diff --git a/CEDL_3_pic/p3_1.JPG b/CEDL_3_pic/p3_1.JPG new file mode 100644 index 0000000..3ca3944 Binary files /dev/null and b/CEDL_3_pic/p3_1.JPG differ diff --git a/CEDL_3_pic/p4_1.JPG b/CEDL_3_pic/p4_1.JPG new file mode 100644 index 0000000..d937dd6 Binary files /dev/null and b/CEDL_3_pic/p4_1.JPG differ diff --git a/CEDL_3_pic/p6_1.JPG b/CEDL_3_pic/p6_1.JPG new file mode 100644 index 0000000..aa9f3ae Binary files /dev/null and b/CEDL_3_pic/p6_1.JPG differ diff --git a/Lab3-policy-gradient.ipynb b/Lab3-policy-gradient.ipynb index 4529e50..0354bb7 100644 --- a/Lab3-policy-gradient.ipynb +++ b/Lab3-policy-gradient.ipynb @@ -4,7 +4,7 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": true + "collapsed": false }, "outputs": [], "source": [ @@ -28,17 +28,11 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[2017-09-12 22:50:43,560] Making new env: CartPole-v0\n" - ] - } - ], + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], "source": [ "import gym\n", "import tensorflow as tf\n", @@ -103,14 +97,16 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, + "execution_count": 3, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/andrew/miniconda2/envs/cedl/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\gradients_impl.py:95: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.\n", " \"Converting sparse IndexedSlices to a dense Tensor of unknown shape. \"\n" ] } @@ -214,6 +210,7 @@ " Sample solution should be only 1 line.\n", " \"\"\"\n", " # YOUR CODE HERE >>>>>>\n", + " a = np.subtract(r, b)\n", " # <<<<<<<<\n", "\n", " p[\"returns\"] = r\n", @@ -258,98 +255,70 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, + "execution_count": 6, + "metadata": { + "collapsed": false + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 14.85\n", - "Iteration 2: Average Return = 15.59\n", - "Iteration 3: Average Return = 16.61\n", - "Iteration 4: Average Return = 17.43\n", - "Iteration 5: Average Return = 17.08\n", - "Iteration 6: Average Return = 17.24\n", - "Iteration 7: Average Return = 21.3\n", - "Iteration 8: Average Return = 21.42\n", - "Iteration 9: Average Return = 20.62\n", - "Iteration 10: Average Return = 26.82\n", - "Iteration 11: Average Return = 28.0\n", - "Iteration 12: Average Return = 28.41\n", - "Iteration 13: Average Return = 28.96\n", - "Iteration 14: Average Return = 28.15\n", - "Iteration 15: Average Return = 30.64\n", - "Iteration 16: Average Return = 36.2\n", - "Iteration 17: Average Return = 38.13\n", - "Iteration 18: Average Return = 34.5\n", - "Iteration 19: Average Return = 40.37\n", - "Iteration 20: Average Return = 35.78\n", - "Iteration 21: Average Return = 47.81\n", - "Iteration 22: Average Return = 47.21\n", - "Iteration 23: Average Return = 43.34\n", - "Iteration 24: Average Return = 46.1\n", - "Iteration 25: Average Return = 50.25\n", - "Iteration 26: Average Return = 51.02\n", - "Iteration 27: Average Return = 59.81\n", - "Iteration 28: Average Return = 57.49\n", - "Iteration 29: Average Return = 61.39\n", - "Iteration 30: Average Return = 62.26\n", - "Iteration 31: Average Return = 61.98\n", - "Iteration 32: Average Return = 62.16\n", - "Iteration 33: Average Return = 59.89\n", - "Iteration 34: Average Return = 73.46\n", - "Iteration 35: Average Return = 78.51\n", - "Iteration 36: Average Return = 72.79\n", - "Iteration 37: Average Return = 78.74\n", - "Iteration 38: Average Return = 86.95\n", - "Iteration 39: Average Return = 94.08\n", - "Iteration 40: Average Return = 97.58\n", - "Iteration 41: Average Return = 103.42\n", - "Iteration 42: Average Return = 101.17\n", - "Iteration 43: Average Return = 112.39\n", - "Iteration 44: Average Return = 115.09\n", - "Iteration 45: Average Return = 134.65\n", - "Iteration 46: Average Return = 138.92\n", - "Iteration 47: Average Return = 147.15\n", - "Iteration 48: Average Return = 152.35\n", - "Iteration 49: Average Return = 149.66\n", - "Iteration 50: Average Return = 148.15\n", - "Iteration 51: Average Return = 144.82\n", - "Iteration 52: Average Return = 144.43\n", - "Iteration 53: Average Return = 153.21\n", - "Iteration 54: Average Return = 163.66\n", - "Iteration 55: Average Return = 154.28\n", - "Iteration 56: Average Return = 155.07\n", - "Iteration 57: Average Return = 161.53\n", - "Iteration 58: Average Return = 166.28\n", - "Iteration 59: Average Return = 174.05\n", - "Iteration 60: Average Return = 172.8\n", - "Iteration 61: Average Return = 170.78\n", - "Iteration 62: Average Return = 179.58\n", - "Iteration 63: Average Return = 174.84\n", - "Iteration 64: Average Return = 175.74\n", - "Iteration 65: Average Return = 174.99\n", - "Iteration 66: Average Return = 187.7\n", - "Iteration 67: Average Return = 178.94\n", - "Iteration 68: Average Return = 182.74\n", - "Iteration 69: Average Return = 181.42\n", - "Iteration 70: Average Return = 182.19\n", - "Iteration 71: Average Return = 184.58\n", - "Iteration 72: Average Return = 181.9\n", - "Iteration 73: Average Return = 184.29\n", - "Iteration 74: Average Return = 188.8\n", - "Iteration 75: Average Return = 190.46\n", - "Iteration 76: Average Return = 188.89\n", - "Iteration 77: Average Return = 187.9\n", - "Iteration 78: Average Return = 190.19\n", - "Iteration 79: Average Return = 186.28\n", - "Iteration 80: Average Return = 189.1\n", - "Iteration 81: Average Return = 188.16\n", - "Iteration 82: Average Return = 191.32\n", - "Iteration 83: Average Return = 192.03\n", - "Iteration 84: Average Return = 195.45\n", - "Solve at 84 iterations, which equals 8400 episodes.\n" + "Iteration 1: Average Return = 26.15\n", + "Iteration 2: Average Return = 29.44\n", + "Iteration 3: Average Return = 35.15\n", + "Iteration 4: Average Return = 34.95\n", + "Iteration 5: Average Return = 40.74\n", + "Iteration 6: Average Return = 42.15\n", + "Iteration 7: Average Return = 49.97\n", + "Iteration 8: Average Return = 53.33\n", + "Iteration 9: Average Return = 49.59\n", + "Iteration 10: Average Return = 60.38\n", + "Iteration 11: Average Return = 60.81\n", + "Iteration 12: Average Return = 58.13\n", + "Iteration 13: Average Return = 64.9\n", + "Iteration 14: Average Return = 69.13\n", + "Iteration 15: Average Return = 69.71\n", + "Iteration 16: Average Return = 72.03\n", + "Iteration 17: Average Return = 85.71\n", + "Iteration 18: Average Return = 75.25\n", + "Iteration 19: Average Return = 84.27\n", + "Iteration 20: Average Return = 92.77\n", + "Iteration 21: Average Return = 101.06\n", + "Iteration 22: Average Return = 100.37\n", + "Iteration 23: Average Return = 103.63\n", + "Iteration 24: Average Return = 122.37\n", + "Iteration 25: Average Return = 127.16\n", + "Iteration 26: Average Return = 134.51\n", + "Iteration 27: Average Return = 141.05\n", + "Iteration 28: Average Return = 139.66\n", + "Iteration 29: Average Return = 147.9\n", + "Iteration 30: Average Return = 138.67\n", + "Iteration 31: Average Return = 153.0\n", + "Iteration 32: Average Return = 149.51\n", + "Iteration 33: Average Return = 151.01\n", + "Iteration 34: Average Return = 151.19\n", + "Iteration 35: Average Return = 156.05\n", + "Iteration 36: Average Return = 170.66\n", + "Iteration 37: Average Return = 169.34\n", + "Iteration 38: Average Return = 166.82\n", + "Iteration 39: Average Return = 175.26\n", + "Iteration 40: Average Return = 179.41\n", + "Iteration 41: Average Return = 184.0\n", + "Iteration 42: Average Return = 186.71\n", + "Iteration 43: Average Return = 180.32\n", + "Iteration 44: Average Return = 184.96\n", + "Iteration 45: Average Return = 188.73\n", + "Iteration 46: Average Return = 191.61\n", + "Iteration 47: Average Return = 191.81\n", + "Iteration 48: Average Return = 188.6\n", + "Iteration 49: Average Return = 192.66\n", + "Iteration 50: Average Return = 190.08\n", + "Iteration 51: Average Return = 193.29\n", + "Iteration 52: Average Return = 190.55\n", + "Iteration 53: Average Return = 193.46\n", + "Iteration 54: Average Return = 197.62\n", + "Solve at 54 iterations, which equals 5400 episodes.\n" ] } ], @@ -362,6 +331,7 @@ "discount_rate = 0.99\n", "baseline = LinearFeatureBaseline(env.spec)\n", "\n", + "\n", "po = PolicyOptimizer(env, policy, baseline, n_iter, n_episode, path_length,\n", " discount_rate)\n", "\n", @@ -371,14 +341,16 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": {}, + "execution_count": 7, + "metadata": { + "collapsed": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl83FW5+PHPmUzSZk9mJnuTLukG3SS2SCtQsAFZ/GFE\n4AIiYlHwglarKBQFvLf2tlzorVTrFbUgoMKFC+0VFdSCFKVgA7SUtrS0pW32JpO12Zc5vz++M5Nl\nlswkk8xM+rxfL17NzJzvzPmmNE/OOc95jtJaa4QQQogQMoW7A0IIISYeCS5CCCFCToKLEEKIkJPg\nIoQQIuQkuAghhAg5CS5CCCFCToKLEEKIkJPgIoQQIuQkuAghhAg5CS5CCCFCzhzuDoRTVVXViK6z\n2WzY7fYQ9ybynAn3Kfc4cZwJ9xkJ95ibmxtQOxm5CCGECDkJLkIIIUJOgosQQoiQk+AihBAi5CS4\nCCGECDkJLkIIIUJOgosQQoiQk+AihBARRGuN440d6J6ecHdlVCS4CCFEJCn7CP3rzfB+abh7MioS\nXIQQIpK0twKg21rD3JHRkeAihBCRpLPD+LO9Lbz9GCUJLkIIEUG0BBchhBAh5wouHTItJoQQIlQ6\n240/ZeQihBAiZJwjFy3BRQghRMi411xkWkwIIUSodMi0mBBCiBDTXa4F/egOLhFzzPHevXt5/PHH\ncTgcrFixgpKSkkGva615/PHH2bNnD5MmTeKOO+5gxowZAV0rhBBRQ1KRQ8fhcLB161buvfdeNm3a\nxBtvvEFFRcWgNnv27KGmpobNmzdz22238atf/Srga4UQImq4psW6u9C90VtfLCKCy9GjR8nOziYr\nKwuz2cyyZcsoLR1cV+ftt9/mwgsvRCnF7NmzaWtro7GxMaBrhRAiarhGLhDVo5eICC4NDQ1YrVb3\nY6vVSkNDg0cbm83m0SaQa4UQImp0dYDZuWIRxcElYtZcxsOOHTvYsWMHABs2bBgUrIJhNptHfG00\nORPuU+5x4pgo91nb2YnJlkVfTSVpcbHEDrinaLrHiAguFouF+vp69+P6+nosFotHG7vd7tGmr69v\n2GtdiouLKS4udj8e+H7BsNlsI742mpwJ9yn3OHFMhPvUWqM72unLnw41lTRVV6Isme7XI+Eec3Nz\nA2oXEdNihYWFVFdXU1tbS29vL7t27WLx4sWD2ixevJjXX38drTUffvghCQkJpKenB3StEEJEhe4u\n0A6UxRidRPMu/YgYucTExLBy5UrWrVuHw+Hg4osvJj8/n7/85S8AXHrppZxzzjm8++67rFq1iri4\nOO644w6/1wohRNRxLeZbMow/o7h4ZUQEF4CioiKKiooGPXfppZe6v1ZK8ZWvfCXga4UQIuq4g4tz\nXaUtekcuETEtJoQQAndFZJWSBjHmqB65SHARQohI4Rq5TE6AhMSoTkWW4CKEEJHCHVziIV6CixBC\niBDQrtIvk+MhMQkdxcUrJbgIIUSkGDgtJiMXIYQQIdHVPy2mEhKj+sAwCS5CCBEpOtpBKZg0WRb0\nhRBChEhnhzFqUUqmxYQQQoRIZztMije+TkiE3h50T3fI3l6fqqJv3XfQRw+G7D19keAihBARQnd2\nQHyC8SAh0fhzmNGL7ulGd3UF9gGVJ+HEETDHjqKXgZHgIoQQkcI5LQZAQpLx5zCL+vqpLTi2/Cig\nt9fV5cYX2VNG2sOARUxtMSGEOOMNCC4qIRENw49cqsqhuhztcKBMw4wXqsvBkoFyBbAxJCMXIYQI\nEb3/Xfq+fzvaWSMsaANHLvGBTYvR0mSU6q+vHb5/1eWQOz5V4yW4CCFEiOjjH0JtNRw9NLI36Ozo\nH1U4p8W0n2kx7XAYwQWM9RR/fXM4oKYClS3BRQghoovzB70+MsJsrI72AWsuzpGLvxIw7a3Q12t8\nZlWZ//eur4Xubhm5CCFEtNGu4DKCVF+ttbFDf3IQ2WLNTf1fVw4TXJyL+Spn7BfzQYKLEEKEjmuK\n6viH6N6e4K7t7YG+vv4F/dg4iI3zny3W0mj8GZ8w7MhFV1cYX+TIyEUIIaJLS5OxCbKnG04eC+5a\nV0Vk1z4XGLYEjGukxOz5UFOO7uvz/f7VZZCShkpMDq5fIyTBRQghQuV0E2rhYgD00Q+Cu9ZVEXnS\ngDTh4UrANBsjF3XWIujtNZIJfNDVFeM2agEJLkIIERK6p9sYfeRNhczc4NddXEccD9yDkpDo/0yX\nlkYwx6JmnmU89jE1prWG6nLUOC3mgwQXIYQIDdcUVUoaatZZcPSg8UM9UK6RSxDTYjQ3QWo6ZOeD\nUmhf6chNDUbgk5GLEEJEGWdwUSnpMPNsaD0NNZWBXz/wiGMnNcy0mG5pNILZpEmQke1z5NKfKSbB\nRQghosvAkcvMswHQRw4EfPmgI45dEpP8Z4s1NxojF4DcAp8ZY+6aYhJcIpc+doiOV/4Q7m4IISKM\nHhBcyMqF5FQIZt2la8ARxy7xidDR5nt6raXJGCkBKncqnKpE93hJga4uN3b8p6QF3p9RkuASJL37\ndU7/alNwc6lCiInPHVxSjcO+Zp4VXMaYl2kxEhKNvS/dniX1dV8ftLZAqjNg5BWAwwGnPKfiXDXF\nlFKB92eUJLgEK7fAOHOhoS7cPRFCRJKWJohPNDY/AmrWPKirQTfVB3Z9hysVeXL/c/526Z9uBq3d\noxGVWwDgfVG/qnxc11tAgkvQXH+BPhfOhBBnppamQdNOrnUXAh29dHbApPjBZfPjXWe6eAkuzt35\nrmkxsvMgJsbjZ5M+3WyMcCS4RDhnnviwReKEEGcU3dIEKan9T+RPh7hJgU+NdXUMnhLDONMFgA4v\ni/quumLOBX1ljjX21wz92TTONcVcwn5YWGtrK5s2baKuro6MjAxWr15NUlKSR7u9e/fy+OOP43A4\nWLFiBSUlJQC8+eabPPfcc1RWVvIf//EfFBYWjml/VWIypnQrergicUKIM0tLk7Hu4aTMZpgxJ/AK\nyR3tED/kEC/XaZRtniMX7aorNnC0lFuALhtcdqa/plgB4ynsI5ft27ezYMECNm/ezIIFC9i+fbtH\nG4fDwdatW7n33nvZtGkTb7zxBhUVxjcsPz+fu+66i7POOmvc+mzOny4jFyHEYC1NqCHZWGrm2VB+\nPKDDw7RzWmwQ58hFex25uIJLev9zeVPBfgrdNSABoLrceF+LLaDbCJWwB5fS0lKWL18OwPLlyykt\nLfVoc/ToUbKzs8nKysJsNrNs2TJ3uylTppCbmzuufY7Jn+4+VlQIIXRvj7EfZWhwmXUWaAccOzz8\nm3R6Tov5XdBvaYL4BGMDpevzcguMRf6a8v6+VZVBdt64ZopBBASX5uZm0tONyJuWlkZzc7NHm4aG\nBqxWq/ux1WqloaFh3Po4lLlgupEaKBljQgiAFufPraH7SGbMAZMpsDpjne2DS79A/2NfwWXgqAXc\n03KDMsaqK8a1ppjLuKy5rF27lqamJo/nr7/++kGPlVJjGl137NjBjh07ANiwYQM228iGiX3TZnEa\nSGltYtLceSHsYWQxm80j/h5FC7nHiSOc99nTbKcBSMkrYPKQPtRPn406cQTLMH2z93QTm5pG6pB2\npyZNJh4HyTbboHtsaG8Fq23Q++r0NGrNscQ32km22XC0tVLXVE9i4RwSx/l7My7B5b777vP5Wmpq\nKo2NjaSnp9PY2EhKSopHG4vFQn19f654fX09Fosl6H4UFxdTXFzsfmy324N+DwCL87eD5kP7MU2b\nM6L3iAY2m23E36NoIfc4cYTzPnXZCQBOY6J1SB8c02ah//5n6mpqjEV+H/raTuNQJs97iE+go95O\nl90+6B776mtRedM822dPof3oIbrsdvRHxnRce6qVjhB9bwJdhgj7tNjixYvZuXMnADt37mTJkiUe\nbQoLC6murqa2tpbe3l527drF4sWLx7urbqbEZEizyF4XIQQwpPTLEGrW2cbZ9eUf+X+Tzo7BpV9c\n4hPR3uqLuSoiD/283AL3zyZ3TbEwTIuFPbiUlJSwb98+Vq1axfvvv+9OMW5oaGD9+vUAxMTEsHLl\nStatW8fq1atZunQp+fnGN2v37t187Wtf48MPP2TDhg2sW7dufDqek4+uKh++nRBi4nMHF88f9hQa\nmaz+UpJ1T49x2NfQBX1wFq8cvOaiu7ugo817rbC8AmioMwphVpWDORZsWQHfSqiEfZ9LcnIy999/\nv8fzFouFNWvWuB8XFRVRVFTk0e7cc8/l3HPPHdM+eqNyC9B//wva4Ri8o1YIceZxHm88MHPLRaVZ\nICPbWNS/tMT79d7qirnEJ/anHQ/8PPA+csmbigaoKjNGLtl5KFNM4PcSIvJTcaRyC4yMsfracPdE\nCBEE3dWF3ue55WFUhu7OH0JNmwUVJ3xf79oH42VaTCUYlZE9Pg9QXoILrhpjVWXG6ZPjXPbFRYLL\nCPXXGJOpMSGiid75Eo6frEXX1YTuPZsb/ZezT7dBY73vaurOcvvK28jF22mULV42ULpYMyFuEpw4\nYvzyK8ElykiNMSGikv5wv/GFl9L0IzakaKWHdAv09kDbae+vd/ibFjPWXAYGJu2uK+YlgcBkMtaE\n97wFWodljwtIcBkxlZAEaVbJGBMiimiHw12lWNdWh+6NT3uWfhlIpTv3mPgqv+9vzSUh0djl72oD\n/WswSd6n4lTeVKMkP0C2BJfo4+dYUSFEBKqu6B89hCi46N5eaD3tf+SS5qww0ui9soju9HIKpYu3\nEjAtjZCU4nvfjKuApskEWTl+ej92JLiMgsotgBqpMSZEtHCXYUlICt2aS6uP0i8DOYOLz4PDXAv6\nQ6si45wlgUFl97WPPS7ua1xrwpk5Rin+MJDgMhq5+cbmKPupcPdECBGIIweMH8pz5gc8cnFsewq9\n95++G7gyt/wFl9R0UAoafeySH25aDDxHLv4+L3eq8WeYFvNBgsuouH87qJaMMSGigT5yEDXzbFRm\nDthr0I4+/+17e9AvP4/j9T/7buRnd76LMpshORWafBTc7XCOXIaW3AcfwaXJexqyS7oVcgtQcxf6\nbjPGJLiMRo5kjAkRLXR9nVHJfNY8yMwxdsT7WANxq60GhwO8nUvvet8AggsAaVZ0o49psa4OiJuE\nivGy2THeeaaLswSM1to5cvEzLaYUMf/2U0yf+oz/Po0hCS6joBISjfx1CS5CRDx95ABg1PpSGc5F\n7toq/xe5TnFsqEN7K3sPAY1cAGM04S9bzNuUGHiOXDo7jOl4L2nIkUSCy2jl5svIRYhocPSgcT7K\nlKnGyAXQdf7XXXT1gH/bVT5GLy1NEBfnfUprAOUvuHS0+w4u8UOCS7Pn8caRSILLKKncAqiuGHbu\nVggRXvrIQSica9TZSreC2Qy1w2SMVVcYu90BXeEnuCSnDX8WVZoVWk+je7o9++arIjIYU2WT4/tL\nwDh35ys/02KRQILLaOUWQI9kjAkRyXRrC1SVGWfagxFgbFkBjFzKYdbZxojHx7qLHm53vot7r4uX\n0UuXn2kxGFQCpn93vgSXCa2/xphMjQkRsZy78tWsASfHZuT4TUfWjj6oqUTlFBgbpitPeG8YYHBR\n6c4DDr1NjfmbFgPnmS6DRy7+FvQjgQSX0XJnjEk6shD+6MqT6Ia68Hz2kYPGNNj0We7nVGYO1NX4\nLiZZX2fMSuTmo/KmQeVJ721b/Jd+cXNtpPQ2cunsQPmYFgOcI5dW9+cRE2Oc8xLBJLiMkopPAItk\njAnhj+7uwvHQvej//XV4Pv/oQZg2GxUb1/9kZg50dfZnew3l3L+mcqYYSQDtbR5TWtrRN3zpFxd3\nfTEv6c/+ssUAEpIGL+gnp0X8OVKR3btoITXGhPBLv/0PaDsd2mKRgX52VxecPIqaddag5/vTkb33\nSbvSkHPyjUKQ4Lnu0tpiFJUMZFosPsHIKPM2LdbZ4bX0i/vaAWe66Bb/pV8ihQSXEDBqjFVKxpgQ\nPuidLxtfhGNa7Phh6OsbvN4Cw6cjV5dBShoqMRnyphlth667BFL6ZaB0i+fop7fXmH4LZuQS4WnI\nIMElNFwZY3WSMSbEULrsI/josDF9fLrZGEmM5+cfOWjU9SqcO/gFa4ZRNdjfyMW5pqoSnUdsDB25\nBLqB0iXN6lm8sstPXTGX+ETobDeK5LY0Bh7MwkiCSwhIxpgQvumdL0NsHOrTVxtPjPPoRR85AHnT\n+qsLOylzLFgyvAYXrTVUVww+InjKVI+9LgGXfnF9ZprVMxXZX7l9l4RE0Brd1moENJkWO0NIjTEh\nvNId7eh/voZacgEqf4bxZH3t+H1+Xx98dBg162zvDTJzvJfeb24w1jhyprifUnlTjSM2env72wU7\nckm3QHPD4GM6Ov0cceziLAHTV1Nh1DqL8DRkkOASEmpyvHFutQQXIQbR/3wNujpRF11uTEMBumH8\nggvlHxkZYT6Ci8r0sdfFuZg/aOSSN80odjmwHllLk5Hi7CrRMpx0G/T19Z8BA/0Vkf0EF+V8/17n\ntJyK8LpiIMEldPKmov1UThXiTKO1Rr/2EhTMgGmzIM1irHHUj9+0mD5iHA7mc+SSkQ3treghZ9tr\n1zEaA4KLK2Ns0L9z5wbKYUu/uN7D24mUgUyLOfe09Lmm5WTkcuZQU6ZBTQW6pyfcXREiMhw7BJUn\nUcsvRynlrOllG9c1F33kAGRk9/9QH0JlutKRh0yNVZcbo5GBaxs5+UZwHLDuop11xQLm6sfARf1A\nF/SB3krn7IisuZxBpkw3hrtycJgQAOidL8HkeNS5F/Y/ac1Aj9Oai9Yajn7grifmVUau0XZI6X0j\nU2zKoBGJio2FrLzB6ciB1hVzcZaA0QNOpNQBTIu51lxc02KRXm4fJLiEjJoyDQBdcSKs/RAiEujT\nLei330Cdd/GghWplyRy/abHaajjd7HO9BYCMLOPPoXtdqssHr7c4qbypg9ORW5qDSwtOSTNGP96m\nxeKHyRYD+qrLAyrvHwkkuIRKZg7ExoGv4nZCnEH0rlegtwe1/LLBL1gzoKneyOIaa+UfAaCmFvps\nouImGVNVA6bFdNtpY0Ti7fz5vKlgP4V27Tk5HdzIRZliINUyeFrMFVz8BYzJCcZend5eSEkPeI0n\nnCS4hIiKiTHKwMjIRZzhtMOBfv1lmHmWe0TvZs00Uml9HZrleo+WRhzPPY72deZ8IP0o+8go8JhT\n4L9hZs7gXfoDa4oNoaa4ysCUQVurMy04yCmqNMvgjZSd7cY+ILPZ5yXKZOpf8I+C9RaQ4BJSaspU\nKD8e7m4IEV6H3oPaatTyyz1eUs505OH2uujdr6P/sg3Hj1a7M76CpcuPG3XBYmP9tlMZ2YPSkQfW\nFPPgLgNzMvg9Li7pQzZSDle00sV13HEU7M4H8B0qx0lrayubNm2irq6OjIwMVq9eTVKSZynpvXv3\n8vjjj+NwOFixYgUlJSUAPPXUU7zzzjuYzWaysrK44447SEwMMOc81KZMhzdeQbc0RvwpcUIEQ/d0\ngzk2oOkYXfoPSEhEfXyZ54sW516X+jr8vlOVM1trUjyOjd9HXbsS9anPBDcdVH4cdfbHhm+XmQMt\nTejODmN9yLWuYc30bGvNhEmTjXWXjGwgiLpiTirNiv5gX/8TwQSXelAycgnM9u3bWbBgAZs3b2bB\nggVs377do43D4WDr1q3ce++9bNq0iTfeeIOKCuO3i4ULF7Jx40YefvhhcnJy2LZt23jfgpt7CkCm\nxsQEojvbcXznZvTu1wNrX3YMps0aXN7exRlchktH1tXlkD8N0/c3woLF6Gd+if7Vf6G7OgPrQ0uj\nscu+YPqwbd3pyM6d+rq6HLLyvJa0VyaT8+Cwk0GXfnFLs0JHm3G0Ma4jjgMJLs5fuqPkF9ewB5fS\n0lKWL18OwPLlyyktLfVoc/ToUbKzs8nKysJsNrNs2TJ3u0WLFhETEwPA7NmzaWgY+RztqLmGzBJc\nxERyqtrYRf7Be8M21b09xnHCrlIvQ6i4SZCc6ndaTGsNVUa2lkpIxPSva1AlN6FLX8ex/rseacNe\nlZ8wPs9HPwbJHFJ6v7rCOH3SBzVlmpG4c3qk02JDTqQMNLi4qgBEQRoyREBwaW5uJj3diMRpaWk0\nNzd7tGloaMBq7d8EZbVavQaRV199lY99LIBh8BhRySnGLmQJLmIisRvVvnXZseHbVlcYGU35fkYM\n1ky0v3Tklibj1EXnD3hlMmG68jpMqx6ApgYcj/y779MjnXSZkSnGlOFHLmT0l97XXZ1G4POymO+W\nN9U4IKz8hJEwkBDciZDKdWiYa92lo93/7nzXdc41l2iZch+XNZe1a9fS1OR52tv1118/6LFSasQp\ndi+88AIxMTFccMEFPtvs2LGDHTt2ALBhwwZsNtuIPstsNvu8tnHGHBzVFVhH+N6RxN99ThRyj8Nr\n62ylFaCqDGtKsjH68KFj325aAMuij2P28ZlNOVPoLTvms09dVSdoAtLOmk/cwDYXXUp7+2lO/3Ij\nFkcPMVm5g64beJ9NtZX0ZOaQMXVaQPdYm5LG5JZG4jtbaQBS5pzNZB/96z57IY2AOvw+KjWdjEwv\nazN+9HbPpB5I6usm3mbD3tONOTWNtGH+jk5bbbQDaQXTiI2C/2fHJbjcd999Pl9LTU2lsbGR9PR0\nGhsbSUlJ8WhjsVior+/Prqivr8disbgfv/baa7zzzjvcf//9foNTcXExxcXF7sd2u91nW39sNpvP\nax2Zuej3SqmrqfGbWhgN/N3nRCH3ODzHSecooK8P+753UdNm+W578D2Im0RjXDzK17+RpBR0XQ11\ndXVe/706PtgPQHNiqsd7aOfUc/1bf8f0yRWDXht4n31HD0Hu1IDvW2dk01F2nM4P3gfgdFIarT6u\n1UnGyMFRXwsFM4L+3mptTBidLj9Jm91OX3srDmUa9n0czommJq18fm/HQ25u7vCNCGJabP/+/dTW\nGvOkjY2N/PSnP+VnP/uZ1xFJMBYvXszOnTsB2LlzJ0uWLPFoU1hYSHV1NbW1tfT29rJr1y4WL14M\nGFlk//d//8fdd9/NpEm+f6MaN1OmQV8vnKoMd0+ECAltr4WkZOPrk/6nxnT5cZgyzdgs6Is1E7q7\njd3z3lSXGVNN3tYycvKNvny433cfujrhVCXK39TcECoj21jQr64wprpcRyB7a5uc0r/XZARpwWrS\nJCPza9C02PBrLmrmWcTOXWhswowCAQeXrVu3YnJmTzz55JP09fWhlOLRRx8dVQdKSkrYt28fq1at\n4v3333enGDc0NLB+/XoAYmJiWLlyJevWrWP16tUsXbqU/Px8d786OztZu3Yt3/3ud/nFL34xqv6M\nlpSBEROO/RTMnGf8wPez7qK1NtJ/h/mh7t7r4iNjTFeXQ26+11GNMplg5jy0n+BC5UnQGhVApphb\nRg402o21moyc4WcdnBWSVTBFKwdKs6Ib642j0bu7AltzOftjWNb/PGpmRALuZUNDAzabjb6+Pt57\n7z1+9rOfYTabuf3220fVgeTkZO6//36P5y0WC2vWrHE/LioqoqioyKPdT37yk1F9fshl5RnnO1Sc\ngE8sD3dvhBgVrTXUn0LNK0J3dfgfudhPGQdsDZehZXGuUdTXGaX4h6oqR51zns/L1Zx56L1voRvq\nUK7U5oF9di3mB5Ip5pKZA1rD4fdhwceHba7ypqIP7h35hsY0q5Et1ulMrQ4kWyzKBDxyiY+Pp6mp\niYMHDzJlyhQmT54MQO/AU9mE8VtFTj66QnbqiwngdJMxhWXLQhXMgMoTRrqxN87qFKpgmB/qzs2J\n3qoj69PN0NoCuV52xzup2fONth8e8N2PhKT+PTUBUM4NkfR0o7J9f7abc+1npMFFpbuCi7Misr+i\nlVEq4JHLZZddxpo1a+jt7eWWW24B4NChQ+Tl5Y1V36KWmjINHcCeACEiXp2RhqxsWeiUVCPNuKrc\nOABsCF3+ESgT5E71/54JicZv6t6mxapcdb381AObMs3Y8/HhfjjvIu/9yJ8eXOZp5oBFan9pyE5q\n6gw0A6b4gpVuheYmaG8zHk/AkUvAwaWkpIRzzz0Xk8lEdrYR5S0WC1/72tfGrHNRa8o0ePNv6NMt\nxuKfEFFKO/e4YMtCmc1oQJ886nV0osuPQ3aesWDth1IKLN7PddHVzsOwvNX1cl1vioFZZ3sduWhH\nH1SeQF3oWdfMr6RkI2B1tKH8jJrcfZgyHdNd68DfWTH+pFlBO9xHJqsJGFyC2kSZm5vrDiz79++n\nqamJgoJhKo6egdxlYKT8voh2ruBizTBqaU2OB9eaxlDlHwW2Ix6MqTFvu/Sryo3PSPd+cqSLmj0f\nTlV6Vk0+VWVM4wWRKQbOgJeRbZS1zxp+5AKg5iwwqqGPgOtkTHeRzAAW9KNNwMHlgQce4NChQ4BR\nD+yRRx7hkUce4YUXXhizzkUtd8aYrLuIKFdfC8mpqMnxRqZWQaHXnfq6tQUa7F6ny7xR1gyj/dD3\nqS43KhkPM6WlZs8z2h8ZPHpxLeYHlSnmes+8qUZNsfHY0uAqAeM6ufZMHrmUl5cze/ZsAF555RUe\neOAB1q1bx1//+tcx61y0UinpxkKfpCOLKKftp8CW5X6sCgqh4rjnYV+uxfxARwyWTGg77S7e6FZd\nHtC0FAWFxuFaQ6fGyo8b2ZqBLMoPof7lVkyr/y3o60bENXKpce6HO5ODi6uWT02NUTl0ypQp2Gw2\n2traxqZn0W7KNHTFyeHbCRHJ7KdQA4ILU2cY0041FYOaBZ3+6z7XpX9RX7edhubG4Q/3wnk438y5\nHvtddPlxyJ06or0gKjHZa2rzmEhKMYJgjUyLMWfOHB577DGeeuop9y76mpoakpOTx6xz0UxNmQZV\nZeNznKsQY0A7+oypK1t/7Sw1dabx2tD9LuUfQbot4AQW9w/xhgHrLq4TIAMZueBcd6kqQ59uMfqk\ntXPdJ/gpsfGmTCZjp32X7HPhzjvvJCEhgalTp3LdddcBUFVVxRVXXDFmnYtqedOgp3vQCXdCRJXG\nBqOUkXXAyCUrF+ImeezU1+XHg1tE97LXRTvTkP1lig3k2u/CEWP04mi0GyVlgtk8GU6upIUY87Cn\nZUajgMdnoVrYAAAgAElEQVSOycnJ3HjjjYOe87ZjXhjUlGlG2mbFca9ncQsR8ez9e1xclCkG8qcP\nGrno7i6oqUAVLQ38vVPTIcY8aFrMOAFyUuCbH6fNhLg49IcHUEXL6D1+xOhjFIxcwHkiJUD8xBu1\nQBDBpbe3lxdeeIHXX3/dXcX4wgsv5Oqrr8YcJbVuxlVOvlEAr+IELPF9DIAQkUrX9+9xGUhNnYl+\nYwfa0WcEm8oycDiCKxRpMoHFNmgjpa5yZop5OQHS63uYY2HGXPRhY+TiCi7BpiGHjXNRn0lneHD5\nzW9+w7Fjx/jqV79KRkYGdXV1PP/887S3t7t37It+KjYWsqdIAUsRveynjH0fQ0cSBYXw6h+MEypz\npqDLnaOYYKejhm6krCpDzV0Y1Fuo2fPRLz6Nbmul5/gRyMhGRUspFVc6crT0N0gBr7m89dZbfO97\n32PRokXk5uayaNEi7rrrLt58882x7F9UU3nTJB1ZRC/7KUizeqwHqKlGEHHvdyk/bvyAHDLCGY6y\nZrqnxXR7m1FrKze4Tdlq9nyj4OTRg8bIJVrWWwBcJ1JOwMV8GEEqsgjClGnQUIdubw13T4QImrHH\nxcspizkFEBsHJ48a7ZyL+UGfImvJgOYGoxBmkJlibjNmgzkWva+UvuryqFlvgf5d+md8cFm6dCkP\nPvgge/fupaKigr179/LQQw9x3nm+S2Of6VT+NOMLGb2IaGSvRVk9RyMqJsbYx1X2kZGuXH488LIv\nA1kzjFFHY72xMx8CzhRz9yU2DmbMRr/1mvE4mkYuaca0mJqAe1wgiDWXm266ieeff56tW7fS2NiI\nxWJh2bJlXHPNNWPZv+jmLMutK8v60yaFiAK6p8eYpvIx1aWmFqL/udNZy6trRNNRypppZEvV1xoj\nl9g47yOl4d5n1rz+IpYBlp+JCBN85OI3uOzfP3j367x585g3bx5aa/cQ+NChQ8yfLz84vUqzGP9g\n7DXh7okQwWmsM0YVvtZRCgrhtZfQ7+wCAjjDxRvnLn3dUGdkimXn+T8e2Qc1ez76j8+iUtLco4Fo\noGJjYfpsdy3CicZvcPnv//5vr8+7AosryPz0pz8Nfc8mAKUU2LLQdRJcRJTxssdlIFVQaOzj2vWK\nsV9lJHu50geUgKkuRxWeNbK+Fs6FmBhip8+iL9h1nzCLuffhcHdhzPgNLlu2bBmvfkxcGdnuA5eE\niBYDz3HxKq/ACCp1NVAww9hzEiQVG2tspqwuN6bGLrh0RH1VkyajrrqR+LnzkdSZyBHUeS4ieCoj\nG+pqJNtORBf7KWMTcLr3aSZljoU848TJUWVoWTKMs+gBFeRi/kCmK65l8rmyWTmSSHAZa7Ys6Oow\nzgUXIlrYa8GS4XcNRE0tNL4YRYaWshql9wEINg1ZRDQJLmNMZeQYX8i6i4giQ89x8arACC6jSv91\nld6PMYPr34qYEKQo2FjLMP6B6roa1Iw5Ye6MEAGyn0J97BN+m6jzlhtVk2fOHfnnOKsjk5034iOD\nRWSSkctYc21Cs8uifrTQB/e4zwiJRI6Xnsfx7Fa06yyQENNdnUbpeqv/PSdqcgKmFf9vROnD7vew\nGJ8xmvUWEZkkuIwxNWmScSiQTItFBf1eKY5ND+D49SPh7opXuqsL/Yen0X/9Pxz//k30sUOh/xC7\ns5hkkLXCRsTqrK8lwWXCkeAyHjJkr0s00KebcTyxGcyxsK8U7SrhHkkOvAvd3ajP3gi9vTgevAfH\ntt8Y9blCZZg9LiGVPQW15ALUx5eN/WeJcSXBZRwoW7bs0o9wWmscT/4UOtowfedHkJiM48Wnw90t\nD3rPW5CQhLrsGkwPbEaddxH6T8/iWP89dFVZaD7DxzkuY0GZYzHd9l2UM61ZTBwSXMZDRrZRnK8n\nhL9dioDp99+hb/O/o/0cOa3/8VfY+0/U576ImnkW6tISeP9t9PEPx7Gn/uneXvS+3ahFS1BmMyoh\nEdPKb2H61zXQUIdj7Wocj/0Y/c4b6I72kX+Q/RTExUFKWug6L844ki02HjKyjTpN9bWQnRfu3pxR\ndGeHMSJpqsdx7ANMX/0uav7g47l1bTX6f34Fcxagij8LgPrUlei/bsfx4jPErLo/HF339OF+aG9D\nnTP4OGFVtBRT4Vz0C0+i9/4T/earxgbIWfNQCxbTe/FlEDs54I/R9lNgzQq+hL4QA4Q9uLS2trJp\n0ybq6urIyMhg9erVJCUlebTbu3cvjz/+OA6HgxUrVlBSUgLAM888w9tvv41SitTUVO644w4slsgq\nXqcysozqr/YaCS7jTL/0v9BUj/rKd9AvP49j878bo5PLrkYphe7rxfHYJjDFYFr5LfcRu2pyAurS\nzxk/sD86HBFp5HrPW8aI4uxzPF5TqemoL38T3dcHxw6h33/b+O+5x6jf9iSmNQ+hnPtShhXIHhch\