
BMI User’s Guide

Massachusetts Open Cloud

Paul Grosu (pgrosu@gmail.com)
Dan Finn (djfinn@bu.edu)

Gerardo Ravago (gcravago@bu.edu)
Naved Ansari (naved@gmail.com)

Apoorve Mohan (mohan.ap@husky.neu.edu)
Sourabh Bollapragada (sourabh.bollapragada@gmail.com)

Ravisantosh Gudimetla (ravisantoshgudimetla@gmail.com)
Sirushti Murugesan (murugesan.si@husky.neu.edu)

Professor Gene Cooperman (gene@ccs.neu.edu)

First Edition


(Revised on //)

Contents

Contents ii

I HIL and BMI Ecosystem 

 Overview of HIL and BMI 
. What is MOC, HIL and BMI? 
. Network Isolation 
. Bare Metal Imaging (BMI) 

.. Preboot Execution Environment (PXE) Protocol 
.. Advertising iSCSI Targets 

. Communication Protocols for BMI 
.. REST API (Picasso) 
.. BMI Operations (Einstein) 

. BMI Configuration 
. Boot Order of a Node 

II Getting Started With BMI 

 Working With BMI 
. Core Commands in BMI 
. Creating a Mock HIL and BMI Ecosystem 

.. Installing Ceph, HIL and BMI 
.. The HIL Configuration 

. Using BMI 
.. Creating a new image 
.. Import the new image into BMI 
.. Provisioning a Node Using BMI 
.. Creating a Snapshot Using BMI 
.. Deprovisioning a Node Using BMI 
.. Removing a Snapshot Using BMI 
.. Removing an Image Using BMI 

. Existing the Virtual Environment 

ii

contents iii

 BMI Internals 
. The Clone-Snapshot Workflow 
. Importing an Image 

.. Ceph Image Name Format In The BMI Database 

III Appendices 

A Appendix 
A. User Acceptance Testing 

A.. Behavior-Driven Development (BDD) 
A.. Configuring the Acceptance Tests


A.. Performing the Acceptance Tests



Index 

I
HIL and BMI Ecosystem



chapter 1

Overview of HIL and BMI

This chapter will describe from the ground up the overall HIL and BMI ecosystem and how it fits
into the MOC.

 . what is moc, hil and bmi?

The key idea behind the Massachusetts Open Cloud (MOC) is to operate based on an
Open Cloud eXchange (OCX) model, where multiple stakeholders provide one or more

services rather than just one cloud provider. This requires one to have more control over
the provided resources — such as nodes and switches — via projects such as the Hardware
Isolation Layer (HIL) for network isolation of nodes, and the Bare Metal Imaging (BMI)
project for advertising (provisioning) to nodes, images to boot from. The key idea behind
BMI is to provision and reprovision nodes with images quickly as demand for compute
nodes (and resources) shifts between the Cloud and high-performance computing (HPC)
jobs.

The general idea is that we want many users (multi-tenancy) to have cloudlets of nodes on
isolated networks from other users running specific images. The reason for the bare-metal
approach is that is much faster than the virtual-machine approach for obvious reasons (i.e.
hypervisor versus direct-hardware for booting and memory-management, etc).

 . network isolation

The first step that takes place in this process is the isolation of nodes. All the nodes that are
available for imaging are connected to a switch. Among them some will be in use by other
users and some are free for use, or in the free pool of available nodes.

Every node is connected to a port on a switch. A port is a physical connection between
the node and the switch. Switches operate on the data link layer (layer ) of the OSI model.



 chapter  . overview of hil and bmi

If one would like to take a set of free nodes and isolate them on their own network, you
would assign them to a Virtual LAN (VLAN). Assigning nodes to a VLAN simply means
assigning the ports on that switch a number between  - , which is the maximum
number of VLANs possible. So if you want  nodes and the VLAN  is available, you write
to those ports using the software for that switch (i.e. Cisco or DELL at MOC) that value.
In fact, if you want a node to see other networks, you can assign the port that the node is
attached to multiple VLAN numbers. So think of each port on the switch having assigned a
set of VLAN numbers — and since VLANs are a broadcast domain — then it can see any
other ports (i.e. nodes) that intersect the set of assigned VLANs. Each Ethernet packet has
 bits allocated to store its VID (VLAN ID). Below is an example of a switch with assigned
ports:

 : {  }  : {  } : { ,  } : {  } : {  } : {} : {  }
 : {  }  : {  } : {} : {} : {} : {} : {}

You will notice that nodes 1,2,3,8, and 9 are on VLAN 19, while nodes 3,4,5, and 7 are
on VLAN — with all other nodes being unassigned (i.e. in the free pool of nodes). Notice
that node  will see all the nodes on both VLANs as it is assigned both VLAN numbers.
Thus if you want to have a public network you would assign it the same VLAN number to
all the ports on the switch. In fact, you can connect two switches which is referred to as
trunking and those ports that connect switches would need to be assigned all the numbers
on both switches so that they are reachable.

