ADMINISTRATOR'S GUIDE:
BMI User ACCEPTANCE TESTING
FRAMEWORK

Massachussetts Open Cloud

Paul Grosu (pgrosu@gmail.com)

First EDITION
2017
(Revised on 10/10/2017)

CONTENTS

CONTENTS il
I AN ApproAcH TO DELIVERING DEFECT-FREE SOFTWARE PrRODUCTS 1
1 DocuMENT-DRIVEN TESTING FOR OPTIMAL DEPLOYMENTS 3

1.1 How to guarantee a defect-free software product 3

1.2 Testing Under Changing Environments Via System Testing 4

1.3 Behavior-Driven Development: A Scientific-Method Approach to Testing

I GeTTING STARTED WiTH THE USER ACCEPTANCE TESTING FRAMEWORK

9

2 TueE UserR AccePTANCE TESTING FRAMEWORK 11
2.1 The User Acceptance Testing Architecture 11
2.1.1 Configuring a Testing Environment 12
2.1.2 Structure of Test Directory 13
2.1.3 The configfile 13
2.2 Preparing The Environment
14
2.3 Performing the Acceptance Tests
15
2.3.1 Entering an Interactive Session 17

INDEX 19

ii

5

|

AN APPROACH TO DELIVERING
DErecT-FREE SOFTWARE PrRODUCTS

CHAPTER

DocuMeENT-DRIVEN TESTING FOR
OprTiMAL DEPLOYMENTS

The fundamental principle of science, the definition almost, is this:
the sole test of the validity of any idea is experiment.
— Richard P. Feynman

1.1 HOW TO GUARANTEE A DEFECT-FREE SOFTWARE PRODUCT

SOFTWARE PRODUCT CAN BE DEEMED DEFECT-FREE if all the requirements have been com-
Apletely covered by tests supporting the specifications, and are continuously validated
throughout the development cycle. A development team always strives to provide such
guarantees, which can be achieved by being diligent in following specific software devel-
opment practices and ensuring that the requirements are bounded and reflected through
complete coverage.

One methodology of ensuring that such a continuity is preserved, is via the V-Model of
software development" illustrated in Figure 1.1.

1 http://ccdocs.berkeley.edu/content/system-validation-plan

http://ccdocs.berkeley.edu/content/system-validation-plan

4 CHAPTER 1. DOCUMENT-DRIVEN TESTING FOR OPTIMAL DEPLOYMENTS

Validation
Plan
Systems ‘ b= .
Needs Concept § Project Engineering OP:;:ums Ch::ge . Retirement /
lecti lanni
Assessment Selection § Planning gzzzg‘egment , Mainienance Upgrades Replacement
—— —
Concepl of System Validation / Strategy Plan System
Operations Validation

——
System Deployment . —_
Requirements System Verification Plan, | — \alidation

» System =
e Verfication | = | Report
LoV Sub-system System
Design Verification Integration
Subsystem Plans Subsystem
Requiremenls_—> Verification
Subsystem

Unit Test
Detailed "F'Dlarfs Integration
Design = Unit Testing

Software Coding
Hardare Fabrication

Ficure 1.1 — The V-Model of software development.

If you bisect vertically the V-Model, you will notice that each requirement — or imple-
mentation — on the left-hand side is supported by a verification or validation step on the
right-hand side. This ensures that the scope is bounded and provides complete cover-
age’. For every step documentation is critical to both specify the requirements, and then to
subsequently validate against those requirements.

1.2 TESTING UNDER CHANGING ENVIRONMENTS VIA SYSTEM TESTING

There will be times where Integration Testing is not enough. This is where System Testing3
comes in. Here we take the software product as a black box — as opposed to in Integra-
tion Testing — and test it under different environments without touching the code-base.
One of the best ways to ensure that the software product will operate as defined by the
requirements is to run end-to-end scenarios with validation. This requires one to have a list of
functional specifications that the software product must perform, and to create one or more
workflows where these will be pipelined together to generate this type of Functional Testing*.

For BMI these are defined as follows:

pro » Provisions a node.
dpro » Deprovisions a node.

2Coverage ensures all aspects of the codebase are verified and asserted via test(s).

3Ashfaque Ahmed and Bhanu Prasad. 2016. Foundations of Software Engineering. Auerbach Publications,
Boston, MA, USA.

4Functional Testing validates the software design based on the requirement specifications, by running tests
to check that the software’s features match the functional specifications.