nhhH2abHt27ezYMECNm/ezIIFC9i+fbtHG4fDwdatW7n33nvZtGkTb7zxBhUVFQBcddVVPPzwwzz0\n0EMUFRXxv//7v+N9C8OzZQOgpcbYuNK11ei/bEOddzGmTyzHdM9/ohZ/Ev3CE+hfPITu6qTthd/A\nsUOoL3wNNeQ4X3XxFZCUjOPFZ8J0B/20w4He+xbM/7iRgeiDiolBzZ6H6fNfIuaHP8G07lEwxaB3\nvhz4h9lrjZ3zQoxC2INLaWkpy5cvB2D58uWUlpZ6tDl69CjZ2dlkZWVhNptZtmyZu11CQv9BO11d\nXZE5lE9NN0rv1/me8xeh53h2K8TEoj5/M+AscPjVu1Cf/xL6nV041n2Htv/ZilpyAaZPLPe43hi9\nXA373xmblN9gnDgCTQ2oc4I7nE9l5jB52afQu18PaF+Mbm+FjjYZuYhRC/u0WHNzM+np6QCkpaXR\n3Nzs0aahoQGr1ep+bLVaOXKkP0306aef5vXXXychIYEHHnjA52ft2LGDHTt2ALBhwwZsNtuI+mw2\nm4O+1p6dh7mlkbQRfmY4jOQ+I0XXu2/R9N5ukm6+g8SZQ6a0brqdrnmLaN74AKZ0K5ZV38eUlOL1\nfRzXfBH7jv/D/OcXSL//v8ah596d/tOztMfEYLvo0z776kvfZSV0vvYSSYffI/5TV/pt2/NRPQ1A\nyoyZTI6yv/to/v81UNF0j+MSXNauXUtTU5PH89dff/2gx0qpEY08brjhBm644Qa2bdvGyy+/zHXX\nXee1XXFxMcXFxe7Hdrs96M8CsNlsQV/bl26jr7JsxJ8ZDiO5z0ige3tw/GIjZObSft4KOrzdQ/5M\n1L9vId1ioaGzGzr93Ocln6X7+Seo++c/UIWjKHUyQlprHLv+BnMWDN9XL6yz50NWHi0vbaNtof+S\nLvroYQBOxyXQGmV/99H6/2swIuEec3NzA2o3LsHlvvvu8/laamoqjY2NpKen09jYSEqK529lFouF\n+vp69+P6+nqvi/YXXHAB69ev9xlcwkllZKMP7x90iqcYG/qVP8CpSkyrHjDODPFBpaQRk2aBYf6x\nqouuQP95G44XnybmW/8W6u4Or7ocTlWiiv/fiC5XSqHOL0Y//wS6ugLl52CvYc9xESJAYV9zWbx4\nMTt37gRg586dLFmyxKNNYWEh1dXV1NbW0tvby65du1i8eDEA1dX96xilpaUBR9Vxl5EtpffHgW5q\nQL/4DCxcglrw8ZC8p5ocj7rsajiwB8fvn0b39obkfQOl97xl9GOYQpL+qKWfApMJ/cZf/Te0n4L4\nBEhIHPFnCQERsOZSUlLCpk2bePXVV92pyGCsszz66KOsWbOGmJgYVq5cybp163A4HFx88cXk5xu1\niH77299SXV2NUgqbzcZtt90WztvxSdmyjXTkuhpITg13dyYs/cKT0NeD6V9uDen7qk99Bso+Qr/4\nNHpfqZG2nFsQ0s/wRe95C2bMQaVZh2/sg0pNh4VL0LteRZd8EWX2/k9f22tlj4sIibAHl+TkZO6/\n33OTmsViYc2aNe7HRUVFFBUVebS76667xrR/ISOl98ecrqlEv/kq6rLPozJDO4JVsXGor96FPuc8\nHL/9bxxrV6M+dxOq+KpRVQUejq6vg5NHUZ//0qjfy3T+pTj2/hP2lULRUo/XdXUFHDmAWrB41J8l\nRNinxc4YrtL7UsBy7FSdBEAtOX/MPkItPh/Tv/0U5hehn3scx0Pf91tWZrT0XueU2DmewSBo84sg\n1YLjH55TY7qtFcdPfwSxcSEJZEJIcBkn7tL7UsByzGhXqXjr2C5Gq5R0THfci1q5GipP4lj3HfQY\nraXpPW9BbgEqa/QjMRUTg/rkCtj/LrqxP0FG9/XhePRBqK/FdMca2UApQkKCy3jKyJJd+mOpoQ4m\nx4/LYrRSCtPSizF9bz10tKFffj7kn6FPt8CHB4LeOOmP+mQxaAd61yv9n/PcY/DBe6ib/hU18+yQ\nfZY4s0lwGUcqQ0rvB0t3dqDb2wJraz8F1sxxXYxWU6ahPnER+m9/RDfVD9tenziC7uwI6L313rdA\nO0IzJeakMnNgzgL0P/6Kdjhw/P0v6FdeRBVfhen8S0L2OUJIcBlPNim9Hyz95E9xbFkXWOP62rDs\nz1BX3QB9feg/Pue3nf7gPRzrvoPjVxvRWvtv29WF/uOzkFsABTNC2V3U+ZeA/RT6j8+if/tzmHcO\n6povh/QzhJDgMp7cpfdlaixQ+sQRKP9o+B/GziMNwrFeoDKyUedfgv77X/o3IQ6h21txPP6IUdX4\nvd2w502/76n/9JyxBnLj10I+ElNFSyE+Ef3734EtyzisK2bsMt7EmUmCyzhSGa6MMQkugdA9PcZ5\n7h3t0Hraf+P2NqNdmBaj1ZX/YmxS9FFBWf/uUWhpxPTtH0H+dBy/+4XP6T5dU4H+8wuo8y5GzZkf\n+r7GTUJd+GlITMb09e+jEjyPuBBitCS4jCdX6X1ZdwlMbTVoh/PrKv9t641MsXBlOql0K+qiy9Fv\n/g1dXT7oNUfpP9D/3Im68l9QhXMxffHr0NKE3vaUx/torXH87lGIm4S69pax6+/VN2N68DFUtu9S\nMEKMhgSX8eQuvS/BJSA1Fe4v9XDfM2dwwRa+NFp1+TUQNwn9f79zP6eb6tG/+RlMn4264lqj3fRZ\nxkmXO1/yKOWvS/9uZG597ouolPSx66vJ5PdcGCFGS4LLOFJKgU3SkQOlXcFFKWMU46+tax0rjHs0\nVHIq6pKrjDPsy44Zo5Bfb4bebkwrVw9a11AlX4A0K46ntrhrlen2NvSzW2HqTNTyT4frNoQICQku\n4y0zR9KRA3WqEtKskG4dfrRnr4VJ8ZCYPD5980FdUgIJSTi2/xb92ktwYA/q2pWoIcdbq8kJmG68\nDSpPov9qnL6qf/87aGnCdNO/jmlJGSHGQ9hri51plC0LfWiflN4PgK6phJwp4HCghznFU9fXgm18\n97h4oxISUZd93jhK+YO9ML8Itfxy720/dh6ccx76xWfQmbnoV/+IWn45atqs8e20EGNARi7jLSMb\nujrhtOeJm6Kf1hpqKlFZecbGv+Hqd9lrwzolNpD61JWQkgaT4jF96Rt+A57phtshJgbHzzdAUjKq\n5KZx7KkQY0eCyzhTzowxWdQfRkuTcZZ7dh5k5MDpZnRHu+/2DbUoa8b49c8PNWkyprvWYbr7wWHL\n5Kt0K+pqo1CkunYlKlHSgsXEINNi481Vet9+KixH5kaNmkoAI1W2s915Fk41FBR6NNXtrcY+lzEu\nWBkMlZMfcFvTxVeg5xcZ5YGEmCBk5DLebFJ6PxDuTDHXyAV8f8/q6wBQYUxDHi0JLGKikZHLOFNx\nkyBNSu8Pq6bSKJWSbgPnVJGurcbr6kUEpCELIQaT4BIOtuzhNwWe4fSpSsjMQ5lMMDnBOBrax/ds\nvM5xEUIETqbFwkBlZEl9seHUVAzeG5KZ4/vEx/o6iJsESeHd4yKE6CfBJRxs2dBUj+7pDndPIpLu\n6TZSiwfUvVIZOcaCvrf29eN/josQwj8JLmGg8gpAa/Rzj7lLf4gBXAUrh4xcjLNwvATkMJ3jIoTw\nTYJLOJxzHuqSz6L/9iccj/xwROev67bT9H1vJfqD98agg2E2MA3ZxXUWjrfzUuzhOcdFCOGbBJcw\nUKYYTNfdivryt+DoQRzrvoOuOBHcm5w8Co129N5/jkkfw8mdhpyV635OZTrTkYesu+j2NmhvDWs1\nZCGEJwkuYWRa9ilM310PPT04NnwP/a7/0wkH0lVlxp9HPxir7oVPTSWk21CT4/ufc+518VjUbwjv\nOS5CCO8kuISZmjEH0w82Qk4+jv9ej+Mv2wO7sNIILlQcR3d2jF0Hw0Cfqhy83gJGJlh8oueivnMD\npexxESKySHCJACrNiul762HeOejf/w7t6Bv2Gl150jh4zOGA4x+OQy/Hh1GwsgKVNaREvVKQke0x\ncunf4yLBRYhIIsElQqjYONSSC4yKycMdjKU1VJWjPr4MlEIfm0BTYy1N0NE+KA3ZRWXmeG6krD9l\n7ORPTh2nDgohAiHBJYKo/BkA6PLj/hs21EFXB8w8G3ILPI7KjWrOxfyhh2sBRsZYfS26r39kp+tr\nwZole1yEiDBhDy6tra2sXbuWVatWsXbtWlpbW72227t3L9/85jf5xje+wfbtnusSL774Itdddx0t\nLcGn9UaM3HyIMUPZR/7bVZ4EjP0yqvAsOHYY7XCMQwdHT/f04PjLdqOSsbfXnWnI3kYuZOZAX58R\nXF0i6BwXIUS/sAeX7du3s2DBAjZv3syCBQu8Bg6Hw8HWrVu599572bRpE2+88QYVFRXu1+12O/v2\n7cNms41n10NOmWMhNx89THBxZYqRWwCFc41zT1zPRTj96h+MzaMvv+C9gbtgpec5KCrDSzpyBJ3j\nIoToF/bgUlpayvLlywFYvnw5paWlHm2OHj1KdnY2WVlZmM1mli1bNqjdE088wRe+8IUJMTWiCmZA\n+UfGuoovlWWQZkUlJKFmngVER0qybjuN/tOzxtc7X0J3eh7+pWsq+gtWDuXc6+I68lh3tkPraSlY\nKUQECntwaW5uJj09HYC0tDSamz2P/21oaMBq7f9N1mq10tDQABjByWKxMG3atHHp75jLn2Ecgdzc\n4LOJrjoJeQXGg4xs40jdKFh30X98Fjo6UDd/Hdrb0P/Y4dnoVCUqx8uUGEBqujGqcY1cXGnIsoFS\niIgzLiX3165dS1NTk8fz119//aDHSqmgRh9dXV1s27aNH/zgBwG137FjBzt2GD/QNmzYMOJpNLPZ\nPGZTcN0LzqHxGUhpsjNp5hyP13VfH7U1FSR87FySnX1oOmsRvccPh7xPobzPvlNV2P/2JyZ/6gpS\nP3cjDaV/p+/VP2C99mZUjPG/oe7uotZ+ioSLryDJx+fas/IwN9WTZrPRdfwwTUB64WxiI/DvMlKc\nCfcIZ8Z9RtM9jktwue+++3y+lpqaSmNjI+np6TQ2NpKSkuLRxmKxUF9f735cX1+PxWLh1KlT1NbW\n8t3vftf9/N1338369etJS0vzeJ/i4mKKi4vdj+12+4jux2azjfja4ehkCwDNB97DNM1LcDlVBd3d\ndFgy6XL2wVEwA/3PndQdO4JKTQ9ZX0J5n47HNoNJ0f3pz2O329Gf+gyOLeuo+/PvMZ17IeDcu6M1\n7SnpdPr43D5rJn2VZdjtdhzHjwDQZI5DReDfZaQ4E+4Rzoz7jIR7zM3NHb4RETAttnjxYnbu3AnA\nzp07WbJkiUebwsJCqqurqa2tpbe3l127drF48WIKCgr41a9+xZYtW9iyZQtWq5UHH3zQa2CJFio+\nwdgs6GtR35Uplju1/5pCY92FCN3vok8cQe9+HVVcgnIt1C9cAtl56D9v619fcqch+5gWw3kccF2N\nkR1XX2tsJE2O3r9vISaqsAeXkpIS9u3bx6pVq3j//fcpKSkBjHWW9evXAxATE8PKlStZt24dq1ev\nZunSpeTn54ez22PLuajvjTtTbOC6REEhmGMjclFfa43jf38NSSmoy652P69MJtQlJVB2DA6/b7R1\npSFn+fnNKDMHerqhudG5xyVjQiRyCDHRhP2Y4+TkZO6//36P5y0WC2vWrHE/LioqoqioyO97bdmy\nJeT9CweVPwP9zi50exsqIXHwi1VlYMsaVNRRxcbCtFkjCi6OF55ETZuJKlo2yl778P7bcPh91A23\nGaOyAdTSi9Hbf4Pjz9uImbvQe8HKIVRGDhqMRX3Z4yJExAr7yEV4UgXGTn0qPHfq68qTkDfV43k1\n8ywo+wjd3RXw5+iuLvTLL+D46+9H3Fe/79/XZ4xaMnNRF17m8bqKjUN96jOw/x105UkjDdnbzvyB\nBqYj19eiJA1ZiIgkwSUSucrADFl30b09RqpurueUoCqcC329cOJo4J9Tcdw48fH4h+iuzlF12Ru9\n6xWoLsd09c0os/dBsrrocoibhP7LduPehgsulgyIiYGKE9DaImnIQkQoCS4RSKVZjL0rQ2uMnao2\nyp/keo5ccC7qB1PEUpcdM77o64UQr9dohwP94jNGBYGipT7bqaQU1CeL0W/+zShYmeV7MR9AxcSA\nNbP/BE6ZFhMiIklwiVT50z1HLs7FfOVtWiw5xci+CiZInDwKCUkQY0Yf3jeq7np970Y76qLLh11w\nV5d8tv/rnGFGLmBsHHV9LyS4CBGRJLhEKFUwA6rL0D09/U9WnQRl8rkuYRSxPOS/dMwA+uQxmD4L\nps9CH3o/FN3uf+/3doMyoeZ/fNi2KiMb5RrdDDNygQFHHoOMXISIUBJcIlV+oTEFVt1fkFJXnoSs\nHFRsnPdrCudC22kj62oYuqcbqspQU2ei5iyAk0fRHZ61vkZKv1cKM+eikjw3xXqjrl2Juv42sASw\n+9hVwNIca0wfCiEijgSXCKXypwNDFvWryr2vt7iumXm2cc3Rg8N/QMUJcDhQUwtRcxcaJ1oeOTCa\nLrvp+jqoOI5adG7A1yhrBqYVnwloz4p75GLN9F7gUggRdvIvM1Jl5sCkye6zXXR3F9RWo3ILfF+T\nnQeJyQHt1NcnnVllU2caIx5zLPpQaNZd9D6jYrVaGHhwCcqA4CKEiExh30QpvFMmE0yZ1n8qZU0F\naAcqz3dwUUpB4dzATqY8ecwIRJaM/usOh2bdRe/bbQSA4dKKR8qWBUrJOS5CRDAZuUQw42yX40Za\nr6vsi5dMsUHXzDwLairRLZ5VqAfSZcdgaqF7GkrNXWB8VtvpUfVZd3bAoX2ohUvGrCyLio1DXXcr\navnlY/L+QojRk+ASyfJnQFcH1NUYB4TFmPsXs31QZy0CQO9/12cb3dMDlWWoqYX9181ZCFrD4f2j\n6/PBvdDbi1roWYA0lEzFVw3qvxAiskhwiWDuMjDlHxmZYtl5Pne6uxUUQqrFmJrypfIE9PWips7s\nf276LGOn/CinxvS+3RCfCLPmjep9hBDRTYJLJMudCjExRsZYVZnXzZNDKZMJtXAxHNhjlIvxQp90\n7swvGDByMcfCzLNHtaivHQ70vrdR84uGD4JCiAlNgksEU7GxkJOPPnLQOLvEX6bYwOsWnQudHfCh\njyku18582+Cij2ruQqgqG3a9xqfjHxpHNI/xlJgQIvJJcIlwKn86OPet+MsUG2TuIoiNQ+972+vL\nuuyjQYv57s+au8B4fYTrLnrf22AyoRYMvytfCDGxSXCJdK51F/C7gXIgNWkSzF2Ifm+3RykY3dsD\nlSdQBV4WwwsKYXI8jHBqTO/bDTPPQiUmj+h6IcTEIcElwql8ZxCIi/OYxvJ73aJzwX7K2NU/UGUZ\n9PYamyeHXhMTA7Pnj2hRX9fXQsWJsds4KYSIKhJcIl3+NOPPnIKgSp24UoGHZo25dub7SuNVcxbA\nqUp0Y31Q3XTvyl8k6y1CCAkuEU8lJEH+dGNzZDDXpVuhoNCoTjzQyWNGqnBGtvfr3OsuwU2N6fd2\nGydOZg9f1VgIMfFJcIkCprv/E3XNl4O+Ti1cAh8dRp9ucT+ny45BwQzfu+enTDcyyYJYd9Gd7XD4\nfRm1CCHcJLhEATVp0oj2jahFS0Br9PtG1pju7TXWRbyst7ivMZlgzvzgzndx7coPogqyEGJik+Ay\nkQ3drV9VBr09MEzZFDV3IdTX0neqatiP0F1dOF79IyQkuo9aFkIICS4T2NDd+v2L+b5HLgDq7HNA\nKZo3/RDd5HthX7e14vjx/fDhftQ1X5Zd+UIINwkuE1z/bv0Dxtkw8Qk+F/Pd12TnYbr9e/SePIbj\nR982KgQMoRvrcfznPXDiCKbbvovpgkvH6haEEFFIgstE596tX2qMXPJnBJTSrD7+SSwP/hImxePY\n+H0cf/uje0Omrq7AseF70FCHadUDqMXnj/VdCCGijASXCc69W3/vP52L+YGXqTcXzMD0/YdhXhH6\nd4+iH38E/eF+HP95N/R0Y7rrP9wl/oUQYiCZJD8DqEXnujPGvO3M93ttQhKmO7+P/sMz6BefQb/5\nKmRkY/rWD1GZuWPQWyHERCDB5QygFi7BVWFsJAdsKZMJddWN6Kmz0KWvo65diUpND20nhRATigSX\nM4Brtz6nqmAUow21aIlslBRCBCTswaW1tZVNmzZRV1dHRkYGq1evJikpyaPd3r17efzxx3E4HKxY\nsYKSkhIAnn32WV555RVSUlIAuOGGGygqKhrXe4gGpqtvRtefCqo+mRBCjFTYg8v27dtZsGABJSUl\nbN++ne3bt3PTTTcNauNwONi6dSs/+MEPsFqtrFmzhsWLFzNlilHH6sorr+Sqq64KR/ejhpp3Dj4K\nvgghRMiF/dfY0tJSli9fDsDy5cspLS31aHP06FGys7PJysrCbDazbNkyr+2EEEJEhrCPXJqbm0lP\nNxaH09LSaG5u9mjT0NCA1Wp1P7ZarRw5csT9+OWXX+b1119nxowZ3HzzzV6n1QB27NjBjh07ANiw\nYQM2m21EfTabzSO+NpqcCfcp9zhxnAn3GU33OC7BZe3atTQ1eZ7Lfv311w96rJTyXa3Xh0svvZRr\nrrIaa+8AAAlQSURBVLkGgP/5n//hySef5I477vDatri4mOLiYvdju90e1Ge52Gy2EV8bTc6E+5R7\nnDjOhPuMhHvMzQ0sKWhcgst9993n87XU1FQaGxtJT0+nsbHRvTA/kMViob6+v8ZVfX09FosFMEY7\nLitWrODBBx8MYc+FEEKMRNjXXBYvXszOnTsB2LlzJ0uWeKa6FhYWUl1dTW1tLb29vezatYvFixcD\n0NjY6G63e/du8vPzx6fjQgghfAr7mktJSQmbNm3i1Vdfdacig7HO8uijj7JmzRpiYmJYuXIl69at\nw+FwcPHFF7uDyG9+8xtOnDiBUoqMjAxuu+22cN6OEEIIQGlXNcIzUFXV8OeVeBMJ857j4Uy4T7nH\nieNMuM9IuMdA11zCPi0mhBBi4jmjRy5CCCHGhoxcRuCee+4JdxfGxZlwn3KPE8eZcJ/RdI8SXIQQ\nQoScBBchhBAhF/PDH/7wh+HuRDSaMWNGuLswLs6E+5R7nDjOhPuMlnuUBX0hhBAhJ9NiQgghQi7s\nO/Sjja9Dy6LZz372M959911SU1PZuHEjEPghbtHCbrezZcsWmpqaUEpRXFzMFVdcMeHus7u7mwce\neIDe3l76+vo477zzuO666ybcfYJxztM999yDxWLhnnvumZD3eOeddzJ58mRMJhMxMTFs2LAheu5T\ni4D19fXpr3/967qmpkb39PTou+66S5eXl4e7W6N24MABfezYMf3tb3/b/dxTTz2lt23bprXWetu2\nbfqpp54KV/dCoqGhQR87dkxrrXV7e7tetWqVLi8vn3D36XA4dEdHh9Za656eHr1mzRp9+PDhCXef\nWmv94osv6h//+Md6/fr1WuuJ9/+s1lrfcccdurm5edBz0XKfMi0WhIl6aNnZZ5/t8ZtPIIe4RZP0\n9HT3Qmh8fDx5eXk0NDRMuPtUSjF58mQA+vr66OvrQyk14e6zvr6ed999lxUrVrifm2j36Eu03KdM\niwVhuEPLJpJADnGLVrW1tRw/fpyZM2dOyPt0OBzcfffd1NTU8OlPf5pZs2ZNuPv89a9/zU033URH\nR4f7uYl2jy5r167FZDJxySWXUFxcHDX3KcFFDGskh7hFqs7OTjZu3Mgtt9xCQkLCoNcmyn2aTCYe\neugh2traePjhhykrKxv0erTf5zvvvENqaiozZszgwIEDXttE+z26rF27FovFQnNzMz/60Y88ikZG\n8n1KcAmCv0PLJppADnGLNr29vWzcuJELLriAT3ziE8DEvE+XxMRE5s2bx969eyfUfR4+fJi3336b\nPXv20N3dTUdHB5s3b55Q9+ji+vmSmprKkiVLOHr0aNTcp6y5BMHfoWUTTSCHuEUTrTU///nPycvL\n4zOf+Yz7+Yl2ny0tLbS1tQFG5ti+ffvIy8ubUPd544038vOf/5wtW7bwrW99i/nz57Nq1aoJdY9g\njLJd036dnZ3s27ePgoKCqLlP2UQZpHfffZcnnnjCfWjZ1VdfHe4ujdqPf/xjDh48yOnTp0lNTeW6\n665jyZIlbNq0CbvdHtnpjgE6dOgQ999/PwUFBe5phBtuuIFZs2ZNqPs8efIkW7ZsweFwoLVm6dKl\nXHPNNZw+fXpC3afLgQMHePHFF7nnnnsm3D2eOnWKhx9+GDCSM84//3yuvvrqqLlPCS5CCCFCTqbF\nhBBChJwEFyGEECEnwUUIIUTISXARQggRchJchBBChJwEFyEC8O1vf9vnbvCxZrfb+eIXv4jD4QjL\n5wsxEpKKLEQQnn32WWpqali1atWYfcadd97J7bffzsKFC8fsM4QYazJyEWIc9fX1hbsLQowLGbkI\nEYA777yTlStXundMm81msrOzeeihh2hvb+eJJ55gz549KKW4+OKLue666zCZTLz22mu88sorFBYW\n8vrrr3PppZdy0UUX8eijj3Ly5EmUUixatIhbb72VxMREfvKTn/CPf/wDs9mMyWTimmuuYenSpXz9\n61/n6aefJiYmhoaGBn75y19y6NAhkpKS+OxnP0txcTFgjKwqKiqIi4tj9+7d2Gw27rzzTgoLCwHY\nvn07L730Eh0dHaSnp/OVr3yFBQsWhO37KiYuKVwpRIBiY2P53Oc+5zEttmXLFlJTU9m8eTNdXV1s\n2LABq9XKJZdcAsCRI0dYtmwZv/zlL+nr66OhoYHPfe5znHXWWXR0dLBx40aee+45brnlFr7xjW9w\n6NChQdNitbW1g/rxyCOPkJ+fz6OPPkpVVRVr164lOzub+fPnA0bV4O985zvccccdPPPMMzz22GOs\nW7eOqqoq/vznP7N+/XosFgu1tbWyjiPGjEyLCTEKTU1N7Nmzh1tuuYXJkyeTmprKlVdeya5du9xt\n0tPTufzyy4mJiSEuLo7s7GwWLlxIbGwsKSkpXHnllRw8eDCgz7Pb7Rw6dIgvfOELxMXFMW3aNFas\nWOEuZAgwd+5cioqKMJlMXHjhhZw4cQIwSvH39PRQUVFBb28vmZmZZGdnh/T7IYSLjFyEGAW73U5f\nXx+33Xab+zmt9aBD5Ww226Brmpqa+PWvf80HH3xAZ2cnDocj4MKDjY2NJCUlER8fP+j9jx075n6c\nmprq/jouLo6enh76+vrIzs7mlltu4bnnnqOiooJFixZx8803T9hjI0R4SXARIghDD2ayWq2YzWa2\nbt1KTExMQO/x9NNPA7Bx40aSkpLYvXs3jz32WEDXpqen09raSkdHhzvA2O32gAPE+eefz/nnn097\nezu/+MUv+O1vf8s3vvGNgK4VIhgyLSZEEFJTU6mrq3OvVaSnp7No0SKefPJJ2tvbcTgc1NTU+J3m\n6ujoYPLkySQkJNDQ0MCLL7446PW0tDSPdRYXm83GnDlz+N3vfkd3dzcnT57kb3/7GxdccMGwfa+q\nqmL//v309PQQFxdHXFxcxJ5iKKKfBBchgrB06VIAbr31Vu6++24Avv71r9Pb28u3v/1tvvzlL/Nf\n//VfNDY2+nyPa6+9luPHj/OlL32J9evXc+655w56vaSkhOeff55bbrmF3//+9x7Xf/Ob36Suro7b\nb7+dhx9+mGuvvTagPTE9PT389re/5dZbb+WrX/0qLS0t3HjjjcHcvhABk1RkIYQQIScjFyGEECEn\nwUUIIUTISXARQggRchJchBBChJwEFyGEECEnwUUIIUTISXARQggRchJchBBChJwEFyGEECH3/wHm\nTjerErys6AAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -386,9 +358,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVdX6wPHv2gwiIjOKGN7CIXO+pimm4YCmaWZmpqam\nWeZV66o3f3mnymvdMCU1h1vZqE1qJWnzxbE0r+ScY1ia5oCMoszs9fvj1CkC5YgcNpzzfp7HJ84+\ne539vpK87LXWXktprTVCCCHEZRhWByCEEKL6k2IhhBCiXFIshBBClEuKhRBCiHJJsRBCCFEuKRZC\nCCHKJcVCCCFEuaRYCCGEKJcUCyGEEOWSYiGEEKJcnlYHUJlOnTpV4bahoaGkpqZWYjTVj+ToOtwh\nT3fIEazPMyIiwqHz5M5CCCFEuaRYCCGEKFeVdEOlpqayePFiMjMzUUoRGxvLbbfdxoULF5g3bx7n\nzp0jLCyMqVOn4ufnB8Dq1atZv349hmEwduxY2rVrVxWhCiGEKEOVFAsPDw9GjRpFVFQUubm5zJgx\ngzZt2rBx40Zat27NoEGDSEhIICEhgZEjR3Ly5Em2bt3Kc889R0ZGBrNmzWLBggUYhtwICSGEFark\np29QUBBRUVEA1K5dm4YNG5Kenk5SUhIxMTEAxMTEkJSUBEBSUhJdunTBy8uLevXqER4eTnJyclWE\nKoQQogxVPhsqJSWFH374gSZNmpCVlUVQUBAAgYGBZGVlAZCenk7Tpk3tbYKDg0lPTy/1WYmJiSQm\nJgIQFxdHaGhohePy9PS8qvY1geToOtwhT3fIEWpOnlVaLPLy8oiPj2fMmDH4+vqWeE8phVLqij4v\nNjaW2NhY++urmX5m9fS1qiA5ug53yNMdcgTr86x2U2eLioqIj4+nW7dudOrUCYCAgAAyMjIAyMjI\nwN/fH7DdSaSlpdnbpqenExwcXFWhCiFEjWFu/gz97U6nX6dKioXWmhdeeIGGDRsyYMAA+/EOHTqw\nadMmADZt2kTHjh3tx7du3UphYSEpKSmcPn2aJk2aVEWoQghRI+jiYsx3l6KXL0FvXef061VJN9Th\nw4fZvHkzjRo1Yvr06QAMHz6cQYMGMW/ePNavX2+fOgsQGRlJdHQ006ZNwzAMxo0bJzOhhBDiZzrn\nIuZLz8L+XajYgaghY51+TaW11k6/ShWR5T4uT3J0He6QpzvkCFeep045jbnoKUg5hRoxAeOWW6/q\n+o6OWbjU2lBCCOHK9OFvMf/zDADG1H+hrm9dZdeWYiGEEBbQ+fnopM0UtusIfoGXP7eoEL1uLXr1\ncghrgPHwP1D1HLsjqCxSLIQQohJordHrP0If+Raj712o65pd+tyDezCXL4ZzZ0hfplDRPVF33IsK\nLv28hf52B+aKl+HMT9D2Joz7p6B8/ZyZSpmkWAgh3J4uKkJvSYTjyZCfjy7Ih4J8KMiDoiJUp1tQ\nPQegDI+y2xcWoJctRm/bAJ5emDu/tv1gH3Qv6prrfj3v4gX0qldt16rXAGPyP/E5cZScj1eik760\nDVb3G4Kq7YtOOYW58lXYs91+Lm06XPHzaJVFioUQwq3pA7sw330ZTp+AugHgUxu8a0EtH9t/i4vR\nK15Bb/8SY/Rk1DXXlmyfkYa55N9w7DvUwBGo2IG2LqMvEjD/NQXVoStq4HD46UfMd16E7CxU37tQ\ntw9Dedeibq9+5HXugV79JvrT99BffoFq0xG9fRN4eKEG32crIl5e1vwF/UxmQ/3MHWZeSI6uwx3y\ndHaOJX5zDwvHGDoO2t5U6jd3rTU66Uv0u0sh54LtB33/e1BeXuijhzD/Ewd5ORj3T0W1j/613cVs\n9BcJ6HVrbXcpWkOjKIzRD6P+0LjMPPWx7zDfex0O70N17oG6azQqMMRpfwfg+GwoKRY/k398rsEd\ncgT3yNNZOeq8HPRHK9GJa8DLCzXgHlTP28v9zV1nn0evfMXW1RR+DarTLeiPV0JgCMakv5e647C3\nO5+J3vAx+PmjYvqhPEt26Pw+T601FBSgatW66lwdIVNnhRDid/SJHzBfmA3nTqO69ELdOQoVEORQ\nW1XXHzVuKrrTLZjLl6A/fBuat8F46P9Qfv6XbucfiLrjXodjVEpBFRWKKyHFQgjh8rTW6C+/QL/z\nEvjVxXj0aVSzVhX6LNXqRoyZi+DQHmjVodSdgqtyjyyFEDWeTj6ImfAmKigUNfbPKAeXANJ5uei3\n/oPethFatMMYNw3lf/nnGsqjfGpDu85X9Rk1jRQLIUS1pk+fxPxgGezeBrV90Yf3QYNrULfdXX7b\nn37EfHE2nDmJumME6ra7Lzn9VVyeFAshRLVUnJFmGxv46gvwqmV7aK33Heg3FqIT3kJf2xTVot0l\n2+s9SbbF9mr52JbGuKFtFUbveqRYCCGqHXNLImnvLkUXFthmEA2459euo9GT0T8dx1w6F+Mf81Ah\nYaXbb9uIfm0+REZhTP4HKlD2w7lasu63EKJaMT99H/3683g1a4nxr8UYIx4qMcagfGpj/OmvUFSI\n+UIcurCwZPsNH6NfeQ6atsR49CkpFJVEioUQolrQWmOueg39wRuom24h8B/xl1wsT4U3xBg7BY59\nh16x9Nf2H61Av/2ibamNPz+B8vEts724ctINJYSwnC4uRi9fhN6yDtWjP2rYg+U+JKfaR6NuHYz+\n/APM666Hn46h//uh7cnnMY+gPGQguzJJsRBCWEoXFmC+NAd2/w91+3DbmkkOLpan7hyFPvYd+vUF\nttc9B6DuecDhabXCcfI3KoSwjM65gLlgpq1QDB+PMXD4Fa2qqjw8MMZPh+ua2WZLDXtQCoWTyJ2F\nEMIS+uwpzEWz4NxZ1AN/wegUU6HPUf6BePxtbiVHJ35PioUQosrpg3tsazQZCmPavyq89IaoOlVS\nLJYsWcLOnTsJCAggPj4egHnz5tlXic3JycHX15c5c+aQkpLC1KlT7SshNm3alPHjx1dFmEKIKmBu\n+gz9zotQLwLj4X+iwsKtDkk4oEqKRffu3enbty+LFy+2H5s6dar962XLluHr++sUt/DwcObMmVMV\noQkhqoguLrYt8b3+I2jdAePBR1G1ZWprTVElI0EtWrTAz6/sPWO11nz99dfcfPPNVRGKEMIC2jQx\nFz+NXv8RqvcdGJP/LoWihrF8zOLgwYMEBATQoEED+7GUlBSmT5+Or68vw4YN44YbbiizbWJiIomJ\niQDExcURGlp6s3NHeXp6XlX7mkBydB01Lc+c/64he983+N3/Z+rcfo9DbWpajhVVU/K0vFhs2bKl\nxF1FUFAQS5YsoW7dunz//ffMmTOH+Pj4Et1Uv4iNjSU2Ntb++mp21ZKdx1yDO+QINStPffEC5rIl\n0KQFOZ17kutg3DUpx6thdZ6O7pRn6YTk4uJitm/fTpcuXezHvLy8qFu3LgBRUVHUr1+f06dPWxWi\nEOIq6TVvw8ULGMPHX9EzFKJ6sbRY7Nu3j4iICEJCft2Q/Pz585imCcDZs2c5ffo09evXtypEIcRV\n0CePoTd+gorpi2oUZXU44ipUSTfU/PnzOXDgANnZ2UyYMIGhQ4fSs2fPUl1QAAcOHGDlypV4eHhg\nGAYPPvjgJQfHhRDOp00T/c1XqPoREHmdw5sHaa0x33kJfOugBjm+B7WonqqkWEyZMqXM45MmTSp1\nrHPnznTu7F7bFQpRre3+H3rpXDRAnbrQvDXqhnaoG9pAWINLdi3pb76CI9+iRk5E1albpSGLymf5\nALcQonrTSV+Cnz/qngfg0B70gT3oHVttxaN+Q1S/u2wrvf5mlVedl4te+So0aozq1tuy2EXlkWIh\nhLgknZ+H3puEiu6B0bk7dO6O1hrOnkIf3IPekoh+/Xn0xytRA4ahOsWgPDzQn6yCzDSMh/5P9rx2\nEVIshBCXpPcmQUE+quMt9mNKKQhviApviO7eD/Zsx1zzNvq1+bai0eM29H8TbHcbTcp+RkrUPFIs\nhBCXpJO+hIBgaFr2D32lFLTrhNH2Jti1DXPtO+gVL4NPbdRd91VxtMKZpFgIIcqkc3Ng3w7btNdy\nupKUUtA+GqNdJ9ibBLXryN7XLkaKhRCiTHr3/6CoENWxm8NtlGFAu05OjEpYRbaUEkKUSSd9CcFh\nEHW91aGIakCKhRCiFH0xGw7sQnXoKkt0CECKhRCiDHrn11BcjLrJ8S4o4dqkWAghStHffAVh4dCo\nsdWhiGpCioUQogR9PhMO7UV17CZdUMJOioUQogS9cyuY5hXNghKuT4qFEKIEnfQVNIiEhn+wOhRR\njUixEELY6cw0+G6/zIISpUixEELY6R1bQWvpghKlSLEQQgA/b3K0bSNccx2qwTVWhyOqGSkWQgi0\nWYxethCOfYeK6Wt1OKIakrWhhHBzurjYtrz4/zahbh8mxUKUSYqFEDWM1rryPquoCP3qPHTSl6hB\nIzH6D620zxaupUqKxZIlS9i5cycBAQHEx8cDsHLlStatW4e/vz8Aw4cPp3379gCsXr2a9evXYxgG\nY8eOpV27dlURphDVnjaLMZ98hPSQMPS9f0KF1q/4ZxUVYr40B3ZtQw0Zi3HrnZUYqXA1VVIsunfv\nTt++fVm8eHGJ4/3792fgwIEljp08eZKtW7fy3HPPkZGRwaxZs1iwYAGGIcMrQnD4Wzh9gsKzP8G/\n/owa/hCqc/crnuaqCwsxX4iDvUmoYQ9i9LrdSQELV1ElxaJFixakpKQ4dG5SUhJdunTBy8uLevXq\nER4eTnJyMs2aNXNylEJUfzrpS6hVm5Bnl5K28Gn0q/Nsmw2N/BOqTt1fzysqhCP70XuT0D8cgfw8\nKCyAggIoyLf9KSpE3fsnjO79rEtI1BiWjll89tlnbN68maioKEaPHo2fnx/p6ek0bdrUfk5wcDDp\n6ekWRilE9aCLCtE7tqLa3YRnoyiM6f9Gf/YBes3b6OSDGPdOsO1ut2c7+sAuyM0BL2/bfhT+QShv\nb9tr71rg7Y1q2grVtqPVaYkawrJi0adPH4YMGQLAihUrWLZsGRMnTryiz0hMTCQxMRGAuLg4QkND\nKxyPp6fnVbWvCSTHmi0/6Ssycy4QEDsAT09PwurVh9F/ovDmHmTNm0nx4qcBMIJC8Lm5F94du1Kr\nbUdULR+LI68YV/5e/lZNydOhYnHhwgXWrFnD8ePHycvLK/HezJkzK3ThwMBA+9e9evVi9uzZgO1O\nIi0tzf5eeno6wcFl7+UbGxtLbGys/XVqamqFYgEIDQ29qvY1geRYfemcCyhfv8ueYyZ+BHXqcv6a\nKGoVFf2aZ0Ao+q9zUTu3osKvgT80psAwKAAuZF+A7AvOT8AJaur38kpZnWdERIRD5zlULBYsWEBR\nURHR0dF4e3tfVWC/yMjIICgoCIDt27cTGRkJQIcOHXj++ecZMGAAGRkZnD59miZNmlTKNYWojsyP\n3kV/8h7G3+NRl1i8T+fnoXf/zzaY7elV6n1VqxYquoezQxVuzKFiceTIEV5++WW8vEr/T+qI+fPn\nc+DAAbKzs5kwYQJDhw5l//79HDt2DKUUYWFhjB8/HoDIyEiio6OZNm0ahmEwbtw4mQklXJZOOYX+\neCUUFWGuXo7H5H+Ufd6e7VCQj7rpliqOUAgbh4pFo0aNSEtLIzw8vEIXmTJlSqljPXv2vOT5gwcP\nZvDgwRW6lhA1hdYa852XwNMLFdMPvW4t+sh+VLOWpc/dvhkCg6FpCwsiFcLBYtGqVSv+/e9/0717\n9xJjDXD5H/pCiMvY9TV8uxN1zzhUt77oHVsw338dY8azJZ6b0Bcv2M7r0R9leFgYsHBnDhWLQ4cO\nERISwr59+0q9J8VCiCun8/MwV7wM11yL6jEA5eGBGjgCvWwR7NoG7aN/PXfnViguki4oYalyi4XW\nmgkTJhAaGoqHh/xWI0Rl0B+vgPRUjAceRf3870p16YX+IgFz9TKMtjfZj+ukLyEsHK6ViR7COuWO\nHCulePTRR2XXLCEqiT59Ev3Fh6jonqjfjEEoDw+MwaPhzE/oLbbnh3RWBhzah7rpFvk3KCzl0DSj\na6+9ltOnTzs7FiFchj7zE/rsqVIrxNoGtV+EWrVQQ8aUbtiuEzRujl7zDjo/H/3NV6BN6YISlnNo\nzKJly5b8+9//JiYmptSThjJmIURJ+qcfMf/9F9v6S2HhqJZ/RLX8IzRvg963Aw7uQY2YgPIPLNVW\nKYVx1xjMZ2eg162xTZm95lpURCMLMhHiVw4Vi8OHD1OvXj0OHjxY6j0pFkL8Sufl2lZz9amNunMU\n+tBe9Ncb0Bs/BQ8P8PSCRo1RMbde8jNU0xbQ9ib0J6sgPw81+L4qzECIsjlULJ544glnxyFEjae1\nRi9fDGdPYfxlFur61hA70LYCbPJB9P5d6B+OYAy9v9wpsMadozFnPgKAuqlbVYQvxGU5VCxM07zk\ne/J0tRA2etOn6O2bUYNG2grFz5SnFzRvg2rexuHPUg0bofrcAempqJB6zghXiCviULEYPnz4Jd9b\nsWJFpQUjRE2lj32HXvEytLoR1W9IpXymMWRspXyOEJXBoWKxaNGiEq8zMjJISEigQ4cOTglKiJpE\nX7yA+cJs8A/EGDcVJXfbwgU59H91WFhYiT/NmjVj8uTJfPjhh86OT4hqTZsm5mvzITMdY/z/ofz8\nrQ5JCKeo8K9AOTk5nD9/vjJjEaLG0Ykfwp7tqCFjUI2bWx2OEE7jUDfUwoULSzw9mp+fz8GDB+nW\nTWZpCPelfzqOXr0c2nVG9brd6nCEcCqHisXvlyavVasWvXv3pk0bx2d3COFKdFER5qvzoXYdjFET\nZSkO4fIcKhbt2rWjadOmpY4nJyfLLnbCLelPVsGPRzH+NKPMJ7GFcDUOjVk89dRTZR5/+umnKzUY\nIWoCffwo+pOVqE4xqPZdrA5HiCpx2TuLXx7G01rb//zi7NmzsmS5cDu6sBDz1XngF4Aa/pDV4QhR\nZS5bLH77MN6wYcNKvGcYBnfeeadzohKimtJr34ZTP2I88jiqjp/V4QhRZS5bLBYtWoTWmieffJKZ\nM2eitUYphVIKf39/vL29qypOISynjx5Cf7Ya1bU3qrU8kCrcy2WLRVhYGABLliwBbN1SWVlZBAUF\nXdFFlixZws6dOwkICCA+Ph6A5cuXs2PHDjw9Palfvz4TJ06kTp06pKSkMHXqVCIiIgBo2rQp48eP\nv+LEhKhMOj8f87UFEBSCGjrO6nCEqHIOzYa6ePEiL7/8Mtu2bcPT05Ply5fzzTffkJycXKp7qizd\nu3enb9++LF682H6sTZs2jBgxAg8PD958801Wr17NyJEjAdtU3Tlz5lQwJSEqly7Ix3zhGTj7E8a0\nWajavlaHJESVc2g21NKlS/H19WXJkiV4etrqS7Nmzdi6datDF2nRogV+fiX7d9u2bWsfIG/WrBnp\n6elXErcQVULn5WI+/y/Yvws1ejLqhrZWhySEJRy6s9i3bx8vvviivVAA+Pv7k5WVVSlBrF+/ni5d\nfp2CmJKSwvTp0/H19WXYsGHccMMNlXIdIa6EzrmI+fxM+OEIatw0jE4xVockhGUcKha+vr5kZ2eX\nGKtITU294rGLsnzwwQd4eHjYlw4JCgpiyZIl1K1bl++//545c+YQHx+Pr2/pW//ExEQSE20b28fF\nxZXa8vVKeHp6XlX7mkBydJx5PouMuJmYx5MJeHQWPtE9KiG6yiPfS9dRU/J0qFj06tWL+Ph4hg0b\nhtaaI0eO8M4779C7d++ruvjGjRvZsWMHjz/+uH25BC8vL7y8vACIioqifv36nD59msaNG5dqHxsb\nS2xsrP11ampqhWMJDQ29qvY1geToGH0+A/O5x2073v3pr1xo2poL1ezvTb6XrsPqPH+ZTFQeh4rF\nHXfcgbe3N6+88grFxcX85z//ITY2lttuu63CAe7evZsPP/yQmTNnUqtWLfvx8+fP4+fnh2EYnD17\nltOnT1O/fv0KX0eIK6EL8jHn/B3Sz9mepZAxCiEAB4qFaZps3LiR3r17V7g4zJ8/nwMHDpCdnc2E\nCRMYOnQoq1evpqioiFmzZgG/TpE9cOAAK1euxMPDA8MwePDBB0sNjgvhNIe/hTMnMSbMkEIhxG+U\nWywMw2DZsmX07NmzwheZMmVKqWOX+rzOnTvTuXPnCl9LiKuhD+4GTy9ofaPVoQhRrTg0dfbGG2/k\nm2++cXYsQlhOH9wDTVugvGuVf7IQbsShMYvCwkKee+45mjVrRkhISIm1+ydPnuy04ISoSvp8Bpw8\nhho82upQhKh2HCoWkZGRREZGOjsWISylD+4FkLEKIcrgULG4++67nR2HENY7uBt8/aBRlNWRCFHt\nODRmIYSr01rbxiuat0EZsk+LEL8nxUIIgLOnID1VuqCEuAQpFkLw8ywoQLWQYiFEWaRYCMHPz1eE\n1IOwBlaHIkS15NAAt9aadevWsWXLFrKzs5k7dy4HDhwgMzOzxGqxQtRE2iyGQ/tQN3YpMS1cCPEr\nh+4sVqxYwYYNG4iNjbUveBUSEsKHH37o1OCEqBLHj0LuRWjRzupIhKi2HCoWmzZt4rHHHuPmm2+2\n/+ZVr149UlJSnBqcEFVBH9gNgGrexuJIhKi+HCoWpmni4+NT4lheXl6pY0LURPrgHoi8DlU3wOpQ\nhKi2HCoWf/zjH1m2bBmFhYWAbQxjxYoV3HijLLYmajadnw9HD6JukC4oIS7HoWIxevRoMjIyGDNm\nDDk5OYwePZpz585x7733Ojs+IZzru/1QVCTPVwhRDoe3VZ0+fTqZmZmkpqYSGhpKYGCgs2MTwun0\nwT3g6QlNW1gdihDVmkPFwjRNAPz9/fH397cfMwx5TEPUbPrgbmh8A6qWjL8JcTkOFYvhw4eXedzD\nw4OgoCA6derE0KFDZcBb1Cg6OwtO/IAaNNLqUISo9hwqFmPHjiUpKYlBgwYREhJCamoqa9asoX37\n9kRERLBq1Spef/11JkyY4Ox4hag0+pAsSS6EoxwqFh9//DGzZ8/G19cXgIiICBo3bsyMGTNYuHAh\njRo14rHHHnNqoEJUuoN7oHYd+EMTqyMRotpzaNAhJyeH/Pz8Esfy8/PJyckBIDAwkIKCgsqPTggn\n0Fpjbv4MvX0z3NAG5SFLkgtRHofuLGJiYnjqqafo168foaGhpKWl8cknnxATEwPAnj17iIiIuGT7\nJUuWsHPnTgICAoiPjwfgwoULzJs3j3PnzhEWFsbUqVPx8/MDYPXq1axfvx7DMBg7dizt2skceFE5\n9LkzmG8shMP7oHkbjHsesDokIWoEh4rFyJEjCQ8PZ+vWrWRkZBAYGMitt95KbGwsAC1btmTmzJmX\nbN+9e3f69u3L4sWL7ccSEhJo3bo1gwYNIiEhgYSEBEaOHMnJkyfZunUrzz33HBkZGcyaNYsFCxbI\nzCtRLq01RT/9iNagfHxLvmcWo9d/jF69HDw8UKMmobr1kYUDhXCQQ8XCMAz69OlDnz59ynzf29v7\nsu1btGhRah2ppKQknnzyScB25/Lkk08ycuRIkpKS6NKlC15eXtSrV4/w8HCSk5Np1qyZI6EKN6bX\nrSFtxSu2F3UDoF4DVFgDqNcAvX8nHD0ErTtgjJyICg61NlghahiHigVAZmYmycnJZGdno7W2H+/Z\ns2eFLpyVlUVQUBBgG/PIysoCID09naZNm9rPCw4OJj09vULXEO5DZ6ahE97Gq+UfKbq+NaScRp87\ngz6yD7ZtgDp1UeOmoTrFyN2EEBXgULHYvn07CxcupEGDBpw4cYLIyEhOnDhB8+bNK1wsfkspVaF/\nwImJiSQmJgIQFxdHaGjFf1v09PS8qvY1gSvnmLVsIXlmMcF//ieEhZd4Txfkg1Ior8vfAdckrvy9\n/IU75Ag1J0+HisWKFSuYOHEi0dHRjB07lmeffZYNGzZw4sSJCl84ICCAjIwMgoKCyMjIsD8ZHhwc\nTFpamv289PR0goODy/yM2NhY+7gJYN9royJCQ0Ovqn1N4Ko56kN7Mb/8L2rAMAgLd8kcf89Vv5e/\n5Q45gvV5Xm5y0m85NGqcmppKdHR0iWMxMTFs3rz5yiP7WYcOHdi0aRNg2y+jY8eO9uNbt26lsLCQ\nlJQUTp8+TZMmMg9elE0XFWG+/SKE1EP1u8vqcIRwWQ7dWfj7+5OZmUlgYCBhYWEcOXKEunXr2teM\nKs/8+fM5cOAA2dnZTJgwgaFDhzJo0CDmzZvH+vXr7VNnASIjI4mOjmbatGkYhsG4ceNkJpS4JL1+\nLZw+gTHp7yjvWlaHI4TLcqhY9OrVi0OHDtG5c2f69+/PzJkzUUoxYMAAhy4yZcqUMo8//vjjZR4f\nPHgwgwcPduizhfvSGWnoNe9C6w7Q9iarwxHCpTlULAYOHGj/7T4mJoaWLVuSl5fHNddc49TghLgc\nvepVKC7CGPagzHASwsnK7d8xTZNRo0bZd8kD24CMFAphJX1wDzrpS1S/u1D1GlgdjhAur9xiYRgG\nERERZGdnV0U8QpRLFxVhvvMShNZH9ZVBbSGqgkPdUF27dmX27Nn069ePkJCQErf8rVq1clpwQpRF\nb/jYNqg9+R8yqC1EFXGoWHzxxRcArFq1qsRxpRSLFi2q/KiEuAR9PgO99h1odSO06Wh1OEK4DYeK\nxW8XABTCSvqD5VBQgHHPOBnUFqIKOfwAQ1FREQcPHmTr1q0A5OXlkZeX57TAhPg9/cMR9JZEVOzt\nqHCZYCFEVXLozuLHH39k9uzZeHl5kZaWRpcuXThw4ACbNm2yP0wnhDNp07QNagcEofrfY3U4Qrgd\nh+4sli5dyj333MP8+fPx9LTVlxYtWnDo0CGnBifEL/S2DfDDEdTg+1C1fctvIISoVA4Vi5MnT9Kt\nW7cSx3x8fGQrVVEldG4O+v03IOp6VOfuVocjhFtyqFiEhYXx/ffflziWnJxMeHj4JVoIUTadn4f5\n5Rfo4mLH23y0ArKzMIaNR8k6YUJYwqExi3vuuYe4uDh69+5NUVERq1ev5r///S8PPfSQs+MTLkZv\n+Nh2l2B4oG7uVf75p0+i161B3RyLuq5puecLIZzDoV/TbrzxRv72t79x/vx5WrRowblz53j00Udp\n27ats+O24eEvAAAWg0lEQVQTLkRrjf56g+3rz95Dm+XfXZgrXwFvH9Sdo5wdnhDiMhy6szh//jzX\nXXcdDzzwgLPjEa7sxPdw6kdo0Q4O7IZd/4Mbu1zydL1/F3y7A3X3/Sj/wCoMVAjxew7dWUycOJFn\nnnmGL7/8Up6tEBWmv94Inp4YDzwK9SIwP1lVYj/3EueaxZjvvWZb/6lH/6oNVAhRikPFYsmSJbRv\n354vvviC8ePHM3/+fL755huKr2CQUrg3XVyM3r4JWndA1fW37Wr341HYv6vs87/eCCePoQaPRnl5\nVW2wQohSHCoW/v7+3HrrrcyaNYv4+HiuvfZa3n33XcaPH+/s+ISrOLAbzmdiRPcEsE2BDQrF/HRV\nqVN1fj464U24rhmqQ9cqDlQIUZYrnoeYlZVFZmYm2dnZ1KlTxxkxCRekt22AOnWh9Y0AKE8v1K13\nwpH96O8OlDw38UPITMO4+35Z/0mIasKhAe6TJ0/y1VdfsWXLFgoKCoiOjmb69Ok0adLE2fEJF6Dz\nctC7t6G69EJ5/tqlpLr2QX+0AvPT9/BoattiV5/PQH/6PrTrjGrawqqQhRC/41Cx+Oc//0mnTp0Y\nP348LVu2tG+xKoQj9I6voaAA1blHieOqVi1U7EB0wpvoH79HNYpCr30Xigow7rrPomiFEGVxqFgs\nXbrUviZUZTp16hTz5s2zv05JSWHo0KFcvHiRdevW4e/vD8Dw4cNp3759pV9fVA399Xqo1wCiri/1\nnupxG/qz99GfvgcDR6A3f46K6YsKb2hBpEKIS3GoAnh6epKZmUlycjLZ2dklpjv27NmzwhePiIhg\nzpw5gG2v74ceeoibbrqJDRs20L9/fwYOHFjhzxbVg04/B0e+Rd0+vMzxB+Xr93PB+ACdlgLetVC3\nD7cgUiHE5ThULLZv387ChQtp0KABJ06cIDIykhMnTtC8efOrKha/tW/fPsLDwwkLC6uUzxPVg/7f\nJtD6sgsAqtiB6MS1tlVl7xyFqhtQdQEKIRziULFYsWIFEydOJDo6mrFjx/Lss8+yYcMGTpw4UWmB\nbNmyhZtvvtn++rPPPmPz5s1ERUUxevRo/Pz8Ku1aomrYl/docgMq7NKLTir/IFTP/uhd21Cxcjcp\nRHXkULFITU0lOjq6xLGYmBjGjx/P6NGjrzqIoqIiduzYwYgRIwDo06cPQ4YMAWyFatmyZUycOLFU\nu8TERBITEwGIi4sjNDS0wjF4enpeVfuaoKpzLDx6iPTTJ6j7p//Dt5zr6ocetd2BXOXkCXf4PoJ7\n5OkOOULNydOhYuHv709mZiaBgYGEhYVx5MgR6tati2malRLErl27uO666wgMtK3/88t/AXr16sXs\n2bPLbBcbG0tsbKz9dWpqaoVjCA0Nvar2NUFV52h+uho8Pbl4fTtyqui67vB9BPfI0x1yBOvzjIiI\ncOg8h4pFr169OHToEJ07d6Z///7MnDkTpRQDBgy4qiB/8fsuqIyMDIKCggDbeElkZGSlXEdUDa01\nHN5nG69ocxOqjnQhClHTOVQsBg0aZP86JiaGli1bkpeXxzXXXHPVAeTl5bF3794SS4e8+eabHDt2\nDKUUYWFhsqxIDaHNYtj1P8zP3odj30HdAIy+d1kdlhCiElTo4YnK7F/z8fHh1VdfLXHs4YcfrrTP\nF86nCwvQ2zaiP18NZ3+CsHDUyImoLj1RXt5WhyeEqASV/6SdcFk6Mw2982tIPwfpqbZnKNLOQVYG\naBMaNUaN/z/UjdEow8PqcIUQlUiKhXCI/v4w5uKn4XwmeHpBcBgEh6JatIPgMFSzltC8jSz8J4SL\nkmIhymUmfYV+bT4EBGE8vgCuuVaKghBuRoqFuCStNfqTVba9JZrcgDHxb/J0tRBuSoqFKJMuLEQv\nX4T+egOqUwzqvodlsFoINybFQpSicy5iLpoF3x1ADRyBGnCPdDsJ4eakWIgStNboZYvg6CHUA3/B\n6BRjdUhCiGpAdjESJejNn6N3bEENGiWFQghhJ8VC2OmTx9ArXoYWf7Ttjy2EED+TYiEA0Pl5mC/N\nAd86GOOmXPXqr0II1yJjFi5GFxXC3m/Q5zPgfBZkZ6GzMyE7i/PXNUP3GogKCindbsXLcOYkxpSZ\nKP8gCyIXQlRnUixcjH7zP+gtib8e8KsLdQOhjh+56z6C9R+jet2O6nuXfTVYc/tm9JdfoG672/ZE\nthBC/I4UCxei01PR2zaiuvZGDRoJdeqiPH/9FgeZhaS9tgj9+QfozZ/bikOrG9HLF9t2sxs4wsLo\nhRDVmRQLF6LXrQFtovoPRQWU7kryqNcAY9xUdJ9BmB8sQ7/3Gvr916F2HYwHHkV5yOJ/QoiySbFw\nETrnAnrT56gO3VCh9S97roq8Do8/P4E+vA/ziwSMHv1RIWFVFKkQoiaSYuEi9KbPID/3iqa8qutb\n43F9aydGJYRwFTI/0gXowgL0urW25yMaRVkdjhDCBUmxcAF620bIysDoO9jqUIQQLkqKRQ2gs8/b\n9rcu6z2z2Lad6R+aQPM2VRyZEMJdSLGoxnRREeZH72JOvw/z2b/atjH9vd3b4exPqFsHy8qwQgin\nsXyAe9KkSfj4+GAYBh4eHsTFxXHhwgXmzZvHuXPnCAsLY+rUqfj5+VkdapXSP/2I+dp8OJ4MrTvA\nkf2Y/5qCMW4qqnUH2zlaY372PoSFo9pHWxyxEMKVWV4sAJ544gn8/f3trxMSEmjdujWDBg0iISGB\nhIQERo4caWGEVcfWrZSAXvMW+PhiTJiBurEL+uwpzBdmYz7/L9vT13fcC98fhh+OoEZMkGckhBBO\nVS27oZKSkoiJsS2PHRMTQ1JSksURVQ199hTm7BnoD96ANh0xZi5C3dgFAFU/AuNvc1C39EV/9j5m\n/N8xP3wL6gagbu5lceRCCFdXLe4sZs2ahWEY9O7dm9jYWLKysggKsj2BHBgYSFZWVpntEhMTSUy0\nrYMUFxdHaGhohWPw9PS8qvZXy8zNIW3Bk6jci9Sd9iQ+XXuXPQYx9XFyO3Qme8mz6Lwc6gx/EL+I\nhg5dw+ocq4I75Ajukac75Ag1J0/Li8WsWbMIDg4mKyuLp556ioiIiBLvK6UuOXAbGxtLbGys/XVq\namqF4wgNDb2q9lfLXPEy+twZjMfiuNikBRfT0i598g3tUX+Phy2J5HbuSZ6DcVudY1VwhxzBPfJ0\nhxzB+jx//zP3UizvhgoODgYgICCAjh07kpycTEBAABkZGQBkZGSUGM9wRfqH79DrPkJ174dq0sKh\nNiq8IcZd96F86zg5OiGEsLhY5OXlkZuba/967969NGrUiA4dOrBp0yYANm3aRMeOHa0M06l0URHm\nsoUQEIi6c7TV4QghRJks7YbKyspi7ty5ABQXF9O1a1fatWtH48aNmTdvHuvXr7dPnXVV+r8JcPIY\nxsS/yV2CEKLasrRY1K9fnzlz5pQ6XrduXR5//HELIqpaOuUUeu270D4a9cfOVocjhBCXZPmYhbvS\nWmMuXwKeXhjDx1sdjhBCXJYUC4vorevg0F7UXfehAkvviS2EENWJFAsL6HNn0CtfhaYtUN36WB2O\nEEKUy/LnLNyBLiqCowfR3+5Ef7sTTv5g634aNRllSL0WQlR/UiycSJ/PQL/9Enr/TsjLBQ8PaNLC\n1vX0x2hUfccehhFCCKtJsXASnZ+PufApOHUc1bkHqtWN0LwNqrav1aEJIcQVk2LhBNo0MV+Jh+PJ\ntucn2nWyOiQhhLgq0mHuBPr912HXNtTQcVIohBAuQYpFJTM3foL+IgHVoz+q1+1WhyOEEJVCikUl\n0vt2oN9+CVp3QN3zgGxzKoRwGTJmcYV0fh6c/Qm8a9n+1PKx/ffMT5gvPguR12KMny471wkhXIoU\niyugs89jxk2HlNNlnxAYgjH5nyif2lUbmBBCOJkUCwfpgnzMxU9BRhpq9GTb3URB/q9/CgtRnWJQ\nQbJ0hxDC9UixcIBtKuw8+P4wxkOP2ffFFkIIdyED3A7Q770GO7ei7r5fCoUQwi1JsSiHuf4j9H8/\nRPUcgIodaHU4QghhCSkWl6F3b0O/+zK064S6Z5xMhRVCuC0pFpeg9+/CXDoXrm2C8cCjKEOmwgoh\n3JcMcP+Ozs1Bv/caevPn0CASY/LfUbVqWR2WEEJYSorFb+hvd2AuWwyZ6ag+d6LuGIHylkIhhBCW\nFovU1FQWL15MZmYmSiliY2O57bbbWLlyJevWrcPf3x+A4cOH0759e6fFoS9eIOudFzDXf2K7m5gx\nGxV1vdOuJ4QQNY2lxcLDw4NRo0YRFRVFbm4uM2bMoE2bNgD079+fgQOdP/tIH/sOc9HT5GVnofoN\nQd0+DOXl7fTrCiFETWJpsQgKCiIoKAiA2rVr07BhQ9LT06s2iLBwaNiI4PsfISsgtGqvLYQQNYTS\nWmurgwBISUnhiSeeID4+no8++oiNGzfi6+tLVFQUo0ePxs/Pr1SbxMREEhMTAYiLi6OgoKDC1/f0\n9KSoqKjC7WsCydF1uEOe7pAjWJ+nt7djPSnVoljk5eXxxBNPMHjwYDp16kRmZqZ9vGLFihVkZGQw\nceLEcj/n1KlTFY4hNDSU1NTUCrevCSRH1+EOebpDjmB9nhEREQ6dZ/lzFkVFRcTHx9OtWzc6dbLt\nKhcYGIhhGBiGQa9evTh69KjFUQohhHuztFhorXnhhRdo2LAhAwYMsB/PyMiwf719+3YiIyOtCE8I\nIcTPLB3gPnz4MJs3b6ZRo0ZMnz4dsE2T3bJlC8eOHUMpRVhYGOPHj7cyTCGEcHuWFovmzZuzcuXK\nUsed+UyFEEKIK2f5mIUQQojqT4qFEEKIckmxEEIIUa5q8ZyFEEKI6k3uLH42Y8YMq0NwOsnRdbhD\nnu6QI9ScPKVYCCGEKJcUCyGEEOXyePLJJ5+0OojqIioqyuoQnE5ydB3ukKc75Ag1I08Z4BZCCFEu\n6YYSQghRLrffg3v37t289tprmKZJr169GDRokNUhVYolS5awc+dOAgICiI+PB+DChQvMmzePc+fO\nERYWxtSpU8vcJ6SmuNS2vK6UZ0FBAU888QRFRUUUFxfTuXNnhg4d6lI5/sI0TWbMmEFwcDAzZsxw\nyRwnTZqEj48PhmHg4eFBXFxczclTu7Hi4mI9efJkfebMGV1YWKgfffRRfeLECavDqhT79+/XR48e\n1dOmTbMfW758uV69erXWWuvVq1fr5cuXWxVepUhPT9dHjx7VWmudk5OjH3nkEX3ixAmXytM0TZ2b\nm6u11rqwsFD/9a9/1YcPH3apHH+xdu1aPX/+fP3MM89orV3v/1ettZ44caLOysoqcaym5OnW3VDJ\nycmEh4dTv359PD096dKlC0lJSVaHVSlatGhR6reTpKQkYmJiAIiJianxuQYFBdkHBn+7La8r5amU\nwsfHB4Di4mKKi4tRSrlUjgBpaWns3LmTXr162Y+5Wo6XUlPydOtuqPT0dEJCQuyvQ0JC+O677yyM\nyLmysrLse54HBgaSlZVlcUSVJyUlhR9++IEmTZq4XJ6mafLYY49x5swZbr31Vpo2bepyOb7++uuM\nHDmS3Nxc+zFXy/EXs2bNwjAMevfuTWxsbI3J062LhTtTSqGUsjqMSpGXl0d8fDxjxozB19e3xHuu\nkKdhGMyZM4eLFy8yd+5cfvzxxxLv1/Qcd+zYQUBAAFFRUezfv7/Mc2p6jr+YNWsWwcHBZGVl8dRT\nT5Xa0rQ65+nWxSI4OJi0tDT767S0NIKDgy2MyLkCAgLIyMggKCiIjIwM+z7nNVlZ2/K6Yp4AderU\noWXLluzevdulcjx8+DDffPMNu3btoqCggNzcXJ5//nmXyvEXv/x8CQgIoGPHjiQnJ9eYPN16zKJx\n48acPn2alJQUioqK2Lp1Kx06dLA6LKfp0KEDmzZtAmDTpk107NjR4oiujr7EtryulOf58+e5ePEi\nYJsZtXfvXho2bOhSOY4YMYIXXniBxYsXM2XKFFq1asUjjzziUjmC7Q74l262vLw89u7dS6NGjWpM\nnm7/UN7OnTt54403ME2THj16MHjwYKtDqhTz58/nwIEDZGdnExAQwNChQ+nYsSPz5s0jNTW1ek/R\nc9ChQ4d4/PHHadSokf3Wffjw4TRt2tRl8jx+/DiLFy/GNE201kRHRzNkyBCys7NdJsff2r9/P2vX\nrmXGjBkul+PZs2eZO3cuYJus0LVrVwYPHlxj8nT7YiGEEKJ8bt0NJYQQwjFSLIQQQpRLioUQQohy\nSbEQQghRLikWQgghyiXFQriladOmXfJpYWdLTU1l1KhRmKZpyfWFqAiZOivc2sqVKzlz5gyPPPKI\n064xadIkHnroIdq0aeO0awjhbHJnIcRVKC4utjoEIaqE3FkItzRp0iTuv/9++xO1np6ehIeHM2fO\nHHJycnjjjTfYtWsXSil69OjB0KFDMQyDjRs3sm7dOho3bszmzZvp06cP3bt358UXX+T48eMopWjb\nti3jxo2jTp06LFy4kK+++gpPT08Mw2DIkCFER0czefJk3nnnHTw8PEhPT2fp0qUcOnQIPz8/7rjj\nDmJjYwHbnc/Jkyfx9vZm+/bthIaGMmnSJBo3bgxAQkICn376Kbm5uQQFBfHAAw/QunVry/5ehety\n64UEhXvz8vLizjvvLNUNtXjxYgICAnj++efJz88nLi6OkJAQevfuDcB3331Hly5dWLp0KcXFxaSn\np3PnnXdyww03kJubS3x8PKtWrWLMmDE8/PDDHDp0qEQ3VEpKSok4FixYQGRkJC+++CKnTp1i1qxZ\nhIeH06pVK8C2Kutf/vIXJk6cyLvvvsurr77K008/zalTp/j888955plnCA4OJiUlRcZBhNNIN5QQ\nv5GZmcmuXbsYM2YMPj4+BAQE0L9/f7Zu3Wo/JygoiH79+uHh4YG3tzfh4eG0adMGLy8v/P396d+/\nPwcOHHDoeqmpqRw6dIh7770Xb29vrr32Wnr16mVfWA6gefPmtG/fHsMwuOWWWzh27BhgW7q8sLCQ\nkydPUlRURL169QgPD6/Uvw8hfiF3FkL8RmpqKsXFxYwfP95+TGtdYpOs0NDQEm0yMzN5/fXXOXjw\nIHl5eZim6fBCcBkZGfj5+VG7du0Sn3/06FH764CAAPvX3t7eFBYWUlxcTHh4OGPGjGHVqlWcPHmS\ntm3bMnr0aJdeZl9YR4qFcGu/32gmJCQET09PXnnlFTw8PBz6jHfeeQeA+Ph4/Pz82L59O6+++qpD\nbYOCgrhw4QK5ubn2gpGamurwD/yuXbvStWtXcnJyeOmll3jrrbd4+OGHHWorxJWQbijh1gICAjh3\n7py9rz8oKIi2bduybNkycnJyME2TM2fOXLZbKTc3Fx8fH3x9fUlPT2ft2rUl3g8MDCw1TvGL0NBQ\nrr/+et5++20KCgo4fvw4GzZsoFu3buXGfurUKb799lsKCwvx9vbG29u72u6yJmo+KRbCrUVHRwMw\nbtw4HnvsMQAmT55MUVER06ZNY+zYsTz33HNkZGRc8jPuvvtufvjhB+677z6eeeYZbrrpphLvDxo0\niPfff58xY8awZs2aUu3//Oc/c+7cOR566CHmzp3L3Xff7dAzGYWFhbz11luMGzeOBx98kPPnzzNi\nxIgrSV8Ih8nUWSGEEOWSOwshhBDlkmIhhBCiXFIshBBClEuKhRBCiHJJsRBCCFEuKRZCCCHKJcVC\nCCFEuaRYCCGEKJcUCyGEEOX6fyISDYiaV0LdAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -428,6 +400,159 @@ "Modify the code to compare the variance and performance before and after adding baseline. And explain wht the baseline won't introduce bias. Then, write a report about your findings and explainations. " ] }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1: Average Return = 19.01\n", + "Iteration 2: Average Return = 17.26\n", + "Iteration 3: Average Return = 19.88\n", + "Iteration 4: Average Return = 21.99\n", + "Iteration 5: Average Return = 22.17\n", + "Iteration 6: Average Return = 25.72\n", + "Iteration 7: Average Return = 23.49\n", + "Iteration 8: Average Return = 26.35\n", + "Iteration 9: Average Return = 29.59\n", + "Iteration 10: Average Return = 30.43\n", + "Iteration 11: Average Return = 33.12\n", + "Iteration 12: Average Return = 39.41\n", + "Iteration 13: Average Return = 33.87\n", + "Iteration 14: Average Return = 41.64\n", + "Iteration 15: Average Return = 35.97\n", + "Iteration 16: Average Return = 39.16\n", + "Iteration 17: Average Return = 43.57\n", + "Iteration 18: Average Return = 42.11\n", + "Iteration 19: Average Return = 40.98\n", + "Iteration 20: Average Return = 44.7\n", + "Iteration 21: Average Return = 50.5\n", + "Iteration 22: Average Return = 49.48\n", + "Iteration 23: Average Return = 51.22\n", + "Iteration 24: Average Return = 51.44\n", + "Iteration 25: Average Return = 50.27\n", + "Iteration 26: Average Return = 56.14\n", + "Iteration 27: Average Return = 58.16\n", + "Iteration 28: Average Return = 52.85\n", + "Iteration 29: Average Return = 60.39\n", + "Iteration 30: Average Return = 57.33\n", + "Iteration 31: Average Return = 59.64\n", + "Iteration 32: Average Return = 61.09\n", + "Iteration 33: Average Return = 56.73\n", + "Iteration 34: Average Return = 60.95\n", + "Iteration 35: Average Return = 64.53\n", + "Iteration 36: Average Return = 62.29\n", + "Iteration 37: Average Return = 62.38\n", + "Iteration 38: Average Return = 68.92\n", + "Iteration 39: Average Return = 65.49\n", + "Iteration 40: Average Return = 72.31\n", + "Iteration 41: Average Return = 70.46\n", + "Iteration 42: Average Return = 75.13\n", + "Iteration 43: Average Return = 76.05\n", + "Iteration 44: Average Return = 74.29\n", + "Iteration 45: Average Return = 76.9\n", + "Iteration 46: Average Return = 79.63\n", + "Iteration 47: Average Return = 84.12\n", + "Iteration 48: Average Return = 81.36\n", + "Iteration 49: Average Return = 83.62\n", + "Iteration 50: Average Return = 88.09\n", + "Iteration 51: Average Return = 99.47\n", + "Iteration 52: Average Return = 94.7\n", + "Iteration 53: Average Return = 105.75\n", + "Iteration 54: Average Return = 115.27\n", + "Iteration 55: Average Return = 125.27\n", + "Iteration 56: Average Return = 131.91\n", + "Iteration 57: Average Return = 142.35\n", + "Iteration 58: Average Return = 152.48\n", + "Iteration 59: Average Return = 155.68\n", + "Iteration 60: Average Return = 153.77\n", + "Iteration 61: Average Return = 166.94\n", + "Iteration 62: Average Return = 165.18\n", + "Iteration 63: Average Return = 154.73\n", + "Iteration 64: Average Return = 161.18\n", + "Iteration 65: Average Return = 166.77\n", + "Iteration 66: Average Return = 160.53\n", + "Iteration 67: Average Return = 169.21\n", + "Iteration 68: Average Return = 173.57\n", + "Iteration 69: Average Return = 178.88\n", + "Iteration 70: Average Return = 179.22\n", + "Iteration 71: Average Return = 175.59\n", + "Iteration 72: Average Return = 176.31\n", + "Iteration 73: Average Return = 178.63\n", + "Iteration 74: Average Return = 187.14\n", + "Iteration 75: Average Return = 181.99\n", + "Iteration 76: Average Return = 189.63\n", + "Iteration 77: Average Return = 185.32\n", + "Iteration 78: Average Return = 186.06\n", + "Iteration 79: Average Return = 188.13\n", + "Iteration 80: Average Return = 183.85\n", + "Iteration 81: Average Return = 185.33\n", + "Iteration 82: Average Return = 190.44\n", + "Iteration 83: Average Return = 188.63\n", + "Iteration 84: Average Return = 188.7\n", + "Iteration 85: Average Return = 189.96\n", + "Iteration 86: Average Return = 191.3\n", + "Iteration 87: Average Return = 186.0\n", + "Iteration 88: Average Return = 192.34\n", + "Iteration 89: Average Return = 190.13\n", + "Iteration 90: Average Return = 189.6\n", + "Iteration 91: Average Return = 187.1\n", + "Iteration 92: Average Return = 190.71\n", + "Iteration 93: Average Return = 191.69\n", + "Iteration 94: Average Return = 192.09\n", + "Iteration 95: Average Return = 190.5\n", + "Iteration 96: Average Return = 194.41\n", + "Iteration 97: Average Return = 193.88\n", + "Iteration 98: Average Return = 191.17\n", + "Iteration 99: Average Return = 195.34\n", + "Solve at 99 iterations, which equals 9900 episodes.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAENCAYAAADUubjhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8nGW593/3zGRPJpklS5OmS9KGtjR0IYU2SkubWBGQ\nE5GXIxz1YNWKUTnWg74sKr6vp1jk7QlWqeChRnEFBaIoagnFFBqgKWlL9yZdk2aZZGayN8vMc79/\n3PM8s08myWxJru/nw4fMzP08c98z0+f3XMt9XYxzzkEQBEEQEUAV7QkQBEEQswcSHYIgCCJikOgQ\nBEEQEYNEhyAIgogYJDoEQRBExCDRIQiCICIGiQ5BEAQRMUh0CIIgiIhBokMQBEFEDBIdgiAIImJo\noj2BWKStrW3SxxqNRnR3d4dwNtMDWvfsgtY9uwhm3bm5uUGdiywdgiAIImKQ6BAEQRARg0SHIAiC\niBgkOgRBEETEINEhCIIgIgaJDkEQBBExSHQIgiCIiEGiEyK4pRvSn34D25XL0Z4KQRBEzEKiEyr6\nrOB/eQH2NhIdgiAIf5DohIq4BAAAHx2N8kQIgiBiFxKdUBEXBwDgoyNRnghBEETsQqITKuLiAQB8\njESHIAjCHyQ6oSJeiA7IvUYQBOEXEp1QoXFYOuReIwiC8AuJTqiQYzpjZOkQBEH4g0QnRDCVCtBo\nKHuNIAgiACQ6oSQuHiD3GkEQhF9IdEKJJo4sHYIgiACQ6ISSuHiK6RAEQQSARCeUxMfTPh2CIIgA\naKI9AZkjR46guroakiShrKwMFRUVbq9zzlFdXY3Dhw8jISEBlZWVKCgoQHd3N55++mn09PSAMYby\n8nLceuutAICBgQFUVVWhq6sLmZmZ2LZtG1JTU8O3CE08MEKiQxAE4Y+YsHQkScKePXvwyCOPoKqq\nCgcOHEBra6vbmMOHD6OjowO7du3C1q1b8dxzzwEA1Go1PvOZz6Cqqgrbt2/HP/7xD+XYmpoaFBcX\nY9euXSguLkZNTU14FxIXR+41giCIAMSE6DQ3NyMnJwfZ2dnQaDQoLS1FQ0OD25hDhw5h/fr1YIyh\nqKgIg4ODsFqt0Ol0KCgoAAAkJSUhLy8PFosFANDQ0IANGzYAADZs2OB1zpATn0CJBARBEAGICfea\nxWKBwWBQHhsMBjQ1NXmNMRqNbmMsFgt0Op3ynMlkwoULF7Bo0SIAQG9vr/J6RkYGent7fb5/bW0t\namtrAQA7duxwe5+JYE1OAR/om/Tx0xmNRkPrnkXQumcXoVx3TIhOKBgeHsbOnTtx3333ITk52et1\nxhgYYz6PLS8vR3l5ufK4u7t7UnOwc0AzOjLp46czRqOR1j2LoHXPLoJZd25ublDnign3ml6vh9ls\nVh6bzWbo9XqvMa6Ldh1js9mwc+dO3HTTTbjxxhuVMenp6bBarQAAq9UKrVYbzmWAxdE+HYIgiEDE\nhOgUFhaivb0dJpMJNpsN9fX1KCkpcRtTUlKC/fv3g3OOs2fPIjk5GTqdDpxzPPPMM8jLy8Ptt9/u\ndUxdXR0AoK6uDmvWrAnvQuLjqeAnQRBEAGLCvaZWq7FlyxZs374dkiRh48aNyM/Px969ewEAmzdv\nxqpVq9DY2IgHHngA8fHxqKysBACcOXMG+/fvx7x58/DNb34TAHDPPfdg9erVqKioQFVVFfbt26ek\nTIcVx+ZQ3048giAIgnHOebQnEWu0tbVN6jjphT3A269D9ePfh3hGsQ/5umcXtO7ZxYyL6cwYqCIB\nQRBEQEh0QklcHGC3g9vt0Z4JQRBETEKiE0riHC2rqSoBQRCET0h0QokiOmPRnQdBEESMQqITShTR\nobgOQRCEL0h0QklcnPg/WToEQRA+IdEJIYxiOgRBEAEh0QklFNMhCIIICIlOKKGYDkEQREBIdEIJ\nxXQIgiACQqITSuISxP8ppkMQBOETEp1Q4rB0qGU1QRCEb0h0QgllrxEEQQSERCeUUEyHIAgiICQ6\noUSJ6VD2GkEQhC9IdEIJWToEQRABIdEJJRpZdCimQxAE4QsSnRDCVCqRTECWDkEQhE9IdEIMi4sn\nS4cgCMIPJDohhsWT6BAEQfhDE+0JyBw5cgTV1dWQJAllZWWoqKhwe51zjurqahw+fBgJCQmorKxE\nQUEBAGD37t1obGxEeno6du7cqRzz4osv4o033oBWqwUA3HPPPVi9enV4FxKfQKJDEAThh5gQHUmS\nsGfPHnz729+GwWDAww8/jJKSEsydO1cZc/jwYXR0dGDXrl1oamrCc889h8cffxwAcPPNN+OWW27B\n008/7XXu2267DXfccUfE1sLi4sFHSXQIgiB8ERPutebmZuTk5CA7OxsajQalpaVoaGhwG3Po0CGs\nX78ejDEUFRVhcHAQVqsVALBs2TKkpqZGY+pesPh4cBslEhAEQfgiJkTHYrHAYDAojw0GAywWi9cY\no9EYcIwv/v73v+PBBx/E7t27MTAwELpJ+4ESCQiCIPwTE+61cLF582bcddddAIAXXngBzz//PCor\nK73G1dbWora2FgCwY8cON3GbKNbERMSN2aCfwjmmIxqNZkqf23SF1j27oHWH4FwhOcsU0ev1MJvN\nymOz2Qy9Xu81pru7O+AYTzIyMpS/y8rK8MQTT/gcV15ejvLycuWx6/tMFLUmHmO9vVM6x3TEaDTO\nujUDtO7ZBq3bP7m5uUGdKybca4WFhWhvb4fJZILNZkN9fT1KSkrcxpSUlGD//v3gnOPs2bNITk6G\nTqcLeF455gMABw8eRH5+fljm7wqLiwcopkMQBOGTmLB01Go1tmzZgu3bt0OSJGzcuBH5+fnYu3cv\nAOEmW7VqFRobG/HAAw8gPj7ezU321FNP4eTJk+jv78f999+Pu+++G5s2bcKvf/1rXLx4EYwxZGZm\nYuvWrWFfC0uglGmCIAh/MM45j/YkYo22trZJHxv3+59h+P13oH6yOoQzin3I7TC7oHXPLmace20m\nIdxrZOkQBEH4gkQnxIgyOBTTIQiC8AWJTohh8QnA6CjIa0kQBOENiU6oiY8HuATY7dGeCUEQRMxB\nohNimNyymuI6BEEQXpDohBgW7xAdiusQBEF4QaITYlh8vPiDKk0TBEF4QaITauIcokMbRAmCILwg\n0QkxiqVDMR2CIAgvSHRCjBLTIfcaQRCEFyQ6IYYp7jVKJCAIgvCERCfUKNlrZOkQBEF4QqITYpSY\nDokOQRCEFyQ6IUbeHMpJdAiCILwg0QkxTkuHYjoEQRCekOiEGorpEARB+IVEJ8RQTIcgCMI/JDoh\nhlFFAoIgCL+Q6IQa2qdDEAThFxKdEMMYE8IzNhLtqRAEQcQcmmhPQObIkSOorq6GJEkoKytDRUWF\n2+ucc1RXV+Pw4cNISEhAZWUlCgoKAAC7d+9GY2Mj0tPTsXPnTuWYgYEBVFVVoaurC5mZmdi2bRtS\nU1PDv5i4OLJ0CIIgfBATlo4kSdizZw8eeeQRVFVV4cCBA2htbXUbc/jwYXR0dGDXrl3YunUrnnvu\nOeW1m2++GY888ojXeWtqalBcXIxdu3ahuLgYNTU1YV8LAIelQzEdgiAIT2JCdJqbm5GTk4Ps7Gxo\nNBqUlpaioaHBbcyhQ4ewfv16MMZQVFSEwcFBWK1WAMCyZct8WjANDQ3YsGEDAGDDhg1e5wwbJDoE\nQRA+iQnRsVgsMBgMymODwQCLxeI1xmg0BhzjSW9vL3Q6HQAgIyMDvb29IZx1AOLiqSIBQRCED2Im\nphNuGGMiyO+D2tpa1NbWAgB27NjhJm4TRaPRQJOUBBVj0E3hPNMNjUYzpc9tukLrnl3QukNwrpCc\nZYro9XqYzWblsdlshl6v9xrT3d0dcIwn6enpsFqt0Ol0sFqt0Gq1PseVl5ejvLxceez6PhPFaDTC\nxlTA4MCUzjPdMBqNs2q9MrTu2QWt2z+5ublBnSsm3GuFhYVob2+HyWSCzWZDfX09SkpK3MaUlJRg\n//794Jzj7NmzSE5OVlxn/igpKUFdXR0AoK6uDmvWrAnbGtygmA5BEIRPYsLSUavV2LJlC7Zv3w5J\nkrBx40bk5+dj7969AIDNmzdj1apVaGxsxAMPPID4+HhUVlYqxz/11FM4efIk+vv7cf/99+Puu+/G\npk2bUFFRgaqqKuzbt09JmY4IcfHA1aHIvBdBEMQ0gnHOebQnEWu0tbVN+lij0YjO7/8n0HEF6v/z\nkxDOKrYht8PsgtY9u5hx7rWZBiP3GkEQhE9IdMIBiQ5BEIRPSHTCAZXBIQiC8AmJTjiISyBLhyAI\nwgckOuEgLg4YGwXlaBAEQbhDohMO4uIBzgG7Ddw2BvujX4J04I1oz4ogCCLqkOiEg7g48f+xMeD8\nGcDUDlxqiu6cCIIgYgASnXAQlyD+PzYCfuIIAID39URxQgRBELEBiU44cLF0+MnD4u/+CFW4JgiC\niGFIdMJBXLz4f48FuNQs/iZLhyAIgkQnHDCH6PAPGkRCwfxFJDoEQRAg0QkPsugcPQgkp4BdtwYY\nGgSnDaMEQcxyghad48ePw2QyAQCsVit+8pOfYPfu3ejpoTt4L+SYzpVLwJLrgAxH359++qwIgpjd\nBC06e/bsgUolhj///POw2+1gjOHZZ58N2+SmLXJMBwBbtgpMmyEekIuNIIhZTtD9dCwWC4xGI+x2\nO44ePYrdu3dDo9HgS1/6UjjnNz1xE52Vzsw1Eh2CIGY5QYtOUlISenp60NLSgrlz5yIxMRE2mw02\nmy2c85ueyKKTNQcsMwecMQBirw6L4rQIgiCiTdCic8stt+Dhhx+GzWbDfffdBwA4ffo08vLywjW3\n6YsjpsOWrRKP0xzuNdqrQxDELCdo0amoqMANN9wAlUqFnJwcAIBer8f9998ftslNWzL0wMobwW76\nCACAJSQACUnkXiMIYtYTtOgA7u1Ijx8/DpVKhWXLloV8UtMdpomD+iuPuj+pTSfRmUZwcxeYITPa\n0yCIGUfQ2WuPPfYYTp8+DQCoqanBj370I/zoRz/Cyy+/HLbJzSi0GVR/bZrAz56A9NDnwdtboz0V\ngphxBC06LS0tKCoqAgC88cYbeOyxx7B9+3a8/vrrYZvcjEKbQZbONIF3d4o/zJ3RnQhBzECCdq/J\nDck6OjoAAHPnzgUADA4OhmQiR44cQXV1NSRJQllZGSoqKrzev7q6GocPH0ZCQgIqKytRUFAQ8NgX\nX3wRb7zxBrRaLQDgnnvuwerVq0My34nCtBngTSej8t7EBBkaAADwgT7KNiSIEBO06FxzzTX4+c9/\nDqvVijVr1gAQApSWljblSUiShD179uDb3/42DAYDHn74YZSUlCjCBgCHDx9GR0cHdu3ahaamJjz3\n3HN4/PHHxz32tttuwx133DHlOU4ZbQYw2A9ut4Op1dGeDREIh+hgoC+68yCIGUjQ7rWvfOUrSE5O\nxvz583H33XcDANra2nDrrbdOeRLNzc3IyclBdnY2NBoNSktL0dDQ4Dbm0KFDWL9+PRhjKCoqwuDg\nIKxWa1DHxgRpGaL4J6VNxz5DDuu9vz+68yCIGUjQlk5aWhruvfdet+dC5aqyWCwwGAzKY4PBgKam\nJq8xRqPRbYzFYhn32L///e/Yv38/CgoK8NnPfhapqakhmfNEYdoMcECIjlyLjYhNBsnSIYhwEbTo\n2Gw2vPzyy9i/fz+sVit0Oh3Wr1+PO++8ExrNhDKvI8bmzZtx1113AQBeeOEFPP/886isrPQaV1tb\ni9raWgDAjh073MRtomg0Gp/Hj+bPhxWAlklImML5YxV/656OWG2jGAUQPzaMjHHWNJPWPRFo3bOL\nUK47aLX49a9/jXPnzuGLX/wiMjMz0dXVhZdeeglDQ0NKhYLJotfrYTablcdmsxl6vd5rTHd3t9cY\nu93u99iMjAzl+bKyMjzxxBM+37+8vBzl5eXKY9f3mShGo9Hn8ZyLkHRvy2Wo5hZO+vyxir91T0fs\nVvF7GjF3j7ummbTuiUDrnl0Es27XfZyBCDqm8+677+Jb3/oWVqxYgdzcXKxYsQIPPvgg3nnnnWBP\n4ZfCwkK0t7fDZDLBZrOhvr4eJSUlbmNKSkqwf/9+cM5x9uxZJCcnQ6fTBTzWarUqxx88eBD5+flT\nnuukoUrT0wc5pjNIMR2CCDUTTpkOB2q1Glu2bMH27dshSRI2btyI/Px87N27F4Bwk61atQqNjY14\n4IEHEB8fr7jJ/B0LCOvs4sWLYIwhMzMTW7duDdsaxiUxSRQCJdGJfSh7jSDCRtCis27dOjzxxBO4\n6667FFPrpZdewtq1a0MykdWrV3slJmzevFn5mzGGL3zhC0EfCwBf+9rXQjK3UMAYow2i0wWXRALO\nufjuCIIICUGLzqc//Wm89NJL2LNnD6xWK/R6PUpLS5VAPREEVAon5uGjI4BtDEjVCkvn6hCQnBLt\naRHEjCGg6Bw/ftzt8bXXXotrr73W7e7v9OnTWL58efhmOJNISwcssy8IOa2QXWvZuUJ0BvpIdAgi\nhAQUnZ/+9Kc+n5cFRxafn/zkJ6Gf2QyEaTPALzVHexpEIBxlnVjWHPBzp4XoZM2J8qQIYuYQUHSe\nfvrpSM1jdqDNAPp7wSUJTBV04iARSRRLx9GckJIJCCKk0JUvkmgzAElyBqqJ2ENOk84Sew74AKVN\nE0QoIdGJJLRXBwAg/fm3kP5nZ7Sn4RPusHSY7FIjS4cgQgqJTgRhiuhYAw+c4fCzJ8CbTkR7Gr6R\n3WuGTECtJtEhiBBDohNJHKIz69Om+3pi92Iu94dKTnGmTRMEETJIdCKJbOn0k+hgbBR8ZCTaM/Fm\naABISgFTqYFULTiJDkGEFBKdSJKUIlw209DS4f29kH77DPjY6NTOYxtzBusHY/CCPjQApDjaX5Cl\nQxAhh0QngjCVCtDqAKsl2lOZMPzQ2+BvvgZcOje1E/W5NLGLwcwwPjgAJMuikxaTcySI6QyJTqTJ\nyQPvaI32LCbOBUdjvKuDUzuPq2sxFqs4u1g6LIUsHYIINSQ6EYblzgPaW8AlKdpTmRD8ohAdPtU9\nRi6uxZiMlwwOOMvepGqBwf6QfVdcsoOPDIfkXAQxXSHRiTS5+cDIMGCdPjXY+PAQIFtnQ1MTHd7r\nki4ei66roQEw2b2WliY2814dCsmp+Wt/gPTo/SQ8xKyGRCfCsDnzxB9tl92e5/194LFaDPTSeUDu\npzQ0RfeaaxJFjCUScM6FqCa7JBIAIXOx8QtNQK8F/O3akJyPIKYjJDqRJlc0mONtLW5PS8//GNJT\nj0VjRuPCL54Vf6hUU7Z00NcDJCWL/2LN0hkdBWw2ICUNAMBCLDrobAMA8No/gdvtoTknQUwzSHQi\nDEtJA9J1bpYOlyTg7HER65mitcNtNtgf+yr4kXenOlUnF5oAQ5bIvAuFpZOWIS7sUUgkkP75N0g/\ne9L3i7KgprjEdICQiA632YDuDiBvPtDdCd449TbvBDEdIdGJBrnzwNtdLJ2OVuVizs8em9q5B/qA\ntsvgzaendh4X+MUmYMEiIDlFqU026XP19YhNsilpUUkk4IffAW94C9zS5f2iXHdNdq85LJ6QzNNs\nAux2sLKPA1m54P94Oawt4AkiViHRiQJsTj7Q1qJcdPg5h0CoNcCZ4wGODAI5pbk3+PpufGzUr5jw\n/l7AbAJbWCRiHVO1dHqtQHpGWPfAcJsNUsPb4K0XvV9sFwkR/Hij92uy5aUkEoTQvdZ5BYD47tnm\nCuBSM3A2RuvPEUQYIdGJBrnzgJGrzi6i506Ji/Dy1eBnpmjpyBZTb/AbUPnLz0P6f4/6fvGiaDrH\nFiwWqcQhiOkwbYbYAxNi9xofHYH05l8hPfol8J/9ENIffu7++vCQkjXIj7/vfQLFveYQnYQkQKMB\n+scXHW5qBw8wjjviOcjOA1u3EUhLh/SPl8dfFEHMMAI2cYskR44cQXV1NSRJQllZGSoqKtxe55yj\nuroahw8fRkJCAiorK1FQUBDw2IGBAVRVVaGrqwuZmZnYtm0bUlNTI742T9icfHBAxHUMmcLSKVwK\ntqQY/OhBcEsXmD5zcieXL5w9ExCdjlagq8P3axebAMaA+YVgyangVy4FPtfYGKBW+2xSx8fGxPy0\nGQBThdTS4WOjkP7rG0B7C1C4BNAbgZYL7oPkC3+6Hjh1FNw2BqaJc55DKfbp2BzKmLJXJ+B7cw7p\n/z0KtuQ6sC1f9z2o84o4b2oaGGNgN20Gf+0P4FeHwJKSJ7VmgpiOxISlI0kS9uzZg0ceeQRVVVU4\ncOAAWlvdd+0fPnwYHR0d2LVrF7Zu3Yrnnntu3GNrampQXFyMXbt2obi4GDU1NRFfm0/kDLb2y+Lu\nuOMKWOESsKJi8fzZybvY+NDE3Wvo6wGGr/rMqOIXm4CcuWCJyQ5Lx797jXMO6ZEvgr/+J98D5GoE\nWp24mF8dFAH2EMBrXwXaW8C2fguq//0E2PUfEl1aXdpIyHE0tuk2YPgqcO6M+0k8LR0guKKf3Z2A\ntRv8ykX/8+tsA7JzlVbvmDNX/H8i3xNBzABiQnSam5uRk5OD7OxsaDQalJaWoqGhwW3MoUOHsH79\nejDGUFRUhMHBQVit1oDHNjQ0YMOGDQCADRs2eJ0zWrBUrbjbb7sMnBcXPla4BJi7QNwNTyWuI4vC\n0EDwxTl7HWLgUeKGcw5cOAu2YJF4IjkVGB7yv0N/+CrQYwF/75++X3fs0WFaR0wHAIambu3wvh7w\n114EVtwA1ZoPC0ti7gLxomtcp/0KoFKBrf8ooFZ7u9iGBoRVl+hieQRR9JM7vkN0tPr/bDrbwOQW\n2ABYGjX0I2YnMSE6FosFBoNBeWwwGGCxWLzGGI1GrzGBju3t7YVOpwMAZGRkoLe3FzFD7jzwthbw\nc6dE5en5i4VLqujaqcV1XGMuQbjYuCQ5LRDPeI2lG+jvBRYsFo+TU8QmUX879OWLc8sFcLOP7DBZ\n3NJ1SmZYKFxs/NXfAWOjUN11n/PJvAXiNRfR4R0tQOYcIfqLlnmLzqDc1sD5z4IFU2laFp3RUZ+V\nJrhcgSI71/mk0uYihn6TBBEBYiamE24YY07Xhge1tbWorRW7xHfs2OEmbhNFo9EEdXxfQRGG33wN\nmqRk8IWLYcgTd8GDq9di4Mh70MEOtTF7wu/fzyXIkpDOOOLHmYvU14Mux915RpwGcS7jh5uOoxeA\nbuUaxBmNuJqdgz4A+sR4qD3Oq9FokBGnhixzKedOIvmaT7qNucpt4vj5C2GL06AHQLpGNe4cA2G7\nfB7m/f9A0sfuhHb5SucLRiO69EbEd3Ug3XH+7q4OaOYXIMNoxOCNN2Hg+d3QMQ61QcTPeu1jGEvT\nun1/fcZMDJ855vc71Wg0UF9uhj0xGXx4CNqhPiRcs8xtzNiFJlgAaBcvQaLjPHYV0A0gRRpD8hTW\nHy2C/Z3PNGjdIThXSM4yRfR6Pcxms/LYbDZDr9d7jenu7vYaY7fb/R6bnp4Oq9UKnU4Hq9UKrVbr\n8/3Ly8tRXl6uPHZ9n4liNBqDOl7SZYJfHcLYqQ/ANt2mHMPzFop1vLMfqnUbJ/z+ksvm0t5LF8CM\ncwKOd00M6Gm7AqbLcp7LUVm6JzEVrLsb3C5SvC2tLWDqeLfzGI1G9LQ69h6pVOiv34ehGza4z+2K\neN1i54DjXL1XWsGy5k5kiW7Y/6cKSEzCSHmF1+cu5c7D8LnTGOvuBrfbIbW1QLp2Nbq7u8EXLgEA\nmPe/DtVNm8W5LGYgMdntPJImHnygD12mTtHYzQNDWhpsF5rA1m0C3n4dvWdOQpW/yG0MPyNSo/uT\ntRiQv2dH/Gyg/QqGpvB7ixbB/s5nGrRu/+Tm5gZ8XSYm3GuFhYVob2+HyWSCzWZDfX09SkpK3MaU\nlJRg//794Jzj7NmzSE5Ohk6nC3hsSUkJ6urqAAB1dXVYs2ZNxNfmD+ZIJgCXRLaVjBLXmZyLjQ8N\nKPESHkwGm2vVZ0/32kC/cP3J2VXy/hV/e3rkLK/l1wOnj4F7uuH6eoT7Ki5e2e0/lY2XvL8POP4+\nWNkdzpI1LrC8BaLKg80msvPsNiDHIXB584EMg/t+nSGXCtMyqVrhUhz0nUAxdu602PS54gbx+fho\nW6GkS2c5bwCYWi2+J4rpELOMmLB01Go1tmzZgu3bt0OSJGzcuBH5+fnYu3cvAGDz5s1YtWoVGhsb\n8cADDyA+Ph6VlZUBjwWAiooKVFVVYd++fUrKdMyQO0/5k7mIjhLXmWwG29AgkJULXG0Ggtir41b1\n2bNtwWA/kJzqdEvK5WH8ZbA54jOq0jJIHzQAJw8D13/I+bpcjQBwJhJMJaYjb7hcsMj363MXiFpq\nnW1AV7sY68gaY4yBFV8vmtONjQohHBrwTlWXxWywz7lZ1IUxOemj4Bpgzlzwjiu+56kzgiUkuj+f\nliE23xLELCImRAcAVq9ejdWrV7s9t3nzZuVvxhi+8IUvBH0sAKSlpeG73/1uaCcaIpQMNrXG60LH\nFi0FP/IeeH8fmI8LXUCGBsV50zKCS8d1vdP2zF4b6HdedAEgSVg6fGgAPqNjsqVz3RpR5uboQZG6\nLJ+vzwpo08WD+ARAEzelStPcJFsQvs16NncBOADeesEZ4M9xySAr+RD4W3vBjxwEW/NhRy8d931c\nLFUr9lT5scjGzhwHMnPEhtecPJ+VDnjHFfckAhltRkgsHemP1YBWB9XmivEHE0SUiQn32myF3bgB\n7MPl3s/Pd9y5X2qe+EmHBsCSUoAMfZDuNavYda/ReFs6A33OLDNgfEtnsB9ITgGLiwMrLgE/dsh9\n709fD5hWZBOKjZdTLIXT2S4qX/tLuMjJE6WFrlwU5W/Sdc66agCw5DpAnwl+4HVHW4NB5xpl0oRI\nch8txjnnGDt73Gmp5swFeq1ubkrOOdB5BcyH6DBthnv7bgDcNgbpHy+LjbRBwt+rA3/rH0GPJ4ho\nQqITRVR3fx6qO+71fmFeIQCAT0p0HBfOdF1Q7jXh8tI56qr5cK+5WjoJSY72BgHca3JbgBVrxONz\nLoVHXd1rgLCGplIKx9QGGLLANL4NdqaJEy6v1kui6kKOe8ICU6nBSsuAk0eAjisi5uNh6SA3X1hk\ncnsHVyzB3dpqAAAgAElEQVRdkKxm4VoDwOTzt7vEdQb6xeflskdHIS3dO2X69Afgf/wFcPqDQCtX\n4DabsGg7rkztsySICEGiE4Ow5BQgOw/84sRER7lbT0oFS9cH5V5Tqj4np/pMJGCpTkuHMRaw/hof\ndLGMrl0NqDVKiwU+Nup0/cmkaqdk6XBTm++LuQts7gJRDqejVYnnuL1eugngHLz2z+IJT/eaJg5Y\nsNhZlNX1/R3PsQKHpTPHUWnCNa4jx538udeuDrpt4uXdJvH/YAWk1+pssHf+TOCxBBEDkOjEKGz+\noom710auimy4ZOFew0AfuG0cN02v3GrAvYI051zEW1zdawCQFKAUzkC/kiDAkpKB4uuF68dmc7qR\n0nXO8alpbrESfuEspF/+GFwav8GZcFu1+b6YuzJ3AdBjFnPOyfd6mWXmANcUg7+zTzxOSfUeU3gN\ncKnZu8LD+TMiNiVXPzBmC3eeSwaba6FPLxyuOzdrxyJEJ+jCqlbnJlxfwkgQsQaJTqyyYJGo5zWR\n2lyyGCSnOC/uveMEqvt7wNId7jXXmM7IsMj8SvUQHV8Wkcxgv2hS50D14c3CpfZBg4gdwRHHcOBZ\naZq/XQv+9uvApXOB5wyIO/yRYbc0ZF8wR2UCAGBzfFtF7MPlgCwonu41AKxwqfgsPObFz59B3KKl\nIv0ZjjTorDnClSfTeUWknRuy4InyWbgmE8iVHIIUHaXpX1KysxzPNIdzDulPvwG/fD7aUyHCAIlO\njKIkE0zExebShIylOzbXBojrcMkuLJC0DOHSc81ek8XA09IJ1N7AMwa0fDWQYYD01l7nhVXrYekM\n9jv7CjkumvzkkcDrBEQ8BwDzk7mmIFshgFdMR4atKnXuRfJh6aDwGsf8nJYEHxwALp9D3JJi97Fz\n5iqWDucc/PQHQFau77iTD0uHmx2WjmdShz8cWXlsxQ3A+bNBWYkxT38v+F9egPTai9GeCREGSHRi\nlXkFAGPgl5qCP8bV0smQLZ0AltJAv3DHpWd4WzqOWIvnpkvmp5Ebt9lETTYXkWJqtbAiTjSKatWA\nVyIBJEnENYavAo7qCPzU0XGX6nRbjSM66Y6K1gmJgM53GQ+WkAC2Zr144MvS0eqAzBw39xVvrAfs\ndiSWuleNYDlzga4O8XkcfU8UTC3/uO+5OT4L7svSCVZ0LN1CMK9dJdyrLm3Qpy0msacKxw6J3wUx\noyDRiVFYYhKQM3diyQRu7jVh6QRMm3Z1eTksHaVKsrx/JkhLR6ks4OGOYx8SKeF831/FE/I+Hdex\nA/0ifsUlUSmg+ZQokhmIzjaR5m0I3HeIMSYKluYv9Ft7DwDYbXeDVXzapxsMcLjYzp12WmXv1QHZ\nedA4MtcUcuYCdjvQeQXSy78CcvLAPvQR32+quNeEpcNtY4plGmxbcG7pBjIMSjID92zXMA3hsuiM\njoIfO+R3nPTWXkiv/SFCsyJCBYlODMMWLBYBbDk7aRyUC1Vyqri4M1XgtGlXl1dyqsiCGhala7ic\nVeYjpuPL0pHkrpme2V/GbGDpSqXEDItz1mxTrKiBPsW1xm67W6Quj9PKmZvaAGOOz3ponqi2fB2q\n+x8KOIbpjVDddrd/YSpcIqzG7k5wqxk4exzshvVe4+W0aemlXwLtLVB94rNKzMfrPRMShQUmfw9W\nszMTbSLuNb0RyMwRFt1MiOt0dYjfrjYD/NDbfofxd98Ef+2PIevJREQGEp1YZsEicUGymscfC7hZ\nOkylFsITwL2muHXk7DXAebEb9Cc6KYBtDHx0xO1pyRGX8FUDTbV+s/N9XJGtqMF+ITrZeSI2oYkb\nP65jah/fteaApaWLZIkpIG8A5edOgzfsBzgHu2G990C54sGxQ0KoVq0NfOK0dGdrCTmeM5G24I4u\ns4wxoHCJW9xp2mJqBwyZoprFsff9u9h6e4RLcTL72YioQaITw0y4MoEsOnJQPH2cqgS9TtFRdurL\n55AtnWQflo7rOAey6HiJFACsuEFcXNPdK4c7i372A+fPgBUUgcUnAIuXgZ/yLzpckgBTO9g4mWsh\nJW+e2Bx7/jT4e/uB+YvAcryz4VhSskhXB6D65H0BXXoAxN28Q/yVHkT5BV6WDpckSD97EtylwR8f\nGxNJCI5YFSu4ZkZsEuVd7aK0UMmHgbFR8A/8NF+UP7cpdNqdrXCbDdzcBX6hCXxkZPwDQgiJTiyT\nvxBQqYKP61wdBJKSnS6n8aoS9PUAcfFCpDwrSA/2i3N5Zl2l+K40zfv9xIAgNliq7n8Iqk/e5/6C\nLFCXmsVc5J39y1YCVy75F8wes0hxHmdjaChhKjVQUAT+fj1w+RzYjRv8j73uBrB1m8AWL/M7RsG1\nKoHD0mFzF/isDsEb3gI/WOd8Tq4np3eIjlyOZ7q72OQbikVLxY2TDxcbHxtVsi356Sk0PZxl8LFR\n2L/3NUiVn4T00OchPf6f4K/+NqJzINGJYVh8ApA7P/gMNkfnS+X4jHGqEvRZhZXDmHddNc+6a/I5\nk3zXX5P8JBIoxxVdC7ZwsfuTSSkAUynBYuYqOgiQxdYpp0tH0NKBI5mgrwdgTBQI9YPqM5VQbfl6\ncOd0LfppMQlrUJsh7vBdXZhyskHLBedzcrq0nJW3YLG4SZnGm0T5YL+44cmaA6ZSgZXILjYfbTIA\n4YpsPjn+JmhC0HwKuHIJ7MMfAfvMV4C5C8CbTkZ0CiQ6MQ5bsAi42OzMKgsAvzro3g8mXS/2PNh9\n793grrXQkp0VpAHHP34fouPP0pH6e8Vu/ISkcecpw1QqIXamdiA+XmkxjbkLhQXgJ64TdLp0iFEs\niWuKwTIMgQcHS1oG0N8HLknCvWbIdH7urp+xHPdpvah8n9zT0klIFBeR6WzpmDoAOG8oWMmHRAzx\nqIeLzXEzxVatA0ZHgIsT2Fowi+GnPwBUKrC7t0C1/qPiBu/y+YiKNolOrLNslXCtHNw//tghT9HR\niWwof+Xze60uoiNbMI4LnUtJGzcclg73sHR4fy+QmjZ+DMMTOfFgwWLnzn6VCmzJdeCnjvrO3DO1\nCbdgqC78wVK4BMgwQHXzraE7pzZdpIoP9gNmE5ghy+nqdGkcp/TdGRtV6rlBrkagc6aNs3mFQMuF\noDMeYw2lXUWm44aiYIn4jXhavY7fNFtzk9jPRi62oOCnjgILi8ASRdyXLSwCbGNA68WIzYFEJ8Zh\n15cC8wrAa37tXfvLkyH3fjBM2SDqJzbS1+MsxSJXkHbJXmMpPnr5+LV0+nxurBwXuSr1Qo/9LstW\ninlf9i6Jw03tivslkrCkZKifrBbfSaiQP/9eqyP9OdNZ/801IcClBYLiYrN2AylpYAkJznF584Vr\ntN/PjUas42i2h0zRroKpVGJjrmzVOeCOPWaYkw/kLQCfZKfd6QIfvuq+iXgy5xgaBC42gy25zvnk\nwiLx2oXIWYokOjEOU6mguutzgNnk3GDpj6FBZ8wFANIdloCPuA6X7MKaSXfpb+Pa3mAcS8dn9pqf\neE5AHJYO89hkyVatE6nTB97wPqazLeKutXDB5H49rRdFfTdDlm9h7+8Re1c0cUCLqEnGLd1eVRZY\n3nzxx5XYr0zA+/sg/eanziQUQLhadUYRz5TRGZ1WnYyS7p8OtqRYbNydQA+i6QZ//ieQHrwP9l3/\nF7yxPih3mJINKXP2OMAlsKUrnM/pM4Ur+4KP1h1hgkRnGsCWrgCWXw/+2ouB02G9YjpCUHxmgfX3\nCbeO694Zx8ZPbreLc/nMRNOIDY1e2Wu9gC/LaByUAqEFRR7Pp4KtWgt+cL/bxYTb7UBXx/g116YL\n8ufviEkwY5ZXfA2AyHBLTQPy5jsLYVq6lXiOgkN0+JWL4Zx1SOCvPA/+z7+Bv/em87muDq8irkxv\nFMVvXV2GvT3CytPEgV1TLNyOF6ZxLGsceNNJ8bm0XID00x2QqgJ3RObH3of00OfdYmH89Acidiq3\n4oDjZrPgGnASHcIT1Sf/Hbh6Ffyvvosgcskuap+5uri0GQBjvt1rsk/ctQBniqOCtL+NoTI+2htI\n/X1uvXeCZukKYPU6n4F5Vlom5nL0PeeTF5tExQIfe2SmJWmO+mtyIFyf5b1RF86kD5a/0BmzsXaL\nC7ILTJsh7lxj3NLhF5tERXEA/MhB5wumdtFuwhWdUVQUd2294ZoEs/jaGR3X4X09QI8ZbP1mqJ54\nDmzjbcDZE14btF2RDojPVvrzb5ylm04dBRYtA4uLcxvLFiwGOlq94rThgkRnmsDmLgAr3QT+5l+d\nQWVXrjpSSl0sHabRiAuQr4oGssvNzdJxiIm/CtMyKaleLZklPynW46FaezPUX37Y94vLVgA6IySH\ni41Ldki/+xmQrhfut5lASqqIpcnWiyETSEwWNwuelk5auigEO9An3FCD/b6LmObNB3cUT41FuCRB\n+v3/AGnp4gLadAJ8cECkRff1+LZ0ALfeQXK6P+DogZRfMG5ch4+OQKr98/ix0VjD8dtg8wrFfjE5\ni7Kr0+dwPjQAHG0QpZEunweOvidiYG2XwZas8BrPHHGdSGUAkuhMI9gN64Xf39cFxbXYpyv6THBL\nl9dwtxI48vnlStN+KkwreFo6oyPCvTEZSycATKUGW7cROHEY3GoG3/8P4FIz2N1bRCuGGQBTqYSY\njI0Kd1FiknguKcW9KkFfjyjnk78QAMCPOqwDT/caHHGdtstBpdlHA/7uP4Fzp8Hu/HewtTcDkiT2\nanmkSyvIwuoa13FNggFEXOf86cC764+/D/7Cc+B1fw96rtKffgvp3X8GPT4ccEcMD/kFAFzaeXS1\n+R7/fj1gG4NqyzYgaw6kP/8O/JRof86WXud9wAKxfy5SLjbfzeUjyMDAAKqqqtDV1YXMzExs27YN\nqaneWVBHjhxBdXU1JElCWVkZKioqAh5vMpmwbds25OaKL2jx4sXYunVrRNcWchzBc25qd89AARQR\n8LoYGzKBVh8iJWf/pHtaOgPObp7+RCQlFXAVsoFxLKMpwErLwF/7A/jeGvADtcDSFSJNdiaRliEs\nT9eK2SkerSb6e8UNwtwFwpXkEB3mki6tkDdfuKPMJnG3G0Pwq0PgL/9SpO2uc7SF0GYARw8Cstsn\n00N09GKN3NINJSG/t8etCy1bsgJ8bw1w7qTYZuDrvR3Vq/nrfwK/+VbfPY5cx4+MgP/tjyJDbu3N\nE1lmaLl8HjBkObMaHaLMTe3wtUGBv/umqNZRuATstn8Fr34K/E+/Ef++5xV4jWcpqUB2ntPFG2ai\nbunU1NSguLgYu3btQnFxMWpqarzGSJKEPXv24JFHHkFVVRUOHDiA1tbWcY/PycnBk08+iSeffHL6\nCw4g7vg0cUoDMzdcK0y7wAxZgKXLe99GX48IKrpu5nRkryltCvyICPO0dBxtEFg4RCc7F1i0DLz2\nT8DoCFT3fmnie4FiHbndg96lrYJLh1Y+OgIMXxXuqMRkcVFuduwi92Xp5M4Tf/hxsfEj78H+zc9F\nzIevvK/dDum5nUBfL1T3bBX7sVQqsBU3gB9/H7ytRQzM8hDK9AzhgnSkTfORYVHo09U1vHgZoFaL\nYLk/ZHeUpQv80FvjT/j8aRE/bL0w5XTlqcAvn3cTC5aSKv5tyi0gXMeaTcDZE2BrbwZjTJRrysoV\nlbuLiv1WZWcLFwMXzkZkf1fURaehoQEbNog6Vhs2bEBDg3dxv+bmZuTk5CA7OxsajQalpaXKuGCO\nnykoexY6vX9sgdxrGBt1604JQIiOVud+AU9JFU3VZCsmkKXjesHy1wYhRLAPlYn/f/ROpXXATEJ2\nEzE3SyfNGVuTU4rlcfkLxfcE+N4gmydEx1dch3MO6S8viPp17S2hWUAQcM7Bf/ss8EED2L1bnXEE\nAGzFjcDwVfD6N0SyhGPjovK6Si2KqMruNR9daFliErCwSHEj+ZxDVzswfxGQOw/87y+Pe4HlLu01\nJrMPiEt2SO/VQfrjL2B/ejvsjz8I6Z+vTagVA786BJjaxKZfVzJznH2HXMc7XIHMYZkxtRrs9n8V\nf/tyrcksLHLuFQszURed3t5e6HTix5ORkYHeXu8gucVigcHg/MdlMBhgsVjGPd5kMuGb3/wmHnvs\nMZw6dSqcy4gcWXOcG+hcUAL7SZ6WjuNC5pGzz3ssbu4JAE4rydQRuKSN0vDNUY5FSTyYeMp0MLC1\nG8Hu+w+w2+8Oy/mjjty22qWBHHMVdsdGT3lPDxxxHaSle2UiARAXbUOWb0vn/Bmlajnv9h2IDgf8\nb38E3/93sFs+Ca+KDkuvE1Z3d6dXEoGCzujcIKpkXrq3ymBLVgCXzvlvgNfdCZY1B+yjnxCfzYnG\nwHNuOiHcmckp3hURXMe1XID0xqvez+/7C/hzO8Hf+LPYW2YbA//NM5C+9zXwxneCsyocG4GZh1uM\nZc0R1ovr+3EuRGfxMtHHSh574wawL/yn/2aCcEkmiMAm0YjEdL7//e+jp8fbPP3Upz7l9pgxNiXX\nievxOp0Ou3fvRlpaGs6fP48nn3wSO3fuRHJystdxtbW1qK2tBQDs2LEDRqPvtsbBoNFopnT8ePQv\nKMTQqSMw6PVuO/IHGTAAwDBvHlQuG0THCotgAZBmG0aiy7y6ujsQX3w90l2eG86Zg14AamsXJG0G\nMjN9d+UczMwW75WcBFWqFkOMox+Aft58qHVhKk3zL/8anvNOkVB834Nz8jAAQLugUPmO+vRGDJ85\nBqPRiJFLZ9EDID1/PuKNRowsX4meml9DkzUHBj/vbS0ogr2j1WtuPb/ci9HkFPChQSQP9iF1knOf\nyLqv1r6Kvld+hcSbPgLtF7f5rCTRs/JGjBx8C4n5C91+k8rrc/JgO3cGRqMRw8129ALImL8AcS5j\nR9feBOtffo+09ktI9KgCzm02mMxdSF6/GSkfuxPdf/4t1G+8Cv3NH/U5Zz42CtOFM0j+6CdgN3Vg\nzPFd+Fp37++exfC+v0J73fWId1gT3G6H+Z9/g2rJddD919NgajU45xg9dAD9z++G/ac/QPq3Hkfi\nupsDfnZD73aKf1srS6B2caUOzC/E4KG3YUh33niMnTsNS0cr0j7xLSR7foa3fTLg+/B0LUyaOCR2\ntCDNx+cfyutaRETnO9/5jt/X0tPTYbVaodPpYLVaodV63y3r9XqYzc60X7PZDL1eH/D4uLg4xDm+\njIKCAmRnZ6O9vR2FhYVe5y8vL0d5ebnyuLt78iam0Wic0vHjIaVmAKOj6G4+A6Z3ioLUZQKYCuaB\nIbBBZ9MrrhKfQd+FcxhYXCyeG74KydyFkQz3uXKbcNnY2lqADL3fdUiOGzRzy2WwzBxIHcLysoyM\ngoVx7bFIKL5vSS2+o/74JAw4ziWpNeADfejq6gJvFW6wXglg3d3g6eIfvy0tw/93ZMwBb3wHXR3t\nYBpxfm41Q3rnTbBNtwMNb2Ho0nkMT3Luwa5bevOvwq127SqM3nM/zBbfJZmkpSuBg29hROt7TVKy\nFrzb5Pg8xB6kHsfnIcMNOUB8PPoOHsBA4bVux/OuDkCyYyg1HcO9veCbbsfYH6rR+cVPiKQL2xhU\nn/2q6OEDh2ttdBTD+YXgaRng79Wh69RxZC5d7jU/e7Oo6m397f9A/R+PieOPvAupsw38E5+B2epS\nEWThEvBH/xv4+r+h71A9BhYvD/z5nToGaDNgsbuvVUpNByQJ3WdOKn2dpLf3AQAGi67D0GS+14Ii\nXO2xYMTHscF833LS1nhE3b1WUlKCujrRI6Surg5r1qzxGlNYWIj29naYTCbYbDbU19ejpKQk4PF9\nfX2QHH7vzs5OtLe3Izs72+vc0w0ml3/x9OdedbSD9rQUk1OFm8w128yRiODVhEwpNOmnwrQ8B6U4\n6KAyniUlKxc3YmKw1evA7r3fPbMo2RFfG7nqrKMmu9fSdUDOXLD53plICnnzAbsd6LiiPMX/+TdA\nksTemMwcEeMII9LeV4TgrLwRqq9826crUIatuFF0ji0q9j1AbxSxyYE+kXnJGJCa7n4OTRyw6Frf\nLTEca2WOzDi2/hawD5WBFS4BW70OSNWK1GJ5I6XcGG7xMqVsjK/GgtxuB9oui38vx98HvyRqBUq1\nr4p46krvzrFMowHyF4D7qCvodX5HEoFXW3TZDenyHfJzp4E5+f63OoyD6sHHofq3L0/q2IkQ9ZTp\niooKVFVVYd++fUrKMyDiOM8++ywefvhhqNVqbNmyBdu3b4ckSdi4cSPy8/MDHn/y5Em8+OKLUKvV\nUKlU+OIXv+gzFXvakSWnTbe5p017Vph2wBgDDJludZi4fCHyrF/menygpADPhm8D/c54AzFhWGIy\n2EaPOIf8XQwOiiSQ+HhRfgjiO1U99iPATyYSIPbqcIhkAjZ3AfjYKPj+vwMrbgDLzAEz5gTszjpV\npANvgP+hGmzNTWBbto2bnszStFD/10/9v64zggMimaBPLoHjfU629Drwl34J3mMR/aQccMceIKWQ\naGIS2H3/4Zzvu2+C76kCjjcCxdeLeE7efLBULXhKmkjYOHkUuPPT7m/YcQWwjYHdvQX8lV9Deu1F\nqD7+KeDMMbBP/rtSOd1rnvkF4PX7wCXJb+FaPjYGtF8GK77e+0WPtGkuSaL77njt0QMQqazQqItO\nWloavvtd7zpCer0eDz/s3Km+evVqrF69Oujj165di7VrJ/8FxCw6g0ib9shg40OD/qs86zNFgzAZ\nuR+NZ/2yFOfxAdOfs3IBtQa84S2wpSvAB/uhTtViehbTj01YSpr4PAf7RYXptAy3i8K4VmVOHqBW\niw6sIyPgrzwPDPRBtel28XpWDvCOBXx0xL24Zojg9W+Ii/YXvuE3TXdCuFQl4B57dFxhS1cIsT39\ngZLBBQDo7gA0Gr/tMFjJTeAvPQ9p7ytQLV0hNq+WOrImGRPnPdbgteGWtzoC/YuXAZtuA//ri5AG\n+oH4eLCbNvtfz7wC4M2/Co+Fv5JObZcAu90riQCAsHoTk5wej8428VspXOI9NsaIunuNmBhK2rSn\ne21owKelAzgy2Fyz1zquiBL6nhcbufwKENDSYRl6sJs/Bv52LfiVy+JilhaezLVZi0ulad7X43St\nBQnTxIkNf4ffgfTdL4O/8SrYuk2AbB3LGzDDkMHGrw4B506BXbcmNIIDKKLDLd3C3eiRuaaQv1Dc\nfJ12d7Hxrg7AmO3XqmAaDVj5HcDpD8Df2guMDIMVucSFlq0ABvph89xA2XpRZHrmzAUru0NYo2eP\ng63dFPDGTRYSpdqAD5TCrp7p0nBYJZk5Yl0A+HkRV2IkOkRYyM713iA6NOjWqtoNQ5ZoBDcsEgx4\n5xWfd1dK+RVg3PRndvu/AolJkF76hYjpkHsttLgW/Qx0kQ0Am7tA3GCkpkP1zR9AteXrirWkpNT6\nqd81JU5/IO7Qr/X2TEya1HRhqVi6gV6rV7q0DFOpgWuWg5/6wD0luavDu9KB57E3bQYSk8D/+HPx\nhIvoyK7s0aOH3I7hrRdEHEUTB5amBbv5YwBjYGW3B15P7jwhVpcCxHUunweSkgGjn1h01hynpXPu\ntBDb7NgvhEuiMw2Rc/TdTP2hQWeZDE/kLDe5MkHnFTB/P075HONs9GSpWrBb7wKOHQK6OqEi0Qkt\nru0N+nsnJeqs4tNQVT4C1aM73e/aAWdMIAzJBPx4o3D9FF4z/uAgYSqVqMhhdcR0AogwW7pSJM44\n3Micc9EOw9/FWz4uOQVs/UeB0VFhubhuPs0wAHPyMXr0oPtBLReFuMvj/uXTUH27ylkVwt97aeKA\nvHmBLZ2LTUD+Qv/WWdYcoLsT3G4XSQQF10S8seFkiP0ZEt5k5YpMnh6X6tFXB/xaOm4bRPt6REkV\nf6LjOEcwJW1Y2ceFoHGJRCfUuGYS9vc6S+VMAJaZA7Zqre8LUapWZDWG2L3GOQc/0QgsWRH6bEad\nEby9RRSY9RPTAQC2XFhYXN78OdAvfvOe5XV8HVv2cUCtFgVEPV9bcQNGjzcqm6F5f69oG5K/wDkm\nLs53DMbXe+UXAJfP+9wkyvv7RHHba/xk8wHCcrPbgCsXgfaWaeFaA0h0piVKuqR8Jzc2Ju7O/FVe\ndtT04pYuJYXWK11aJkhLBwBYXDzYJ0Q2j2oSF0UiAAmJwv3S1SlSn9Mm7l4LhBIT8FFKZUp0XAHM\nJuXCH0qYziDSk4GAnwfLzAGycsFPHBZPeKRLB3wPfSZU//uHYHf8m/dr15cCdjv4EUd/p9aL4vm5\nC4NfhCtymwofrUf48fcBzsGKvbeQKPORM1nf2y/GkugQYSPLWW0agOjyCfgXnQydyGQym8A7RaFU\nv+2ek4OL6ciwGzaAfaYSiY76aERoEO3DU0T8DZhwIkFQZGaH3tJxWBfsWt+VnqeE3igEGAALYOkA\nDmvnzAciVVwuF2MMruI2W7gYzFdizPxFUGXNEa0DIMrfAHCWJZogSj01Xy62Y4eEC3G+dxKBguwi\nfa8OYCpg4eJJzSPSkOhMR3QGIC7eGUR0BCP9+f1FwUSDcK91tolj9b5L3LDk4C0dcW4VVOtvgcpl\nTwQRIlJSnZZpGCxJlukjNjhF+IlGEQ8ZJ34yKVzbOIyTWMGuXSWs/6YTzhplU5wTYwyJ6zYCJ4+I\nWFvrBSBdN/kkGrlNhUcyAbfbwU80gi2/PnCMJl0n9m/1WkR6eqJ3ia9YhERnGuJMm24T3RB/96y4\n67nOvykOQxa4pUtsDM2a4//HnKoVZeT97fkhIkdKmrPVeIjdawCEpWMbc3aRnSJ8dAQ4czwsrjUA\n7q25x8vmu6YY0GiEi627Q3SbTZj6fqTE0k2A3QZ+5CB4y0UhHJOEJSYB2bneyQTnTonEoOtKAh+v\nUinWG1s0PVxrAInO9CVrDtDZBv7q74GuDqg+85WAm/yYvEG0sy1gWiW7+WNQffkhvzupiQjiKvxh\ncK8pMY5QZbCdPQGMjYY2VdoVuYMoUwHj7AtjCYnA4mvBjzcK91qImtlpFi8V3Xgb9ovg/WTjOfI8\nHSH0tFUAABCOSURBVMkErvAPDgl3uJ9mdG7I8d0CEh0izLAssVeH731F1JDy7CTqiSETsFqA7g7/\nSQQQ4sR81IsiIo9bCvwk62kFxHEh5iHaq8OPvy9ct57p2aFCtnRS04LadMqWrxaJB5fOg2WGxt3H\nGBMJBccbRebYJOM5CvMKxFYGuXEiIFp3L74WLGl8d5mcVDRdkggAEp3pS/YcEVRNSQP7X1vGH2/I\nArgkjpkGG8gIOC0dP3XGpow+U7hSQ2DpcM7BD78r2omHoawOAOFujI8PmC7timJxjVwdd2PoRGDX\nf8j59xTca4BLMoHD2uFmE9B2Gaw4sGtNOX7dJrFRO8bakgci6rXXiMnB8gvBAbB7tga3p0afqdRG\nY/4y14jYQhadMO2BYhqNEJ5QWDoXzgKWLrB/8U41DhWMMTFfbXCig9x5IoGmxxzai/LCIuHq6++Z\n+g2cY0+P9JffQ5WYpCQVjBfPkWFzF0xZ+CINic40hS1cDNXOX7rtmg6IayvkAO41IoaQ3WuTKIET\nNCFqccDfPwCoNWArbwjBpPyjuudLotpBEDDGwJavBn/7dbF3J0QwlQrso3eKCtBTtEBZqhbsnq3g\nf/4dpB98U2zYzcyZ0d4IEp1pTNCCAzhTpFO1QVlGRAzgsHTCWdeOZYpmb1OBcw5+6ACwbKUz5T5M\nsGUrJzZ+3UZRImacsjQTRTVebbWJnGvT7eClm8D/+TdRmLV0U8TaDEQDEp1ZAotPEG4acq1NG1hK\nqnCJhrPagzEHGOgDvzoUVODaJxFwrU0WVrQc6v/7dLSnMS4sMRnslk8CtwRuKz0TINGZRbCbNouE\nAmJ6ILvXwrFHxwHLmgMOQPrhQ2ALi4D8ArEbPyFJVDheWDRu+nykXGvEzIBEZxah+sRnoj0FYiIo\niQRh7FW0fDXYbXeDXzgr3Gxv7XVrxsfu/ZJob+2C9M/XMKRNB19VCgARc60RMwMSHYKIVXLywD52\nF9iqdWF7C5aQCFYhirZyzoEei+jNNDwE6Wc/BD99DHARHT42Bv7CHvTbxoDlq6HacIvDtXZv2OZI\nzCxIdAgiRmEqNdidn43c+zEm6vrpREtnVrQc/NRRcM6dge1LTYBtDIk3fQTD79ZBOt7ocK3dGLF5\nEtMb2hxKEIRvCpeKumxywUwA/OwJAEDaF7ZB9Z0qoHAJ2LqN5Fojgibqls7AwACqqqrQ1dWFzMxM\nbNu2Damp3j/gI0eOoLq6GpIkoaysDBUVFQCAd955B3/4wx9w5coVPP744ygsdJYCf+WVV7Bv3z6o\nVCp87nOfw8qVE0u3JIjZDFu0FBwAbz6llFvhTSeA3HlQaTPA5uRD/dAPoztJYtoRdUunpqYGxcXF\n2LVrF4qLi1FTU+M1RpIk7NmzB4888giqqqpw4MABtLaKvjD5+fl48MEHsXTpUrdjWltbUV9fj//+\n7//Go48+ij179kAKYQl3gpjx5M4TnWTPnQIgSu6j+ZR362uCmABRF52GhgZs2LABALBhwwY0NDR4\njWlubkZOTg6ys7Oh0WhQWlqqjJs7dy5yc733njQ0NKC0tBRxcXHIyspCTk4Ompubw7sYgphBMJUK\nKFwC3nRSPNF6QbR9XkyiQ0yeqItOb28vdDqxsz4jIwO9vb1eYywWCwwGg/LYYDDAYrEEPK/nMXq9\nftxjCIJwhy1aCrS3gA/2K/EcRqJDTIGIxHS+//3vo6enx+v5T33qU26PGWNRKf9QW1uL2tpaAMCO\nHTtgNBrHOcI/Go1mSsdPV2jdM5PR69fBWvNraE1tuHqpCbbsXBgXXzPj1+0PWncIzhWSs4zDd77z\nHb+vpaenw2q1QqfTwWq1Qqv13gin1+thNpuVx2azGXp94PbInsdYLBa/x5SXl6O8vFx53N3dHfDc\ngTAajVM6frpC656ZcF0WoFajt/Fd8BOHwa67Ad3d3TN+3f6gdfvHV5jDF1F3r5WUlKCurg4AUFdX\nhzVrvFsuFxYWor29HSaTCTabDfX19SgpCVz6u6SkBPX19RgbG4PJZEJ7ezsWLVoUljUQxEyFJSQA\n8wrB33kTGOgPX4M2YtYQ9ZTpiooKVFVVYd++fUrKNCAsk2effRYPP/ww1Go1tmzZgu3bt0OSJGzc\nuBH5+fkAgIMHD+LnP/85+vr6sGPHDixYsACPPvoo8vPzsW7dOnzjG9+ASqXC5z//eahUUddYgph2\nsEVLwV//k/ib4jnEFGGccz7+sNlFW1vbpI8l83t2MRvWzRvrIf10B5Chh+qH1WCMzYp1+4LW7Z9p\n414jCCLGWST2wLHF187oPi9EZIi6e40giNiGaXVgn/x3sCXXRXsqxAyARIcgiHFRzYLmYkRkIPca\nQRAEETFIdAiCIIiIQaJDEARBRAwSHYIgCCJikOgQBEEQEYNEhyAIgogYJDoEQRBExCDRIQiCICIG\n1V4jCIIgIgZZOiHmoYceivYUogKte3ZB655dhHLdJDoEQRBExCDRIQiCICKG+nvf+973oj2JmUZB\nQUG0pxAVaN2zC1r37CJU66ZEAoIgCCJikHuNIAiCiBjUTydEHDlyBNXV1ZAkCWVlZaioqIj2lMJC\nd3c3nn76afT09IAxhvLyctx6660YGBhAVVUVurq6kJmZiW3btiE1NTXa0w05kiThoYcegl6vx0MP\nPTQr1j04OIhnnnkGLS0tYIzhy1/+MnJzc2f8uv/yl79g3759YIwhPz8flZWVGB0dnZHr3r17Nxob\nG5Geno6dO3cCQMDf9iuvvIJ9+/ZBpVLhc5/7HFauXBn8m3Fiytjtdv7Vr36Vd3R08LGxMf7ggw/y\nlpaWaE8rLFgsFn7u3DnOOedDQ0P8gQce4C0tLfxXv/oVf+WVVzjnnL/yyiv8V7/6VTSnGTZeffVV\n/tRTT/Ef/OAHnHM+K9b94x//mNfW1nLOOR8bG+MDAwMzft1ms5lXVlbykZERzjnnO3fu5G+++eaM\nXfeJEyf4uXPn+De+8Q3lOX9rbWlp4Q8++CAfHR3lnZ2d/Ktf/Sq32+1Bvxe510JAc3MzcnJykJ2d\nDY1Gg9LSUjQ0NER7WmFBp9MpAcWkpCTk5eXBYrGgoaEBGzZsAABs2LBhRq7fbDajsbERZWVlynMz\nfd1DQ0M4deoUNm3aBADQaDRISUmZ8esGhFU7OjoKu92O0dFR6HS6GbvuZcuWeVls/tba0NCA0tJS\nxMXFISsrCzk5OWhubg76vci9FgIsFgsMBoPy2GAwoKmpKYozigwmkwkXLlzAokWL0NvbC51OBwDI\nyMhAb29vlGcXen7xi1/g05/+NK5evao8N9PXbTKZoNVqsXv3bly6dAkFBQW47777Zvy69Xo9Pv7x\nj+PLX/4y4uPjsWLFCqxYsWLGr9sVf2u1WCxYvHixMk6v18NisQR9XrJ0iEkxPDyMnTt34r777kNy\ncrLba4wxMMaiNLPw8P777yM9PT1g2uhMXLfdbseFCxewefNm/PCHP0RCQgJqamrcxszEdQ8MDKCh\noQFPP/00nn32WQwPD2P//v1uY2biuv0RyrWSpRMC9Ho9zGaz8thsNkOv10dxRuHFZrNh586duOmm\nm3DjjTcCANLT02G1WqHT6WC1WqHVaqM8y9By5swZHDp0CIcPH8bo6CiuXr2KXbt2zfh1GwwGGAwG\n5c527dq1qKmpmfHrPnbsGLKyspR13XjjjTh79uyMX7cr/tbqeb2zWCwTut6RpRMCCgsL0d7eDpPJ\nBJvNhvr6epSUlER7WmGBc45nnnkGeXl5uP3225XnS0pKUFdXBwCoq6vDmjVrojXFsHDvvffimWee\nwdNPP42vf/3rWL58OR544IEZv+6MjAwYDAa0tbUBEBfjuXPnzvh1G41GNDU1YWRkBJxzHDt2DHl5\neTN+3a74W2tJSQnq6+sxNjYGk8mE9vZ2LFq0KOjz0ubQENHY2Ihf/vKXkCQJGzduxJ133hntKYWF\n06dP47vf/S7mzZunmNv33HMPFi9ejKqqKnR3d8+oVFJfnDhxAq+++ioeeugh9Pf3z/h1X7x4Ec88\n8wxsNhuysrJQWVkJzvmMX/eLL76I+vp6qNVqLFiwAPfffz+Gh4dn5LqfeuopnDx5Ev39/UhPT8fd\nd9+NNWvW+F3ryy+/jDff/P/t3c9LVGsAxvGvZ/SgNTSNzuJsgsBFBeVQi0AxMbIgXJSgLYrq2FSC\n4w/QRX9AhEEapLgwSSowIwmkFtEijIgWbtykDkSUMAyiwygSM9U4411IA3Pj3jtd9XjpPp/VzJx5\nf8zZPLzve+Z9xzEMA9u2OXjwYM5tKXRERMQxml4TERHHKHRERMQxCh0REXGMQkdERByj0BEREcco\ndETWoaOjg6mpqS1pOxqNcv78edLp9Ja0L/Jv6JFpkQ3w5MkT5ubmaGtr27Q2gsEgTU1NlJWVbVob\nIptNIx2R/4BUKrXVXRBxhEY6IusQDAa5dOkS3d3dwNrW/5ZlcevWLeLxOA8ePGBycpK8vDyOHj3K\nmTNnMAyD169f8+rVK0pLS3nz5g0nTpygurqagYEBZmdnycvLw+/3EwgE2L59O319fbx9+5b8/HwM\nw6C+vp7y8nJaWloYGRnB5XIRi8UYHBwkFArhdrs5deoUNTU1wNpILBwOY5omExMT+Hw+gsEgpaWl\nAIyNjfHixQsSiQRer5fLly9z4MCBLbuv8vvShp8i61RQUEBdXd1P02v9/f14PB56e3v59u0bN2/e\npKSkhOPHjwPw4cMHKioqGBwcJJVKEYvFqKurY9++fSQSCXp6ehgdHcW2bVpbWwmFQlnTa/Pz81n9\nuHPnDrt27WJgYIBIJML169exLIv9+/cDaztld3Z20tzczOPHjxkaGuLGjRtEIhFevnxJV1cXxcXF\nzM/Pa51INo2m10Q2wdLSEpOTk9i2TWFhIR6Ph9raWt69e5f5jtfr5eTJk7hcLkzTxLIsysrKKCgo\nYMeOHdTW1jI9PZ1Te9FolFAoxLlz5zBNk927d3Ps2LHMho0Ae/fu5dChQxiGQVVVFZ8/fwbAMAyS\nySThcDizv5plWRt6P0R+0EhHZBNEo1FSqRRXr17NfLa6upp12J/P58sqs7S0xP3795mZmeHr16+k\n0+mcN5NcXFzE7XZTVFSUVf/Hjx8z7z0eT+a1aZokk0lSqRSWZWHbNqOjo4TDYfx+PxcuXPitj+eQ\nraPQEdkAfz7gqqSkhPz8fO7du4fL5cqpjpGREQB6enpwu91MTEwwNDSUU1mv18uXL19IJBKZ4IlG\nozkHR2VlJZWVlcTjce7evcvw8DCtra05lRX5FZpeE9kAHo+HhYWFzFqI1+vF7/fz8OFD4vE46XSa\nubm5v50uSyQSFBYWsm3bNmKxGM+fP8+6vnPnzp/WcX7w+Xzs2bOHR48e8f37d2ZnZxkfH+fIkSP/\n2PdIJML79+9JJpOYpolpmv+bEzHFeQodkQ1QXl4OQCAQ4Nq1awC0tLSwsrJCR0cHjY2N3L59m8XF\nxb+so6GhgU+fPnHx4kW6uro4fPhw1vXTp0/z9OlTbNvm2bNnP5Vvb29nYWGBpqYmuru7aWhoyOk/\nPclkkuHhYQKBAFeuXGF5eZmzZ8/+ys8XyZkemRYREcdopCMiIo5R6IiIiGMUOiIi4hiFjoiIOEah\nIyIijlHoiIiIYxQ6IiLiGIWOiIg4RqEjIiKO+QPfTRiQ72b5ZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYllX6wPHveVhURHaUUExxyX3fcAkXtEwrdcrSyjRL\nTW3RcnK2lp8tmOGS4dhYjWlNaVPSvgxqUmIjqZWKG25posgqyM5zfn+89SqDxisCD/Den+uaK97z\nbPcBh5vznE1prTVCCCHE7zCsDkAIIUTNJ8lCCCFEuSRZCCGEKJckCyGEEOWSZCGEEKJckiyEEEKU\nS5KFEEKIckmyEEIIUS5JFkIIIcolyUIIIUS5XKvjIampqURHR5OZmYlSioiICG666SZycnJYsmQJ\nZ8+eJTAwkDlz5uDp6QnAhg0b2LRpE4ZhMGXKFLp161buc06dOlXhGAMCAkhNTa3w9bWV1Nu5SL2d\niyP1Dg4Oduhe1ZIsXFxcuOeeewgNDSUvL4/58+fTpUsXvv76azp37syYMWOIiYkhJiaGu+++m5Mn\nTxIfH8/ixYvJyMhgwYIFLFu2DMOQhpAQQlihWn77+vr6EhoaCkCDBg1o2rQp6enpJCQkEB4eDkB4\neDgJCQkAJCQk0L9/f9zc3GjcuDFBQUEkJSVVR6hCCCEuodr/VE9JSeHo0aO0bt2arKwsfH19AfDx\n8SErKwuA9PR0/P397df4+fmRnp5e3aEKIYT4VbW8hvpNfn4+UVFRTJ48GQ8Pj1LHlFIopa7ofrGx\nscTGxgIQGRlJQEBAhWNzdXW9qutrK6m3c5F6O5fKrHe1JYvi4mKioqIYNGgQffv2BcDb25uMjAx8\nfX3JyMjAy8sLsLUk0tLS7Nemp6fj5+dX5p4RERFERETYP19NB5Z0gDkXqbdzkXpfnqMd3NXyGkpr\nzcqVK2natCmjR4+2l/fq1YstW7YAsGXLFnr37m0vj4+Pp6ioiJSUFJKTk2ndunV1hCqEEOISqqVl\nceDAAeLi4mjevDnz5s0DYMKECYwZM4YlS5awadMm+9BZgJCQEMLCwpg7dy6GYTB16lQZCSWEEBZS\ndWlbVZlnceWk3s5F6l33mJs+QQU1RXXoXuZYrXsNJYQQ4srokhLMuC/QO7ehz57mUn/X658Po9e/\njt62ucrjqdbRUEIIIRyjP12P/vgd7CnCwxP1h0kY199oO15chPnGUvD0Qt35QJXHI8lCCCEqQOfm\nQP0GKMOl8u+dlIj+ZB2qTzgq4mb0iSPo7d+g167ALCzAiLgV/ck6+OU4xuy/oho2qvQY/pckCyGE\nuEI6OwvzLzOgaXOM6U+gfMoO7b/staYJh/ej9/0IKafQKclQWIAaPgYVNgTy8zBfWwz+gai7H0Q1\n8EC1bIvuPwxz1Uvoda9jJv+C/vYrVNhQVNc+VVjTCyRZCCGchjZNcHACsD79C/qL99E7t2HM/guq\nbacLx7Z8Dnnn4ecjmM/OxZjxBKp1+9+/X2YaeuMn6O1xkH4WlAK/QGh8DZSUoFcvQ2/6BLy8ISMV\n44+RqAYXJi8rVzeMaX9Ev7EEHfcF+Pih7ry/4t+MKyTJQghR4+nsc6hGXld/n7dWoHfvwJg4HdW9\n36XPOX4Y/eUH6O+3gqsruLlh/ns1xp8WoZRCFxWhN38GnXpg3DYFM/o5zJf+gupzPVzbGhXSElq2\nRbm5Xbhnfh7m4ifhzC/QoTtq7N2obn1R9W3JQJsmOuEb9Ptvws+HUbdORLVqVyY25eICU+dA81BU\n284oD8+r/p44SpKFEKJG03t3YS57GmPGfFSPsIrf59gh9DdfQYOGmCueR/UcgPrDveBeD4qL4eQx\nzP/EwIHdtr6IG8aiht+C/ul79JvLYdd30CMMnRAH5zIxIm5FNb0W46+L0e/8A71nB2zbZOuQviYE\n45GnUf6BaK3Ra6Ph9C8Yjz6N6lB2uwVlGKi+4ehu/SApEdp3uWw9lOGCumFchb8PFSXJQghRo+lv\nvgKtMf+1EuO6zqiGZf+a1qaJ3r4FFdoO1fiasse1xvz3amjkjbFgBXrLF+iP30Xv2Fr6RN8A1G1T\nUINGoDwa2srChqK/3IAZ8xZG1z7o/3wEwc3h11/6ysMTNXWubWhrVjr6wB702ysxI+dhPPK07fP2\nONSYuy+ZKC6m6tWDjmXnS9QEkiyEEDWCzjkHJ4+h2l34q1rn5qB/3A7tu8KB3ej33kBNfrj0decy\nMF9fAok/oIObY/x1SalXQACFO7fBgd2oidNRDRuhbrod3aM/eu8ucDHA1Q3VyBs69kC5lv61qFxc\nMMbchblyIXrtK3DyKGrS7DL9Hkop8PG3tRCaXou57BnMF+dDYQF07YMaeVslf8eql0zKE0LUCPqj\ndzCj/oo+euhC2fdbobgIY9wk1A1j0Vtj0Yk/2I6ZJnr3DsxnHoFDiajBN8Gpn9GfvVf6viUlZL8Z\nDY2DUYNusJeroKYYw0ZjDL4JY+BwVNc+ZRKFXY/+cG1r9NaNtnkNfcN/ty6qWQuMP70IvgHg3wRj\nyqOoWr5kkbQshBCW06aJ3hkPgPn+aozHnrV1Jm/bDEHNbB3HTa9F7/wO883lqFbt0Pt/guwsW//A\nnP9DNWuBmZ+L/vw9dI8wW0czoOO+xDxx1NbncblkUA6lFMbYezCXPoUaPBLlXq/8a/wCMZ5cBiXF\nDp1f00myEEJYL2kfZGXAdZ1tHcx7dqKbBENSImrsPbZXPG7uGPc+hBn1F/TBvaiOPaB9F1TPgbZ3\n/YC6435bh/jqlzEmzcb88G3Y/T1uHbpSchWd4wCqY3eMx5+D0Oscv8bFBVwqf9KeFSRZCCEsp3fG\ng6sbxoPzMZ97DPP91ajuYbY5EX0H289TbTpgLHnbNlrpEnMllKcXxl0zMFcuxHx2Dng0RI2bhO/t\n95KWc/6q41TXdb7qe9RWkiyEEJbSponeEQ+detg6n8dOQv/jRfSZX+C6zij/wFLnXzxR7VJUzwGo\n0XeAqVEjxqAaeqLqN4BKSBbOTJKFEMJaRw9CZhqq570AqF4D0F+1gWOHUP2GVOiWxq13VWaEAhkN\nJYSwmN5hmymtuth2ylRKYUycYRtu2rO/xdGJ30jLQghhGa217RVUh+4XJsEBqmUbXGb/1cLIxP+S\nZCGEqDT67Gn0sSRIT4GMNFTvQZdc48ju2CFIP4u6dWL1BSkqRJKFEKJS6LOnMZ+aDUWFtgIXF3T8\nJoy/LUEFBpU9v6gQ89P14OKC6tq3mqMVV6paksWKFSvYuXMn3t7eREVFAbBkyRL7ntm5ubl4eHiw\naNEiUlJSmDNnjn1f2DZt2jBt2rTqCFMIcRX0R/8CBcb8F21rJ+Wcw3x2LubKSIwnFpaamKYz0zFX\nPA9HD9rWYrrEek+iZqmWZDF48GBuvPFGoqOj7WVz5syxf71mzRo8PC4MhwsKCmLRokXVEZoQohLo\nk8fQ/92CGjH2wmunBh4YU+dgLl+AfucfqHsfQhcUwIGfMN/6O5zPxnjwT1e1kqyoPtWSLDp06EBK\nSsolj2mt2bZtG08++WR1hCKEqAJmzFtQ3wM18g+lylWX3rZF+z57j5ITR+GXY7blwP0CbK2N5qHW\nBCyumOV9Fvv27cPb25trrrmwrHBKSgrz5s3Dw8ODO++8k/btf38HKiGEdfTh/fDjdtsS3JfYC1rd\nOtE2wS41BTXsZtuqsm062ZfoELWD5cli69atDBgwwP7Z19eXFStW0KhRI44cOcKiRYuIiooq9Zrq\nN7GxscTGxgIQGRlJQEBAheNwdXW9qutrK6m3c6nsemutyVj2Lnj74j9+MsblZlf/9aVKe2ZFyM+7\nEu5VKXepoJKSErZv305kZKS9zM3NDbdf16IPDQ2lSZMmJCcn06pVqzLXR0REEBERYf+cmppa4VgC\nAgKu6vraSurtXCq73npHPOaenag7p5F+PhfO51bavSuT/Lwv77fBROWxdAb37t27CQ4Oxt/f3152\n7tw5TNME4MyZMyQnJ9OkSROrQhRCXIY+n4P5zqu2/aAHj7Q6HFHFqqVlsXTpUhITE8nOzmbGjBmM\nHz+eoUOHlnkFBZCYmMj69etxcXHBMAweeOABPD1lWJ0QNY1+fzVkZ2E89KRtKW5Rp1VLsnj00Ucv\nWT5r1qwyZf369aNfv35VHZIQ4iro/T+hv/kKdcM41LVlXxGLukcWEhRCXBFdWIC55hUIDELdMsHq\ncEQ1kWQhhLgietd3cPY0xsTpdWK7UOEYSRZCiCuid24Dbz/o0N3qUEQ1kmQhhJMo+XskGf83F51y\nyqHz9aFEzFdfRBcVXSgrKIA9O1Dd+6EM+fXhTCyflCeEqHo6Pxd2baNQa9i9AzX6DtQNY1Gubpc+\nX2vMd1fBz4dt250O+HU+096dUFgg6zk5IfnTQAhncPwIaI3XrD9Bl97omLfQ/3z58uf/lGBLFO7u\n6P98iNYaAL0zHho2gradqilwUVNIshDCCeijBwCo12cQLg/ORw0agf7hO3RxUdlztcb86B3baKc7\np8EvxyHxB3RxEfqnBFS3PjKvwglJshDCCeijhyAwCMPLBwDVuRcUFsDhA2VP/rVVoUbdgeo3BLx9\nMb+KgX0/QV4uqofsi+2MJFkI4QyOHkS1bHvh83WdwTDQiT+UOq1Uq6LfYJSbG2rIKEjchfnZeqjf\nANp3q+bgRU0gyUKIOk5npkFGKrRsYy9THg2hZVv0vtLJolSr4tdXTWrwSHCvB0n7bPtTuF26U1zU\nbZIshKjrjh4CQLW8rlSxat8VjiWhz+fYy8wvPgD/xqh+gy+c17ARasAw29fyCsppSbIQoo7TRw+C\niwuEtCxVrtp3A23Cgd22844fhqRE1NDRZTqw1ag7UCNvgy69qy1uUbNIshCijtPHDkGzlmWX5ght\nC/Xq219F6Y0fQb36qIERZe6hvH0xxk2SV1BOTJKFEHWYNk04dgh1UX/Fb5SrG7TthE78EX0uA53w\nDar/UJSHbAkgypJkIURdduYXyMuFFm0veVh16Aopp9AfrIHiYtTQ0dUcoKgtJFkIUYdo08Tcthl9\n9rTt85GDAKjQyySL9rbFAPXWjdCpJyqoWfUEKmodWRtKiDpEx7yF/vzf6Hr1UePvg5+PQAMPaNL0\n0hcEh9hWkM1Kx4i4pXqDFbWKJAsh6ghzyxfoz/+N6jcEnZWOXrsCDAOu63zZFWKVUqheA9BJ+6CD\nTLYTlyfJQog6QO/+Hv32SujcCzX5YZRS6K8/Q7+/GlVOEjDufABtmiilqilaURtVS7JYsWIFO3fu\nxNvbm6ioKADWr1/Pxo0b8fLyAmDChAn06NEDgA0bNrBp0yYMw2DKlCl06yZ/8QhxOTozDfPVFyGk\nJca0eRdmXg8djR50g22ORTlkbwpRnmpJFoMHD+bGG28kOjq6VPmoUaO45ZbS70lPnjxJfHw8ixcv\nJiMjgwULFrBs2TIM+ccsxCXpnxKgIB9jyiOo+g1KHZN5EaKyVMtv4A4dOuDp6djY7YSEBPr374+b\nmxuNGzcmKCiIpKSkKo5QiNpL790FvgHQ9FqrQxF1mKV9Fl988QVxcXGEhoYyadIkPD09SU9Pp02b\nCxOI/Pz8SE9PtzBKIWouXVIC+35C9ewvfQ6iSlmWLEaMGMFtt90GwLp161izZg0zZ868onvExsYS\nGxsLQGRkJAEBARWOx9XV9aqur62k3rVb4f7dZOSdx6tfOPUdqE9dqfeVknpXwr0q5S4V4OPjY/96\n2LBhLFy4ELC1JNLS0uzH0tPT8fPzu+Q9IiIiiIi4sI5NampqheMJCAi4qutrK6l37WZu3QzKILtZ\nS3IcqE9dqfeVknpfXnBwsEP3sqzXOCMjw/719u3bCQkJAaBXr17Ex8dTVFRESkoKycnJtG7d2qow\nhajRdOIuaNEa1bCR1aGIOq5aWhZLly4lMTGR7OxsZsyYwfjx49m7dy/Hjh1DKUVgYCDTpk0DICQk\nhLCwMObOnYthGEydOlVGQglxCfp8Dhw9hBo13upQhBOolmTx6KOPlikbOnToZc8fN24c48aNq8qQ\nhKj99v0A2kR17G51JMIJOJQscnJy+Oijjzh+/Dj5+fmljj3zzDNVEpgQ4vfpvbuggW17VCGqmkPJ\nYtmyZRQXFxMWFoa7u3tVxySEKIfW2tZf0b5LmV3thKgKDiWLgwcP8tprr+Ems0GFqBlOn4T0VOmv\nENXGoZ7j5s2blxrOKoSwlk60bYWqOkh/hageDrUsOnXqxPPPP8/gwYNLzY+A3++oFkJUDZ34AzS+\nBhXQxOpQhJNwKFns378ff39/du/eXeaYJAshqpcuLoYDe1Bhg60ORTiRcpOF1poZM2YQEBCAi3Sk\nCWG9owehIA/VvqvVkQgnUm6fhVKKxx9/XBYpE6KG0Ik/gDKgXRerQxFOxKEO7hYtWpCcnFzVsQgh\nHKD3/WBb4sPDsWX/hagMDvVZdOzYkeeff57w8PAyKxhKn4UQ1UfnnoejB1E33mZ1KMLJOJQsDhw4\nQOPGjdm3b1+ZY5IshKhGB3eDaZa7r7YQlc2hZPHUU09VdRxCCAfoxB/BvR6EXmd1KMLJOJQsTNO8\n7DFZEVaI6qP3/QBtO8ne2qLaOZQsJkyYcNlj69atq7RghBCXp9PPwulfUNffaHUowgk5lCxeeeWV\nUp8zMjKIiYmhV69eVRKUEKIs/dP3ADK/QljCoXdIgYGBpf7Xtm1bZs+ezYcffljV8Qkh+HWV2S1f\nQLMW0PRaq8MRTqjCHQ65ubmcO3euMmMRQlxO0j44eRQ1ZJRMkBWWcOg11PLly0v9Ay0oKGDfvn0M\nGjSoygITQlygN38KHg1RfcOtDkU4KYeSRVBQUKnP9erVY/jw4XTpIssNCFHVdGYaemc8auhoVL36\nVocjnJRDyaJbt260adOmTHlSUhKtW7cu9/oVK1awc+dOvL29iYqKAmDt2rXs2LEDV1dXmjRpwsyZ\nM2nYsCEpKSnMmTOH4OBgANq0acO0adOupE5C1Ck67kvbRLzBI60ORTgxh/osnn322UuWP/fccw49\nZPDgwfz5z38uVdalSxeioqJ46aWXuOaaa9iwYYP9WFBQEIsWLWLRokWSKIRT08VFtmTRqSeqcbDV\n4Qgn9rvJwjRNTNO0jcTQ2v7ZNE2Sk5MdXrK8Q4cOeHqWXvSsa9eu9uvbtm1Lenp6BasgRN2ld30H\nWRkYQ26yOhTh5H73NdTFk/HuvPPOUscMw2Ds2LGVEsSmTZvo37+//XNKSgrz5s3Dw8ODO++8k/bt\n21/yutjYWGJjYwGIjIwss8jhlXB1db2q62srqXfNlrl3J0W+AQSEj0BVwmoJtaXelU3qXQn3+r2D\nr7zyClprnn76aZ555hm01iilUErh5eWFu7v7VQfwwQcf4OLiYh9Z5evry4oVK2jUqBFHjhxh0aJF\nREVF4eHhUebaiIgIIiIi7J9TU1MrHEdAQMBVXV9bSb1rLl1Sgrnrv6jufUmrpJZ3bah3VZB6X95v\n/cPl+d1kERgYCNg6qMH2WiorKwtfX1+Hbl6er7/+mh07dvDkk0/ah+a6ubnh9uu6N6GhoTRp0oTk\n5GRatWpVKc8UotY4dghyc6BjD6sjEcKx0VDnz5/ntdde47vvvsPV1ZW1a9fy/fffk5SUVOb1lKN+\n+OEHPvzwQ5555hnq1atnLz937hyenp4YhsGZM2dITk6mSRPZlF44H713JyhDlvcQNYJDyWLVqlU0\nbNiQFStWMHfuXMDWKb1mzRqHksXSpUtJTEwkOzubGTNmMH78eDZs2EBxcTELFiwALgyRTUxMZP36\n9bi4uGAYBg888ECZznEhnIHesxNatkF5elkdihCOJYvdu3fz6quv4up64XQvLy+ysrIcesijjz5a\npuxymyb169ePfv36OXRfIeoqnXMOjh1Cjb7D6lCEABycZ+Hh4UF2dnapstTU1ErruxBClKb3/Qha\no6S/QtQQDiWLYcOGERUVxZ49e9Bac/DgQaKjoxk+fHhVxyeEc9qzEzw8oWXZlROEsIJDr6FuvfVW\n3N3def311ykpKeHvf/87ERER3HSTTBQSorJprdF7d6E6dkcZjk18FaKqlZssTNPk66+/Zvjw4ZIc\nhKgOvxyDrHTo2N3qSISwK/c1lGEYrFmzxj73QQhRtfSenQAoSRaiBnGoz6Jnz558//33VR2LEALQ\nu3dAsxYoH3+rQxHCzqE+i6KiIhYvXkzbtm3x9/cvtRHS7Nmzqyw4IZyNzs2BpETUDeOsDkWIUhxK\nFiEhIYSEhFR1LEI4Pb33B9veFV16WR2KEKU4lCxuv/32qo5DCAGwOwEaNoLQ66yORIhSrn7NYyFE\npdBmCXrPTlSnHjJkVtQ4kiyEqCmOHoLsLOgsr6BEzSPJQogaQu/+3rbKbCdZ4kPUPJIshKgh9O7v\noVU7VMNGVociRBkOdXBrrdm4cSNbt24lOzubl156icTERDIzM0tthyqEqBidmQY/H0GNu9fqUIS4\nJIdaFuvWrWPz5s1ERETYt+jz9/fnww8/rNLghHAWevcOABkyK2osh5LFli1beOKJJxgwYIB9Ql7j\nxo1JSUmp0uCEcBZ69/fgFwjBza0ORYhLcihZmKZJ/fr1S5Xl5+eXKRNCXDltmnBgD6pDt1KrIwhR\nkziULLp3786aNWsoKioCbH0Y69ato2fPnlUanBBO4eRRyM2B6zpbHYkQl+VQB/ekSZOIjo5m8uTJ\nFBcXM2nSJLp06eLwulArVqxg586deHt7ExUVBUBOTg5Llizh7NmzBAYGMmfOHPte2xs2bGDTpk0Y\nhsGUKVPo1q1bBasnRM2n9+8GQEmyEDWYQ8nCw8ODefPmkZmZSWpqKgEBAfj4+Dj8kMGDB3PjjTcS\nHR1tL4uJiaFz586MGTOGmJgYYmJiuPvuuzl58iTx8fEsXryYjIwMFixYwLJlyzAMGeUr6iZ9YDc0\nDkb5yiqzouZyuM/CNE28vLwIDQ3Fy8sL0zQdfkiHDh3srYbfJCQkEB4eDkB4eDgJCQn28v79++Pm\n5kbjxo0JCgoiKSnJ4WcJUZtoswQO7UW1k1aFqNkcallMmDDhkuUuLi74+vrSt29fxo8ff0Ud3llZ\nWfj6+gLg4+NDVlYWAOnp6bRpc2HfYT8/P9LT0x2+rxA1mS4pAcO40JH98xHIy5X+ClHjOZQspkyZ\nQkJCAmPGjMHf35/U1FQ++ugjevToQXBwMO+99x6rV69mxowZFQpCKVWhUSCxsbHExsYCEBkZSUBA\nQIWeD+Dq6npV19dWUu/qo7Um7aEJuHfpjde0xwA4/82X5AD+YeG4VMNrKPl5O5fKrLdDyeLTTz9l\n4cKFeHh4ABAcHEyrVq2YP38+y5cvp3nz5jzxxBNX9GBvb28yMjLw9fUlIyMDLy8vwNaSSEtLs5+X\nnp6On5/fJe8RERFBRESE/fNvEwYrIiAg4Kqur62k3tVHnz6J+cvP5J06QUGP/qgWbSjZ+R0ENSOj\nREM1xCM/b+fiSL2Dg4MdupdDfRa5ubkUFBSUKisoKCA3NxewvUYqLCx06IG/6dWrF1u2bAFsk/56\n9+5tL4+Pj6eoqIiUlBSSk5Np3br1Fd1biJpIH9xj+6Jefcx3V6GLi+BQovRXiFrBoZZFeHg4zz77\nLCNHjiQgIIC0tDQ+++wzewf1jz/++LvZaenSpSQmJpKdnc2MGTMYP348Y8aMYcmSJWzatMk+dBZs\nu/KFhYUxd+5cDMNg6tSpMhJK1A0H9oK3L2rsPejVL6PXvQ4FeTJkVtQKSmutyzvJNE1iY2P57rvv\nyMjIwMfHh7CwMCIiIjAMw96qcHd3r/KAf8+pU6cqfK00U51Ldddba435x/tQbTqg7n8MM/KPcPQg\nAMbitahG3tUSh/y8nUtlvoZyqGVhGAYjRoxgxIgRlzxudZIQosY7exoy06BNR5RhYEyYhvn849D0\n2mpLFEJcDYeSBUBmZiZJSUlkZ2dzcWNk6NChVRKYEHWJPrQXANW2k+2/Ldui7piK8pGJeKJ2cChZ\nbN++neXLl3PNNddw4sQJQkJCOHHiBO3atZNkIYQjDuwBTy8IDrEXGRG3WhiQEFfGoWSxbt06Zs6c\nSVhYGFOmTOHFF19k8+bNnDhxoqrjE6JO0Af3QNuOsqqsqLUcGmaUmppKWFhYqbLw8HDi4uKqJCgh\n6hKddhbSUuyvoISojRxKFl5eXmRmZgIQGBjIwYMHOXPmzBWtDyWEs/ptfoUkC1GbOfQaatiwYezf\nv59+/foxatQonnnmGZRSjB49uqrjE6L2O7gHPDyh6bVWRyJEhTmULG655Rb7xLjw8HA6duxIfn4+\nzZo1q9LghKgL9ME90KYDSiaXilqs3H+9pmlyzz332HfJA9tED0kUQpRP/5QAKcmojj2sDkWIq1Ju\nsjAMg+DgYLKzs6sjHiHqDF2Qj/mvV+GaENSg4VaHI8RVceg11MCBA1m4cCEjR47E39+/1PC/Tp2k\n006IS9EfvQNpKRh/jES5ulkdjhBXxaFk8dVXXwHw3nvvlSpXSvHKK69UflRC1BLaNC/ZF6F/PoKO\n/RA1aASqTQcLIhOicjmULC7eO1sIYaN3bMVcE41x36Oorn0ulBcVYr61Aho2Qv1hsnUBClGJHB6e\nUVxczL59+4iPjwcgPz+f/Pz8KgtMiJpMn8/GfHsl5J3H/Hsketd3tvLMNMxFf4ajB1ETpqMaepZz\nJyFqB4daFj///DMLFy7Ezc2NtLQ0+vfvT2JiIlu2bLHvQyGEM9HvvwnnszEeew7z/dWYry5E3TwB\nvflTyM/DeHA+qkd/q8MUotI41LJYtWoVd9xxB0uXLsXV1ZZfOnTowP79+6s0OCFqIp2UiP7mK1TE\nLajrOmHM+T9o0QYd8xa418P40yJJFKLOcahlcfLkSQYNGlSqrH79+le8laoQtZ0uLsZ86+/gF4i6\neQIAqoEHxqNPo7dtRvW5HtWwkcVRClH5HGpZBAYGcuTIkVJlSUlJBAUFVUlQQtRE2jTR7/4DfjmO\nMXE6qn4D+zFV3wNjyChJFKLOcqhlcccddxAZGcnw4cMpLi5mw4YN/Oc//2H69OlVHZ8QNYI2TfRb\nK2yvn24SsNKhAAAaXklEQVQYV2r0kxDOwKFk0bNnT/785z+zceNGOnTowNmzZ3n88ccJDQ29qoef\nOnWKJUuW2D+npKQwfvx4zp8/z8aNG/Hy8gJgwoQJ9OghyyUIa2izBL16OXrbJtSo8ahb77I6JCGq\nnUPJ4ty5c7Rs2ZL777+/Uh8eHBzMokWLANsaVNOnT6dPnz5s3ryZUaNGccstt1Tq84T4PbqkBAyj\n1AoFurgI/cZSdMI3qFsnYoy+08IIhbCOQ8li5syZdOzYkYEDB9K7d2/q169f6YHs3r2boKAgAgMD\nK/3eQlyOLiyAPTvRO+LRP20HTy+Mux5EdeqBLijAXBkJe3agbpuMccM4q8MVwjIOJYsVK1awbds2\nvvrqK1atWkWPHj0YOHAg3bt3x8XFpVIC2bp1KwMGDLB//uKLL4iLiyM0NJRJkybh6SmTm0Tl0kWF\nmM/OheQT4NkI1XMA+vA+zGVPo/pcj05PhcP7UPfMwrj+BqvDFcJSSmutr+SCs2fPsnXrVr799lsy\nMjJ4/fXXrzqI4uJipk+fTlRUFD4+PmRmZtr7K9atW0dGRgYzZ84sc11sbCyxsbEAREZGXtVQXldX\nV4qLiyt8fW3lzPXOfPsfnH/3Nbwe+Rv1Bw1Hubiiiwo5//4azr+/FtB4P/o09QcMtTrcSuPMP2+p\n96W5u7s7dq8rfXhWVhaZmZlkZ2fTsGHDK738knbt2kXLli3x8fEBsP8XbLv0LVy48JLXRUREEBER\nYf+cmppa4RgCAgKu6vraylnr7VtiSwqq5wDOd+rN+YzMCwcjxmB06QsF+eSEtCSnDn1/nPXnLfW+\nvODgYIfu5fCkvG+//ZatW7dSWFhIWFgY8+bNo3Xr1g49pDz/+woqIyMDX19fALZv305ISEilPEc4\nJ52bg7n4SVS7zqhbJqLc65H9+lJbZ/b4qZe8RjW+ppqjFKJmcyhZ/O1vf6Nv375MmzaNjh072rdY\nrQz5+fn89NNPTJs2zV721ltvcezYMZRSBAYGljomxJXS2zbD8ST08ST0D9tRYUMoSPgWNe5elF+A\n1eEJUSs41GdRXFxsXxOqJjt16lSFr5Vmat2ktcZ8ajbUb4Ax9h7MN5dDWgouTZuj/7rE6TYlqus/\n78uRel9epb6GcnV1JTMzk6SkJLKzs7k4vwwdWnc6/0Ttp3PPozwu6ks7uAeST6AmP4Jq3xXj6ZfR\nsR/jHT6cLCdLFEJcDYeSxfbt21m+fDnXXHMNJ06cICQkhBMnTtCuXTtJFqLG0D/8F3PFC6jJD2P0\nt/271F9/Dh6eqN4DAdsaTmr0HbgFBIAT/qUpREU5lCzWrVvHzJkzCQsLY8qUKbz44ots3ryZEydO\nVHV8QjjM/HIDaBO9Nhod1BT8G6N3bUMNGY1yr2d1eELUag71VKemphIWFlaqLDw8nLi4uCoJSogr\npX8+DEmJqJG3gY8f5ooX0J+ug5ISVPiNVocnRK3nULLw8vIiM9M2Dj0wMJCDBw9y5swZTNOs0uCE\ncJTe9Am410PdOA5j1l8gPxe9+TNo3xUV1NTq8ISo9RxKFsOGDbPvijdq1CieeeYZ5s2bx4gRI6o0\nOCF+o8/noE+fvPSx7HPo/8ahwoagPDxRzVpg3DcH3Nwxho+p5kiFqJsc6rMYM+bC/+HCw8Pp2LEj\n+fn5NGvWrMoCE+I3uiAfc9GfbKOaxk9FDR1demXYb76E4iLUkNH2MtUjDGPZv1Buji1lIIT4fRWa\nPBEQIBOZRPXQWqPXRMOpn6FVe/S7q+B4Etw9E+VeD11SYhvx1L4rqmnzUtdKohCi8tT8mXbCqenN\nn6K3b0GNuRs18jb0J+vQH7+DTvwB3OtBQT6cy8SYKLP8hahKkiyEpXRREXrHt6gWbct0ROukfej1\nr0PXPqiRt6EMA3XLBHSL1uj4TeDqCm7u4OsPXXpbUwEhnIQkC1Fl9Pls9If/Qg2/FRUYVPpYSQl6\n2yb0J+sgLQUd1AzjyWUoN9usap2fi/laFPgFYtz3KOqi9chUl94oSQ5CVKvKWxFQiP+h475Eb/4U\nc+lT6HMXlgDXyScxn3kY/eZy8PRCjbkbTp9Ef/behXPefxPSz2LcNwflIRtfCWE1aVmIq6aLi+Bc\nVqkVXLXWtldFjYMhMxVz2TMYjz8HSfswVy0CVzeMB/8E3fuhlMI8fRL9+b/RvQbAuUz015/bWiSt\n21tYMyHEbyRZiKuik09g/uMlSD6B8fTLqKBfh1MfOwSnT6LumYXyDcCMfhbz+cfhzClodi3GrL+i\n/C/st67G34/es9O2Kmx2FjQORt16t0W1EkL8L3kNJSpEa40Z9yXms3MgMw1cXdEf/uvC8fhN4OaO\n6jUQ1bknavLDcPok9OiH8cTCUokCQDXyQt1xPxw9CGkpGJMfRtWT9ZyEqCmkZSEqRH/2HjrmLWjf\nFeO+OeivP0N/uh594x8guDl6exyqez/7cuFGvyHoDt2gkU+pCXUXU33D4cgB8A9EtelQndURQpRD\nkoW4Yjr3PPrLD6BbX4wH/2QbqTRiDHrzZ5gxazEGjoDcHFRY6eXrlZfv795XKYWaOL0qQxdCVJAk\nC3HF9NefQV4uxs0T7ENalYcnauQf0O+/iZmSDD5+0KGrxZEKISqL9FmIK6ILCtCxH0HnXqjmoaWO\nqSGjwdsPUpJRfQejDBeLohRCVDbLWxazZs2ifv36GIaBi4sLkZGR5OTksGTJEs6ePUtgYCBz5szB\n01PG2tcE+tuvIDsL46bbyhxT9eqhbp2IfvvvqAHDLIhOCFFVLE8WAE899RReXl72zzExMXTu3Jkx\nY8YQExNDTEwMd98twyirgy4pQcdvhJ8PQ/Y5dM45VGCQbQOhZi3QX26Ath1RrS/dAW0MGoHuEYZq\n2KiaIxdCVKUa+RoqISGB8PBwwLYkekJCgsUR1T26qBBz9cuc//eb6LSztrKjhzCffwy95hV0wrfo\nX45BcRE64RvM5x7D/NtMyEjFGHn7795bEoUQdU+NaFksWLAAwzAYPnw4ERERZGVl4etrGznj4+ND\nVlaWxRHWPXrrRvTWWHK2xgKvQvNWcOIIePlizHgCevS3D3HVuefR2zajt3wO13WGjt2tDV4IUe0s\nTxYLFizAz8+PrKwsnn32WYKDg0sdV0pddlx+bGwssbGxAERGRl7VPhuurq5Os0+HLi4m9asNuLbt\niN+8Z8nZ9BkF27/B7aY/4DlhGkbD/+0fCoDmk+GOyRZEWzWc6ed9Mam3c6nMelueLPz8/ADw9vam\nd+/eJCUl4e3tTUZGBr6+vmRkZJTqz7hYREQEERER9s+pqakVjiMgIOCqrq9NzPiN6LOn4c4HIKAJ\n+UNvhqE3Uwik5+VDXr7VIVY5Z/p5X0zq7Vwcqff//oF+OZb2WeTn55OXl2f/+qeffqJ58+b06tWL\nLVu2ALBlyxZ695blqCuLNkvQn/0bQlpC515WhyOEqCUsbVlkZWXx0ksvAVBSUsLAgQPp1q0brVq1\nYsmSJWzatMk+dFZUDr1jG5z5BWPGE5d9vSeEEP/L0mTRpEkTFi1aVKa8UaNGPPnkkxZEVLdprdGf\nrYdrQqB7mNXhCCFqkRo5dFZUjNb6949//RmcPIa66bZSO88JIUR55DdGHWF+8i7mnLsxP12Pzs8r\nc1wfT7LtZ92lN6pPuAURCiFqM0kWdYA+edS2l7V7PXTMW5h/noYZ+yE6L9d2PDcHc+VC8PLBmPKI\ntCqEEFfM8qGzonzmmlfAvzHGqPFljmmzBHNNNHh4Yjy5FM6cwtywFr3udfSGt1B9rkdnZdhmXs97\nAeV56WHIQgjxeyRZ1HA6LQX9zVe2nej6D0P5+pc+vvlzOHoQdf9jtkTg6YXL48+hjx5Cx32B3h4H\nhQWo26egWrWzqBZCiNpOkkUNonfvgNDrUBfNoNbffW37wjTRX36AuvOBC8fSz6I3rIWO3VF9ri91\nL9WyDaplG/Tt99kWBbyuc3VUQQhRR8nL6xpCHz+M+fIz6HdXXSjT2pYsWndAhQ1Fx32Jzky3HSsq\nwnx9MWgT464HL79VqUdDVLsuMqdCCHFVJFnUEPo/Mbb//ncL+vRJW+HPR+D0SVS/waibboeSYvRX\nG9Cmif7nUji4FzVpNiowyMLIhRDOQJJFDaAz0tDff4vqGw5ubraRTfz6CsrFFdVrAKrxNai+4egt\nn6PfXolO+AY17l6MvjIMVghR9SRZ1AB68ydgatStd6GGjEJv/wb9y3F0Qpxt+9Jf94dQN42HomJ0\n3BeowSNRN46zOHIhhLOQZGExnZ+H3vIFdO9n25HuhnHgXg9zxQuQlYHRb7D9XBXUFDXyD6iBw1F3\nTpN+CCFEtZHRUBbT2zZB7nmM4bcCoBp5oYaOQn/+b/BoCF1KrwxrjL3HijCFEE5OWhYW0iUl6NiP\noGVbuGgOhBoxBho0RPW5HuXmbmGEQghhIy0Li+jiYvRrUZCSjPHg5FKvlJSnF8b/RdtaFkIIUQNI\nsrCALirEfPVF+HG7bWZ1j7LLhSsfPwsiE0KIS5NkUY201nDiKOb7qyHxB9TEGRhDbrI6LCGEKJck\ni2qgz2WgP34X/WMCZKSCiwvq3ocwBg63OjQhhHCIJIsqpgvyMV9eAL8ch849UbdORHXuifLytTo0\nIYRwmCSLKqTNEsxVL8HPRzBm/QXVtbfVIQkhRIVYmixSU1OJjo4mMzMTpRQRERHcdNNNrF+/no0b\nN+LlZdt7YcKECfTo0cPKUCtEr3/D1ok9YZokCiFErWZpsnBxceGee+4hNDSUvLw85s+fT5cuXQAY\nNWoUt9xyi5XhOUTn50FREapR6U2FzC83oDd+jIq4BWPoaIuiE0KIymFpsvD19cXX1/buvkGDBjRt\n2pT09HQrQ7oiuiAfM/KPkJaCMXUuqltfAMyNH6P//U9Ur4Go26dYHKUQQly9GtNnkZKSwtGjR2nd\nujX79+/niy++IC4ujtDQUCZNmoSnp2eZa2JjY4mNjQUgMjKSgICACj/f1dX1iq7XWpO1+CkKkk/g\nEtyckujnaHjHfRjevmS/u4p6fcPxfnwByrXGfIsv6UrrXVdIvZ2L1PvqKa21rpQ7XYX8/Hyeeuop\nxo0bR9++fcnMzLT3V6xbt46MjAxmzpxZ7n1OnTpV4RgCAgJITU11+HzzPx+i17+OGjcJNexm9Ft/\nt63zBNClN8aD81GubhWOp7pcab3rCqm3c5F6X15wcLBD97L8z97i4mKioqIYNGgQffvaXuP4+PjY\njw8bNoyFCxdaFZ6dLiqCzDTIPY8+9TP63/+0rRR74x9sS3VMeQRat4MTx1Djp9aKRCGEEI6yNFlo\nrVm5ciVNmzZl9OgLncAZGRn2vozt27cTEhJiVYgA6H0/Yr4WBecyLxQGNcOY8qh9TSelFOr6Gy2K\nUAghqpalyeLAgQPExcXRvHlz5s2bB9iGyW7dupVjx46hlCIwMJBp06ZZEp82S9CfrEd/8i4ENUON\nvQfl2QgaeMK1rVD1G1gSlxBCVDdLk0W7du1Yv359mfLqnlNxqW4bnZeLuTLStoZT2BDUXQ+i6tWv\n1riEEKKmcPr9LHRGGuZTs8n/75YLZdnnMKP+Cgd2oybNRk15VBKFEMKpWd7Bbbnc8+DiQlbkn6Br\nH4yRt2G+uRxSz2DM/DOqi8y8FkIIp08WqmlzjL8sxmPbRnLeXYX543ao3wDjkadR13WyOjwhhKgR\nnD5ZAChXVxqOvYvc9t3QX8WgBgxDXdva6rCEEKLGkGRxERXQBDVxutVhCCFEjeP0HdxCCCHKJ8lC\nCCFEuSRZCCGEKJckCyGEEOWSZCGEEKJckiyEEEKUS5KFEEKIckmyEEIIUa4asVOeEEKImk1aFr+a\nP3++1SFYQurtXKTezqUy6y3JQgghRLkkWQghhCiXy9NPP/201UHUFKGhoVaHYAmpt3ORejuXyqq3\ndHALIYQol7yGEkIIUS6n38/ihx9+4J///CemaTJs2DDGjBljdUhVIjU1lejoaDIzM1FKERERwU03\n3UROTg5Llizh7NmzBAYGMmfOHDw9Pa0Ot9KZpsn8+fPx8/Nj/vz5TlHv8+fPs3LlSk6cOIFSigcf\nfJDg4OA6X+9PPvmETZs2oZQiJCSEmTNnUlhYWCfrvWLFCnbu3Im3tzdRUVEAv/tve8OGDWzatAnD\nMJgyZQrdunVz/GHaiZWUlOjZs2fr06dP66KiIv3444/rEydOWB1WlUhPT9eHDx/WWmudm5urH374\nYX3ixAm9du1avWHDBq211hs2bNBr1661Mswq8/HHH+ulS5fqF154QWutnaLey5cv17GxsVprrYuK\ninROTk6dr3daWpqeOXOmLigo0FprHRUVpTdv3lxn67137159+PBhPXfuXHvZ5ep64sQJ/fjjj+vC\nwkJ95swZPXv2bF1SUuLws5z6NVRSUhJBQUE0adIEV1dX+vfvT0JCgtVhVQlfX197R1eDBg1o2rQp\n6enpJCQkEB4eDkB4eHidrH9aWho7d+5k2LBh9rK6Xu/c3Fz27dvH0KFDAXB1daVhw4Z1vt5ga0UW\nFhZSUlJCYWEhvr6+dbbeHTp0KNNCulxdExIS6N+/P25ubjRu3JigoCCSkpIcfpZTv4ZKT0/H39/f\n/tnf359Dhw5ZGFH1SElJ4ejRo7Ru3ZqsrCx8fX0B8PHxISsry+LoKt/q1au5++67ycvLs5fV9Xqn\npKTg5eXFihUrOH78OKGhoUyePLnO19vPz4+bb76ZBx98EHd3d7p27UrXrl3rfL0vdrm6pqen06ZN\nG/t5fn5+pKenO3xfp25ZOKP8/HyioqKYPHkyHh4epY4ppVBKWRRZ1dixYwfe3t6/O3ywLta7pKSE\no0ePMmLECF588UXq1atHTExMqXPqYr1zcnJISEggOjqaV199lfz8fOLi4kqdUxfrfTmVWVenbln4\n+fmRlpZm/5yWloafn5+FEVWt4uJioqKiGDRoEH379gXA29ubjIwMfH19ycjIwMvLy+IoK9eBAwf4\n/vvv2bVrF4WFheTl5fHyyy/X+Xr7+/vj7+9v/0uyX79+xMTE1Pl67969m8aNG9vr1bdvXw4ePFjn\n632xy9X1f3/fpaenX9HvO6duWbRq1Yrk5GRSUlIoLi4mPj6eXr16WR1WldBas3LlSpo2bcro0aPt\n5b169WLLli0AbNmyhd69e1sVYpWYOHEiK1euJDo6mkcffZROnTrx8MMP1/l6+/j44O/vz6lTpwDb\nL9FmzZrV+XoHBARw6NAhCgoK0Fqze/dumjZtWufrfbHL1bVXr17Ex8dTVFRESkoKycnJtG7d2uH7\nOv2kvJ07d/Lmm29imiZDhgxh3LhxVodUJfbv38+TTz5J8+bN7c3SCRMm0KZNG5YsWUJqamqdGlJ4\nKXv37uXjjz9m/vz5ZGdn1/l6Hzt2jJUrV1JcXEzjxo2ZOXMmWus6X+/169cTHx+Pi4sLLVq0YMaM\nGeTn59fJei9dupTExESys7Px9vZm/Pjx9O7d+7J1/eCDD9i8eTOGYTB58mS6d+/u8LOcPlkIIYQo\nn1O/hhJCCOEYSRZCCCHKJclCCCFEuSRZCCGEKJckCyGEEOWSZCGc0ty5c9m7d68lz05NTeWee+7B\nNE1Lni9ERcjQWeHU1q9fz+nTp3n44Yer7BmzZs1i+vTpdOnSpcqeIURVk5aFEFehpKTE6hCEqBbS\nshBOadasWdx333289NJLgG0J76CgIBYtWkRubi5vvvkmu3btQinFkCFDGD9+PIZh8PXXX7Nx40Za\ntWpFXFwcI0aMYPDgwbz66qscP34cpRRdu3Zl6tSpNGzYkOXLl/Ptt9/i6uqKYRjcdttthIWFMXv2\nbN555x1cXFxIT09n1apV7N+/H09PT2699VYiIiIAW8vn5MmTuLu7s337dgICApg1axatWrUCICYm\nhs8//5y8vDx8fX25//776dy5s2XfV1F3OfVCgsK5ubm5MXbs2DKvoaKjo/H29ubll1+moKCAyMhI\n/P39GT58OACHDh2if//+rFq1ipKSEtLT0xk7dizt27cnLy+PqKgo3nvvPSZPnsxDDz3E/v37S72G\nSklJKRXHsmXLCAkJ4dVXX+XUqVMsWLCAoKAgOnXqBNhWzn3ssceYOXMm7777Lm+88QbPPfccp06d\n4ssvv+SFF17Az8+PlJQU6QcRVUZeQwlxkczMTHbt2sXkyZOpX78+3t7ejBo1ivj4ePs5vr6+jBw5\nEhcXF9zd3QkKCqJLly64ubnh5eXFqFGjSExMdOh5qamp7N+/n7vuugt3d3datGjBsGHD7AvBAbRr\n144ePXpgGAbXX389x44dA8AwDIqKijh58qR9/aegoKBK/X4I8RtpWQhxkdTUVEpKSpg2bZq9TGtd\napOsgICAUtdkZmayevVq9u3bR35+PqZpOrxIXUZGBp6enjRo0KDU/Q8fPmz/7O3tbf/a3d2doqIi\nSkpKCAoKYvLkybz33nucPHmSrl27MmnSpDq9zL6wjiQL4dT+d2MYf39/XF1def3113FxcXHoHu+8\n8w4AUVFReHp6sn37dt544w2HrvX19SUnJ4e8vDx7wkhNTXX4F/7AgQMZOHAgubm5/OMf/+Dtt9/m\noYcecuhaIa6EvIYSTs3b25uzZ8/a3/X7+vrStWtX1qxZQ25uLqZpcvr06d99rZSXl0f9+vXx8PAg\nPT2djz/+uNRxHx+fMv0UvwkICOC6667jX//6F4WFhRw/fpzNmzczaNCgcmM/deoUe/bsoaioCHd3\nd9zd3Z1mBzhR/SRZCKcWFhYGwNSpU3niiScAmD17NsXFxcydO5cpU6awePFiMjIyLnuP22+/naNH\nj3Lvvffywgsv0KdPn1LHx4wZw/vvv8/kyZP56KOPylz/yCOPcPbsWaZPn85LL73E7bff7tCcjKKi\nIt5++22mTp3KAw88wLlz55g4ceKVVF8Ih8nQWSGEEOWSloUQQohySbIQQghRLkkWQgghyiXJQggh\nRLkkWQghhCiXJAshhBDlkmQhhBCiXJIshBBClEuShRBCiHL9P4+NU2RQ5Pu9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sess.run(tf.global_variables_initializer())\n", + "\n", + "n_iter = 200\n", + "n_episode = 100\n", + "path_length = 200\n", + "discount_rate = 0.99\n", + "baseline = None\n", + "\n", + "po = PolicyOptimizer(env, policy, baseline, n_iter, n_episode, path_length,\n", + " discount_rate)\n", + "\n", + "# Train the policy optimizer\n", + "loss_list, avg_return_list = po.train()\n", + "\n", + "util.plot_curve(loss_list, \"loss\")\n", + "util.plot_curve(avg_return_list, \"average return\")" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -477,14 +602,15 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 30, "metadata": { - "collapsed": true + "collapsed": false }, "outputs": [], "source": [ "# set the hyperparameter for generalized advantage estimation (GAE)\n", - "LAMBDA = 0.98 # \\lambda\n", + "#LAMBDA = 0.98 # \\lambda\n", + "LAMBDA = 0.95\n", "class PolicyOptimizer_actor_critic(PolicyOptimizer):\n", " def __init__(self, env, policy, baseline, n_iter, n_episode, path_length,\n", " discount_rate=.99):\n", @@ -523,6 +649,8 @@ " Sample solution should be only 1 line. (you can use `util.discount` in policy_gradient/util.py)\n", " \"\"\"\n", " # YOUR CODE HERE >>>>>>>>\n", + " #print(util.discount(np.log(np.multiply(np.ones(10000), self.discount_rate * LAMBDA)), 1))\n", + " a = util.discount(a, self.discount_rate * LAMBDA)\n", " # <<<<<<<\n", " p[\"returns\"] = target_v\n", " p[\"baselines\"] = b\n", @@ -543,99 +671,74 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 33, "metadata": { - "scrolled": true + "collapsed": false, + "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Iteration 1: Average Return = 25.12\n", - "Iteration 2: Average Return = 31.17\n", - "Iteration 3: Average Return = 30.07\n", - "Iteration 4: Average Return = 31.98\n", - "Iteration 5: Average Return = 36.77\n", - "Iteration 6: Average Return = 36.22\n", - "Iteration 7: Average Return = 43.52\n", - "Iteration 8: Average Return = 45.12\n", - "Iteration 9: Average Return = 50.86\n", - "Iteration 10: Average Return = 58.81\n", - "Iteration 11: Average Return = 58.87\n", - "Iteration 12: Average Return = 65.66\n", - "Iteration 13: Average Return = 69.72\n", - "Iteration 14: Average Return = 76.32\n", - "Iteration 15: Average Return = 77.74\n", - "Iteration 16: Average Return = 78.17\n", - "Iteration 17: Average Return = 94.97\n", - "Iteration 18: Average Return = 89.34\n", - "Iteration 19: Average Return = 98.15\n", - "Iteration 20: Average Return = 103.35\n", - "Iteration 21: Average Return = 106.54\n", - "Iteration 22: Average Return = 109.03\n", - "Iteration 23: Average Return = 113.63\n", - "Iteration 24: Average Return = 119.11\n", - "Iteration 25: Average Return = 115.67\n", - "Iteration 26: Average Return = 126.51\n", - "Iteration 27: Average Return = 131.33\n", - "Iteration 28: Average Return = 138.83\n", - "Iteration 29: Average Return = 143.7\n", - "Iteration 30: Average Return = 146.15\n", - "Iteration 31: Average Return = 146.41\n", - "Iteration 32: Average Return = 157.34\n", - "Iteration 33: Average Return = 160.51\n", - "Iteration 34: Average Return = 159.67\n", - "Iteration 35: Average Return = 169.42\n", - "Iteration 36: Average Return = 170.71\n", - "Iteration 37: Average Return = 174.41\n", - "Iteration 38: Average Return = 172.93\n", - "Iteration 39: Average Return = 173.29\n", - "Iteration 40: Average Return = 177.32\n", - "Iteration 41: Average Return = 177.14\n", - "Iteration 42: Average Return = 179.85\n", - "Iteration 43: Average Return = 181.82\n", - "Iteration 44: Average Return = 182.0\n", - "Iteration 45: Average Return = 181.89\n", - "Iteration 46: Average Return = 183.19\n", - "Iteration 47: Average Return = 183.87\n", - "Iteration 48: Average Return = 183.26\n", - "Iteration 49: Average Return = 183.27\n", - "Iteration 50: Average Return = 189.11\n", - "Iteration 51: Average Return = 181.45\n", - "Iteration 52: Average Return = 186.91\n", - "Iteration 53: Average Return = 188.84\n", - "Iteration 54: Average Return = 189.76\n", - "Iteration 55: Average Return = 189.51\n", - "Iteration 56: Average Return = 186.36\n", - "Iteration 57: Average Return = 190.55\n", - "Iteration 58: Average Return = 189.35\n", - "Iteration 59: Average Return = 189.84\n", - "Iteration 60: Average Return = 187.14\n", - "Iteration 61: Average Return = 191.82\n", - "Iteration 62: Average Return = 189.32\n", - "Iteration 63: Average Return = 190.74\n", - "Iteration 64: Average Return = 188.13\n", - "Iteration 65: Average Return = 190.99\n", - "Iteration 66: Average Return = 189.23\n", - "Iteration 67: Average Return = 186.98\n", - "Iteration 68: Average Return = 188.0\n", - "Iteration 69: Average Return = 191.68\n", - "Iteration 70: Average Return = 188.03\n", - "Iteration 71: Average Return = 193.07\n", - "Iteration 72: Average Return = 191.96\n", - "Iteration 73: Average Return = 189.53\n", - "Iteration 74: Average Return = 186.71\n", - "Iteration 75: Average Return = 190.05\n", - "Iteration 76: Average Return = 191.1\n", - "Iteration 77: Average Return = 193.49\n", - "Iteration 78: Average Return = 188.66\n", - "Iteration 79: Average Return = 191.49\n", - "Iteration 80: Average Return = 191.68\n", - "Iteration 81: Average Return = 193.19\n", - "Iteration 82: Average Return = 193.87\n", - "Iteration 83: Average Return = 195.04\n", - "Solve at 83 iterations, which equals 8300 episodes.