This is isolation of networks is basically what HIL performs. Since VLAN numbers are
not natural to remember, they are aliased via a name that HIL refers to as the network. Thus
one VLAN number will have a unique network name. Users typically now just create an
isolated network via HIL, and then come to BMI to provision (assign images) to those nodes.
Next I will describe how BMI works.

 . bare metal imaging (bmi)

Now you have a network name you created via HIL, and the nodes (using the name of
NIC [Network Interface Controller]) that belong to that network. Remember each node
is connected to a NIC (port). Now what you are interested is to boot those nodes, and
somehow they find the images they should boot with. How can that be done?

The general boot process of a node, is as follows:

. A node remote boots to a computer (via PXE booting). The Preboot Execution Envi-
ronment (PXE) protocol, allows one to boot a node using an image available on a
remote DHCP server.

. The image on that remote DHCP server — in the case of BMI — is actually an iPXE
image, which enables one to see remote storage locations that contain larger bootable

 . . bare metal imaging (bmi) 

images. iPXE allows one to use the iSCSI protocol (SCSI over Internet) in order to
boot these images. This process is called PXE→ iPXE chainloading.

Basically BMI — which we currently we run through a VM — is just a gateway that
services DHCP — and other protocols required for PXE/iPXE — only advertises bootable
images available on remote network storage locations. Only HIL can power-cycle the nodes
so that they start the initiation process of looking for the DHCP server via PXE — which
can be called via the following REST request:

haas node_power_cycle NIC_NAME

The power-cycle is performed via a separate IPMI (Intelligent Platform Management Inter-
face) card, which is not visible by the operating system (OS) on the node but can be accessed
separately - known as out-of-band management - to turn the machine on (i.e. power-cycle).

.. Preboot Execution Environment (PXE) Protocol

In the BIOS of any node, one sets the boot order of how that node should start up. One
of the settings is called Preboot Execution Environment (PXE). This basically performs a
network boot using an image serviced from another location. Here is how it happens:

. The first thing that happens is that the PXE-enabled node broadcasts a DHCPDIS-
COVER request for an IP address from any computer on the network that runs a
DHCP server.

. Then the DHCP server sends back a list of Boot Servers.
. Then the node discovers a Boot Server from that list and receives the name of an

executable file on the Boot Server, which is the bootstrap file.
. The node then uses the Trivial FTP protocol to download the executable file from

the Boot Server.
. The node will initiate the execution of that downloaded image.

Now the next step in the process is to perform an iPXE boot, which will again request
an IP address from a DHCP server, but will this time boot a specific image from a remote
network storage location.

.. Advertising iSCSI Targets

SCSI is a bus architecture that uses a protocol to interface via an initiator connecting multi-
ple targets. On a computer the initiator is a controller card with multiple devices being the
targets. Over IP the initiator sends SCSI commands over the network treating the storage

 https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
 http://www.pix.net/software/pxeboot/archive/pxespec.pdf

https://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://www.pix.net/software/pxeboot/archive/pxespec.pdf

 chapter  . overview of hil and bmi

as if it were directly attached.

With BMI we use a package called Linux SCSI target framework (tgt), which can be
accessed at the following link: http://stgt.sourceforge.net/

Currently we use Ceph (http://ceph.com/) as our distributed storage system. Ceph
is an object storage implementation that implemented as a reliable autonomic distributed
object store (RADOS). These objects are accessible via a RADOS Block Device (RBD), which
we configure our TGT iSCSI target images through. To isolate the BMI development envi-
ronment images in Ceph, we have a pool called boot-disk-prototype. In our implementation,
the BMI service contains the initiator and the targets, which communicates via RBD to Ceph.

Since BMI performs the advertising of iSCSI targets, that is configured via files located
in the /etc/tgt/conf.d/ directory. Below is an example of a file called hadoop_image-

target.conf:

<target pg-test>

driver iscsi

bs-type rbd

backing-store boot-disk-prototype/hadoop_image

bsopts ""conf=/etc/ceph/ceph.conf;id=henn""

write-cache off

initiator-address ALL

</target>

The above will configure the target called hadoop_image The next step is to run the
following command:

tgt-admin --execute

which will advertise the image. To see the target advertised you can just type the following:

tgt-admin -s

and you will begin to see something as follows:

Target 1: hadoop_image

System information:

Driver: iscsi

State: ready

...