1.3. BEHAVIOR-DRIVEN DEVELOPMENT: A SCIENTIFIC-METHOD APPROACH TO TESTING 5

snap » Takes a snapshot of a node.
1s » Lists store images.
import » Importing images or snapshots into BMI for provisioining.
db » Database commands that about imported images or snapshots.

By then integrating these into an end-to-end workflow, one can perform all these and
ensure that the basic requirements are satisfied. An example of a possible end-to-end
workflow is described in Figure 1.2.

Create an Image in Ceph Confirm With Ceph

¥

Import Image Into BMI Confirm With Ceph

Y
Provision Node Using BMI

¥

Create a Snapshot of Node Confrm With Ce
Using BMI S

¥
Deprovision Mode Using BMI

Y
Remaove The Node's A T Cand
Snapshot Using BMI B
Y

Removing an Image in BMI Confirm With Ceph

FIGURE 1.2 — An example of an end-to-end workflow.

1.3 BEHAVIOR-DRIVEN DEVELOPMENT: A SCIENTIFIC-METHOD APPROACH
TO TESTING

The Scientific Method is an unbiased approach to discovering what the facts truly about a
system by progressing using systematic doubt> to ensure adequate evidence support each
problem being solved. The facts are not gathered unless there is a problem being defined
upon which relevant facts are required to prove or disprove inquiries (hypotheses) about the
problem.

5Morris Raphael Cohen and Ernest Nagel. 1934. An Introduction to Logic And Scientific Method. Harcourt,
Brace and World, New York, NY, USA.

6 CHAPTER 1. DOCUMENT-DRIVEN TESTING FOR OPTIMAL DEPLOYMENTS

Behavior-Driven Development (BDD) is defined through a live document implemented
using the Gherkin language®, which utilizes Given-When-Then control-flow syntax defined
as follows:

Given » Defines a given state.
When » Defines a given action performed under the given state.
Then » Defines the expected outcome after the action is performed.

By building a scenario through combining these into premises using the Given- and
When-initiated statements, we are able to discover if our system is validated at each step
and confirm the Then conclusion statement(s). Thus we are hypothesis-driven through a
BDD-model of our system to ensure it matches our expected operational semantics?.

An example of such an end-to-end scenario for BMI is illustrated in Figure 1.3, where
each line is a step that references an implemented function.

The end-to-end scenario is a model used as a set of rules of inference guided by an ordered

collection of premises — which are assumed to be true — and conclude that all the steps are
truth preserving:

Premises = Conclusions

6 https://github.com/cucumber/cucumber/wiki/Gherkin
7 https://en.wikipedia.org/wiki/Operational_semantics

https://github.com/cucumber/cucumber/wiki/Gherkin
https://en.wikipedia.org/wiki/Operational_semantics

1.3. BEHAVIOR-DRIVEN DEVELOPMENT: A SCIENTIFIC-METHOD APPROACH TO TESTING 7

Feature: Running an end-to-end acceptance test
Scenaric: Imperting/Removing Image, DB/Ceph consistency

Given RBD will create an image
| image_name |
| bmi-test-image |

And BMI log line-count will be measured at the beginning

When BMI will import an image
| image_name | project_name |
| bmi-test-image | bmi_infra |

And BMI will provisicn a node
| image_name | project_name | network_name | node_name | NIC
| bmi-test-image | bmi_infra | bmi-provision-dev | cisceo-85 | enpl3@sefe |

Then BMI will create a snapshot of a node
| project_name | node_name | snapshot_name |
| bmi_infra | cisco-85 | bmi-test-image-snapsheot

Then RBD will confirm the snapshot exists
| snapshot_name |
| bmi-test-image-snapshot

And BMI will remove a snapshet
| snapshot_name | project_name |
| bmi-test-image-snapshot | bmi_infra |

Then BMI will deprewvision a node
| project_name | network_name | node_name | NIC |
| bmi_infra | bmi-provisien-dev | cisco-85 | enpl3@sefe

And BMI will remove an image
| image_name | project_name |
| bmi-test-image | bmi_infra |

Then RBD will confirm the removed image's clone
| image_name | project_name |
| bmi-test-image | bmi_infra |

And RBD will remove the created image
| image_name |

| bmi-test-image |

And BMI log line-count will be measured at the end

Ficure 1.3 — The BMI End-to-End Behavior-Driven Deployment Test, with
tables of parameters to test with.

For example, in Figure 1.4 the creation of a RADOS block device (RBD®) mountable im-
age at the start is defined through the rbd_create_image() function, where it is decorated
by the sentence referenced in the live-document.