\n" + "Iteration 1: Average Return = 24.98\n", + "Iteration 2: Average Return = 29.41\n", + "Iteration 3: Average Return = 31.71\n", + "Iteration 4: Average Return = 30.51\n", + "Iteration 5: Average Return = 34.77\n", + "Iteration 6: Average Return = 38.54\n", + "Iteration 7: Average Return = 37.77\n", + "Iteration 8: Average Return = 37.87\n", + "Iteration 9: Average Return = 40.96\n", + "Iteration 10: Average Return = 44.97\n", + "Iteration 11: Average Return = 45.46\n", + "Iteration 12: Average Return = 44.93\n", + "Iteration 13: Average Return = 45.97\n", + "Iteration 14: Average Return = 44.72\n", + "Iteration 15: Average Return = 49.52\n", + "Iteration 16: Average Return = 53.87\n", + "Iteration 17: Average Return = 52.84\n", + "Iteration 18: Average Return = 52.65\n", + "Iteration 19: Average Return = 56.58\n", + "Iteration 20: Average Return = 54.04\n", + "Iteration 21: Average Return = 56.78\n", + "Iteration 22: Average Return = 61.62\n", + "Iteration 23: Average Return = 62.86\n", + "Iteration 24: Average Return = 63.36\n", + "Iteration 25: Average Return = 64.5\n", + "Iteration 26: Average Return = 68.53\n", + "Iteration 27: Average Return = 68.72\n", + "Iteration 28: Average Return = 71.13\n", + "Iteration 29: Average Return = 73.12\n", + "Iteration 30: Average Return = 77.93\n", + "Iteration 31: Average Return = 82.36\n", + "Iteration 32: Average Return = 85.47\n", + "Iteration 33: Average Return = 88.01\n", + "Iteration 34: Average Return = 109.07\n", + "Iteration 35: Average Return = 113.3\n", + "Iteration 36: Average Return = 126.71\n", + "Iteration 37: Average Return = 133.74\n", + "Iteration 38: Average Return = 138.0\n", + "Iteration 39: Average Return = 156.24\n", + "Iteration 40: Average Return = 158.01\n", + "Iteration 41: Average Return = 152.1\n", + "Iteration 42: Average Return = 159.29\n", + "Iteration 43: Average Return = 164.76\n", + "Iteration 44: Average Return = 158.42\n", + "Iteration 45: Average Return = 167.66\n", + "Iteration 46: Average Return = 169.72\n", + "Iteration 47: Average Return = 172.65\n", + "Iteration 48: Average Return = 173.46\n", + "Iteration 49: Average Return = 181.0\n", + "Iteration 50: Average Return = 182.64\n", + "Iteration 51: Average Return = 184.82\n", + "Iteration 52: Average Return = 189.58\n", + "Iteration 53: Average Return = 190.29\n", + "Iteration 54: Average Return = 194.92\n", + "Iteration 55: Average Return = 192.96\n", + "Iteration 56: Average Return = 191.9\n", + "Iteration 57: Average Return = 195.42\n", + "Solve at 57 iterations, which equals 5700 episodes.\n" ] } ], @@ -658,14 +761,16 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, + "execution_count": 34, + "metadata": { + "collapsed": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmYSQhMk2CRACYQubQELUoGDVIEbrbgRs\nUdGi1kqrULH+WtGithTEBeNeqKVq3RVpqlbbGpFQRTQqCUvYN8EAWWYSMtkgM+f3x00GYrZJMpmZ\nJO/neXySuXPvnXeOw7w5u9Jaa4QQQggPMvk6ACGEEN2PJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQ\nQnicJBchhBAeJ8lFCCGEx0lyEUII4XGSXIQQQnicJBchhBAeF+jrAHypoKCgXdfFxMRQXFzs4Wi6\nHykn90g5uU/Kyj2dWU5xcXFunSc1FyGEEB4nyUUIIYTHSXIRQgjhcZJchBBCeJwkFyGEEB4nyUUI\nIYTHSXIRQgjhcZJc2si55gOqP8vydRhCCOHXJLm0kV73H6r/97GvwxBCdGPOf72N873XfR1Gh0hy\naStzOM7yY76OQgjRTWmt0Z+8j/74n+jaE74Op90kubRVnzCc5WW+jkII0V0dPgjlZVBdBbu3+Tqa\ndpPk0kbKHIaW5CJEl6VrqtElhb4Oo1l65xbjF6XQW77xbTAdIMmlrfqE4bQfQ2vt60iEEG2ktcb5\nl8dw/vEu9PEaX4fTtJ1bIdICoxPRmyW59Bx9wsDhMKqsQvQA+lgp+tv16FKrr0PpuI0bYFMOVNrR\neTm+jqYRrTV651bUqPGoxDOh4Dt0SVHb7lFVia7xfeLs0Uvut4s5zPhpPwYhob6NRYh20tYiqKxA\nDRra+rnvvY7O/rfxIHYQakwSavR4GDUeFR7ZOfHVnkB/+wUqbrBbMbp1z+oqnG+9AAOHQEU5+su1\nMPFcj9zbYwoPQ5nVKNtR49DvvIje8g0q9RK3Ltda4/zTfIoq7DBpCir1EtSA+E4OummSXNpI9QlD\nA1SUQ99YX4cjRJtphwNnxoNQUojptw+jho5s+fxtm2DEWFTy2ejtm9BfrEGv/dB4ckA8anQi6vKf\noCItHY+tphr9v/+g//tPsBWjh40i4L7HO3xfAP3Bm2AtxvS7e9AbN6A/+QBdUY7qE+aR+3tCfX+L\nGjUeYgdCdD+j38XN5ELBQSg8TMDwUdSu/Qj9yfswJgnTbfd02h8CzZHk0laumku5b+MQop30+k/g\nyCEICcX5/MOY7l+Giohq+lxrERQWoKZciumiq+HH16Bra+HAbvTOreidW9CffYw+uBfTPUtQge5/\npejaE+jPssBWDOVlxkCZ3fnGv61R41Ejx6G/ykaXFKGi+3bsPX9/AJ31HupHaagRYyEoGP3fTPTX\nn7tdK/CKnVsgLAJiB6KUQiWeif7iU/SJE6hevVq9XG/LBSDydw9jtVcY/2/+8Qp63X9QV/y0s6Nv\nQPpc2qpPOAC6QpKL6Hp0TQ36vdchYQyme5ZARTnOPz+MPtH0fAq9fTMAakyS65gKDEQljMF06XQC\nfv0g6pb5sGc7+t2X2xbLV/9Dv/Zn9L/fRW/KgaIjqNFJmO59lID/W4K66jrjvI3r2/lu615Ha5yv\n/RmCQ1HTZxsH44fBgHj0hrUtX1tpR3/7hZFQf/jcke9xvrAMnfdVh+I7NU69cwuMGodSCgA1PgVq\nqmHXVvfukZ8L/eII6DcAFR6J6bJrIWEMeuMGj8TYFn5Tc8nNzeXFF1/E6XRy4YUXkp6e3uD5EydO\n8Oyzz7J3717CwsK466676NevHwD/+Mc/WLNmDSaTiZtvvpnk5OTOC1RqLqIL05+8B6VWTLf9H2rw\ncEw3/xrnikfRry+Hm+50fam5bN9kfOYHDmn2nqaJ5+LctRWd9U/0yLGoMya7F8vXn0F0P0xL/oIy\nNf47V/WPg0HD0N+sh7Sr2/Q+G7zOF2tgVz7qpjtRYcYfh0op1Nmp6MxX0SWFqOh+ja9zOnAufwS2\n5UHfWNTVN6AmngcOB/qjVeiP3oHaWvQ3n2O6436jA74jio+CtRj142knj41JhMBAo99lbMvfa7q2\nFnZuQU2+oMFxdfok9KqXmn2fncUvai5Op5OVK1dy3333kZGRweeff86hQ4canLNmzRr69OnDM888\nw+WXX85rr70GwKFDh1i/fj1PPPEE999/PytXrsTpdHZesKFm42eFzNIXXYu2H0P/+12YcBZq1DgA\nVMq5qMt+YjSfrF/T8Hyt0Ts2w+jEJr/8T6WuvQWGjsT50lPowsOtx1JRDvkbUSk/avHe6sxzYPc2\ntK3EjXfY1OvY0ategoQxqB+lNbz32anGOV9mN33th+/AtjxU2tXQOwT912U4F83H+cd56PffQJ1x\nDqZFz8PAwUbtb8eWdsXoer2dRu1EjRp/MsbewTDKzSHJ+3ZCTTXqtIZJSJ0+ybj/xi86FF9b+UVy\n2b17N7GxsfTv35/AwEDOOecccnIaDhP8+uuvmTJlCgCTJk1iy5YtaK3JycnhnHPOoVevXvTr14/Y\n2Fh2797dabGqgACjA1BqLqKL0R++A9XVmK65qcFxdfX1MHQk+t+rGs7fKjoC1iLU6CRao3r1wnT7\nb0EpnCseaXUOif72C3A4jJpAS/c980fG+e38YtSZr4C9HNP1cxolMRXTH0acht6wttG8Nb1jC/q9\nN1FnpaJ+cgumhRmon/8GjteABtOvHzI6yWMHYbrrDxDTH+czi9D7droXV2UFzpUZ6O2bTh7ctcWY\n6hA3uGGciWfCkUPooiMt3zM/F5QJRic2vL5fHAwc4vWmMb9oFrNarURHR7seR0dHs2vXrmbPCQgI\nIDQ0lPLycqxWKyNHnhztYrFYsFqbHo+flZVFVpaxovHSpUuJiYlpV7zF4RH0qj1ORDuv7ykCAwPb\nXcY9SUfKSWvduCmrCY7CwxR/+iHBUy8jYsIZjZ6vunomx55aRHjBfnpPmAhA5befUw5YJp9PoDvx\nxcRQc9dDlD78W3q9sZyIu//YbGy2vC9xxA4k+oyzW44/Jobi+GGY8r7C8pPZbSqrE7u3Yc3+NyGX\nzSD8jLOaPKfywisoX/EYkXYbvYaNAsBZaqVk5RMEDBiE5a7fYwrpY5x8+XTjvyZidPzpWWz3/RLn\nU38g6uHlBMYPazG2isz/Yt/wKfqrdYTdMo+Qy2ZQsnsbgeNPJ7Jfw6ar2vPSKHnrr4Tu3ESf08Y3\nc0ew7t6KHjGG6CFDG5WT/ZypVLz7MpZeAZiaGbzhaX6RXLwlLS2NtLSTVePi4uJ23Uf1CaO6pJgT\n7by+p4iJiWl3Gfck7S0n5wdvoj/9EHX19ahzL0KZApo8T9eewPnYfRAQyPGLr2nytfToCWAOpzTz\nDQIGGl+Mzm++gAgLtt59UO7GN2w06pqbqFn9MkWW/piunNn4tcrLcG7+BnXJdEpKWm/uciafjeOD\ntyjas4u+CSPdKivtdOB89mEIj6Tm4mnNXqPHTICAAKxLF8CgYaioaPT+XVBehmnuQqwVVVDhzoRp\nhb7rD+ilv6XkD/MxLXis+RF4DgfO99+CEadBnzDK/5pB+cYv4WgBzimXNopVB4XA6ETsq16mMnly\nk0OndWUFzp1bUZfMoLi4uNFnSo9JAqeT4jUfYTrvYjfeT/Pi4uLcOs8vmsUsFkuDD1lJSQkWi6XZ\ncxwOB5WVlYSFhTW61mq1NrrW00xhEcY8FyHcoLfloXfne/aee7aj33sTtEa/8jzOJf+H3ruj6XPf\nXgl7d2C6eR7K0vSQXtUrCHXeRZD3FbqkyOhv2b4JNSbRrZpRg3tdMg01+QL0e6/jzPmscTzfrAen\nE5Xi3gRGdea5xvtsQ9OYXvdfOLAbde0tqNA+zd/bHG70F8X0h8MHjaHR+3ejrr8d1Urto9G9Yvpj\nmrsQysuMJrKa6qZPzN0A1iJMP56G6Vf3oa6YCd8YI+JO7W9x3VcpTDN/DhUV6PfeaPqeO7cYZTp2\nQtPPxw835sx4sWnML5JLQkIChw8fprCwkNraWtavX09KSkqDc84880zWrl0LwIYNGxg3zhiul5KS\nwvr16zlx4gSFhYUcPnyYESNGdGq8prBwSS7Cbc6Xn8H54lMeW49O11Tj/FsGWGIwLV5h9AWUWXE+\n/H84//Yk2nryL1bnF58atZuLr3H1XzRHpV4KaPS6/xgr8x4rbdR+7w6lFOrGO43+jBefRO9r2MSt\nv/7MmCDo7sz7uHiIHWQkJTfoygr0P14xBiKcdX6r55suvJKA+X8k4I/PYXrmTUzPvtXuv+7VkBGY\nfvFb+G4vzhceRzsdjc5xZr1nTMBOSkGZTJiuvh7THfehLryy2TJRg4ahUn+MXvsh+vvvGj2vt+VB\nUG8YPqbp65UyOva35aKrK9v13trKL5JLQEAAt9xyC4sXL2b+/PlMnjyZ+Ph43nrrLb7++msApk6d\nit1uZ+7cuXzwwQfccMMNAMTHxzN58mTuvvtuFi9ezK233oqplZEtHaWk5iLcpG0lUFJoLOtxcK9n\n7rnqJSg6gunmu1AhoZjOTsW06HnUj6ehc9bhXDgH5z9eMSY5vvqc8SU77aZW76ui+0HSRGOG/JZv\njWNjWu/Mb/JevXph+uUCCI/EmfGAqwajS63GcNmU89yuESmljFFjO7ZQ8/Xn6NwvcW5Ya3yhNkF/\n+i+otGO69pa217qUQgW2PlmxxXtMmIi67hdGLfD1FehTRq/qfbtg9zbUhVc2aMZUyZMwzbyt2aZN\nAHXVDRAcgvOtFxoPQMjPNebHtDDRUp0+yRg6vfnbDrw79/lNn8sZZ5zBGWc07Gj86U9PzigNCgri\n7rvvbvLaadOmMW3atCaf6wymsAioqkTX1rZpRrLoefQp+3HonM9QgxM6dr8t36LXfoi6ON1Y36uO\nCg5FzZiNnnIp+h+voj98xxgdFmnB9It7UAHNf2mdyjTlMpx5X6H/9TZE90N1YIkjFR6J6Z7Fxl/w\nf3kU57Zc6DsAtEa1cU0vlXIu+l9vU7r4/1zHNBh/8SdPOnmsuhL98T8haSJqSMfKuiNMF1yG01pk\nDP2uroLZ81CBvdBZ70FIKOpHF7b5niosHHXVDeg3/wJ5X0Ld+9bWYjhyyGjWbMmI04zZ/xu/8Mqa\navLN2A6msAjjl8pyCPfOyAvRRe3ZZjRXJIxB5/wPPe2mNv81XU8fs+F8+WljPa/0WU2eo2L6o277\nDfqiq9CfvI+aeiWqLZ/RscnQbwAUHnbNj+gIFdMf0/89jH7/DfRHq0BrGDgE9YPhtq3eZ9BQTPc9\nTkRIMGU1xyEoGOdfHsX52gpMo5NQdYvI6k8/gopyTF5e6qQpatpNEBJqLL9yrBTTdbejv/kMdcEV\nqOD2LXqrUi9BZ3+E882/ogoOGkOXjxhzAlubZKlMAcb6cDn/c3s5mY7wi2axrsZUN8tX5rqI1ujd\n22DYKGPCXkkh7G/fHCxdZsP5+O+N5p5b70b1CmrxfDV0pHHesJYXpWx0nclU1/eCMTvcA1RgIKZr\nbsQ0/4/QLw419fL23WfYKILGn4EaMgI1YBCmG++AMis681WgbtHLjzNh3OmoumHFvqSUwnTZtaib\nfw07t+D8013g1O1+/1BXlrN+CdVVRtJ69XmjNhQVA3HNr6Lgun7SBagLLoMTnb8kv9Rc2kHV11wk\nuYgW6OoqOLgXdckMVPIkdMDz6K//1+YvfF1agnPZ78FWgmneQ53e3KNSLwWnA3XGOZ6972kTCFi8\n3HP3Gz4aNeUy9Kf/Qk+agt6VbwwhvqLx8GdfMp1zITo8EufyR1BnTO5QUyMYI8oCnnzNmKhaaYcK\nO5jDW11Fwbh2nGt1hs4myaUdXM1i0qkvWrJvpzE8dMRpqD5mGJuM/voz9IybXU1j2umg9tB+CDY3\neQttLTYSS5kN068fQo0c2+lhq969UZc0MVnQD6lrbkRv3IDz5WeMPZbGJKFGnObrsBpR48/E9PBf\noXdvz90zqLfR5BoZ3frJPiDNYu1Q3yym7bK+mGie3rMNlIKE0QDGUifWYqibj6Jra3GueIySudfj\nfO+NxiOADh/C+dgCOGbDNP8PXkksXY0KCcV0/e3w/QEjAftZreVUKizcSAg9hNRc2qF+ZVUq7b4N\nRPg1vXsbxA1G1S12qpLPRgf2Quf8D4Yk4PzLY7BxA71GjePE+29AVQVcewvKZELv2Izz+SUQEIjp\n7j+1uSmtJ1GnT0Kdd7Gxs+bo5pdHEd4lyaUdVHAoBARKn4tolnY6YO8O1MSTk/hUSCiMPwP9zefG\nvui5G1AzbyPq2p9R9PwjRsdsVQV6xFj0q3+GfgMwzV3Y4Tb6nsB0052+DkH8gCSXdlBKGXtcSJ+L\naE7Bd1BVacwtOIVKORed+6WRWK77BaapVxgjtH76cwg1o99/Az7/xNia9pf3umo9QnQ1klzaq0+Y\n9LmIZtVPnvxh57KacJaxodbZUzCdsr2uUgp11XU4o6Kh6DDqqus7PFNcCF+S5NJeUnMRLdm9DSKi\njAURT6GCQwj47dJmL+voirVC+AsZLdZesmGYaIHevQ0STmv3bHwhujpJLu2kzLIysmiaLjUWq/TH\n+RZCeIskl/aqq7l4ahl10Y00098iRE8iyaW9zGHgqIUad3apEz2J3pUPQUHGBk1C9FCSXNqrfoio\n9LuIH9A7NsOIsbIdg+jRJLm0kzLXzdKvkFn64iR9rBS+P4Bqxw6OQnQnklzaq0+Y8bNC5rqIk/SO\nLUD7d3AUoruQ5NJeZiO5aGkWE6fasQmCQ2DICF9HIoRPSXJpL3N9zUWSizhJ79gMI8e5va2wEN2V\nz3sc7XY7GRkZFBUV0bdvX+bPn4/Z3Hg9pbVr17J69WoApk2bxpQpUwB44403WLduHXa7nVdeecV7\ngYfWJRepufRIeucWY1fFSMvJY6UlcOR7Y4VeIXo4n9dcMjMzSUxM5OmnnyYxMZHMzMxG59jtdlat\nWsWSJUtYsmQJq1atwm43OtLPPPNMlixZ4u2wjZFAIaFSc+mBnOs/wfnYfThfeLzBcb19MwBqtPS3\nCOHz5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNzARg1ahRRUVFejdmlT5ix+53o\nMfTGDeiXn4HwSNi5xdWBD8COzRDaB+KH+iw+IfyFz5NLWVmZKzlERkZSVlbW6Byr1Up09MmtPC0W\nC1ar1WsxNqtPGFpqLj2G3paH8y+PwpARmB4yEozzX2+dfH77Jhg1HmWS/hYhvNLnsmjRIkpLSxsd\nnzmz4ZakSqlOXegvKyuLrKwsAJYuXUpMTEy77hMYGEhMTAy2KAtOeznR7bxPd1dfTt3BiV352J5f\nQmDcYKL+8DSmsHAqpt2I/aVnCC8qICC6L8XFRwm7+jpC2/ieu1M5dTYpK/f4Qzl5JbksXLiw2eci\nIiKw2WxERUVhs9kIDw9vdI7FYiE/P9/12Gq1MnZs2/cTT0tLIy0tzfW4uLi4zfcAiImJobi4GGdQ\nMLrsu3bfp7urL6euTjudOJ/+E4Sacc59AGvNcagpRqecB+/+HdtrK1w7TlYMGk5lG99zdyknb5Cy\nck9nllNcXJxb5/m8WSwlJYXs7GwAsrOzmThxYqNzkpOTycvLw263Y7fbycvLIzk52duhNtZH9nTp\nETZ9BYf2o66+ocHoMNU7GHVxOmzdaGxRbA6HuME+DFQI/+Hz5JKens6mTZuYN28emzdvJj09HYA9\ne/awfPlyAMxmM9OnT2fBggUsWLCAGTNmuIYrv/rqq8yZM4fjx48zZ84c3n77be8Fbw6Dygq0w+G9\n1xRepbXG+cHb0DcWdXZqo+fVlEuNPzIO7UONTkSZfP5PSgi/4PN5LmFhYTzwwAONjickJJCQkOB6\nPHXqVKZOndrovFmzZjFr1qxOjbFZfeqa8CrtEBbhmxiER2it0Z99bCSIfgNOPrHlWziwG3XTnU1O\njFTBoaiLrkZnvgpjZD0xIer5PLl0aeZTJlJKcunS9Nefo//+LDrCguk3f0INGFRXa3kTLH1Rky9o\n9lp14ZVw/DjqrPO9GLEQ/k3q8B2gZPHKbkGfOI5+9yUYEA/aiXPZ/ejDB2FbHuzdgbp0OiqwV7PX\nq+AQTNfMQoU2XllCiJ5Kai4dYZYlYLoD/fE/oaQQ0z2Ljbkrj9+P8/H7ISIKIi2oH6W1fhMhRANS\nc+mIPvUrI0vNpavSpVb0h6vg9ElGf8uAeEz3LAGl4OA+1CXTUb2CfB2mEF2O1Fw6IjzS+FkuyaWr\n0pmvQu0JTDNudh1TAwZhumcJ+su1sgilEO0kyaUDVO9g6B0MxxqvPiD8nz6wB73+E9RF6Q1HiAEq\ndiDq6ht8FJkQXZ80i3VUWIQkly7K+d7r0CcMdflPfB2KEN2OJJeOCo9El0ty6Wq00wm7tqJSfoQK\n7ePrcITodiS5dJTUXLqmwsNQVSnbEQvRSSS5dJAKj4TyxtsECP+m9+8CQA0d6dtAhOimJLl0VHgk\nlB9DO2V9sS7lwG4ICjImTgohPE6SS0eFRYJ2ykTKLkbv3wXxw5tcL0wI0XGSXDrKNddFmsa6Cu1w\nwHd7kSYxITqPJJcOUvXJRTr1u47DB+F4DQyVznwhOoskl44KN1ZD1pJcugx9YDcgnflCdCZJLh3l\nahaT5NJl7N8FIaHQz73tWoUQbSfJpaNCzRAQIM1iXYjevxsGJ8iukUJ0IvnX1UFKKZlI2YXo2hPG\nlsTS3yJEp5Lk4gnhkehjMlqsS/j+ANTWwhDpbxGiM0ly8YTwSKm5dBF6f31nvtRchOhMPl9y3263\nk5GRQVFREX379mX+/PmYzY23i127di2rV68GYNq0aUyZMoWamhqeeOIJjh49islk4swzz+SGG7y/\nTLoKi0AXHPT664p22L/L2EE0pr+vIxGiW/N5zSUzM5PExESefvppEhMTyczMbHSO3W5n1apVLFmy\nhCVLlrBq1SrsdjsAV155JU8++SSPPvooO3bsYOPGjd5+C66ai9ba+68t2kTv3w1DRhh9ZUKITuPz\n5JKTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnNz6d27N+PHjwcgMDCQYcOGUVJS4tX4\nAWMJmNoTxiq7wm/pmhooOICS/hYhOp3Pk0tZWRlRUVEAREZGUlbWuGPcarUSHR3temyxWLBarQ3O\nqaio4JtvviExMbFzA26KLAHTNRzaB04napj0twjR2bzS57Jo0SJKSxt3eM+cObPBY6VUu5orHA4H\nTz31FJdeein9+zfflp6VlUVWVhYAS5cuJSYmps2vBUYt6dRra+IHUwpEKE1QO+/ZHf2wnHytckMB\n5YDl9LMJiPafuPytnPyZlJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlshIeHNzrHYrGQn5/vemy1\nWhk7dqzr8YoVK4iNjeXyyy9vMY60tDTS0tJcj4uLi9vyNlxiYmIaXKudRkIsO3gA1W9gu+7ZHf2w\nnDqDzvsKfXAvpitmtnquc2suRFiwOkF1clxt4Y1y6i6krNzTmeUUF+feyhY+bxZLSUkhOzsbgOzs\nbCZOnNjonOTkZPLy8rDb7djtdvLy8khOTgbgzTffpLKyktmzZ3sz7IbqmsVku2Pv0xvWoj9c5dZ+\nOnrfLhg2SjrzhfACnw9FTk9PJyMjgzVr1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjN\nZkpKSli9ejUDBw7kd7/7HQCXXHIJF154oXffRJixeKXMdfE+XV4GJ45DSRH0jW3+vAo7HP0edc5U\nL0YnRM/l8+QSFhbGAw880Oh4QkICCQkJrsdTp05l6tSGXwzR0dG8/fbbnR5ja1RAgDF3QpKL99mP\nGT+PHGoxuXCgblvjYaO8EJQQwufNYt1GWKTxV7Twrrrkog8favE0vc9ILgyRkWJCeIMkF0+RJWC8\nTmvdsObS0rn7dkLsIFRoHy9EJoSQ5OIhKjwSZPFK76qqAIfRkd9SzUVrDft2oobJ5EkhvEWSi6eE\nR8qGYd5WX2vpHdxyzcVWbNQqpb9FCK+R5OIpYRFQVYk+cdzXkfQc5XXJJWEM2I+h6x//UF1/ixoq\nyUUIb5Hk4in1S8BI05j31NVc1Ii6CbXN1F70vp0QGAiDhnopMCGEJBcPUa7kIk1j3qLrk8tII7no\nw01ve6D374L44ahevbwWmxA9nSQXT5GJlN5XP/R7yAjoFdRkzUU7HbB/N2qodOYL4U2SXDxFloDx\nPvsxCOwFwSHQfyD6yPeNzzn8PdRUSWe+EF4mycVTwqRZzOvsxyAswlhNe8AgaKJZTO/bASDDkIXw\nMkkuHqJ694beIbKnixfp8mPGsjsAsYOgpBB9vKbhSft2QUgf6OfeSq5CCM+Q5OJJ4RFSc/GmupoL\nAAMGgdZQWNDgFL1/JwwdgTLJR10Ib5J/cZ4UHomW5OI95WUos7H/jxowCGg4U18fr4FD+2WxSiF8\nQJKLJ4VFSrOYN9nLoS650C8OlIJTk0tejrGtccIYHwUoRM8lycWDlCxe6TW6ttZYWyysruYS1Bui\n+7mGI2uHA/3e6zAgHsaf4ctQheiR3E4uW7ZsobCwEACbzcazzz7L888/T2mpfJm6hEcay5A4Wt8V\nUXRQ/bpi5lO2xR4Q72oW0xvWwpFDmNJnoUwB3o9PiB7O7eSycuVKTHWdon//+99xOBwopVixYkWn\nBdflREQZncrWIl9H0v3Vz86v79AHVOxAOPo9+sRx9PtvGJMrT5/kqwiF6NHc3onSarUSExODw+Eg\nLy+P559/nsDAQG6//fbOjK9LUSPHogG9fROqpV0RRcfV922dWnOJHQQnjqMzX4WSQkw33oFSyjfx\nCdHDuV1zCQkJobS0lPz8fAYNGkRwcDAAtbW1nRZclxM3GCKj0Vu/9XUk3Z62lxu/mE+puQyIN577\n+J8wajyMTfZFaEII2lBzueSSS1iwYAG1tbXMnj0bgO3btzNw4MAOBWC328nIyKCoqIi+ffsyf/58\nzGZzo/PWrl3L6tWrAZg2bRpTpkwBYPHixZSWluJwOBgzZgw///nPXc133qaUQo1LRm/cgHY4UAHS\n1t9p7HWKgB70AAAgAElEQVQ1l7Cwk8dijeHIaI3pmllSaxHCh9xOLunp6Zx11lmYTCZiY40mH4vF\nwpw5czoUQGZmJomJiaSnp5OZmUlmZiazZs1qcI7dbmfVqlUsXboUgHvvvZeUlBTMZjPz588nNDQU\nrTXLli3jiy++4Ec/+lGHYuqQcWfC55/A/l3GPiOic9Tv3RJ6MrmosHCIjIb4YSeX4RdC+ESb/sSP\ni4tzJZYtW7ZQWlrK4MGDOxRATk4OqampAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQUgNDQU\nAIfDQW1trc//WlVjJ4AyobdI01insh+DUDMqsOHfR6bfLcX0i3t8FJQQop7byeXBBx9k+/btgFHb\neOqpp3jqqadcTVXtVVZWRlRUFACRkZGUlTWehGi1WomOjnY9tlgsWK1W1+PFixdz2223ERISwqRJ\nvh0dpPqEwdAR0u/S2ezHGnbm11Ex/VHBoT4ISAhxKrebxQ4ePMioUcYyGp988gkPPvggwcHBLFy4\nkGnTprV47aJFi5qcDzNz5swGj5VS7ap53H///Rw/fpynn36aLVu2kJSU1OR5WVlZZGVlAbB06VJi\nYmLa/FoAgYGBLV5rn3guFatewtI7CFNY4y/AnqK1cuoIW00V2hKNpZPu702dWU7djZSVe/yhnNxO\nLlprAI4cOQLAoEFG52lFRUWr1y5cuLDZ5yIiIrDZbERFRWGz2QgPb/xlbLFYyM/Pdz22Wq2MHduw\nTT0oKIiJEyeSk5PTbHJJS0sjLS3N9bi4uLjV2JsSExPT4rV62GhwOin+bA2miee26zW6g9bKqSMc\n1mKI7tdp9/emziyn7kbKyj2dWU5xce6tMO52s9jo0aP529/+xiuvvMLEiRMBI9GEnTpapx1SUlLI\nzs4GIDs723XvUyUnJ5OXl4fdbsdut5OXl0dycjLV1dXYbDbA6HP59ttvOzx6zSOGjTKWeZemsc5j\nP+ZatFII4X/crrnccccdvP/++4SHh3PVVVcBUFBQwGWXXdahANLT08nIyGDNmjWuocgAe/bs4eOP\nP2bOnDmYzWamT5/OggULAJgxYwZms5nS0lIeffRRTpw4gdaacePGcdFFF3UoHk9QAQEwdgJ660a0\n1j4fZNDdaK0bLrcvhPA7Ste3d/VABQUFrZ/UBHeqnM7//Rf992cxPfQMauCQdr1OV9dZVXNdVYlz\n3kzUjJsx/fgaj9/f26Spx31SVu7xh2Yxt2sutbW1rF69mnXr1rn6SM4//3ymTZtGYKDbt+kx1LjT\njaVgtn7bY5NLp6lftLIHD5YQwt+5nRVeffVV9uzZw2233Ubfvn0pKiri3XffpbKy0jVjX5ykLH2N\nVXq35sLFXf+va79St66Y9LkI4b/c7tDfsGEDv/3tb5kwYQJxcXFMmDCBe+65hy+++KIz4+vSVMIY\nOLjX12F0P66ai/S5COGv3E4uPbhrpv3iBkN5GVp2p/QoXd7EXi5CCL/idrPY5MmTeeSRR5gxY4ar\ns+jdd9/1+Yx4f6YGxKMBDh+Uv7I9qamNwoQQfsXt5DJr1izeffddVq5cic1mw2KxcM455zBjxozO\njK9ri6tbAr7gIGrUeB8H043Yj0FgIASH+DoSIUQzWkwuW7ZsafB43LhxjBs3rsHcje3btzN+vHxx\nNikqBnqHGDUX4TnlZWAOl/lDQvixFpPLn//85yaP1/+jrk8yzz77rOcj6waUUhAXjy74ztehdCva\nfqzBJmFCCP/TYnJ57rnnvBVHt6Xi4mX5fU+zH5M5LkL4Od9s2diTDBgMZTZ0RbmvI+k+ymVdMSH8\nnSSXTqbqOvWl38WDmtnLRQjhPyS5dLYBJ0eMiY7TtbVQaZfkIoSfk+TS2Sx9Iai31Fw8pbKueVHm\nDQnh1yS5dDJlMhlrjMmIMc+Q2flCdAmSXLxAxcWDNIt5Rt3sfCWjxYTwa5JcvGHAYCgtQVe2viW0\naJn+/oDxS4TFt4EIIVokycULZMSYZ2inA/3J+zB0JMT6wXbWQohmSXLxhvoRY5JcOmbjBig8jOmS\n6bL0ixB+TpKLN8T0g6Agqbl0gNYa50fvQr84OP1sX4cjhGiFJBcvUKYAiB3U7UeM6Zrqzrv59k1w\nYDfqx+lGeQoh/JrbS+53FrvdTkZGBkVFRfTt25f58+djNpsbnbd27VpWr14NwLRp05gyZUqD5x95\n5BEKCwtZtmyZN8JuMzUgHr0r39dhdBq9exvOR34HY5IwXXQ1jD/To/d3/ns1hEeiJk/16H2FEJ3D\n5zWXzMxMEhMTefrpp0lMTCQzM7PROXa7nVWrVrFkyRKWLFnCqlWrsNvtrue//PJLgoODvRl22w2I\nB2sRurrS15F0Cl1QN4rr+wM4n1mE88E7qP4syzP3/m4v5G9EpV2F6hXkkXsKITqXz5NLTk4Oqamp\nAKSmppKTk9PonNzcXJKSkjCbzZjNZpKSksjNzQWgurqaDz74gOnTp3s17rZScYONXw5/79tAOktZ\nKQCmh/+K+vlvoFcQZRkPob/b0+Fb6/+shuAQVOolHb6XEMI7fJ5cysrKiIqKAiAyMpKyssb7zVut\nVqKjo12PLRYLVqsVgDfffJMrr7ySoCA//4u2Lrnow9203+WYDcxhqN69MZ2diumexZjCInC++me0\n09nu2+rv9qJzPkOdfwkqtHFzqRDCP3mlz2XRokWUlpY2Oj5z5swGj5VSbRpiun//fo4ePcrs2bMp\nLCxs9fysrCyysoymmqVLlxITE+P2a50qMDCwzdfqqCgKAwMJOWYjrJ2v689KqyqpjYo5pVxiOH7r\nXdieeJA+uV8QevHVbb6ndjiwPvoXCI8getbtmLrprPz2fJ56Kikr9/hDOXkluSxcuLDZ5yIiIrDZ\nbERFRWGz2QgPb/wFYrFYyM8/2RlutVoZO3YsO3fuZO/evdxxxx04HA7Kysp46KGHeOihh5p8rbS0\nNNLS0lyPi4uL2/V+YmJi2ndthIWq7w9S087X9WeO4qNgDm9QLtHnpsEH71D+8nNUjByPauNik85P\n/4XelY/6+W+w1hyHmu5XbtCBz1MPJGXlns4sp7i4OLfO83mzWEpKCtnZ2QBkZ2czceLERuckJyeT\nl5eH3W7HbreTl5dHcnIyF198MStWrOC5557jj3/8I3Fxcc0mFr8QaUGXlvg6is5RZkNFRDU4pJTC\ndMMcqKlCv/tym26nS0vQq/8OY5NRZ53vyUiFEF7g8+SSnp7Opk2bmDdvHps3byY9PR2APXv2sHz5\ncgDMZjPTp09nwYIFLFiwgBkzZjQ5XNnvRVqgGyYXrbXR5xIe1eg5FTcYdVE6+vMs9G73h2I733wB\namsx3TBHZuML0QX5fJ5LWFgYDzzwQKPjCQkJJCQkuB5PnTqVqVObn+PQr18/v53jUk9FRqO3bPR1\nGJ5XXQXHj0NEZJNPqyt+aiSXNf9CjRjb6u30phz4Zj0qfRaqn3tVcCGEf/F5zaVHiYo2moiqutlc\nlzKb8bOJmguA6h0MI8eiD+xu9Vb68EGcLz4FA+JRP77Gk1EKIbxIkos3RdYNp+5uTWN1yeWHfS6n\nUoMToPBwi9sO6OKjOJ94AEwmTHfejwrs5fFQhRDeIcnFi1R9crF1r+Sij7VccwFQQ+qaOA/ubfoe\nZTacGQ/A8WpM8/8gzWFCdHGSXLwpytjgqtuNGKtvFmumzwWAwUZy0Qcaz9jXlXacTz4IpVZM8x5E\nDRrWGVEKIbxIkos3ddOaC8dsEBAILcygV+GREBUDTSWXj/8J33+H6Vf3oRLGdGakQggvkeTiRSqo\nt/EFXGr1dSieVVZqrFhsauXjNCShybXG9NaNMGwkatzpnRSgEMLbJLl4W1R0t2sW08dsEN5Ck1gd\nNTgBjn7fYGVoXWGH/btRY5M7M0QhhJdJcvG2SEv3axYrs0ELI8XqqcEJoDUc3H/y4PZNoJ2osVJr\nEaI7keTiZSoyuvs1ix0rbXEYssuQ+k79k/NddH4uBIfAsFGdFZ0QwgckuXhbVDQcK0U7HL6OxCO0\n0wHHytyruURajPNO6XfR23JhdCIq0OeLRQghPEiSi7dFRoN2nhy+29XZjxnvp4U5Lg0MTnANR9ZF\nR6DoCOo06W8RoruR5OJlqrvN0i+tn53feoc+1E2mPHwIXVNjNImBdOYL0Q1JcvG2uomU3Sa5uDE7\n/1RGp74TDu0zkktUDMQO7MQAhRC+IMnF2+pqLtrWPTr1dVndDqPudOjDyU79/btg+ybU2AmypL4Q\n3ZAkF28zhxuz2btdzcW9ZjGiYsAcjv7ff6HSDtLfIkS3JMnFy5TJ1L02DSuzQXCIsay+G5RSRu3l\n+wPG49MmdGZ0QggfkeTiC5EWdHeZSHms1P2RYnVU3SKWxA8z1hwTQnQ7klx8IdLSbSZS6jJby6sh\nN0ENGWH8lFFiQnRbklx8wJilX2LsPd/VHbOh2lhzYdQ4GDQUdVZq58QkhPA5mRbtC1HRUFMNVZUQ\n2sfX0XRMWSmMs7TpEhUWQcCDT3dSQEIIf+Dz5GK328nIyKCoqIi+ffsyf/58zObG+4KsXbuW1atX\nAzBt2jSmTJkCwEMPPYTNZiMoKAiA3//+90RERHgt/nY5dSJlF04u+ngNVFW4P1JMCNFj+Dy5ZGZm\nkpiYSHp6OpmZmWRmZjJr1qwG59jtdlatWsXSpUsBuPfee0lJSXEloXnz5pGQkOD12NtLRUajwUgu\ncYN9HU77uXagbGOzmBCi2/N5n0tOTg6pqUbbe2pqKjk5OY3Oyc3NJSkpCbPZjNlsJikpidzcXG+H\n6jn12x139YmUx4wJlG3ucxFCdHs+r7mUlZURFWV8OUVGRlJWVtboHKvVSnR0tOuxxWLBaj35xfz8\n889jMpk4++yzmT59erMzvrOyssjKygJg6dKlxMTEtCvmwMDAdl8LoMPCKARCj1dh7sB9fK16t4My\nIHLIUHo18T46Wk49hZST+6Ss3OMP5eSV5LJo0SJKS0sbHZ85c2aDx0qpNi8FMm/ePCwWC1VVVSxb\ntox169a5akI/lJaWRlpamutxcXFxm16rXkxMTLuvdQk1U1lwkOq6++hvv0Dv2orppz/v2H29yHnI\nmAhZ6lSoJsrDI+XUA0g5uU/Kyj2dWU5xcXFuneeV5LJw4cJmn4uIiMBmsxEVFYXNZiM8PLzRORaL\nhfz8fNdjq9XK2LFjXc8BhISEcO6557J79+5mk4tfiYp2TaTU1mKcLz0FVZXoK2eiQhsPaPBLZaWg\nFIT5+QAKIYTX+bzPJSUlhezsbACys7OZOHFio3OSk5PJy8vDbrdjt9vJy8sjOTkZh8PBsWPHAKit\nreWbb74hPj7eq/G3W91ESq01zlefN4YlAxzY0/J1/uSYDczhqIAAX0cihPAzPu9zSU9PJyMjgzVr\n1riGIgPs2bOHjz/+mDlz5mA2m5k+fToLFiwAYMaMGZjNZqqrq1m8eDEOhwOn00liYmKDZi9/piKj\n0Yf2o79cC5u/Rl32E/SHb6O/2+PR9bZ0dRX68yzUlMs8ngSM2fnSmS+EaMznySUsLIwHHnig0fGE\nhIQGw4unTp3K1KlTG5wTHBzMI4880ukxdor67Y7f/CskjEFdfR16w6cer7noT95HZ76KGhAPnl5u\npR3rigkhegafN4v1WJHRoDXUVGH62VyUKQCGJKAP7PbYS2iHA73u38bvhw+1/fq9O3C+8Dj6xImm\nTyizub0DpRCiZ5Hk4iMquq/x88rrjFoFdQs6Fh5GV1Z45kU25YC1bsTI4e/afLn+ap3xX87/Gj/n\ndBp9LhFtW/pFCNEzSHLxldOSMd25EHXJNNchVbdLI995pmnMufZDY3OuYaPaV3Opi0Nn/bPRIpv6\n68+gthY1dKQnQhVCdDOSXHxEBQSgJkw