The next step is to configure the PXE file for the specific node defined by its NIC’s MAC
address, such as /var/lib/tftpboot/pxelinux.cfg/01-90-e2-ba-9f-90-b0, that might

http://stgt.sourceforge.net/
http://ceph.com/

 . . communication protocols for bmi 

look as follows:

DEFAULT menu

PROMPT 0

MENU TITLE PXE Menu

TIMEOUT 30

ONTIMEOUT hadoop_image

LABEL hadoop_image

MENU LABEL hadoop_image

KERNEL ipxe.lkrn

INITRD cisco-05.ipxe

The iPXE file would also need to be updated – which is named based on the NIC as
somthing like /var/lib/tftpboot/cisco-05.ipxe – and would look as follows:

#!ipxe

set keep-san 1

ifconf -configurator=dhcp net2

sanboot -keep iscsi:192.168.29.23:tcp:3260:1:hadoop_image

boot

Basically now the image is advertised and all that is necessary is for the node to be
powered on. When that happens it will automatically discover this DHCP server, which
will start the process of pointing it to the correct image. This is basically what BMI does,
with the additional step of cloning the image so that the original golden image remains
pristine. Below is the general workflow of BMI:

It is important to understand that each node has a IPMI network card, and additional
regular network cards. The IPMI network card is isolated from the operating system (OS)
of the machine, and can be remote-managed via the ipmi-tools. The process of booting is
in two steps via a chainloading from PXE to iPXE, both of which will perform broadcast
requests for DHCP IP addresses. The haas-master (HIL) will need to be on the same isolated
network as the BMI service (VM). The node that the BMI service is running on has the
DHCP and TFTP services running on the same machine. During the iPXE boot process, the
Ceph storage location will be used to for booting the remote image, and all remote images
(including golden standard ones) will initiate a snapshot delta-difference for storing the
changes that one will make while using the image remotely on a node. The remote boot
process is performed via the iSCSI protocol.

 . communication protocols for bmi

Every BMI command is implemented as a REST service. The REST request can then be
transformed into RPC calls, which are mapped to functions performing the BMI commands.

 chapter  . overview of hil and bmi

Figure . – HIL and BMI Ecosystem.

The architecture is as follows:

Figure . – The REST and RPC call architecture of BMI.

The user will interact via a command-line interface (CLI). The calls are shaped as REST
calls, which are serviced by the Picasso server, which will propagate the call via RPC
calls that are exposed via the Einstein server. The Picasso service uses Flask as its REST

 http://flask.pocoo.org/

http://flask.pocoo.org/

 . . bmi configuration 

implementation, with Pyro to expose BMI functions through RPC calls. Some calls are
made via the REST service (i.e. provisioning a node), while others are made directly via
BMI function-calls (i.e. listing the imported images).

.. REST API (Picasso)

An overview of the REST API is available at the following link:

https://github.com/CCI-MOC/ims/blob/dev/docs/rest_api.md

Picasso’s REST service implementation is available at the following link:

https://github.com/CCI-MOC/ims/blob/dev/ims/picasso/rest.py

Picasso will instantiate a RPC client that interfaces with Einstein’s RPC server. The RPC
client is defined at the following link:

https://github.com/CCI-MOC/ims/blob/dev/ims/rpc/client/rpc_client.py

The RPC server code is defined at the following link:

https://github.com/CCI-MOC/ims/blob/dev/ims/rpc/server/rpc_server.py

This then calls the appropriate BMI operation method in Einstein.

.. BMI Operations (Einstein)

The main file that performs all the BMI operations is defined in the following file:

https://github.com/CCI-MOC/ims/blob/dev/ims/einstein/operations.py

In order to preserve a state, BMI instantiates a database. All database entries are per-
formed during the operations phase.

 . bmi configuration

BMI gets configured at startup via a call to the instantiation of the BMIConfig class, defined
in the config.py file:

https://github.com/CCI-MOC/ims/blob/dev/ims/common/config.py

This instantiation consumes the path of the location of the config file, which resides
in either an environmental variable called BMI_CONFIG, or in a file. The default location
of the config file’s path is defined by the CONFIG_DEFAULT_LOCATION, instantiated in the
following file:

https://github.com/CCI-MOC/ims/blob/dev/ims/common/constants.py

 https://pythonhosted.org/Pyro4/

https://github.com/CCI-MOC/ims/blob/dev/docs/rest_api.md
https://github.com/CCI-MOC/ims/blob/dev/ims/picasso/rest.py
https://github.com/CCI-MOC/ims/blob/dev/ims/rpc/client/rpc_client.py
https://github.com/CCI-MOC/ims/blob/dev/ims/rpc/server/rpc_server.py
https://github.com/CCI-MOC/ims/blob/dev/ims/einstein/operations.py
https://github.com/CCI-MOC/ims/blob/dev/ims/common/config.py
https://github.com/CCI-MOC/ims/blob/dev/ims/common/constants.py
https://pythonhosted.org/Pyro4/

 chapter  . overview of hil and bmi

 . boot order of a node

The boot order for BMI is performed in the following order:

. BIOS is set to Network Boot (i.e. PXE).