8Ceph Storage provides the ability for its (bootable) images to be mountable remotely using a RADOS
block device. For more information please proceed to the following web location:
https://docs.openstack.org/mitaka/config-reference/block-storage/drivers/ceph-rbd-volume-driver.html

https://docs.openstack.org/mitaka/config-reference/block-storage/drivers/ceph-rbd-volume-driver.html

8 CHAPTER 1. DOCUMENT-DRIVEN TESTING FOR OPTIMAL DEPLOYMENTS

import behave

import time # Needed for Ceph Hammer client consistency

from bmi_config import RBD_CREATE, IMAGE_NAME, PROVISIONING_DELAY
from subprocess import check_output, CalledProcessError, STDOUT
from test_operation import test_event_store_insert, test_rollback

@step("RBD will create an image”)

def rbd_create_image(context):
for row in context.table:
try:
print{ " -» Checking that no pre-existing " +
row[" image_name'] + " is present in Ceph, before creating it...")
rbd_filename_check_stdout = check_output{'rbd 1s | grep ' + row['image_name'],
stderr=STDOUT, shell=True)
except CalledProcessError:
pass # The image already exists, as it was previously created

try:
print{ " -» Creating the " + row['image_name’'] + " image in Ceph...")
rbd_create_stdout = check_output{ 'rbd create ' +
row["image_name'] +
' --size 1 --image-format 2", stderr=STDOUT, shell=True)

except CalledProcessError:

pass # The image already exists, as it was previously created
except Exception:

test_rollback(context)
print{ " -» Checking that " + row['image_name'] + " exists in Ceph...")
rbd_filename_check_stdout = check_output({ 'rbd 1s | grep ' +

row["image_name'], stderr=STDOUT, shell=True)

context.rbd_filename_check = rbd_filename_check_stdout.strip()

Journal the event for rollback
test_ewvent_store_insert(context, { RBD_CREATE: {IMAGE_NAME : "image_name'} })

time.sleep{ PROVISIONING_DELAY) # Needed for Ceph Hammer client consistency
assert context.rbd_filename_check == row['image_name"]

FiGUrE 1.4 — The definition of the RBD creation step, where the decoration
highlights the sentence referenced in the end-to-end deployment test.

In the next chapter, you will learn how to configure and run an acceptance test.

11

GETTING STARTED WiTH THE USER
ACCEPTANCE TESTING FRAMEWORK

CHAPTER

THE USER ACCEPTANCE TESTING
FRAMEWORK

This chapter will guide through the steps of creating and running a BDD scenario for BMI via
the User Acceptance Framework.

2.1 THE USER ACCEPTANCE TESTING ARCHITECTURE

You will need to be provided a compressed (tar.gz) file of the acceptance tests. After you
uncompress it via the "tar -xzvf acceptance-tests.tar.gz" you will see the following
files and folders in the root directory:

Mame Date modified Type Size
bdd 9/12/2017 9:16 File folder
config 9/12/2017 916 File folder
doc 9/13/2017 Vv File folder
scripts 9/12/2017 916 File folder
test-results 9/12/ File folder
bmi-uat.py 9/11/2017 2:.06 AM PY File 3 KB
interactive-session_SOURCE-THIS.sh 71472017 2:.32 PM SH File 1KB
prepare-environment.sh 9/11/2017 4:54 PM SH File 1KB
run-multiple-rounds_stress-test.sh 8/22/2017 11:11 PM SH File 1KB

Ficure 2.1 — Root directory of the User Acceptance Testing framework.

11

12 CHAPTER 2. THE USER ACCEPTANCE TESTING FRAMEWORK

Below are descriptions of the critical folders and files required for configuring and for
running the tests:

config » Contains the testing configurations for different environments (i.e. PRB, NEU, etc).
doc » Contains this manual.
scripts » Contains the configuration scripts that are run for different stages during testing.
prepare-environment.sh » Configurations to run for different OS environments before testing, which can be
used to create cleanup scripts.
bmi-uat.py » The command-line interface (CLI) for listing and running the tests.

test-results » Provides test results in case one performs randomized tests for multiple rounds.

The interactive-session_SOURCE-THIS. sh script is used if you want to drop into an
interactive session into the environment of a particular test after is completed in order to
inspect or rollback changes.

Next you will learn about the config directory regarding how to use or create new
testing environments.