0msPq1S1Frz3Q76KPfA/5uajzf4waOAQOH2zb9U4nfLfP\nWDfs4D7YueWU5xzo9980lq45fVKHYxVCdD+SXPyICosASwx4oN9Fr/0QAgJR518MA+KhvAxdfsz9\nGxQehpoq1BU/BXM4zo//efLeX/0PjhzCdNX1xs6aQgjxA/LN4G8Gj+hwzUXXVKPXr0GdeQ4qPMrV\np9OW2os+uBcAlXAaKvUS2JSDLiwwBgm8/yYMGia1FiFEsyS5+Bk1JAEKCzrUqa+/zIaqCtSUy4wD\ncUZy0Ufa0DR2YA8EBkJcvHEfUwA6631jXk5hAaarr5NaixCiWfLt4GfqtwCmruYAoEsKcdx/O3p3\nfjNXNaTXfgiDhsKI04wDUTEQ1BsK2lBz+W4PxA1BBfZCRVpQZ52HXv8J+r03YHACTDjb7XsJIXoe\nSS7+pm7E2KnzXXTmq8YQ5c3ftHq5riiHg/tQZ6W6FgFVJhMMiHd7xJjWGg7uPTl6DVBpVxu7Z5YU\nGn0tbVxgVAjRs/h8hr5oSIVHGjWNun4X/d0e9Ia1rt9bdbTAuM+AQQ3vO2AQeseWpq5ozFoM9nKI\nH37y+sHDYfwZUF0NSSnu3UcI0WNJcvFHQxJcnfrOd1+GPmEwahzs3obWusVag65LLvT/wbLYA+Jh\nw1p0VSUqJLTl1z9ovLYaPLzBYdMdvwdafn0hhABpFvNLakgCHP0e/c16Y67K5T9BjUmC8jKwtbJH\nQ2EBKBPExDa8Z/2IsSOtN43pA3uNewwa1vAegYGowF5tei9CiJ5Jkosfqu/Ud/79GYjuZ6xoXN/R\n31rT2NECiO6L6vWDJFCXXLQbw5H1d3sgdiCqd+82xy6EECDJxT/Vd6RXVqDSZxmJYtAwUKZW58Do\nwsPQr4md4vrGGkOL3Rkx9l3DznwhhGgrSS5+SIVHQXQ/GDwcddb5xrHevWHAoBaTi9Yajn6P6j+g\n8T0DAqD/QHQrzWL6mA1KSxp05gshRFtJh76fMv36QQgJbTBRUQ1JQOfnNn9ReSlUV0H/gU0+rWIH\ntT7i7Lu9rtcSQoj2kpqLn1ID4lGR0Q0PDhkBZTZ0aUnTFx09bFzbVLMYGP0uxYXo4zXNvq6uSy7E\nD2v2HCGEaI0kly5EDa6rTRzY2+TzurB+GHLjZjHAWAZGO11zYZq8x3d7oG8sKtTckVCFED2cJJeu\nJH4YKNX8bpVHCyAgAKL7N/l0/cTKFkeMfbcXBkt/ixCiY3ze52K328nIyKCoqIi+ffsyf/58zObG\nfzWvXbuW1atXAzBt2jSmTJkCQG1tLStXriQ/Px+lFDNnzmTSpO65Wq8KDjE65ZvpN9FHCyC6v9F5\n35T+A435K80kF11ZAUVHUD9K81TIQogeyufJJTMzk8TERNLT08nMzCQzM5NZs2Y1OMdut7Nq1SqW\nLl0KwL333ktKSgpms5nVq1cTERHBU089hdPpxG63++JteI0aktD8Mi6FBY1n5p96ba8g6Nu/+ZrL\n/p3GebK7pBCig3zeLJaTk0NqaioAqamp5OTkNDonNzeXpKQkzGYzZrOZpKQkcnONUVOffvop6enp\nAJhMJsLDw70XvC8MGQGlJcaQ4VNoraHwMKqF5AIYnfrNzHXRu/KNmk3CaE9FK4TooXxecykrKyMq\nKgqAyMhIysrKGp1jtVqJjj45cspisWC1WqmoMPY8eeutt8jPz6d///7ccsstREZGeid4H1CDE9Bg\ndOonnnnyiVIrHK9pegLlqdfHD0dv+hpdYUf1adj8qHflQ/wwVHAra48JIUQrvJJcFi1aRGlpaaPj\nM2fObPBYKdWmRREdDgclJSWMHj2an/3sZ3zwwQe88sorzJ07t8nzs7KyyMrKAmDp0qXExMS04V2c\nFBgY2O5rO8oZOpEiIKS4AHPMj13Hjx/5DhsQMXIMvVuI7fjk87F98CZhBfsJnjzFdVzX1lK4bych\nF11FuIfemy/LqSuRcnKflJV7/KGcvJJcFi5c2OxzERER2Gw2oqKisNlsTTZrWSwW8vNPbpRltVoZ\nO3YsYWFh9O7dm7POOguASZMmsWbNmmZfKy0tjbS0k53VxcWtLALZjJiYmHZf6xH9B1KxbTPVp8Tg\n3GmUz7EQM6qF2LQlFnqHcOzLddhHjj95fN9OOF5DzaBhHntvPi+nLkLKyX1SVu7pzHKKi2ul6b2O\nz/tcUlJSyM7OBiA7O5uJEyc2Oic5OZm8vDzsdjt2u528vDySk5NRSnHmmWe6Es+WLVsYNGhQo+u7\nGzV4uGu/F5ejhyGwl7EXTEvXBgbC6PGNZvrrXXXJu373SiGE6ACfJ5f09HQ2bdrEvHnz2Lx5s6tz\nfs+ePSxfvhwAs9nM9OnTWbBgAQsWLGDGjBmu4co33HAD77zzDvfccw/r1q3jpptu8tl78ZqhI8Fa\n1GDUly4sMCY/urGvvRqbDEVH0EVHTl6/O9+4/oerAgghRDv4vEM/LCyMBx54oNHxhIQEEhJOrm81\ndepUpk6d2ui8vn378oc//KFTY/Q3avIF6PfeQP/zddSc3xkHj7Y8DLnB9WOT0YDelofqG2uMNNu9\nDTX+jM4LWgjRo/i85iLaToVFoC66Cv3N58Y2yE4HFB1ufk2xH4odBJHRUN80drTA2IhsxNjOC1oI\n0aNIcumi1EXpEGrGmfmased9ba37NReljNrL9k1opwO9a6txfOS4zgxZCNGDSHLpolRoH9Sl02Hz\n1+j1nxjH3EwuAIxNhopyYy2x3dvAHAaxTS/VL4QQbSXJpQtTF1wBEVHoD98xDrjbLAao05IAo99F\n786HEWPbNMdICCFaIsmlC1O9e6Mu/yk4HBDUGyIt7l8bHgWDhqK/zDaWjZH+FiGEB0ly6eLUeRcZ\nWyLHDmpzzUONTYbvDxi/y/wWIYQH+XwosugYFdgL0/w/Gh36bb32tGT0fzOhVxDItsZCCA+S5NIN\ntKkj/1Qjx0FgIAwbhQrs5dmghBA9miSXHkz17o2a+QtU31hfhyKE6GYkufRwptRLfB2CEKIbkg59\nIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFxklyEEEJ4nNJaa18H\nIYQQonuRmks73Hvvvb4OoUuQcnKPlJP7pKzc4w/lJMlFCCGEx0lyEUII4XGSXNohLS3N1yF0CVJO\n7pFycp+UlXv8oZykQ18IIYTHSc1FCCGEx8l+Lm2Qm5vLiy++iNPp5MILLyQ9Pd3XIfmN4uJinnvu\nOUpLS1FKkZaWxmWXXYbdbicjI4OioiL69u3L/PnzMZvNvg7X55xOJ/feey8Wi4V7772XwsJCnnzy\nScrLyxk+fDhz584lMLBn//OsqKhg+fLlHDx4EKUUv/zlL4mLi5PP0w988MEHrFmzBqUU8fHx/OpX\nv6K0tNTnnyepubjJ6XSycuVK7rvvPjIyMvj88885dOiQr8PyGwEBAdx4441kZGSwePFi/vOf/3Do\n0CEyMzNJTEzk6aefJjExkczMTF+H6hc+/PBDBg4c6Hr86quvcvnll/PMM8/Qp08f1qxZ48Po/MOL\nL75IcnIyTz75JI899hgDBw6Uz9MPWK1WPvroI5YuXcqyZctwOp2sX7/eLz5PklzctHv3bmJjY+nf\nvz+BgYGcc8455OTk+DosvxEVFcXw4cMBCAkJYeDAgVitVnJyckhNTQUgNTVVygwoKSnh22+/5cIL\nLwRAa83WrVuZNGkSAFOmTOnx5VRZWcm2bduYOnUqAIGBgfTp00c+T01wOp0cP34ch8PB8ePHiYyM\n9IvPU8+ud7eB1WolOjra9Tg6Oppdu3b5MCL/VVhYyL59+xgxYgRlZWVERUUBEBkZSVlZmY+j872X\nXnqJWbNmUVVVBUB5eTmhoaEEBAQAYLFYsFqtvgzR5woLCwkPD+f555/nwIEDDB8+nNmzZ8vn6Qcs\nFgtXXnklv/zlLwkKCmLChAkMHz7cLz5PUnMRHlVdXc2yZcuYPXs2oaGhDZ5TSqGU8lFk/uGbb74h\nIiLCVcsTTXM4HOzbt4+LL76YRx99lN69ezdqApPPE9jtdnJycnjuuedYsWIF1dXV5Obm+josQGou\nbrNYLJSUlLgel5SUYLFYfBiR/6mtrWXZsmWcd955nH322QBERERgs9mIiorCZrMRHh7u4yh9a8eO\nHXz99dds3LiR48ePU1VVxUsvvURlZSUOh4OAgACsVmuP/2xFR0cTHR3NyJEjAZg0aRKZmZnyefqB\nzZs3069fP1c5nH322ezYscMvPk9Sc3FTQkIChw8fprCwkNraWtavX09KSoqvw/IbWmuWL1/OwIED\nueKKK1zHU1JSyM7OBiA7O5uJEyf6KkS/cP3117N8+XKee+457rrrLsaPH8+8efMYN24cGzZsAGDt\n2rU9/rMVGRlJdHQ0BQUFgPElOmjQIPk8/UBMTAy7du2ipqYGrbWrnPzh8ySTKNvg22+/5eWXX8bp\ndHLBBRcwbdo0X4fkN7Zv384DDzzA4MGDXU0V1113HSNHjiQjI4Pi4mIZOvoDW7du5f333+fee+/l\n6NGjPPnkk9jtdoYNG8bcuXPp1auXr0P0qf3797N8+XJqa2vp168fv/rVr9Bay+fpB95++23Wr19P\nQEAAQ4cOZc6cOVitVp9/niS5CCGE8DhpFhNCCOFxklyEEEJ4nCQXIYQQHifJRQghhMdJchFCCOFx\nklyEcMPdd9/N1q1bffLaxcXF3HjjjTidTp+8vhDtIUORhWiDt99+myNHjjBv3rxOe4077riD22+/\nnaSkpE57DSE6m9RchPAih8Ph6xCE8AqpuQjhhjvuuINbbrmFxx9/HDCWgI+NjeWxxx6jsrKSl19+\nmY0bN6KU4oILLuAnP/kJJpOJtWvX8sknn5CQkMC6deu4+OKLmTJlCitWrODAgQMopZgwYQK33nor\nffr04ZlnnuGzzz4jMDAQk8nEjBkzmDx5MnfeeSdvvPGGa62oF154ge3bt2M2m7n66qtde6a//fbb\nHDp0iKCgIL766itiYmK44447SEhIACAzM5OPPvqIqqoqoqKi+PnPf05iYqLPylV0X7JwpRBu6tWr\nF33NSBIAAAMxSURBVNdcc02jZrHnnnuOiIgInn76aWpqali6dCnR0dFcdNFFAOzatYtzzjmHF154\nAYfDgdVq5ZprruG0006jqqqKZcuW8c477zB79mzmzp3L9u3bGzSLFRYWNojjqaeeIj4+nhUrVlBQ\nUMCiRYuIjY1l/PjxgLHy8m9+8xt+9atf8eabb/K3v/2NxYsXU1BQwH/+8x8efvhhLBYLhYWF0o8j\nOo00iwnRAaWlpWzcuJHZs2cTHBxMREQEl19+OevXr3edExUVxaWXXkpAQABBQUHExsaSlJREr169\nCA8P5/LLLyc/P9+t1ysuLmb79u3ccMMNBAUFMXToUC688ELXYo4AY8aM4YwzzsBkMnH++eezf/9+\nAEwmEydOnODQoUOu9bpiY2M9Wh5C1JOaixAdUFxcjMPh4Be/+IXrmNa6wcZyMTExDa4pLS3lpZde\nYtu2bVRXV+N0Ot1efNFms2E2mwkJCWlw/z179rgeR0REuH4PCgrixIkTOBwOYmNjmT17Nu+88w6H\nDh1iwoQJ3HTTTT1+eX/ROSS5CNEGP9ycKjo6msDAQFauXOna+a81b7zxBgDLli3DbDbz1Vdf8be/\n/c2ta6OiorDb7VRVVbkSTHFxsdsJ4txzz+Xcc8+lsrKSv/zlL7z22mvMnTvXrWuFaAtpFhOiDSIi\nIigqKnL1VURFRTFhwgT+/ve/U1lZidPp5MiRIy02c1VVVREcHExoaChWq5X333+/wfORkZGN+lnq\nxcTEMHr0aF5//XWOHz/OgQMH+PTTTznvvPNajb2goIAtW7Zw4sQJgoKCCAoK6vE7OYrOI8lFiDaY\nPHkyALfeeiu/+93vALjzzjupra3l7rvv5uabb+aJJ57AZrM1e49rr72Wffv28bOf/YyHH36Ys846\nq8Hz6enpvPvuu8yePZv33nuv0fW//vWvKSoq4vbbb+fxxx/n2muvdWtOzIkTJ3jttde49dZbue22\n2zh27BjXX399W96+EG6TochCCCE8TmouQgghPE6SixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPE6S\nixBCCI+T5CKEEMLjJLkIIYTwOEkuQgghPO7/AdYWXsNU6TlEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtglNWd+P/3mUy45J5JQkJIuIWLiAGNAQXFiESr1mra\nuhZb3W1pa/1KS8W6q/gT9PulLHTRTaVq61ZKq+22ta2may/WRtZQQSVcwk0RghAIJCSZmYTcuEye\n8/vjSSYJM5NMkplMJnxe/+jMnGeec5Iwnzm3z1Faa40QQggRQJZQV0AIIcTwI8FFCCFEwElwEUII\nEXASXIQQQgScBBchhBABJ8FFCCFEwElwEUIIEXASXIQQQgScBBchhBABJ8FFCCFEwFlDXYFQOnXq\nVL+uS05Opq6uLsC1GRqGa9ukXeFnuLYt3NuVnp7uVznpuQghhAg4CS5CCCECToKLEEKIgJPgIoQQ\nIuAkuAghhAg4CS5CCCECToKLEEKIgJPgIoQQYUxrjbHtHXTjmVBXpRsJLkIIEc4qytGbnkO/9ftQ\n16QbCS5CCBHG9J7t5n+3/wNtGCGuTScJLkIIEcZ02XYYMQLq7XD4o1BXx23I5BYrKytj06ZNGIbB\nokWLKCgo6Pa61ppNmzaxe/duRo4cyUMPPcTkyZP9ulYIIYYjXXcaKo+i7vwy+m+vo7eXoKZfEepq\nAUOk52IYBhs3buSJJ56gsLCQrVu3UllZ2a3M7t27qa6uZsOGDTzwwAO8/PLLfl8rhBDDkd5TCoCa\newPqymvQO7aiXRd8l3e5MP72BrqlOeh1GxLBpby8nLS0NFJTU7FarcyfP5/S0tJuZXbs2MENN9yA\nUopp06bR3NyM0+n061ohhBiO9J4PIS0DlZqOmnsDtDTBgTLf5d/fjP79Jjh8IOh1GxLBxeFwkJSU\n5H6clJSEw+HwKJOcnOxRxp9rhRBiuNEtzXBoP+rKa8wnLr8KYmLR20u8l79wHv3mb2DydJg1J+j1\nGzJzLoOhuLiY4uJiANatW9ctWPWF1Wrt97VD3XBtm7Qr/AzXtgWqXWf/sZuGtjYS8m5hRPv7nbku\nn9Z3/4otOgrL6Khu5Zvf/C1NzjoSlz/FiJSUAd+/N0MiuNhsNux2u/ux3W7HZrN5lOl6wE5Hmba2\ntl6v7ZCfn09+fr77cX8P7An3w356MlzbJu0KP8O1bYFql/HeOxAbT4NtDKr9/fSsufC3N6jb/Fcs\n1+S5y+qzLRi/+znMmM2ZsRNgAPcPq8PCsrKyqKqqoqamBpfLxbZt28jNze1WJjc3ly1btqC15tCh\nQ0RFRZGYmOjXtUIIEW6MD0vQVd4XJ2mXC71vJ2pWLsoS0fnClBmQmIzevqV7+eI3obEBy+fvD2aV\nuxkSPZeIiAiWLFnCmjVrMAyDhQsXkpmZydtvvw3ALbfcwlVXXcWuXbtYtmwZI0aM4KGHHurxWiGE\nCFe67jT65WfRY8ZiWflD1KjR3QscPgCtzZ3zLe2UxYKauwBd/D/opjOomDh0cyP67SK48lrUpGmD\n1oYhEVwAcnJyyMnJ6fbcLbfc4v5/pRTf+MY3/L5WCCHCld62GZSC2mr07zah7n+o++t7tkPkCJhx\npce1am4e+m9voHduQ+Xdiv7b63C2BUvBVwar+sAQGRYTQghh0oaBfn8zXDYLdUsBestb7v0sYG4o\n12UfwozZqJGjPN8gcxKMzURvL0E3ONHvvGnugxk3YRBbIcFFCCGCQre29O/Cwweg7jRq/iLUXffB\nuAkYv9iAbmwwXz9ZAfYa1Oy5Xi9XSqHmLoBDBzB+9WNoa0PdeW8/W9F/ElyEECLAdPlHGMsW07b+\nCfTe0j4llNRbi2F0FOqqeajISCzf+B60NmO88nxnrwV8Bhcwd+wDsPsD1HU3o8b4t8IrkCS4CCGE\nH7TrAsav/8vM59Vb2e3/MOdE6qoxfrQa4+nvYGwtRl/wnZoFzCXDeuc21JwFqJEjAVAZE1Gfvx/K\nPkRvLTbnWyZNQ8Un+nwfNSYdJk0DayTqji/1raEBIsFFCCH8cfxT9OY/od/5U4/FtNZmWpbLr8Sy\n5r9QX38EIiLQP9+AseKbnN222fe1O7bC+XOo+Yu6Pa/y74Lp2ejf/BSOHe6x19LBcv9SLN9+EpWY\n1GvZYJDgIoQQftDV5p4TvXNrz8NcJz4FRx3qymtQViuWa2/Esuo5LA//X0iw0fDc/0OfrPB+j63v\nQNo4M0VLF8piwfK174LF/Mi+eAmyNypzEmrmVX62LvAkuAghhD+qT5r/ddbBp5/4LKbLPgSlUF3y\ndymlUDOvwrJsJZaoGIz/Wo8+f677dTWnoPwjcyJfKY/3VUljsHz9EdQNn4H08YFpUxBJcBFCCD/o\n6kpITAZrJHrnVt/l9myHydNRcQker6m4ROKWPQmnjqN/t6n7dVs3g7Kg5i30+d5q9lws9y/1GnyG\nGgkuQgjhj+qTMCELrsgxz03xMjSm7bVw/NMeh61GXnUt6ua70O/+BV32gXmd0WbubZl5FSohNHMk\ngSbBRQgheqHb2qCmCpWWgcq93jxS+NODnuX2tC8T7mVORH3+n2H8ZIyf/wjttMPBveCs85jID2cS\nXIQQojf209DmgrRxqNlzzKGxHZ5DY7rsQ7NMWkaPb6ciI7F881/BdQFj43+i3yuGqBjUlb2vAgsX\nElyEEKI3VeZkvkrLQI2KguyrPVaN6ZYm8/Cu2b2v5DLfaxzq3gfgk33o0n+YKVoiRwSl+qEgwUUI\nIXqhT7envk8bB4C6+jqod8CRzqExvX+XmWqlD70PNX8Ras4C8/+vGz5DYjCEsiILIcSQVX0SYuNR\n0bEAqNlz0JEj0DveQ0293CxT9iHExnvsUemJUgq+9l3UzQWoiVODUPHQkZ5LH+ljhzm79Z1QV0MI\nMYh0dSWkjnM/7hwa22ZmMXZdQO/fiZo1p/vhXX5QkSNQk4ZXYAEJLn2mt73DmZ+sD3U1hBCDqfok\namz3SXqVez00OKD8Yzi0H1pb/No5f6mQ4NJX0bHmyW59yHIqhBiatGGYq7U+3uO7THMjNDZ067kA\nqOxcaB8a02Ufwgjvh3ddqmTOpa+iY0BraG2G9vFXIUSYqihHf/CuORE/Y7b3MtWdK8W6UqNGQ3Yu\netc2iIiAGVe6MxmLIRBcmpqaKCwspLa2lpSUFJYvX05MTIxHubKyMjZt2oRhGCxatIiCggIA3n//\nfX73u99x8uRJ/v3f/52srKzgVjg6zvxvc6MEFyHCnN6z3fzvoQNorb2mVelIWMnYcR6vqdzrzeAC\nqM8N/oFcQ1nIh8WKiorIzs5mw4YNZGdnU1RU5FHGMAw2btzIE088QWFhIVu3bqWy0vyFZ2Zm8uij\njzJjxoxBqa+Kbg98zU2Dcj8hhG/6+BHaHvs6+uih/l2/p9Q8q77BATVV3gtVn4QIKySlerykZuWa\nw2EXJaoUQyC4lJaWkpeXB0BeXh6lpaUeZcrLy0lLSyM1NRWr1cr8+fPd5TIyMkhPH8RT1jp6K82N\ng3dPIYRX+pP94KjFeHEt+oyzb9faa6HyKGr+TebjQ/u9l6uuhDFjURGeq8DUyFGoeTfB7Gu8Jqq8\nlIV8WKyhoYHERPNEtYSEBBoaGjzKOBwOkpI6k7klJSVx+PDhPt+ruLiY4uJiANatW0dycnKf38N1\nLhM7EGNRjO7H9UOd1Wrt189lqJN2hR9/2nbGWcvZUaPRLU1EbPxPEv/vj1BW/z7WWkpLaARsX/o6\njn07GXn8CPFe7ldXW411/GQSfNXl4VV+3a/DcP6ddTUowWX16tXU19d7PL948eJuj5VSQU0lnZ+f\nT35+vvtxXV1dn99Dn3cB0Fh1iuZ+XD/UJScn9+vnMtRJu8KPP21rO1oOmZNQebdx4eVnqf3xf2C5\n9wG/3r9t2//CmLE4R0Wjp1zO2X07uXDR/bTLhVFdiTFrTsB+zuH+O/N3pGhQgsvKlSt9vhYfH4/T\n6SQxMRGn00lcXJxHGZvNht1udz+22+3YbLag1LVXUR1zLjIsJkTIVZ9A5czHck0eRkU5+u9/xJgw\nBUv7UJcv+mwrHNyLuvGz5pfaaVegd21D22tQSWM6C9adhrY2d9oX4b+Qz7nk5uZSUlICQElJCXPm\neE6KZWVlUVVVRU1NDS6Xi23btpGbmzvYVQVARUSgomKgRSb0hQgWfe5s72UaG6CpEdo3N6ovfhUu\nm4X+5YvoivKeL/6oDFwuM8MxoKbNNN/z8IHu5dpXivWW5Vh4CnlwKSgoYO/evSxbtox9+/a5lxg7\nHA7Wrl0LQEREBEuWLGHNmjUsX76cefPmkZmZCcD27dt58MEHOXToEOvWrWPNmjVBr7MlNk56LkIE\nia48hvHdL3N+386eC546AYBKMz8LVEQElgf+FWLjzQn+Rs/5W/c99m6H0dEwpT0v2LjxEBUNh7oH\nF326/Whj6bn0Wcgn9GNjY1m1ynNCzGazsWLFCvfjnJwccnJyPMrNnTuXuXMH9wwEFROHbpLgIkQw\n6C1vQZuL8/t3w9gJvstVmcGFsZnu51RsPJaHVmCsewxj03NYvrPSYx5XGwZ67w7UFTnuyX9liYCp\nM9EXBReqKiEuwRytEH0S8p5LOJKeixDBoc+fQ39gDpNf+PSTngtXV8LIUWDrvvJKTZiC+uI/w74d\n6O1bPK87eshM5zK7+5dSNXUmnD6Jbuhc0qyrK6XX0k8SXPpBxcTJJkohgkDvet9MrZSShquX4KKr\nTkBahtcVpuqmO2DSNPRvfuoxPKb3loLFgrri6u7XdMy7dO29nD4p8y39JMGlHywxcdAiPRchAk2/\n93dISUPdeBuGo65bL8JDVSWqy5BYV8oSgeVflkFrC/o3L3e/x57tMOXyzmwbHcZnmT2hw+ZmSt14\nxlwwIMGlXyS49IM5LNYsmZGFCCBdcwo+2Ye6Lh81YYr55PFPvZc92wLOOvdKMW/UuPGo2+9Gby8x\neyuAttfAyQr3KrFu5SMiIGtGZ8/ldMdKMRkW6w8JLv2gYuJAG9DaEuqqCBE2tL0GbbT5fv29YlAW\n1PxFkDnJfO74Ee+FO86099Fz6aBu+ydIH4/xqx+jW1vciSrVLO+LgNS0mXCyAt10Bl3VcbSx9Fz6\nQ4JLP1hi483/kUl9Ifyiz7ZiPPl/0JueQ2vt+XpbG3rbZsi+GpWYhIqKISJtHNpXz6XquPk/PfRc\nAFRkJJZ//jY47ejXXzETVaaO89kbUdOuMP+n/CM4fRKskZCU4n9DhZsEl36wxHSk3ZdJfSH84qwD\n1wX0B++it/zN8/X9O6HBgeX6m91PWSdPB589l0ozU3HK2F5vrbIuQy36HPrdv8Ane70OiblNnGoe\nAPbJAXT1SUhN7/OxxcIkwaUfVGyXM12EEL1ztufSShqD/s1/eeygN/7xNsQlQHZn5o3IydOg7jTa\ny5c4XXXC/OD3kqnYG1VwHySNMQ8F8zEkBmZPh8nTzZ361Sc9Tp8U/pPg0g+WGDPtvpbgIoRftNPM\nDWh58DGIS8D48Tp30ND1Dti3AzXvpm4Zja2Tp5n/4633UlXZ65BYV2rkKCzf+J6ZHn9Kz2c/qakz\nzYUEtVWyDHkAJLj0Q+ewmAQXIfzS0XPJmIjlgX+DegfGzwrN3fLvbwbDQHUZEgOInGQGF32i+7yL\nvnABaqt7ncy/mJoyA8uSh3vt7ahpM80FO4YhGygHQIJLP3QOi8mcixB+cdrNNCrWSHMO5J+WwN5S\n9Ft/MPe2TL3cY5LdkmCDxGSouGhSv+aU+eEfrF7F5MugPQBJz6X/JLj0g4qwwugo6bkI4SfttJuB\nop266bOoOQvQb7wKNVWo62/xfuH4yR7LkXVHwso+9lz8pUaONCf2QXouAyDBpb+iYqTnIoS/nHWQ\n0HkGk1IK9c9Lzd5HVDTq6uu8XqbGZ5n5vs62dj5ZdcI89z6IH/xq7g1w2SzU6Kig3WO4C3lW5LAV\nHSsT+kL4y2lHdaS3b6dGRWF5/AfQ1Gj2FrxQE7LMfTGVRzvT41dXQnIqaoT3awLBctMdcNMdQXv/\nS4H0XPorOkaGxYTwgz53zvy3kpjk8ZqKjkWl9nBsbuZk8z26bKbsSFgphjYJLv0kmZGF8FN9+xHl\nick9l/MmMQli493LkbXRBtUngzbfIgJHgkt/Sc9FCP+0L0NWXnouvVFKmZP6HSvG6mrAdaFPe1xE\naIR8zqWpqYnCwkJqa2tJSUlh+fLlxMR4nvpWVlbGpk2bMAyDRYsWuY9DfvXVV9m5cydWq5XU1FQe\neughoqOjg1/xqFhobkIbBsoiMVoIXzo2UPar54I5qa/ffgN94by5eZLgrRQTgRPyT8WioiKys7PZ\nsGED2dnZFBUVeZQxDIONGzfyxBNPUFhYyNatW6msNP/IZs2axbPPPsszzzzD2LFjeeONNwan4tEx\n5lr7s5IZWYgedWygTOh7zwXMSX3a2sxsxX4mrBShF/LgUlpaSl5eHgB5eXmUlpZ6lCkvLyctLY3U\n1FSsVivz5893l5s9ezYR7Ruepk2bhsPhGJyKt6eAkXkXIXrhtEN0rM8VYb3qOqlfVQnxNjnTPgyE\nPLg0NDSQmJgIQEJCAg0NDR5lHA4HSUmd33qSkpK8BpHNmzdz5ZVXBq+yXajojuAi8y5C9EQ767yu\nFPNbShqMjobjR8yVYtJrCQuDMueyevVq6uvrPZ5fvHhxt8dKKa/nYfvj9ddfJyIiggULFvgsU1xc\nTHFxMQDr1q0jObl/Y8BWq5X49AycQJzVwsh+vs9QZLVa+/1zGcqkXaFjb2zAkjqWxD7Ws2vbHFnT\n0ScraDt9klF5txI3xNvck3D4nQXCoASXlStX+nwtPj4ep9NJYmIiTqeTuLg4jzI2mw273e5+bLfb\nsdk6d/u+++677Ny5k1WrVvUYnPLz88nPz3c/rqur62tTAEhOTqbBZZ6o13DqJJaM/r3PUJScnNzv\nn8tQJu0KnbbaalTGxD7Xs2vbjLGZ6OI3QRucTUzm/BBvc0/C4XfWk/T0HvYldRHyYbHc3FxKSkoA\nKCkpYc4cz4N8srKyqKqqoqamBpfLxbZt28jNNc99KCsr449//COPPfYYI/s7ptsf0e1jvjIsJoRP\n+sIFaGwY2LAYwPgscwENkkwyXIR8KXJBQQGFhYVs3rzZvRQZzHmWl156iRUrVhAREcGSJUtYs2YN\nhmGwcOFCMjPNpYgbN27E5XKxevVqAKZOncoDDzwQ/IpHyZyLEL0ayAbKLtT4ybgPR5ZlyGEh5MEl\nNjaWVatWeTxvs9lYsWKF+3FOTg45OTke5X70ox8FtX6+KKsVRo2W1WJC9KR9j0t/NlB2kzYORoww\nz7SPTwxAxUSwhTy4hLXoWOm5CNED3bHHZaA9F0sETJwGA1j0IwaXBJeBiI7xer63EKKde1hsgD0X\nwPLNR6FzcEwMcRJcBkJ6LkL0zGmH0VGoUQM/F0V1OQ9GDH0hXy0WzpQEFyF6pJ11/U77IsKbBJeB\niJbTKIXo0UXHG4tLhwSXgWjvuWgt48BCeOWsG/hKMRGWJLgMRHQMGAa0SmZkIS6mXS5ocErP5RIl\nwWUgottT1ci8ixCezjhB64CsFBPhR4LLAKiOFDAtMu8ihAf3BkrpuVyKJLgMhKTdF8I39wZK6blc\niiS4DER7z0U2UgrhaaDHG4vwJsFlIDp6Lk3ScxHCg7POzAcWFR3qmogQkOAyEJJ2XwjfnHZISJZc\nYJcoCS4DoKyRMFIyIwvhzYCPNxZhTYLLQEXHSM9FCG+cdlkpdgmT4DJQ0TFoWYosRDfaMKDBIT2X\nS5gEl4GKjoWmM6GuhRBDS2MDtLXJSrFLWMhT7jc1NVFYWEhtba37mOOYmBiPcmVlZWzatAnDMFi0\naBEFBQUA/OY3v2HHjh0opYiPj+ehhx7CZhu81NwqOhZ9smLQ7idEWGjf4yJ5xS5dIe+5FBUVkZ2d\nzYYNG8jOzqaoqMijjGEYbNy4kSeeeILCwkK2bt1KZWUlAHfeeSfPPPMM69evJycnh9///veD2wBJ\nuy+EJ9njcskLeXApLS0lLy8PgLy8PEpLSz3KlJeXk5aWRmpqKlarlfnz57vLRUV1HkJ07ty5wV/2\nGB0DLU2SGVmILrTszr/khXxYrKGhgcTERAASEhJoaGjwKONwOEhK6vwjTUpK4vDhw+7Hv/71r9my\nZQtRUVE89dRTwa90V9Gx5tjy2VYYPfDT9oQYFpx2sFohJi7UNREhMijBZfXq1dTX13s8v3jx4m6P\nlVL96nnce++93Hvvvbzxxhu89dZb3HPPPV7LFRcXU1xcDMC6detITu5fl91qtbqvbU0dyxnANjKS\niH6+31DStW3DibRrcDW0NHIhaQzJY8b0+z2GatsGari262KDElxWrlzp87X4+HicTieJiYk4nU7i\n4jy/6dhsNux2u/ux3W73Omm/YMEC1q5d6zO45Ofnk5+f735cV1fXl2a4JScnu6/tGAxznDiOskT2\n6/2Gkq5tG06kXYOrrfoUxCUMqG5DtW0DFe7tSk9P96tcyOdccnNzKSkpAaCkpIQ5c+Z4lMnKyqKq\nqoqamhpcLhfbtm0jNzcXgKqqKne50tJSvxseMFGSGVkID8462UB5iQv5nEtBQQGFhYVs3rzZvRQZ\nzHmWl156iRUrVhAREcGSJUtYs2YNhmGwcOFCMjMzAfjVr35FVVUVSimSk5N54IEHBrcB7ckrdXMT\nkkFJDFfaMMyAkdT7MJfW2pxzyZHJ/EtZyINLbGwsq1at8njeZrOxYsUK9+OcnBxycnI8yj366KNB\nrV+v3MkrZSOlGMZ2v4/x0n9gWfEMatLUnss2NYLrgixDvsT5PSy2f/9+ampqAHA6nTz//PO8+OKL\nXifqLynuA8MkBYwYvvSnh0Br9N8996F5kA2Ugj4El40bN2KxmMVfeeUV2traUErx0ksvBa1y4UBF\nRsLIUTLnIoY1ffKY+d+dW9GO2p4LywZKQR+Ci8PhIDk5mba2Nvbs2cO3vvUtvvnNb3Lo0KFg1i88\nRMdIz0UMb5UVMO0K0KA3/7nHorKBUkAfgsvo0aOpr6/no48+IiMjg1GjRgHgcrmCVrmwERWLlp6L\nGKZ00xlocKBmzUHlzENv+Rv6bKv3soaB/uB/zc2TcQmDXFMxlPg9oX/rrbeyYsUKXC4XX/3qVwE4\nePAg48aNC1bdwoec6SKGs/bErGrcBJgywxwa2/YO6qY7PIrqkrfgyEHU1x5GWSIGu6ZiCPE7uBQU\nFDB37lwsFgtpaWmAuaLrwQcfDFrlwkZMLJw6EepaCBEUurI963fGBFRCEkyeji7+H/SNt3ULINpR\nh379F3D5lah5C0NUWzFU9GkTZXp6ujuw7N+/n/r6esaPHx+UioUTJZmRRQ+0vYa21Q+j6+29Fx6K\nTh4zv0DFm1kxLDffBbXVsLczyazWGuO/fwJGG5b7Hhr8BLJiyPE7uDz11FMcPHgQMNPkP/fcczz3\n3HO8/vrrQatc2Gif0JfMyMKro4fg+Kdw5GCoa9IvuvIYjJvYGTCumgdJYzD+/sfOQru2wZ7tqLu+\ngkpJC0k9xdDid3A5ceIE06ZNA+Cdd97hqaeeYs2aNfz9738PWuXCRnQstLngnPdJTnFp041mpm9d\nUx3imvSdNgw4ddycb2mnIiLM+ZZDB9AVR9DNTRj//RJMmIJadGcIayuGEr/nXDq+lVdXm/9AMjIy\nAGhubg5CtcJMVMcu/SYYJWn3xUXOtB8jUVvVc7mhyF4D585Cl+ACoK6/Gf0/v0YX/xEiR0DTGSzf\nfQoVIZP4wuR3cJk+fTo/+9nPcDqd7uSS1dXVxMbGBq1y4ULFxJnZkZsbwY/cS+IS02hmsdA1YRhc\nKo8BoDImdntaRUWjFtyM3vwnMAzUZ76AGp81+PUTQ5bfw2JLly4lKiqKCRMmuFPanzp1ittvvz1o\nlQsb0V16LkJcpGNYjNowHBZr35lPuufCHXXTHeaZEylpqM/dO6j1EkOf3z2X2NhYvvzlL3d7zlsi\nyUtS+2l7+v3NMHEqSk6kFF11DIs569AXLpgpg8JFZYUZPEaN9nhJpaRhWfoEpKajRo4MQeXEUOZ3\ncHG5XLz++uts2bLFfbjXDTfcwBe+8AWs1pAnVw6tsZmoG29Hl/wV/VEZ6otfRV17oyzHFKbGBrBY\nwDDAfhrSMkJdI7/pkxUe8y1dqdlzB7E2Ipz4HRV++ctfcuTIEb75zW+SkpJCbW0tf/jDH2hpaXHv\n2L9UKaVQX3kQPX8Rxq9fQv+sEL3lLSz3fgs1fnKoqydCrbEeMidDRbk5NBYmwUWfPwenT6Fyrwt1\nVUQY8nvO5YMPPuDf/u3fmD17Nunp6cyePZtHH32U999/P5j1Cytq0lQsj/8H6l++A6dPYXz/EYy3\n/hDqaokQ0q4L0NKMmjzdfBxOy5GrKkEb3ZYhC+Evv4OLbBD0j7JYsFx/M5bv/xhmzEL/5ffotrZQ\nV0uESmP7IXLjJsDI0WG1HNk9mT9uYiirIcKU38Fl3rx5/OAHP6CsrIzKykrKyspYv3491157bTDr\nF7ZUVAyWGz4Drc1w9JNQV0eESvsyZBWXAClp4bUc+WSFuYdlzNhQ10SEIb/nXO677z7+8Ic/sHHj\nRpxOJzabjfnz53P33XcPqAJNTU0UFhZSW1tLSkoKy5cvJyYmxqNcWVkZmzZtwjAMFi1aREFBQbfX\n33zzTV599VVefvll4uLiBlSngLlsNigL+sBu1JTLQ10bEQodK8Vi42FMWlglONWVx8zFKrIxUvRD\nj8Fl//793R7PnDmTmTNnorV2r4Q6ePAgV1xxRb8rUFRURHZ2NgUFBRQVFVFUVMR9993XrYxhGGzc\nuJEnn3ySpKQkVqxYQW5urjtLQF1dHXv37iU5eWidfKeiY2DyNPT+XXDXV0JdHREC7j0ucfGolDT0\n3h1ow0BZ+pQzNjROVqAuvyrUtRBhqsfg8uMf/9jr8x2BpSPIPP/88/2uQGlpKU8//TQAeXl5PP30\n0x7Bpby8nLS0NFJTUwGYP38+paWl7uDyi1/8gq985SusX7++3/UIFjUzB/3mr9GNZ1CxQ6RHJQZP\n+7AYsQll/qcPAAAgAElEQVSQMhZcF6DeDraU0NarF7rxDDQ4IUMm80X/9BhcXnjhhaBXoKGhgcTE\nRAASEhJoaGjwKONwOEhK6jwyNSkpicOHDwNmcLLZbEycOLHXexUXF1NcXAzAunXr+t3TsVqtfl97\n4bqFOP7nv4mpLGf0glv6db/B1Je2hZNQtavRdZ6WyBEkZ2Ry3jGdeiD+fCsjAlSXYLXrfFUFTiD+\n8tmMDNHfg/wthrdB2f24evVq6uvrPZ5fvHhxt8dKqT5tPDx37hxvvPEGTz75pF/l8/Pzyc/Pdz+u\nq6vz+15dJScn+32tTkiG6Fga399C84yhn9GgL20LJ6Fql3G6GmLjsNvt6JFm5ob6wwexpAXmHKRg\ntcs4sAeAM7GJqBD9Pcjf4tCUnp7uV7lBCS4rV670+Vp8fLx7x7/T6fQ6GW+z2bDbOw9astvt2Gw2\nTp8+TU1NDf/6r//qfv6xxx5j7dq1JCQMjfO7lSUCdfmV6I92d5urEpcGfabeHBIDsCVDhDU8liOf\nrDDTGsUNjX9HIvyEfFYxNzeXkpISAEpKStwZl7vKysqiqqqKmpoaXC4X27ZtIzc3l/Hjx/Pyyy/z\nwgsv8MILL5CUlMQPfvCDIRNY3GZeZY5ft2eYFZeQxgZzpRjmFw2SxkA/NlLqsy2Dul+qI+2LfBkS\n/RXy4FJQUMDevXtZtmwZ+/btcy8xdjgcrF27FoCIiAiWLFnCmjVrWL58OfPmzSMzMzOU1e4TNdNc\ncaMP7ApxTcSga6xHtQcXAMakofuQHVmfcWL8908wHv4KepCyPWjDMFeKXZRmX4i+CHnGydjYWFat\nWuXxvM1mY8WKFe7HOTk5vWZhHowFCP2hEpJg3ARzSfKtXwx1dcQg0Vqb+1ziOoOLSklDH/mk1yFS\n3dqCfrsI/fciuHAeRo42v5x89p7gV7yuGs6f6zFhpRC9CXlwuVSoK3LQxW+iz7Z6TV8uhqGzrebS\n49guw7QpY82sDc2N7qMautJGG3rzn9F/fg2azqCuvg5VcB+65C0z67brAsoa5JT9lRWA5wFhQvRF\nyIfFLhVqZg60ueCT/b0XFsODe49L954LAD7SwOiSv6F/+zJkTsLy/z2L5cHHUGnjUFMuM3swJ44G\nu9bmfItSXg8IE8JfElwGy5TLYcRI9IGdoa7JsKDPtqDPtoS6Gj1rT/2i4rrOuZh5unzNu+hd22Bs\nJhGPrEZNnNr5QtZl5utHPg5KVbvV4eQx84CwkaOCfi8xfElwGSQqMhKmZ6MP7A51VYYF46X/wHhp\n6GVk6KYj9UvXYbFkM8uEt+XIurkJDu1HXXmNx2sqIclcaVZ+MBg17a6XA8KE8IcEl0GkZuZATVV4\nZcYdgrRhwOGP4MjHQ/ooCO1tWGzESEhI8rocWe/fCYbh83RHlXUZOsht1ufOwekqmW8RAybBZRB1\nLkmW3suA1JyCc2ehtQXqToe6Nr51zYjcla/lyHu2m2UnTfP+flmXQb0DHEHc3V11vP2AsInBu4e4\nJEhwGUyp6ZCcKvtdBkhXHOl8MJQ3pjY2wOhoc0i0C5WSZh533IV2udD7d6FmzfGZMVllzTDLBnHe\nRZ80V4ohPRcxQBJcBpFSyuy9HNxnHn8r+uf4p2C1glLoE5+Guja+ddmd303KWGhwoM+d7Xzu8AFo\nbUZd6X1IDDA/8EeMhCNBnHepPAYjRkBKavDuIS4JElwGmbr8KjjXCkcPh7oqYUsfP2IevZuajh6E\npbn9pc/Ud9tA6dZxsmOX3oves9089XHGlT7fT0VEwKRp6CAGF32yAtInmKlqhBgACS6DrWNJ6TEJ\nLv2htYbjR1ATslCZkwdl30e/+ei5uPe6tAcXrbUZXC6b1evyX5U1A0582r3XEyBaazhxVCbzRUBI\ncBlkKj4REpNBgkv/1J2GlmYYn2UOE9lr0C1Noa6Vd40NqFgvSVRTOva6tK8aPHUc6k73PCTWTk2Z\nAYYBRw8FsqamM/XQdEaWIYuAkOASChOmoI+Vh7oW4em4Oceixrf3XABOHAtdfXzQRpv5Qe1lWExF\nx0BUTGfPZc928/lZnhnBPUyebl4TjKGxk8fMekjPRQSABJcQUBOnQM2pofuNewjTx49ARIR5/G7m\nJPO5yiE4NNbUCFr7Pg8lJQ1d0yW4TJxqbpTshYqOgbGZQQkuumPlnSxDFgEgwSUE3Gk9ui6pFX7R\nx4/A2PGoyBEQn2jOaQzFFWPtu/OVt9VigBozFmqr0A1OOHoINduPXkvHtVNmwJGD5mbSQKqsgHgb\nKtYzoaYQfSXBJRQmTgGQobE+0lpDxRHUBHM4TCkFmZOG5oqxMx278331XMaa80W7PwCtUbM9U774\nlHUZtDTB6ZN+X6IbnOiaUz2XOXlM5ltEwEhwCQEVHWsOi8ikft/UO8wewfgs91MqcxKcOo52uUJY\nMU+6I6+Yt6XIAGPSwDDQ7/4FbCl92rSoOlYclvu/mVL/+r8wnn3SZ+oY3dYGp07IfIsIGAkuIaIm\nTIEK6bn0yXFzGFF1CS5kTgaXC6orQ1QpHxp9pH5p516OfLICNXtu344TTh0H0bF92kypT3xqpo3x\nNYRYc8o8e0aCiwiQkB8W1tTURGFhIbW1taSkpLB8+XJiYmI8ypWVlbFp0yYMw2DRokXu45Bfe+01\n3nnnHeLizHHie++9t9cTK4eEiVNhx3voxgaf4/KiO11xxDxnpH0iH0BlTEIDeqjtzzhTDxaLuSrM\nm/blyIDPRJW+KKUg6zK/J/X1+XOdK9P2lnYPzh1l2ifzlQyLiQAJec+lqKiI7OxsNmzYQHZ2NkVF\nRR5lDMNg48aNPPHEExQWFrJ161YqKzu/qX72s59l/fr1rF+/PjwCC+0rxgB6mHfR9lqMP79mLmsV\n5mR+Wkb3jYZp48AaOfQm9ds3UPrKE0Z8orkjf9RomHZFn99eZV0G1ZUYHckxe1Jdaa5cs1jQe3d4\nL1NZYQbDsZl9rosQ3oQ8uJSWlpKXlwdAXl4epaWlHmXKy8tJS0sjNTUVq9XK/PnzvZYLK+OzzNxY\nPcy76L+9ji76JZRtH8SKDWHHP0WNn9ztKRURAeMmdC6jHSL0mXqfQ2KAGXQmTEHlzPdIbOmPjiSW\nFw71frKpPnXcvCZ3ARw9hD7j9Cxz8hikjutXXYTwJuTBpaGhgcTERAASEhJoaPD8JuZwOEhK6twD\nkJSUhMPhcD9+6623ePTRR3nxxRdpagqPvSNqdBSkjkP7mHfRRht651YAjHfeHMyqDUn6TD0467pN\n5ndQmZPMlChD6WwXX0kru7A8shp1/9L+vf/EqWCxcOHgvt7LnjoOEVZU/p0A6H1esnJXHhtaw4oi\n7A3KnMvq1aupr6/3eH7x4sXdHiul+jaxCdxyyy3cfffdAPz2t7/llVde4aGHHvJatri4mOLiYgDW\nrVtHcnJyn+7VwWq19vvarhouu4Lze0pJSkryaPf5vTtwnqkncsZsLny8h/hGB5G+zvkIoEC1LdDO\nnSinHkiYlcOIi+rXMiObxvf+jk1pIpJTvF4/2O2qa24kMmMC8UG8p33yNC4cOkDyfQ/2WM5Zd5q2\n9EyScq+lLimFyE/2kHDXl9yvG81N1NpriL7180QPod/9UP1bHKjh2q6LDUpwWblypc/X4uPjcTqd\nJCYm4nQ63RPzXdlsNux2u/ux3W7HZrMBZm+nw6JFi/jBD37g8175+fnk5+e7H9fV9e/QpeTk5H5f\n25WRlol+9y3qyg+hErvvzjaK/wQjR9O25GH4/x7E+ftXsXztuwO+Z28C1bZAM/aZB6w1xNlQF9VP\nJ44BwLF3p88UKoPdrrZ6J8aIUUG9pzFhKq5/vE3t6dPm8KCvuhwrR02Ygt1uR8/M4dyHW6itrkJZ\nzSEwXf4RAC2JY2gdQr/7ofq3OFDh3q709HS/yoV8WCw3N5eSkhIASkpKmDPH88MhKyuLqqoqampq\ncLlcbNu2jdzcXACczs7x4+3bt5OZGT4Tkp079bvPu2iXC73rfXOJakISav4i9PYSc2joEqWPH4GU\nNJS31VftwzlDZTOlPnfOPFYh2KsAJ02D8+fMM+97qkvdaUgfD7TnLzvXCocOdJaplAPCROCFPLgU\nFBSwd+9eli1bxr59+9xLjB0OB2vXrgUgIiKCJUuWsGbNGpYvX868efPcQeSXv/wl3/ve93j00Uc5\ncOAA//Iv/xKytvRZxiRzBc/Ri+ZdPt4DzY2ouQsAUIvuAJcLXfJWCCo5RBz/1OsSWmifv0pJC9rB\nYdp1Ad3c6P8FTT3vcQkU1ZHE8tNPfBeqPmFmAGgPLlw2GyJHoPd1WTV28hiMjgbb8B+qEYMn5Ptc\nYmNjWbVqlcfzNpuNFStWuB/n5OR4