. The NIC performs DHCP request to the BMI Server, which has the DHCP server
running. The configuration for BMI is performed via PXELINUX which is a Syslinux

derivative.

. In response, the DHCP server will reply with an IP address and bootfile specified
as pxelinux.0. After pxelinux.0 get booted on the node, it will search on the
BMI service the configured mac.temp file as the second option – which will be
named as the node-specific MAC-address. For PXELINUX, the mac.temp file will
be saved under the /var/lib/tftpboot/pxelinux.cfg/ directory – configured via
BMI’s operations.py file – as the MAC address of the node. This template file is
available here:

https://github.com/CCI-MOC/ims/blob/dev/ims/mac.temp

That file will contain the configured iPXE boot configuration via the following
file, which will contain the exposed iSCSI target containing the CEPH image (or
snapshot):

https://github.com/CCI-MOC/ims/blob/dev/ims/ipxe.temp

The boot process will be chainloaded via PXE (→ DHCP)→ iPXE (→ DHCP) to the
iSCSI target all peformed via TGT or IET  (iSCSI Internet Target). TGT has ACL and
multi-tennancy in user-space. IET performs this in kernel-space. The ipxe.lkrn file
will be downloaded and loaded as a ramdisk, which has been compiled once at the
beginning of the BMI installation.

In the next chapter, you will have a chance to work with BMI, in order to learn how to
use its features.

 http://www.syslinux.org/wiki/index.php?title=PXELINUX

 The search-order is defined at the following link:
http://www.syslinux.org/wiki/index.php?title=PXELINUX#Configuration

 An example of MAC-address-associated filename is:
/var/lib/tftpboot/pxelinux.cfg/01-90-e2-ba-9f-90-b0

 The Syslinux configuration standard is defined at the following link:
http://www.syslinux.org/wiki/index.php?title=Config

 http://iscsitarget.sourceforge.net/

https://github.com/CCI-MOC/ims/blob/dev/ims/mac.temp
https://github.com/CCI-MOC/ims/blob/dev/ims/ipxe.temp
http://www.syslinux.org/wiki/index.php?title=PXELINUX
http://www.syslinux.org/wiki/index.php?title=PXELINUX#Configuration
http://www.syslinux.org/wiki/index.php?title=Config
http://iscsitarget.sourceforge.net/

II
Getting Started With BMI



chapter 2

Working With BMI

This chapter will guide through the steps of working with BMI.

 . core commands in bmi

We will explore the following six commands in BMI:

pro I Provisions a node.
dpro I Deprovisions a node.
snap I Takes a snapshot of a node.
ls I Lists store images.

import I Importing images or snapshots into BMI for provisioining.
db I Database commands that about imported images or snapshots.

Using these commands we will run through the end-to-end workflow shown in Figure
..

 . creating a mock hil and bmi ecosystem

In order to better learn how to use BMI, we will need to setup the a Ceph storage location,
HIL and BMI instance. The first step is to ensure that one has either a RedHat Enterprise
Linux or Ubuntu instance with at least  GB of available storage with sudo access. This
can be performed via a virtual machine (VM). Once that is created and you booted into
the machine, you will need to git-clone the setup scripts, via the steps provided on the
following page.



 chapter  . working with bmi

Figure . – HIL and BMI Ecosystem.

git clone https://github.com/CCI-MOC/ims.git

cd ims

git fetch origin pull/60/head:pr-60

git checkout pr-60

This will ensure that you have the proper install scripts and codebase to install Ceph,
HIL and BMI.

 . . creating a mock hil and bmi ecosystem 

.. Installing Ceph, HIL and BMI

First it is important to prepare the environment for installation. It is recommended you use
either CentOS or Ubuntu (preferred) for your installation. Each of these might require one
to perform these commands:

For Ubuntu

sudo add-apt-repository -y ppa:fkrull/deadsnakes

sudo apt-get -y update

sudo apt-get -y install python2.7

sudo ln -s /usr/bin/python2.7 /usr/bin/python

For CentOS

sudo yum -y install git

Next you will need to prepare the Ceph configuration file by going to the install directory,
as follows:

cd scripts/install/

And subsequently running the following Ceph configuration script:

#!/bin/bash

if [! -z "‘sudo ls /etc/ | grep redhat-release‘"]; then

cp /etc/hostname .