2.1.1 Configuring a Testing Environment

If you look at the config directory you will see something that looks similar to this:

4 config

4 | tests-uat
neu-haas-dev
pr-60
prb-bmi-dev

prb-bmi-dev-import-rm-test

FiGure 2.2 — Config directory of the User Acceptance Testing framework.

It is best to copy a previous directory of interest if you would like to perform the mini-
mal changes to a test. There are two types of test directories:

Pull-Request Test B Performs tests on a specific pull-request (i.e. pr-60). These are usually performed
in preparation for running a deployment test.

Repository Test B Performs tests on a whole repository (i.e. neu-haas-dev). These would be performed
to ensure a release is ready for deployment.

Next we will look at how a test configuration is structured.

2.1. THE USER ACCEPTANCE TESTING ARCHITECTURE 13

2.1.2 Structure of Test Directory

If you look at any of the test directories they all look as follows:

Mame Date modified Type Size
doc 9/12/2017 916 PM File folder
features 9/12/2017 916 PM File folder
scripts File folder
steps File folder
bmi-config.sh 7 SH File 1KB
config File 1 KB
customize 7 File 1KB
1

customize-after-git-clone
FiGure 2.3 — The test directory structure.

To keep the configurations simple and practical, it is important to know about the
following four components:

config » This file configures the BMI UAT test for the environment, and is the most important

file.

bmi-config.sh » This is the second most important file, and is used to configure the BMI pre-test
deployment directories.

features » These contain the live documents that can be changed with the exception of the
template file. Additional scenario files to test for can be added if preferred.

steps » Contains the functions that map to the given BDD definition in the feature files
that build up the scenarios.

2.1.3 The configfile

The config file is usually the only file one will usually configure the most of the time, and
it was created to ensure minimal changes are necessary for test-preparation. The structure
of the file is shown in Figure 2.4, and is composed of the following three main sections:

BMI_RELEASE_NAME » This will denote the name of the directory for the scenario that is being tested,
underneath which the tests will be installed, configured and run.

14 CHAPTER 2. THE USER ACCEPTANCE TESTING FRAMEWORK

E2E Test Configs » The middle section contains the End-To-End configuration information that are
pertinent to the environment being tested (i.e. HIL project names, names of BMI
images to create, etc).

BMI and HIL Configs » These contain the HIL and BMI local configurations in order for the tests to run.

export BMI_RELEASE_NAME=moc-8.5-release

export BMI_PROJECT=bmi_infra

export HIL_NODE=cisco-85

export HIL_NIC=enpl3@s8fo

export HIL_NETWORK=bmi-provision-dew

export BMI_IMAGE_NAME=bmi-test-image

export BMI_SNAPSHOT_NAME=bmi-test-image-snapshot

export BMI_CONFIG=/etc/bmi/bmiconfig_pgrosu.cfg
export HIL_ENDPOINT=http://127.8.8.1:5868
export HIL_USERNAME===mm====x

export HIL_PASSWORD===m====x

FiGuUre 2.4 — The test configuration file structure.

An example of the bmi-config.sh file is shown in Figure 2.4, which provides the
configurations of where the BMI instance will be installed (BMI_INSTANCE_DIR), and the
location of the User Acceptance Tests directory (ACCEPTANCE_TESTS_SRC_DIR).

export BMI_TNSTANCE_DIR=%{HOME}/pgrosu/ims-instance

export ACCEPTANCE_TESTS_SRC_DIR=%{HOME}/pgrosu/facceptance-tests
export BDD_DIR=./bdd

export BDD_STEPS_DIR=$BDD_DIR/steps

F1GURE 2.5 — An example of a bmi-config.sh file.

2.2 PREPARING THE ENVIRONMENT

Sometimes the operating environment requires extra functionality — such as Python or Git
availability — to be available before running a test. These configurations can be placed as
Bash scripts under the scripts\prepare-environments directory, as shown in Figure 2.6.

2.3. PERFORMING THE ACCEPTANCE TESTS
15

MName Date maodified Type Size
prepare-centos-with-git.sh 13 PM SH File 1KB
prepare-ubuntu-with-python.sh 49p SH File 1 KB

FIGURE 2.6 — An example of the prepare-environments directory.

To list all configurations, type under the main acceptance-tests directory . /prepare-
environment.sh, as shown in Figure 2.9.

ubuntu@pgrosu-ubuntul6:~/acceptance-tests$./prepare-environment.sh

Please choose one of the following configurations based on your environment:

prepare-centos-with-git
prepare-ubuntu-with-python

ubuntu@pgrosu-ubuntul6:~/acceptance-tests$

FiGure 2.7 — Listing the prepare-environments configurations.

