the patches 

q_max_length: 100 

# this determines the number of patches to extract from each volume. A small 

number of patches ensures a large variability in the queue, but training will 

be slower 

q_samples_per_volume: 10 

# this determines the number subprocesses to use for data loading; '0' means 

main process is used 

q_num_workers: 16 # change according to available cpu threads 

# used for debugging 

q_verbose: False 
 