cat /etc/hostname | cut -f1 -d’.’ > hostname

sudo cp hostname /etc

fi

if [! -z "‘ifconfig | grep inet | head -n1 | grep :‘"]; then

IP_ADDRESS=‘ifconfig | grep inet | head -n1 | cut -f2 -d’:’ | cut -f1 -d’ ’‘

else

IP_ADDRESS=‘ifconfig | grep inet | head -n1 | cut -f2 -d’i’ | cut -f2 -d’ ’‘

fi

echo -e "public_network = $IP_ADDRESS/24\nosd pool default size = 2\nosd crush

chooseleaf type = 0" >> ceph.conf

At this point you can initiate the installation process as follows:

./install.sh

 chapter  . working with bmi

After the installation first check that Ceph is operational:

ceph -s

You should see the following, which should be indicated by HEALTH_OK under the health
attribute:

cluster 2469e0b1-9269-434a-8dc5-047c863f70e0

health HEALTH_OK

monmap e1: 1 mons at pgrosu-pr-60=192.168.1.14:6789/0

election epoch 3, quorum 0 pgrosu-pr-60

osdmap e31: 3 osds: 3 up, 3 in

flags sortbitwise,require_jewel_osds

pgmap v87: 112 pgs, 7 pools, 19066 kB data, 184 objects

140 MB used, 14466 MB / 14606 MB avail

112 active+clean

Next check the Ceph version via the following command:

ceph -version

You should see the following output:

ceph version 10.2.7 (50e863e0f4bc8f4b9e31156de690d765af245185)

Next check the ceph-deploy version via the following command:

ceph-deploy -version

You should see the following output:

1.5.38

Next check that RBD is operational via the following command:

rbd ls

 . . creating a mock hil and bmi ecosystem 

You should see the following listed images:

112233445566778899img1

cirros-0.3.0-x86_64-disk.img

Next you will need to set the HIL username and password that is in the bmi_userrc.sh

file, by typing the following command:

source bmi_userrc.sh

That file just contains the following two entries:

export HAAS_USERNAME=haas

export HAAS_PASSWORD=secret

Next we can enter the BMI virtual environment via the following two commands:

cd ∼/ims/
source .bmi_venv/bin/activate

You will know that you are in the virtual environment if you see the prompt being
prefixed by (.bmi_venv) displayed as follows:

(.bmi_venv) ubuntu@pgrosu-pr-60:∼/ims$

The Einstein and Picasso servers are already running, which you can verify by the
following command:

ps -Af | grep server | grep -iv color

You should see one Picasso server process, and three Einstein server processes:

ubuntu 22670 1 0 15:01 pts/0 00:00:00 python scripts/picasso_server

ubuntu 22669 1 0 15:01 pts/0 00:00:00 python scripts/einstein_server

ubuntu 22680 22669 0 15:01 pts/0 00:00:00 python scripts/einstein_server

ubuntu 22681 22669 0 15:01 pts/0 00:00:00 python scripts/einstein_server

! Configuring BMI

To ensure that the BMI debug output does not show up during the BMI

workflow, please type the following commands:

cat /etc/bmi/bmiconfig.cfg | sed -e ’s/true/false/g’ > bmiconfig.cfg

mv bmiconfig.cfg /etc/bmi/bmiconfig.cfg

 chapter  . working with bmi

.. The HIL Configuration

Remember that we need the ports on the switch to be pre-configured with the project
(VLAN network isolation) for the NIC (node) we will provision. That has been performed
via the install_hil.sh scirpt, which can be accessed here:

https://github.com/sirushtim/ims/blob/327acf2db0094e331ca0d9b734b8b99a64f722a4/scripts/install/install_hil.sh

This script will setup HIL to create the network, project, node and register them properly
with the switch using the following commands:

Create Haas projects

haas project_create bmi_infra

Setup HaaS mock node

haas node_register bmi_node mock moch-hostname mock-username mock-password

haas project_connect_node bmi_infra bmi_node

Tell HaaS the MAC address of the NIC

haas node_register_nic bmi_node bmi_port "00:00:00:00:00:00"

Setup HaaS switch

haas switch_register bmi_switch mock moch-hostname mock-username mock-password

haas port_register bmi_switch bmi_port

haas port_connect_nic bmi_switch bmi_port bmi_node bmi_port

Setup HaaS network

haas network_create_simple bmi_network bmi_infra

The above HIL code defines the following variables, which are required for BMI:

Project I bmi_infra

Node I bmi_node

Network I bmi_network

NIC I bmi_port

Now that the environment is properly set up, you can use BMI to step through the
workflow.