To run a configuration just use the following format to run the appropriate configuration
for your environment:

./prepare-environment.sh CONFIGURATION

Now you are ready to run a test configuration.

2.3 PERFORMING THE ACCEPTANCE TESTS

The performance tests can be initiated via the following steps:
1. To list the testable BMI service configurations, type the following command:
./bmi-uat.py 1s
You should see something like the following;:

The available configurations are:

16 CHAPTER 2. THE USER ACCEPTANCE TESTING FRAMEWORK

neu-haas-dev
2. To run the standard end-to-end configuration, type the following command:
./bmi-uat.py --run BMI_SERVICE_CONFIGURATION
Example:
./bmi-uat.py --run neu-haas-dev

At the end you if the tests passed successfully, you should see the following output:

2 features passed, @ failed, @ skipped

2 scenarios passed, @ failed, @ skipped

16 steps passed, @ failed, @ skipped, © undefined
Took @m52.845s

=== BMI passed the acceptance criterial ===

[root@rhel-tgt-base acceptance-tests]|#

Ficure 2.8 — The BMI completed successfully the end-to-end scenario.

3. Torun the tests with randomized parameters, type the following where the value
indicates the number of times to run the test:

./bmi-uat.py --run neu-haas-dev --randomize 3
4. To check if the tests passed or failed, type the following:
./bmi-uat.py check
You should see the following:
All tests passed!

This command checks the test-results directory for any subdirectory containing
FAIL in its name.

5. To cleanup all previous results, type the following:

./bmi-uat.py clean

2.3. PERFORMING THE ACCEPTANCE TESTS
17

You will notice that when running a test, there are many additional sanity-checks that
are being made to ensure each test not only completes properly, but also provides sufficient
detail in case of failure, as shown by the following figure:

wWhen BMI will import an image # tests/bdd/steps/bmi_import.py:7
| image name | project_name |
| bmi-test-image | bmi_infra |
Running: bmi import bmi_infra bmi-test-image

-> Checking that bmi-test-image exists in Ceph...
Running: bmi db 1ls | grep bmi-test-image

-> Checking that 112233445566778899img2 exists in BMI's database...
Running: rbd 1ls | grep 112233445566778899img2

FIGURE 2.9 — Sanity-checks for the BMI import step.

2.3.1 Entering an Interactive Session

After the test has completed — either successfully or not — one can enter an interactive
session to inspect the state of the test, where BMI commands can be executed interactively.
This is performed from the acceptance-tests directory by typing the following command
— make sure to not forget the period (.) at the before the script-name:

interactive-session_SOURCE-THIS.sh
If the test was based on a pull-request, please add -pr as follows:
interactive-session_SOURCE-THIS.sh -pr
You should see something as follows, showing that one is an virtual environment:
(.bmi_venv) ubuntu@pgrosu-ubuntul6:~/ims-instance/ims$

To exit the interactive session, just type the following command - from within the
session:

return-back-to-acceptance-dir_SOURCE-THIS. sh

By following the above steps you can now test your own customizations of BMI any
services.

INDEX

BMI and HIL Configurations, 14
BMI_RELEASE_NAME, 13

E2E Test Configs, 14
Pull-Request Test, 12
Repository Test, 12
bmi-config.sh script, 13

BDD (Given), 6
BDD (Then), 6
BDD (When), 6
BDD features, 13
BDD steps, 13

Behavior-Driven Development (BDD), 5

bmi-uat.py script, 12

complete coverage, 3
conclusions, 6
config directory, 12, 13

19

doc directory, 12
end-to-end scenario, 6
functional testing, 4
interactive session, 17

premises, 6
prepare-environment.sh script, 12

running User Acceptance Tests, 15

scientific method, 5
scripts directory, 12
system testing, 4

test-results, 12

V-Model, 3

	Contents
	An Approach to Delivering Defect-Free Software Products
	Document-Driven Testing for Optimal Deployments
	How to guarantee a defect-free software product
	Testing Under Changing Environments Via System Testing
	Behavior-Driven Development: A Scientific-Method Approach to Testing

	Getting Started With The User Acceptance Testing Framework
	The User Acceptance Testing Framework
	The User Acceptance Testing Architecture
	Configuring a Testing Environment
	Structure of Test Directory
	The config file

	Preparing The Environment
	Performing the Acceptance Tests
	Entering an Interactive Session

	Index