 . using bmi

.. Creating a new image

First we need to create a new image using rbd in Ceph for BMI to use:

https://github.com/sirushtim/ims/blob/327acf2db0094e331ca0d9b734b8b99a64f722a4/scripts/install/install_hil.sh

 . . using bmi 

rbd create bmi-test-image --size 1 --image-format 2

To ensure the new image exists run rbd ls and you should see the following:

112233445566778899img1

bmi-test-image

cirros-0.3.0-x86_64-disk.img

.. Import the new image into BMI

To import the image into BMI type the following command:

bmi import bmi_infra bmi-test-image

To ensure the new image imported run bmi db ls and you should see the following:

Figure . – The output of running: bmi db ls.

The same thing can be viewed through the following command:

bmi ls bmi_infra

This will result in the following output:

Figure . – The output of running: bmi ls.

Notice in Figure . how in Ceph there now is a cloned image created with the name
112233445566778899img2, since the golden image named bmi-test-image must be pre-
served.

 chapter  . working with bmi

Figure . – The seeing the images in Ceph.

.. Provisioning a Node Using BMI

To provision a node in BMI, type the following command:

bmi pro bmi_infra bmi_node bmi-test-image bmi_network bmi_port

If the above processes successfully, you should see Success printed on your terminal
screen, as follows:

Figure . – The output of running BMI provisioning command.

To see the new snapshot in BMI, run bmi db ls and you should see the following:

Figure . – Listing the newly provisioning in BMI.

Notice how the name is the node name itself (bmi_node) who’s parent is bmi-test-

image is listed, with the Parent column set to bmi-test-image.

.. Creating a Snapshot Using BMI

Snapshots provide the ability to get an instance of a state of an image at a point-in-time.
These are just a read-only copy, which would require to be cloned and flattened in order to
be writeable. Snapshots in fact are central to protecting a golden image on Ceph, so that
the original is preserved.

Flattening an image makes it independent from the parent snapshot by copying the data to the child
image.

 . . using bmi 

To create a snapshot of a node in BMI, first make sure that the node is powered off, and
then type the following command:

bmi snap create bmi_infra bmi_node bmi-test-image-snapshot

If the above processes successfully, you should see Success printed on your terminal
screen, as follows:

Figure . – The output of creating a snapshot using BMI.

To see the new snapshot in BMI, run bmi db ls and you should see the following:

Figure . – Listing the newly created snapshot in BMI.

Notice how the Snapshot column is now set to True, with the Parent column set to
bmi-test-image.

To see what is stored in Ceph, below is the output of running rbd ls -l:

Figure . – The stored files in Ceph..

.. Deprovisioning a Node Using BMI

To deprovision a node in BMI, type the following command:

bmi dpro bmi_infra bmi_node bmi_network bmi_port

 chapter  . working with bmi

If the above processes successfully, you should see Success printed on your terminal
screen, as follows:

Figure . – The output of running BMI deprovisioning command.

To see how BMI is updated, run bmi db ls and you should see the following:

Figure . – Listing the newly created snapshot in BMI.

.. Removing a Snapshot Using BMI

To remove a snapshot of a node in BMI, type the following command:

bmi snap rm bmi_infra bmi-test-image-snapshot

If the above processes successfully, you should see Success printed on your terminal
screen, as follows:

Figure . – The output of removing a snapshot using BMI.

To see that the snapshot was removed in BMI, run bmi db ls and you should see the
following:

To see that the snapshot does not exist in Ceph, below is the output of running
rbd ls -l:

.. Removing an Image Using BMI

To remove an image in BMI, type the following command:

 . . using bmi 

Figure . – Showing that the snapshot was removed in BMI.

Figure . – Showing that the snapshot does not exist in Ceph.

bmi rm bmi_infra bmi-test-image

If the above processes successfully, you should see Success printed on your terminal
screen, as follows:

Figure . – The output of removing an image using BMI.

To see that the image was removed in BMI, run bmi db ls and you should see the
following:

Figure . – Showing that the image was removed in BMI.

To remove the image from Ceph, just type the following command:

rbd rm bmi-test-image

You should now see that the image does not exist in Ceph, below is the output of running
rbd ls:

 chapter  . working with bmi

Figure . – Showing that the image does not exist in Ceph.

 . existing the virtual environment

To exit virtualenv, type the following command:

deactivate

Your terminal prompt should change to the following after typing the command:

Figure . – Existing the Virtual Environment virtualenv.

This completes the end-to-end training for learning how to use the most common BMI
commands.

chapter 3

BMI Internals

This chapter will describe some of the internals of how BMI works.

 . the clone-snapshot workflow

Central to the BMI methodology - especially with a Ceph networked-storage cluster, servic-
ing images via a RADOS Block Device (RBD) - is the Clone-Snapshot workflow:

Figure . – The Clone-Snapshot Workflow.

Images are files used to iPXE boot from, which can also be written to. Images cannot
be cloned, though if one creates a snapshot - which is a point-in-time, read-only copy of
an image that preserves its state - one can clone that snapshot to create a new child image.
These child images are now connected to the parent snapshot, but one can flatten them
in order to copy over any dependent data to sever this connection, and thus make them
independent. Therefore in order to ensure provenance, and also be able to extend the BMI
workflow through new customized images, one always will create a snapshot after creating
or cloning/flattening a new image. By guaranteeing that all images will have a snapshot,
one will always be able to connect to any image’s snapshot to inherit and extend its state



 chapter  . bmi internals

cloning. All snapshots associated with images that are created through BMI are named
snapshot.

The general overview connection between Ceph, RADOS, snapshots and images is
illustrated in Figure ..

Figure . – A Ceph cluster servicing a RADOS block device providing access
to snapshots and images.

 . importing an image

The concept behind importing an image into BMI is to create a duplicate of the image - con-
sidered the Golden Image in Ceph - so that we have a golden image from BMI’s perspective
to extend from. The database column in BMI called Ceph contains the images associated
with that instance of BMI, that are stored in Ceph. Now any subsequent operation on a row
in the Name column from the BMI database — such as provisioning or snapshotting — will
actually clone the image’s snapshot indicated in the Ceph column for that respective row of
that name, and then create a snapshot as well.

The one difference when importing an image into BMI, is that there might not be a
snapshot in the original image in Ceph. For that reason, every time an image is imported
into BMI, a snapshot is taken. Afterwards a clone-and-flatten operation is performed with a
subsequent snapshot. Since the flattening step makes the child image independent, BMI
will remove the parent snapshot in order to save space. In Figure ., the steps described
above illustrate this workflow:

 https://www.packtpub.com/books/content/working-ceph-block-device

https://www.packtpub.com/books/content/working-ceph-block-device

 . . importing an image 

Figure . – BMI Import Workflow.

The steps that take place when importing and image into BMI are described in the
following lines of code:

https://github.com/CCI-MOC/ims/blob/dev/ims/einstein/operations.py#L431-L454

.. Ceph Image Name Format In The BMI Database

One thing to mention, is that any image entry into the database under the Ceph column will
be formatted using the following nomenclature:

PREFIXimgSUFFIX

The PREFIX is configured via the /etc/bmi/bmiconfig.cfg file, through the uid vari-
able — available under the [bmi] heading:

[bmi]

uid = 5

https://github.com/CCI-MOC/ims/blob/dev/ims/einstein/operations.py#L431-L454

 chapter  . bmi internals

The SUFFIX begin with  and will continue to increment with every new addition to the
database. The same value will also stored under the Id column.

III
Appendices



appendix A

Appendix

This appendix will provide a overview of the User Acceptance Testing for BMI, and for details
please consult the Administrator’s Guide: BMI User Acceptance Testing Framework.

a. user acceptance testing

User Acceptance Testing implementation has been added to BMI in order validate a
deployment through a black-box end-to-end system test. This performs a Behavior-

Driven Development scenario using the behave Python package.

A.. Behavior-Driven Development (BDD)

Behavior-Driven Development is defined through a live-document implemented using the
Gherkin language, which utilizes Given-When-Then control-flow syntax defined as follows:

Given I Defines a given state.
When I Defines a given action performed under the given state.
Then I Defines the expected outcome after the action is performed.

In Figure A. is defined the end-to-end test performing a scenario of steps, where each
line is a step that refers to a function.

 http://pythonhosted.org/behave/
 https://github.com/cucumber/cucumber/wiki/Gherkin



http://pythonhosted.org/behave/
https://github.com/cucumber/cucumber/wiki/Gherkin

 appendix a. appendix

Figure A. – The BMI End-to-End Behavior-Driven Deployment Test, with
tables of parameters to test with.

For example, in Figure A. the creation of an RBD image at the start is defined through
the rbd_create_image() function, where it is decorated by the sentence referenced in the
live-document.

a. . user acceptance testing 

Figure A. – The definition of the RBD creation step, where the decoration
highlights the sentence referenced in the end-to-end deployment test.

A.. Configuring the Acceptance Tests

Before running the acceptance tests, it is necessary to configure BMI service to test. This is
performed by the following steps:

. Copy the acceptance-tests directory to the new environment.

. Proceed to the config/tests-uat directory and duplicate recursively one of the
configuration, as such:

cp -r neu-haas-dev NEW_BMI_SERVICE_TO_TEST

 appendix a. appendix

Example:

cp -r neu-haas-dev prb-bu-dev

. Enter the newly created directory and update the config file accordingly. Below is
an example of one:

export BMI_RELEASE_NAME=moc-0.5-release

export BMI_PROJECT=bmi_infra

export HIL_NODE=cisco-05

export HIL_NETWORK=bmi-provision-dev

export BMI_IMAGE_NAME=bmi-test-image

export BMI_SNAPSHOT_NAME=bmi-test-image-snapshot

export HAAS_ENDPOINT=http://127.0.0.1:8000

export BMI_CONFIG=/etc/bmi/bmiconfig_test.cfg

export HAAS_USERNAME=haasadmin

export HAAS_PASSWORD=admin1234

. Then update the config/bmi_config.sh file, for just the following variables:

export BMI_INSTANCE_DIR=${HOME}/pgrosu/ims-instance

export ACCEPTANCE_TESTS_SRC_DIR=${HOME}/pgrosu/acceptance-tests

The BMI_INSTANCE_DIR variable denotes where you would like the git-cloned BMI
instance to reside, on which the tests will be run.

The ACCEPTANCE_TESTS_SRC_DIR variable denotes the location of the acceptance
tests directory from which you will run the ./bmi-uat.py command.

By following the above steps you can now create your own customization for BMI
services to test for.

A.. Performing the Acceptance Tests

The performance tests can be initiated via the following steps:

. To list the testable BMI service configurations, type the following command:

./bmi-uat.py ls

a. . user acceptance testing 

You should see something like the following:

The available configurations are:

neu-haas-dev

. To run the standard end-to-end configuration, type the following command:

./bmi-uat.py --run BMI_SERVICE_CONFIGURATION

Example:

./bmi-uat.py --run neu-haas-dev

At the end you if the tests passed successfully, you should see the following output:

Figure A. – The BMI completed successfully the end-to-end scenario.

. To run the tests with randomized parameters, type the following where the value
indicates the number of times to run the test:

./bmi-uat.py --run neu-haas-dev --randomize 3

. To check if the tests passed or failed, type the following:

./bmi-uat.py check

You should see the following:

All tests passed!

This command checks the test-results directory for any subdirectory containing
FAIL in its name.

. To cleanup all previous results, type the following:

 appendix a. appendix

./bmi-uat.py clean

By following the above steps you can now test your own customizations of BMI any
services.

Index

Bare Metal Imaging (BMI), 
Behavior-Driven Development (BDD), 
bmi db, 
bmi db ls, –
bmi dpro, , 
bmi import, 
bmi ls, , 
BMI methodology, 
bmi pro, , 
bmi rm, 
bmi snap, 
bmi snap create, 
bmi snap rm, 

Ceph, , 
Ceph image database name format, 
ceph-deploy, 
clone, 
clone-and-flatten, 
Clone-Snapshot workflow, 
configuring User Acceptance Tests, 

deprovision, 
DHCP, 
DHCPDISCOVER, 

Einstein, 

flatten, 

Golden Image, 

Hardware Isolation Layer (HIL), 
HIL, 

import, 
initiator, 
Intelligent Platform Management Interface

(IPMI), 
IPMI, 

IPMI network card, 
iPXE, 

multi-tenancy, 

network isolation, 

Open Cloud eXchange (OCX), 
out-of-band management (OOBM), 

Picasso, 
power-cycle the nodes, 
Preboot Execution Environment (PXE), , 
provision, , 
PXE, 

RADOS Block Device (RBD), , 
RBD, 
rbd create, 
rbd ls, 
rbd rm, 
remove a snapshot, 
remove an image, 
REST service, 
RPC calls, 
running User Acceptance Tests, 

SCSI, 
snapshot, , , 

targets, 
TGT, 
Trivial FTP, 
trunking, 

User Acceptance Testing (UAT), 

Virtual LAN (VLAN), 
virtualenv, 
VLAN ID, 



	Contents
	HIL and BMI Ecosystem
	Overview of HIL and BMI
	What is MOC, HIL and BMI?
	Network Isolation
	Bare Metal Imaging (BMI)
	Preboot Execution Environment (PXE) Protocol
	Advertising iSCSI Targets

	Communication Protocols for BMI
	REST API (Picasso)
	BMI Operations (Einstein)

	BMI Configuration
	Boot Order of a Node

	Getting Started With BMI
	Working With BMI
	Core Commands in BMI
	Creating a Mock HIL and BMI Ecosystem
	Installing Ceph, HIL and BMI
	The HIL Configuration

	Using BMI
	Creating a new image
	Import the new image into BMI
	Provisioning a Node Using BMI
	Creating a Snapshot Using BMI
	Deprovisioning a Node Using BMI
	Removing a Snapshot Using BMI
	Removing an Image Using BMI

	Existing the Virtual Environment

	BMI Internals
	The Clone-Snapshot Workflow
	Importing an Image
	Ceph Image Name Format In The BMI Database

	Appendices
	Appendix
	User Acceptance Testing
	Behavior-Driven Development (BDD)
	Configuring the Acceptance Tests
	Performing the Acceptance Tests

	Index