XWb8ne98J6j1CyY1ciSkT0Bf3HMp3WL+Y7/8KrNcWgZccTW6\n5K/o277oHs7oL71zG9pZh6V9gneo081N5j6NBbf4LpQ5yWd2ZP3xHlxTLwPryP7d/41X0f94G8u/\nrUVlTOr9gvblwcpX0spASU4173H0ENx4m9ci+qS5Uszdcxk5EqZno/dsR9/zdZRS5kq7cRP6PN8p\nRE9C3nO51KmJU+BYuXulk75wHl32ISrn2m7LQi2LPgcNTvSO9wZ8T+Nvr6OLfhXS/TP64z3osy3+\nFT7RmWbfF5U5yUwEedF76t0fYBSuomG979Qnvdb1oz3Q2oLx3P9F22t7v6CxI69YkHsuShE59XJ0\nT2e7nDpuHgk9psumzVlzzGB9+qT5MzlZgcqQzZMisCS4hNqEKdDcaI6LA+zfBa0tqDk3dC838ypI\ny0AXvzmgJbfa5TJPbzzXCqdODKDi/aebGzEKV6H/9y/+lW9P+8JFe1y6UhmTzI2ClZ3zD/r4EYyX\nn4WoGFyffmION/a1rq0t5odv7vVw7hzGc0/3OkSme0n9EkiR02dCdSW6pdl7XU4dN/evdJnwV7PM\n+Uq9txQctdDaImn2RcBJcAkxNcmc1O/IkKxL/wExcXDZrO7llEIt+pyZj+yI/wkLPZw6buaQopex\n+mBy1JmBoIeJ6G4qPgVbcs9pctoPDus420U77Rg/+j7ExGJZWYglMQnjrT/0va5HPwFtoBbcjGXp\nE1BbhfH8GvSF876v6dg1H+xhMSBy6kzzZ+lrM+6p453zLe1U0hhz4+neHe5gLHtcRKBJcAm1cRPM\nYYuKw+hzZ9F7tqOunu91aamatxCiotHF/d9U6d60GWGFUAWXenMDrK7yL9mkPn7E6+bJbmzJZh6v\nE0fR585iPP99aG3B8p2VqKQxRN1xD3y8x+emVZ/3Lv8YlAUmTUdNz0YtWQ7lH2G8/J++hxUb62HE\nyO5paoIkcqq5U9/bFwV9thXsNe75lq7UrFwo/wh9uH2Hv+QUEwEmwSXElDUSMiahj5WbwxTnz6Hm\nLPBeduQo1IJb0Lvf92/s35uK8vbFAleGrOei69v3LFVX9nrglT7bCqdP9jjfAl3Odqk4gvGzQjhx\nFMsDj7on4Ed/5vMwOgr91ut9q2v5x+Zk9+goACxzFqDu+Trs2ob+7UbvQ5R+7M4PFEt0rDlc6m3e\npcoc9ry45wLt8y5tbegtb0PSGHf7hAgUCS5DgJpopt/X27dAvA2mXu677MI7ANB/90zw6Q99rBwm\nZJmJD6tOhOao5faeC+fPmSldelJ51FxK28N8SweVOckMnrveR93ztW4bKi3RMai828yVcjVVflVT\nG23w6SHz5McuLDffhcq/C735T+Yw5sXXnWkYlCGxDmrydDNn2EWBriOnmLeeC5Onm2n7W5tlf4sI\nCgkuQ8HEqXC2FfZsR+Veh7L43m2tklJQ824ylyX3sfeiL1wwc0hNmOLeI8HREBxYVt+ZF67j27Uv\n7oSU/iwBbp93UTfcilrkucxaLfocRFjQb7/hXz0rK8yFDxcFFwD1T18z5y3+9FvP3ldjz0krA27S\nNLO31LEopMOp42bG6DFpHpcoSwTqCnNpv5LJfBEEElyGADWhPf2+1j6HxLqVv/NeQKH/57/7dqNT\nFdDmQk2cYgY0pXodGtNaBzwhpK63Q6K5YU/3tmLtxDGI8m+Dn7r6OtTXl6PufcDrng2VYDMD89Z3\nzLPre6tn+8KJi3suYGY1VrfdbQbHsg+7vzjIZ/SoyWbOuYuHxvSp4+YRBb6+rHT07GQZsggCCS5D\nwdhMGDESksaYwxW9ULYU1E2fRb//v52b5PzQsSKNCVPMMfb08ehPez5wynjuaYyfrPP7Hn6pd5hD\nMTFxvZ4gqSuPQsYkvzb4qZEjsVy7EGX1vTdY3fJ5aHOh/ck0Xf4xJNjMY4i9vdec62HMWPPMnY59\nSlqbvQhfxxsHw7iJMGKE5wINLyvFulI588xAfOU1wa2fuCRJcBkCVEQE6ra7UXd9xe9d0uq2u2HU\nKIyiV/2/UUW5Oc6enGq+x+Tp8Okhn5Pq2l4DB3bDrvfR+3b6f5/e1NtRCTYYm4HuYVhMG0b7Br+J\nAbu1ShsHV81Dv/tXcw9LD3T5x6isGT5/J8oSgbr1i+bxywfa09i3NENbG8QO4pxLRASMn9Kt56Jb\nW8wl3+m+c+0paySWm+5ARY4YjGqKS4wElyHCcseXsMxb6Hd5FRNnfgsv+9D/424rys1eS8eH5eTp\n0NJknp/urfwO8zwZEmwYr200N2AOkHa5zG/2CTbU2EyoqvQ97FZXDefOBnzC2XLrF6G1Gb3lb77r\n6agzNxh6GRLrSs1bCLZkjD//znxikHbne9Rj8nQ4/im6fQ8THQeEjfPdcxEimCS4hDGVfyfEJWC8\n/ote50X0hfNmL2BC55Le3hIf6tJ/wIQpWO57yFw2/K5/O+p7dMZpbvpLSDKHA5sbzWDjTXuuMJXp\nx2R+H6hJU838WsV/NBc5eNERsL3Nt3R7L2sk6pYvmHtGDu3vkldssIPLNHNzbPvPrMeVYkIMAgku\nYUyNGo2640tm+vT9Xk4X7KryGLS1oSZO6XwuLQNGR8ERLxvwaqqgotycV5g1x9wX8+av0Y1nBlbp\n9pViqqPnAuBjM6WuPGZuYAzCB6Tl9ruh3oF+/x3vBY58bM6D+bFKTS24GWLjzd6LO/XL4A2LAeaK\nMUAfbf9dnjoBkSPcQ6BCDDYJLmFOLbgFUtIwXn+lxw2JnZP5UzuvtVhg0jTvu7vbj1hWV1+HUgrL\nPd+As619X6F2sY4NlAlJMDbDvFeV90UJuvIopKajRvQvm3GPZlwJE6ei33od3ea5016XfwyTpvW4\nOKCDGjESdXMBfLQbva/UfHKQh8VITDb3SLX/LvWp4zC2h5ViQgSZBJcwp6yRqLu+ApVHvW7oc6so\nNz/wLlrSqyZfBicrzJ3wXejSf5gfrh2T/+PGm5sQS97q3HvSD7pjj0uCzfxAHDnaZ8+FE0cDPiTW\nQSmF5bP/BLXV5hEHXet47iyc+BSV1fOQWLf3u/E2MzXPts3mE4M956IUTJ7WOanfy0oxIYJNgssw\noOYsMFPI/PFXPifdPSbzO66dPB20YQafjrLVJ80P9ov23Kg774XRUebkfn/3vtTbzbxmMXFmXdLG\neV0xpluazbxYwdw9PmuuuRHyL7/v3us7eggMo9f5lq7U6CjUTZ8z55NiYns8djhY1KTpUFOFrq02\nf84SXEQISXAZBpTFgqXgPvNb+IclHq/rc+fMb7Jd51s6dGRl7rLirOPMGHX1/O73iYlD3fllM3X9\nnos2Dvqr3gHxieaQHLhXjHk4GfxsvcpiQd3+T+ZGyN0fuJ/X5e1Zp7N633PU7f0W3QEjRw3+fEvH\n/Ts2U24z55Gk5yJCSYLLcDErF8ZPRv/lNc85hMqj5jfxCZ7JH1VMHKSO6zbvone8B1NmoLxsHlR5\nt8LYTIzXfuZzpVVPdL3DHBLrkJ4J9XaPPScdqfP9SvsyACr3OhiTjvGXLhshj3wM6eNRUTF9e6+Y\nONSXHzTTzITChCmgLO7gIj0XEUohDy5NTU2sXr2aZcuWsXr1apqavCdSLCsr47vf/S7f+c53KCrq\nnrTxr3/9Kw8//DCPPPIIv/zlLwej2kOOUgrLHYvNYZHtF80heJnM73bt5Onw6SdorXGdONp+OJaP\nzMxWK5bF3zB7SX/rW4ZhwOy5JCR1vl/7pL7HTv0TR80Nn4lJBJOyRKBu+yIc/xT27zSHx4580qch\nsa4s82/CkndrgGvpHzVqtBmsHXWdGR+ECJGQB5eioiKys7PZsGED2dnZHoEDwDAMNm7cyBNPPEFh\nYSFbt26lstL8MNq/fz87duxg/fr1/Od//ief+1yIvjUOBbPnQsZE9J9f637WSEU5xCd27zF0NXm6\nO/Hh2a3vgFKoq+f5vI26/CpU7vXmfXxswPSpY3d+hzRzOfLFOcZ05THImDgo57qra29s3wj5mjlE\n1toMfZjMH0rcCUnHZrqHHoUIhZD/9ZWWlpKXlwdAXl4epaWlHmXKy8tJS0sjNTUVq9XK/Pnz3eXe\nfvtt7rrrLiLbz5uPjx/kJaBDiLJYzN7L6ZPo0vfcz/uazHdf12Uz5dn33oGpM1EJPfcY1Je+DlYr\nxq9e8ntyX59tNY/U7freKWnmYWldJvW10RbwtC89UdZIM43LkYPoP79mPtfPnkvIte93UT2kfRFi\nMPS+iD/IGhoaSExMBCAhIYGGBs/d2g6Hg6Skzg+kpKQkDh82U8VXVVVx8OBBfvOb3xAZGcn999/P\nlCleJq6B4uJiiouLAVi3bh3Jyb1n2vXGarX2+9pg0zffgf3Pv4W3/kDSbZ9HnztLbXUl0TfcTIyP\nOuvEBGpHjcb6wf9y4WQFsd96lKje2pecTMt9D9L4ciGxh/Yy6rpFvdbNdfI4diA2czyju7x/3dhM\nIhw1JLY/5zp5HPv5c8TOyO5WbiB6+53pOxdT95ffYZT+A0uCjeQZVwxKr2mgLm6X6+prsb/yPNFT\nLyd6iP6N+mso/zsbiOHarosNSnBZvXo19fX1Hs8vXry422OlVJ//QRuGQVNTE2vWrOHIkSMUFhby\n/PPPe32f/Px88vPz3Y/r6no5qMqH5OTkfl87GIzb7kb/13rq3v4fc2OdYdCaks7ZHuqsJ0zhwv5d\nYLHQPC2bFj/ap+fcAH9/k4afFtI4fmqvpxnqY0cAaIoYQXOX9zfGpNNWccT9M9X7d5vlEpK7lRsI\nf35nOv9O+P3PMSZNw263B+S+wXZxu/ToWNTXHqZl9hxah/DfqD+G+r+z/gr3dqWnp/tVblCCy8qV\nK32+Fh8fj9PpJDExEafTSVxcnEcZm83W7R+73W7HZrO5X5s7dy5KKaZMmYLFYqGxsdHr+1wq1NXz\n0WkZGH/6Leq69mA6wXtvzn3N5GnoT/Yx4ooc2uIS/buPJQLLff8H498fRf/xV6jF3+yxfOcGyouG\n3MZmmpmXL5xHRY5AnzgKluCkfemJyrsVvfUdVM783gsPUUop1PybQl0NIUI/55Kbm0tJibk3o6Sk\nhDlz5niUycrKoqqqipqaGlwuF9u2bSM3NxeAOXPmcODAAQBOnTqFy+UiNjZ28BowBClLBOqz95g7\n798ugoQkVHzPAaNj3mXkdX37YFITp6JuvB29+c/m3E5POlK/JF60sGBshrmR87S5OEBXHoPUcYOe\nCl6NiiLi/72A5dobB/W+QgxHIQ8uBQUF7N27l2XLlrFv3z4KCgoAc55l7dq1AERERLBkyRLWrFnD\n8uXLmTdvHpmZ5oTlTTfdxOnTp/ne977Hc889x9KlS8NirDzY1JwFMCbd/ED3tnnyYtlzUPcvZfTC\n2/t+r4L7IC4e49UXu69Su1i9A0aORo3qPnzWkcBSd2ymPHF00CbzhRDBEfIJ/djYWFatWuXxvM1m\nY8WKFe7HOTk55OTkeJSzWq0sW7YsqHUMRyrC7L3oTT/sPEa5t/I3fKZfvQUVFY265+vonz6Dfq8Y\ndcNnvBd02j17LQCp6aAUVB1HtzSZ56jceFuf6yGEGDpC3nMRwaOuyTNPt5zf+0quAd9rzgIzT9he\nz6XkHXSDw1xgcPG1I0aaqeGrKs2jAQAV5J35QojgkuAyjKmICCx3fAllC/6yR6UUauI0ONbDvIvT\njvK1435sJrrqBLr9sCsyJwa4hkKIwSTBRQTOxCnQ4EDXey7j1VqDj54LtKeBOX0KThyBmFif5YQQ\n4UGCiwgYd2LMiiOeLzY1gsvlOwXN2ExwXUDv3QEZk2RRhhBhToKLCJzMyWZWXm9DYw1mb8bXsJhK\na09g2dgg8y1CDAMSXETAqJGjID3T+34XZ/sGSl/DXWO75MKSZchChD0JLiKg1PgsqCj3SGbpnofx\n1XOJinYHHiWT+UKEPQkuIrAmToEz9eaGya46HveUKSA900z7MlYOuRIi3IV8E6UYXtSEKWiAisPd\neyn1DoiNR1kjfV+bez0kjUFF+i4jhAgP0nMRgZUxCSyek/q63t7r8mLLDZ/B8i/fCWbthBCDRIKL\nCCg1ciSkj0dfvBy53hH0I4uFEEOHBBcRcGqCl0n9Bkf3442FEMOaBBcReBOmQmMDONoP/3K5zEl+\nCS5CXDIkuIiA69yp3z7vcqYetJbgIsQlRIKLCLyMiRAR0bmZsn2Pi7r4BEohxLAlwUUEnBrRManf\nEVw6jjeWnosQlwoJLiIo1IQp7kl99+586bkIcckI+SbKpqYmCgsLqa2tJSUlheXLlxMTE+NRrqys\njE2bNmEYBosWLXIfh1xYWMipU+bZ6y0tLURFRbF+/fpBbYPwYsIUeO/vYK8xey4RVoiJC3WthBCD\nJOTBpaioiOzsbAoKCigqKqKoqIj77ruvWxnDMNi4cSNPPvkkSUlJrFixgtzcXDIyMli+fLm73Cuv\nvEJUVNTFtxAh0LlT/4g55xKfiLJIR1mIS0XI/7WXlpaSl5cHQF5eHqWlnsfklpeXk5aWRmpqKlar\nlfnz53uU01rz/vvvc9111w1KvUUvMiZChBVdcRhd75D5FiEuMSEPLg0NDSQmmskMExISaGho8Cjj\ncFqvUWsAAArXSURBVDhISuocr09KSsLh6J4Y8eOPPyY+Pp6xY8cGt8LCLyoyEsZNMHfqS3AR4pIz\nKMNiq1evpr6+3uP5xYsXd3uslOr3CYRbt27ttddSXFxMcXExAOvWrSM5uX9ny1ut1n5fO9QFsm1n\nps/k7Pv/C4bBqJxriAvhz2y4/s6Ga7tg+LZtuLbrYoMSXFauXOnztfj4eJxOJ4mJiTidTuLiPCd9\nbTYbdnvnuex2ux2brfObcFtbG9u3b2fdunU91iM/P5/8/Hz347q6ur40wy05Obnf1w51gWybkZaB\nbmoE4OzIKM6H8Gc2XH9nw7VdMHzbFu7tSk9P96tcyIfFcnNzKSkpAaCkpIQ5c+Z4lMnKyqKqqoqa\nmhpcLhfbtm0jNzfX/fq+fftIT0/vNnQmQk9NmNL5QJYhC3FJCXlwKSgoYO/evSxbtox9+/a5lxg7\nHA7Wrl0LQEREBEuWLGHNmjUsX76cefPmkZnZeSyuP0NiIgTSJ4DV7BxL0kohLi1KX3we7SWkY39M\nX4V7t7YngW5b2/cfgYpyLP/vRdTYjIC9b18N19/ZcG0XDN+2hXu7wmZYTAxv7qEx6bkIcUkJ+SZK\nMbyphbdDUgpqtGxuFeJSIsFFBJXKmIjKmBjqagghBpkMiwkhhAg4CS5CCCECToKLEEKIgJPgIoQQ\nIuAkuAghhAg4CS5CCCECToKLEEKIgJPgIoQQIuAu6dxiQgghgkN6Lv3w+OOPh7oKQTNc2ybtCj/D\ntW3DtV0Xk+AihBAi4CS4CCGECLiIp59++ulQVyIcTZ48OdRVCJrh2jZpV/gZrm0bru3qSib0hRBC\nBJwMiwkhhAg4Oc+lj8rKyti0aROGYbBo0SIKCgpCXaV+efHFF9m1axfx8fE8++yzADQ1NVFYWEht\nbS0pKSksX76cmJiYENe0b+rq6njhhReor69HKUV+fj633377sGjb+fPneeqpp3C5XLS1tXHttddy\nzz33DIu2ARiGweOPP47NZuPxxx8fFu1aunQpo0aNwmKxEBERwbp164ZFu/yihd/a2tr0t7/9bV1d\nXa0vXLigH330UX3ixIlQV6tfDhw4oI8cOaIfeeQR93OvvvqqfuONN7TWWr/xxhv61VdfDVX1+s3h\ncOgjR45orbVuaWnRy5Yt0ydOnBgWbTMMQ7e2tmqttb5w4YJesWKF/uSTT4ZF27TW+s0339Q//OEP\n9dq1a7XWw+Pv8aGHHtINDQ3dnhsO7fKHDIv1QXl5OWlpaaSmpmK1Wpk/fz6lpaWhrla/XH755R7f\nlkpLS8nLywMgLy8vLNuWmJjoniwdPXo048aNw+FwDIu2KaUYNWoUAG1tbbS1taGUGhZts9vt7Nq1\ni0WLFrmfGw7t8ma4tutiMizWBw6Hg6SkJPfjpKQkDh8+HMIaBVZDQwOJiYkAJCQk0NDQEOIaDUxN\nTQ1Hjx5lypQpw6ZthmHw2GOPUV1dzWc+8xmmTp06LNr285//nPvuu4/W1lb3c8OhXQCrV6/GYrFw\n8803k5+fP2za1RsJLsIrpRRKqVBXo9/Onj3Ls88+y1e/+lWioqK6vRbObbNYLKxfv57m5maeeeYZ\njh8/3u31cGzbzp07iY+PZ/LkyRw4cMBrmXBsF5iBxWaz0dDQwPe//33S09O7vR6u7fKHBJc+sNls\n2O1292O73Y7NZgthjQIrPj4ep9NJYmIiTqeTuLi4UFepX1wuF88++ywLFizgmmuuAYZP2zpER0cz\nc+ZMysrKwr5tn3zyCTt27GD37t2cP3+e1tZWNmzYEPbtAtyfD/Hx8cyZM4fy8vJh0S5/yJxLH2Rl\nZVFVVUVNTQ0ul4tt27aRm5sb6moFTG5uLiUlJQCUlJQwZ86cENeo77TW/OQnP2HcuHHccccd7ueH\nQ9vOnDlDc3MzYK4c27t3L+PGjQv7tn35y1/mJz/5CS+88AIPP/wwV1xxBcuWLQv7dp09e9Y9zHf2\n7Fn27t3L+PHjw75d/pJNlH20a9cufvGLX2AYBgsXLuQLX/hCqKvULz/84Q/56KOPaGxsJD4+nnvu\nuYc5c+ZQWFhIXV1d2C6RPHjwIKtWrWL8+PHu4YZ7772XqVOnhn3bKioqeOGFFzAMA6018+bN4+67\n76axsTHs29bhwIEDvPnmmzz++ONh367Tp0/zzDPPAOYCjOuvv54vfOELYd8uf0lwEUIIEXAyLCaE\nECLgJLgIIYQIOAkuQgghAk6CixBCiICT4CKEECLgJLgI4YdHHnnE5+7xYKurq+P+++/HMIyQ3F+I\n/pClyEL0wWuvvUZ1dTXLli0L2j2WLl3Kt771LWbNmhW0ewgRbNJzEWIQtbW1hboKQgwK6bkI4Yel\nS5eyZMkS945rq9VKWloa69evp6WlhV/84hfs3r0bpRQLFy7knnvuwWKx8O677/LOO++QlZXFli1b\nuOWWW7jxxht56aWXqKioQCnF7Nmz+frXv050dDQ/+tGPeO+997BarVgsFu6++27mzZvHt7/9bX79\n618TERGBw+Hgpz/9KQcPHiQmJoa77rqL/Px8wOxZVVZWMmLECLZv305ycjJLly4lKysLgKKiIv76\n17/S2tpKYmIi3/jGN8jOzg7Zz1UMX5K4Ugg/RUZG8vnPf95jWOyFF14gPj6eDRs2cO7cOdatW0dS\nUhI333wzwP/f3v27NA4FcAD/YjVUKcZokSyCmwpiwUFQqouTdNGhi4JGigpiEXTwDxDpYgVHFYsI\nVaG46OTk5uDiIloQUaEEaUNbRBoxTb1BDPTk7lLMcYd8P1N+vZcfy5e8l7yHm5sb9PX1YWtrC6Zp\nIpvNYmRkBB0dHdB1HdFoFIlEAoqiIBwOI5lMljWLpdPpsutYX19HS0sLNjY2oKoqlpeXIcsyOjs7\nAbyPMry4uIjZ2VkcHBwgFothZWUFqqri5OQEkUgEjY2NSKfT7Mehv4bNYkRfkM/ncXFxAUVR4Ha7\nIYoiAoEAzs7OrGMkScLQ0BBcLhcEQYAsy+jq6kJNTQ3q6+sRCARwdXVl63yapiGZTGJsbAyCIKC1\ntRWDg4PWQIgA0N7eju7ublRVVWFgYAD39/cA3ofrNwwDqVQKxWIRzc3NkGXZ0edB9IFvLkRfoGka\nTNPE9PS0te3t7a1sUjmv11tWJp/PY2dnB9fX13h5eUGpVLI9cGEul4PH40FtbW1Z/be3t9a6KIrW\nsiAIMAwDpmlClmUoioJEIoFUKgWfz4fx8fFvNW0E/T8YLkQV+Hlip6amJlRXV2N7exsul8tWHfv7\n+wCAaDQKj8eD8/NzxGIxW2UlScLz8zN0XbcCRtM02wHh9/vh9/tRKBSwubmJeDyOcDhsqyxRJdgs\nRlQBURSRyWSsvgpJkuDz+bC7u4tCoYBSqYTHx8ffNnPpug632426ujpks1kcHx+X7W9oaPjUz/LB\n6/Wira0Ne3t7eH19xcPDA05PT9Hf3//Ha1dVFZeXlzAMA4IgQBCEbzsLIv17DBeiCvT29gIAQqEQ\nlpaWAABzc3MoFotYWFjA5OQk1tbWkMvlfllHMBjE3d0dJiYmEIlE0NPTU7Z/eHgYh4eHUBQFR0dH\nn8rPz88jk8lgZmYGq6urCAaDtv6JMQwD8XgcoVAIU1NTeHp6wujoaCW3T2QbP0UmIiLH8c2FiIgc\nx3AhIiLHMVyIiMhxDBciInIcw4WIiBzHcCEiIscxXIiIyHEMFyIichzDhYiIHPcDKWsjmqp0ckUA\nAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -673,9 +778,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclXX+///H+7CoiOwooljikrmvKS5hilZqZk1atjg6\nlRplk61On9/Y9DULM8I0GRtbHHOmtEWsmcrCBSfNRMUyzS2XIBdAFtkFrvfvj1OnyIWL5XAd4HW/\n3bzJuc65zvXi7ZEn1/t9Xe+30lprhBBCiMuwWV2AEEII1ydhIYQQolISFkIIISolYSGEEKJSEhZC\nCCEqJWEhhBCiUhIWQgghKiVhIYQQolISFkIIISolYSGEEKJS7nVxkMzMTJYuXUpOTg5KKaKiohgz\nZgz5+fnExcWRkZFBcHAws2fPxtvbG601b731FikpKTRp0oTo6GjCw8MrPc7JkyerXWNQUBCZmZnV\n3r+xkHYyR9rJHGknc5zZTqGhoaZeVydnFm5ubtxzzz3ExcUxf/581q9fT1paGgkJCfTo0YPFixfT\no0cPEhISAEhJSeH06dMsXryY6dOn8/rrr9dFmUIIIS6hTsLC39/fcWbQrFkz2rRpQ1ZWFsnJyURG\nRgIQGRlJcnIyADt37uTaa69FKUXnzp0pKCggOzu7LkoVQghxEXXSDfVb6enpHDt2jI4dO5Kbm4u/\nvz8Afn5+5ObmApCVlUVQUJBjn8DAQLKyshyv/UViYiKJiYkAxMTEVNinqtzd3Wu0f2Mh7WSOtJM5\n0k7muEI71WlYFBcXExsby9SpU/Hy8qrwnFIKpVSV3i8qKoqoqCjH45r06UnfqTnSTuZIO5kj7WRO\noxmzACgrKyM2NpZhw4YxcOBAAHx9fR3dS9nZ2fj4+AAQEBBQoWHOnj1LQEBAXZUqhBDid+okLLTW\nLFu2jDZt2jBu3DjH9v79+5OUlARAUlISAwYMcGzfsmULWmsOHTqEl5fXBV1QQggh6k6ddEMdPHiQ\nLVu20K5dO5544gkAJk+ezIQJE4iLi2Pjxo2OS2cB+vTpw+7du3n44Yfx9PQkOjq6LsoUQghxCaoh\nLasq91k4n7STOdJO5kg7mXOpdtIFeejk/6Fa+KL6DanWe5sds6jzq6GEEEJUnz5fAvtTML7aBN8m\nQ1kZDBhW7bAwS8JCCCF+pg0DMk5Dy9ZVvjrzsu97NgP9yRrUyJtQoe2qtm9xEUWbPsX4Jhl97BD8\ndALKy6GFL2r4GFTEdRBW+QwXNSVhIYQQP9P/eRf98bsQHIIaMAx1zbWoNlfU7D2/2YHx5iIozEcf\nPYjt/2JR7h6V75d/Dr3xP+iN/+VcQR4084IrO6GuvxXVqStc3Rvl5laj2qpCwkIIYQm9P4XclO3o\nm+5A+dTd1Y7G10koL29Uj34V6zn5I/qT96FLT7C5oT/9AP3Je9C5G7Z7H0UFBFfpOLqsDL32bfTn\na6FdOGrwZPS7y9GfvI8aP7nia8+cRH//DRQVQlE+5Oagd22FkmLodQ3+d9xLbkArlM26uV8lLIQQ\n1aaNcjjxA7TrUKXfcnVuNsbylyjOz4M9X2Ob8RSq49W/Pn8uG528FdVrACqoVcV9tUb/dw2cSkPd\ndAcqpI3p4xrbN6HfiEO7uWF7+BlU194/fx8GxttLoWkzbNOfQLXwRZ/LQe9IQq/7N8a8R+yB0b3f\nZd9faw0nU9G7tqKTt8Dpn+xdRZP+hPLwxDh6CP3JGnTfQai27e377E/BiI+BkiL7m7i5QbPmqD6D\nUDf8AdXmCjyDglAWXwggV0P9TK7KMEfayZz62k5aa/jpOPpkKqp5C/D2gRY+4BeAsl0YBsY7/0Bv\n/A/4+KEGDUcNjoLQMMjOhNM/oTNOo67qUeEHutYaY+l82JeC7yNzyf3nUsjKRN1+L6pzd/QX69Bf\nJ0FZKXi3wDZzDuqqHvZ9y8rQby9Fb9sAbu6ARl17gz00Wvhe/ns7uBcj7hno0AUK8iArA9uTMai2\nV2IkfYZeFY+a+mdsQ0ZW3O/0TxjLYuDkj6gxE1HjJ1+0LfQ3yRjvvwWn00Ap6NQV28jxqL4Rv74m\n/xzG3AfBPwjbXxaid2xBr1wCrcOwzXgS/IPB0/OC8RJXuINbwuJn9fU/d12TdjLH6nbS57LRmz61\n/3DzuHz/uDYM2LsT/c0O9N5dkHP2whe174ztz8/YA+SX/XZ+ifHai6gBw9ClpbA32T7w6ukJ58//\num+TZthmPIHq0R8AY9sG9FuvoCb+iZZ33kfGieMYb7wMe3faX+/piRo8EtVnEMa7r0P6SdQd96MG\nXYfx2ovw3S7U+DtRkdejP34XvWU9NGmKuvlu1IixFx2Y1qdSMWKeBN8AbE8tgJJijBceB2XDFv0X\njJfnQrtwbI89d/H9S0rQ7yxDb90APfrbzz6aNvv1+b277AEY0gYVeSOqbwTK9+Jda3rXNnv4dO4G\nh/bB1b3sgejV/JL/RhIWtUzCwvmkncyxup2MN+LQ2zehpj6MbUjUJV+nT/yA8e9lcPQgNG0GXfug\nuvdFte8ERUWQfw6dcQq9dhW0bovt0Xkobx/7b9vzH4XQdtieeB7l7oHOy7WfEZxNh1ahqJC20LwF\nxopXIPU46vb7UL0HYjw7C8LaY3tsPsEtW5KZmYk2DPSGj6GsFDVsNMrbPvWPLizAeD3WHiS+AXAu\nB3VPNLZho3/9Hk6lYaxeDvtSoFsfbFP/jPL7dXogfeYkRtxcOF+C7emXHN1aOvUYxotz4HwJ2Nyw\n/W0JqtXlf3Aamz9B//sf9mB5+K8oH3/7Gcsrz9rPDh6bh/LyrvzfZ9kC9K6tqIGRqKkPVzrgLWFR\nyyQsnE/ayRwr20n/+APGc4+C1nBFR/vVN7/7bVkX5KPXrUJv/gy8W6Bum4a6Ztglf2jp73Y7fnO2\nPfRXjCX/D3KzsP11UaUDv7q4yH7msOdr8PWH4iJszyxGBYeYaidtlKMTVqGT1mP70yOoXtdc+Bqt\n0Umfot97EzyboG6bBtln0SlfwY9HwbMJtseft4fgb/fbl4Lx6jzUzXdhu+EPl63Dsc83OzD+8SL4\n+KNuvgu9Kh4CgrE98QKqhY+59yguhIPfQY/+pgatJSxqmYSF80k7mWNlO5XHzYUTP6BG3YxOWGX/\nbbp9Z8fzuqQE4/89DBlnUMNvRE24y9Rvw3p/Csar8+0PykqxPTy30gFfx75GOfqDlejP16KmPOQ4\nM6hKO2mtK733QZ9Ks5+J/PiDfUOHLqg+Eaj+Q1CBLS++T3FRhS4lU7UcO4SxZB7k5ULL1vag8HPe\nZKeuEBZyNZQQDYjelwL799gHi4eMsl/+uem/FcNi/YeQfso+BmHyhz2A6toH26y/YsQ/j7rxtqrt\na3NDTZyGvuHWSgeiL/keJm6SU63bYvvLi3DgW2h7JcovsPJ9qhgUAKp9Z2xzFqC/WIe64TanBoWr\nkLAQooHQhoHx/goIbImKHIPy8EBFXIf+8gv0xHtRLXzQZ9PRn32A6j+0Sj/sf6Gu7oUt7l8o9+r9\n6KhuUFTpGO4eUI3vrcrHaRmKuusBpx/HVVh3h4cQwhRtGOjTaRhfbcL49H30N8no7LP8vgdZf50E\nacdQt9zjuAJKDR8DZaXorV/YX/PeW6Cw9+lXU3WDQtRv8q8uhAvSpaXolK/QX22CowegsODX5375\nooUv+AfaB7I1cPYMXNERNWCY47WqTTvo3B29+VP0FR3tV+CMvxMVWLW7kYWQsBCijumsDMg/Z780\ntagAysvAw9P+x80NvXcXemuiffA0qBWq/1D7nEDhV9nD4acf0T8ehdQf0Pl5jvdVrUJR426/4Ooa\n23VjMF57EWPZAnsX1fW31PW3LBoACQsh6ojOysB4Zzns2X75F9ps0OsabJE3wtW9Lry0slNX+0Ry\nZvUeZL9HITcL2x8fQnk2qXrxotGTsBDCyXRZGXrjx+iP3gFtoG6ajAprb59FtJmXfS6g0lIoPW//\nO7Qdyr/yq3jMUu7uqFunwPFD0Cei8h2EuAgJCyGcSGeewfj7C/Ybw3oOwDZ5+gUT49UF2+ARMHhE\nnR9XNBwSFkI4if7hgP2u57IybA/MgT4RtbqgjhB1ScJCCCco/jIR45V54B+IbdZcVOu2VpckRI3U\nSVjEx8eze/dufH19iY2NBSAuLs4xPUdhYSFeXl4sXLiQ9PR0Zs+e7bgFvVOnTkyfPr0uyhSiWozk\n/6ETVoG7h30Mwt2D3IN7oWNXbNFPm54vSAhXVidhMXz4cG644QaWLl3q2DZ79mzH1ytXrsTLy8vx\nOCQkhIULF9ZFaULUiD5+GP3mImgVav9TVAhFhTQbcxsl4yZXOj24EPVFnYRF165dSU9Pv+hzWmu+\n+uor5s6dWxelCFFrdF6uffDax8++DsJvprLwkQkXRQNj+ZjF999/j6+vL61bt3ZsS09P58knn6RZ\ns2bccccdXH311Zd5ByFqn047jj52CHXNtagmTS98vrwc4x8L4VwutjkL6mTOIyGsZHlYbN26lSFD\nhjge+/v7Ex8fT4sWLTh69CgLFy4kNja2QjfVLxITE0lMTAQgJiaGoKCgatfh7u5eo/0bi8bQTmWn\n0siKm4s+lwMfrqTZmNvwGvMHbL7+9sn6zuVQuG4VhQe+xWfW/9Gs36AL3qMxtFNtkHYyxxXaydKw\nKC8vZ8eOHcTExDi2eXh44PFzP294eDitWrXi1KlTdOjQ4YL9o6KiiIr6dRWwmpz2yzoN5jT0dtIF\nefblN8vLsc14EuPrJArWvElBwir7XdDZmVBWBtgn6SvoOZCCi7RHQ2+n2iLtZE6jX89i7969hIaG\nEhj4692q586dw9vbG5vNxpkzZzh16hStWtX9TUyi8dGlpRjxL0DmGWyz56E6d8Ot/1D0qVT7kp9F\nhdA3AvyDUS1DoFsfq0sWos7USVgsWrSI/fv3k5eXx8yZM5k0aRIjRoy4oAsKYP/+/axZswY3Nzds\nNhv3338/3t6Vr+IlRE1ow0CvfBUOfYe67zFU526O51TrMNTd0RZWJ4T1ZFnVn8npsDkNrZ10brZ9\ncaD/fQ5n01E334lt3B01ft+G1k7OIu1kTqPvhhLCKlpr9Kq/2xcFKi+HLj2xTZwGfQdbXZoQLknC\nQjROPx5Fb/kMNWg4auwkVIhMxyHE5UhYiEZJ79oKNhvq9vtQ3jIdhxCVkTW4RaOjtUbv2gZdekpQ\nCGGShIVofH46AeknUTI+IYRpEhai0dG7toGyofoMtLoUIeoNCQvR6OhdW6FzN5SPv9WlCFFvSFiI\nRkWf/BFOpaL6SReUEFUhYSEaFb17GyiF6nPh5H9CiEuTsBCNit71FXTogvILrPzFQggHCQvRYOmS\nEvTB79AF+fbHZ05C2jHpghKiGuSmPNEg6cICjEXPwLFDoGzQLhyaNgNA9ZGwEKKqJCxEg6ML8zEW\n/Q1+PIqaPB3y89DffwNH9kPn7qjAYKtLFKLekbAQDYouzMeIewZSj2Gb+RSq98/3UoyfjC4uAjc3\nawsUop6SsBANhi4t/TUoHpiD6nVNhefVz91QQoiqkwFu0XB8vweOH0ZNnXVBUAghakbCQjQYeu9O\naNIU1W+o1aUI0eBIWIgGQWuN/nYnXN0L5eFhdTlCNDgSFqJhOPkjZGWgevS3uhIhGiQJC9Eg6L07\nAVDd+1lciRANU51cDRUfH8/u3bvx9fUlNjYWgDVr1rBhwwZ8fOyLz0yePJm+ffsCsHbtWjZu3IjN\nZmPatGn07t27LsoU9ZjeuxPatkcFBFldihANUp2ExfDhw7nhhhtYunRphe1jx45l/PjxFbalpaWx\nbds2Xn75ZbKzs5k3bx6vvPIKNpucBImL0wX5cOR71A1/sLoUIRqsOvkJ3LVrV7y9vU29Njk5mcGD\nB+Ph4UHLli0JCQnhyJEjTq5Q1Gd6/x4wDFQP6YISwlksvSlv/fr1bNmyhfDwcKZMmYK3tzdZWVl0\n6tTJ8ZqAgACysrIsrFK4vL3J0LwFhF9ldSVCNFiWhcXo0aO57bbbAFi9ejUrV64kOjq6Su+RmJhI\nYmIiADExMQQFVb+/2t3dvUb7Nxau1k7aMMjYl0LTfhH4tmxldTkOrtZOrkrayRxXaCfLwsLPz8/x\n9ciRI1mwYAFgP5M4e/as47msrCwCAgIu+h5RUVFERUU5HmdmZla7nqCgoBrt31i4WjvpowfR53Io\n6dTdpepytXZyVdJO5jiznUJDQ029zrJR4+zsbMfXO3bsICwsDID+/fuzbds2SktLSU9P59SpU3Ts\n2NGqMoWL03t3gbKhuve1uhQhGjRTZxb5+fl89NFHnDhxguLi4grPPfvss5Xuv2jRIvbv309eXh4z\nZ85k0qRJ7Nu3j+PHj6OUIjg4mOnTpwMQFhZGREQEjz76KDabjXvvvVeuhBIO+ttk9Feb0Hm5kJcL\nmachvDPK28fq0oRo0JTWWlf2ovnz51NWVkZERASenp4Vnhs+fLizaquykydPVntfOR02x6p20uXl\n6LUr0evXgl8ABIVACx+Utw9q8AhUx651XtPlyOfJHGknc1yhG8rUmcWhQ4d4/fXX8ZA5d4QFdE4W\nxvKFcGgfaviNqEn3yfxPQtQxU2HRrl07zp49S0hIiLPrEaICffonjIV/geIi1L2PYhs03OqShGiU\nTIVF9+7def755xk+fHiFq5gARowY4ZTChNBGOcaKV6CsDNvTL6HaXGF1SUI0WqbC4sCBAwQGBrJ3\n794LnpOwEM6iN30CPxxA/Wm2BIUQFqs0LLTWzJw5k6CgINxk/WJRR3TGafSHK6F7P5R0PQlhuUqv\nSVVK8fjjj6OUqot6hEBrjbHyVbDZsN0TLZ89IVyAqRsYrrzySk6dOuXsWoQAQP/vczjwLWriNFRA\nsNXlCCEwOWbRrVs3nn/+eSIjIy+Yn0TGLERt0kWF6PdXwFU9UMOut7ocIcTPTIXFwYMHadmyJd9/\n//0Fz0lYiNqkt22EogJsf5gq3U9CuBBTYfHMM884uw4h0IaB3vRfaN8Z1b5T5TsIIeqMqTELwzAu\n+UeIWrN/D5z5CTVinNWVCCF+x9SZxeTJky/53OrVq2utGNG4GRv/Az5+qP5DrC5FCPE7psLi1Vdf\nrfA4OzubhIQE+vfv75SiROOj00/Bd7tQY29Hucu8T0K4GlPdUMHBwRX+dO7cmYceeoh169Y5uz7R\nSOjNn4DNhoqUK6CEcEXVXiiisLCQc+fO1WYtopHSJcXorYmovoNRfoFWlyOEuAhT3VBLliypcBlj\nSUkJ33//PcOGDXNaYaLx0Ns3Q2EBasRYq0sRQlyCqbD4/dTkTZo0YdSoUfTs2dMpRYnGQxcWoP+7\nBq7oCB2utrocIcQlmAqL3r1706nThde9HzlyRNbHFjWi338LcrKwPfAXuQlPCBdmasziueeeu+j2\n+fPn12oxonHR+1LQ//scdf0tchOeEC7usmcWv9x0p7V2/PnFmTNnZMpyUW26qBBj5RIIaYsaf+n7\neIQQruGyYfHbm/HuuOOOCs/ZbDZuueUWUweJj49n9+7d+Pr6EhsbC8Dbb7/Nrl27cHd3p1WrVkRH\nR9O8eXPS09OZPXu2YxHxTp06MX369Cp9U8L16fdXQHYWtqdiUB6eVpcjhKjEZcPi1VdfRWvN3/72\nN5599lm01iilUErh4+ODp6e5/+TDhw/nhhtuYOnSpY5tPXv25M4778TNzY1Vq1axdu1a7r77bsA+\noL5w4cIafFvClelD+9BbPkONvgXVoYvV5QghTLhsWAQH29cSiI+PB+zdUrm5ufj7+1fpIF27diU9\nPb3Ctl69ejm+7ty5M9u3b6/Se4r6S2/fBM28UDffaXUpQgiTTF0NVVBQwOuvv8727dtxd3fn7bff\nZufOnRw5cuSC7qnq2LhxI4MHD3Y8Tk9P58knn6RZs2bccccdXH21XFLZUGit0d/uRHXtg/JsYnU5\nQgiTTIXF8uXLad68OfHx8Tz66KOA/Wxg5cqVNQ6LDz/8EDc3N8cNfv7+/sTHx9OiRQuOHj3KwoUL\niY2NxcvL64J9ExMTSUxMBCAmJuaChZmqwt3dvUb7NxY1bafSHw6SlZtFi8HX0awBt7d8nsyRdjLH\nFdrJVFjs3buX1157DXf3X1/u4+NDbm5ujQ6+efNmdu3axdy5cx3X2Ht4eODhYZ9ILjw8nFatWnHq\n1Ck6dOhwwf5RUVFERUU5HmdmZla7lqCgoBrt31jUtJ2M/30BSpF/ZWcKGnB7y+fJHGknc5zZTr9c\nTFQZU/dZeHl5kZeXV2FbZmZmlccufmvPnj2sW7eOp556iiZNfu2OOHfunOOS3TNnznDq1ClatWpV\n7eMI16K/3QlXdkL5+FldihCiCkydWYwcOZLY2FjuuOMOtNYcOnSId955h1GjRpk6yKJFi9i/fz95\neXnMnDmTSZMmsXbtWsrKypg3bx7w6yWy+/fvZ82aNbi5uWGz2bj//vvx9vau/ncoXIY+lwPHD8t9\nFULUQ6bC4uabb8bT05M33niD8vJy/v73vxMVFcWYMWNMHeSRRx65YNul1u4eNGgQgwYNMvW+on7R\n3+0CrVE9BlhdihCiiioNC8Mw2Lx5M6NGjTIdDkLo4iLw8ET99i7/b3eCXwC0C7euMCFEtVQ6ZmGz\n2Vi5cqVj0FmIyuiSEoz/92eM5x9DFxbYt5WVofenoHr0lwkDhaiHTA1w9+vXj507dzq7FtFA6PUf\nQsZp+OkExqvz0CUlcGQ/FBWieshSvELUR6bGLEpLS3n55Zfp3LkzgYGBFX4zfOihh5xWnKh/9NkM\n9PoPUP2HQt8I9PKXMF5bgGrZGtzd4epelb+JEMLlmAqLsLAwwsLCnF2LaAD0+28BoG6bhgoMxigs\nQK+KRwN07YNq2szS+oQQ1WMqLCZOnOjsOkQDoA9+h975JeqmyahA+7xitsgbMAry0GvfRvUeaHGF\nQojqMhUWQlRGG+UY7y6HgGDU9bdWeE7deBuqe19o296i6oQQNWVqgFuIyuikzyDtGLaJ01BNKk4Q\nqJRCteuAssnHTYj6Sv73ihrT6Sftixl17Q39hlhdjhDCCSQsRI3o8nKMN+LA3R3b1D/LPRRCNFCm\nxiy01mzYsIGtW7eSl5fHSy+9xP79+8nJyamwDoVofPRnH8DRg6j7H0f5B1pdjhDCSUydWaxevZpN\nmzYRFRXlmCY3MDCQdevWObU44dr0iSPoj99BDRiG7ZprrS5HCOFEpsIiKSmJp556iiFDhji6GVq2\nbHnBUqmi8dDFhRivvwwt/FB3zbS6HCGEk5kKC8MwaNq0aYVtxcXFF2wTjYM+lYbx/BNw5iS2aQ+j\nmrewuiQhhJOZCos+ffqwcuVKSktLAfsYxurVq+nXr59TixOup/irTRjzH4O8XGyzn0V17WN1SUKI\nOmAqLKZMmUJ2djZTp06lsLCQKVOmkJGRwV133eXs+oSL0FpjfPBPcl/8PwgNw/bXOJTM8yREo2Hq\naigvLy+eeOIJcnJyyMzMJCgoCD8/WRazsdBao/+9DL35U5qNvpmSCVNQMmW9EI2KqbD4ZU1sHx8f\nfHx8HNtsckdug/fboFDX30qLGY9x/uxZq8sSQtQxU2ExefLF10x2c3PD39+fgQMHMmnSJBnwbmB+\nHxTqD3+Um+6EaKRMhcW0adNITk5mwoQJBAYGkpmZyUcffUTfvn0JDQ3lvffeY8WKFcycKZdQNiR6\n7UoJCiEEYDIs/vvf/7JgwQK8vLwACA0NpUOHDsyZM4clS5bQrl07nnrqqcu+R3x8PLt378bX15fY\n2FgA8vPziYuLIyMjg+DgYGbPno23tzdaa9566y1SUlJo0qQJ0dHRhIfLus11SZ/4Af3ZWtTQURIU\nQghzV0MVFhZSUlJSYVtJSQmFhYUA+Pn5cf78+cu+x/Dhw3n66acrbEtISKBHjx4sXryYHj16kJCQ\nAEBKSgqnT59m8eLFTJ8+nddff930NyRqThvlGKvioYUPauI0CQohhLmwiIyM5LnnniMxMZE9e/aw\nYcMG5s+fT2RkJADffPMNoaGhl32Prl274u3tXWFbcnKy4z0iIyNJTk4GYOfOnVx77bUopejcuTMF\nBQVkZ2dX+ZsT1aO3rIfjh1ET/4Ty8q58ByFEg2eqG+ruu+8mJCSEbdu2kZ2djZ+fH9dffz1RUVEA\ndOvWjWeffbbKB8/NzcXf3x+wn53k5uYCkJWVRVBQkON1gYGBZGVlOV4rnEefy0Z/+DZ06YkaGGl1\nOUIIF2EqLGw2G6NHj2b06NEXfd7T07PGhSilqtzdkZiYSGJiIgAxMTEVAqaq3N3da7R/Q5G7ainF\npSUEPjgH9+DgC56XdjJH2skcaSdzXKGdTC+rmpOTw5EjR8jLy0Nr7dg+YsSIah/c19eX7Oxs/P39\nyc7OdtzDERAQ4JjdFuDs2bMEBARcsH9UVJTj7AaosE9VBQUF1Wj/hkAf3o+RtB41ZhI5Tb3hIu0h\n7WSOtJM50k7mOLOdKhtC+IWpsNixYwdLliyhdevWpKamEhYWRmpqKl26dKlRWPTv35+kpCQmTJhA\nUlISAwYMcGz/7LPPGDJkCIcPH8bLy0u6oOqA3vwpeHmjxky0uhQhhIsxFRarV68mOjqaiIgIpk2b\nxosvvsimTZtITU01faBFixaxf/9+8vLymDlzJpMmTWLChAnExcWxceNGx6WzYJ+4cPfu3Tz88MN4\nenoSHR1dve9OmKaLC9F7vkINGnHBGtpCCGEqLDIzM4mIiKiwLTIykunTpzNlyhRTB3rkkUcuun3u\n3LkXbFNKcd9995l6X1E12igHQNncKm7fvR3On0dFDLegKiGEqzN16ayPjw85OTkABAcHc+jQIc6c\nOeOYM0rUH8aiv2G8tvCC7Xr7JghqBR2utqAqIYSrM3VmMXLkSA4cOMCgQYMYO3Yszz77LEopxo0b\n5+z6RC3SZaVwaB+Ul6H3pzjWotA5Z+HAt6ixk+QGPCHERZkKi/HjxztmmI2MjKRbt24UFxfTtm1b\npxYnatmpNCgvA2XDWPMmtr8uQrm5ob/eAlqjBl1ndYVCCBdVaTeUYRjcc889jlXywH4ZlwRF/aN/\nPAqAmnAkt/EjAAAWbElEQVQX/HQC/eUX9u3bN0H7zqhW5i6hE0I0PpWGhc1mIzQ0lLy8vLqoRzhT\n6lFo0hR1w63QuRt63b/Qh/dD2nHUoOFWVyeEcGGmuqGGDh3KggULuPHGGwkMDKzQr929e3enFSdq\nl049Cm2vRNncsE26F2P+Yxjxz4ObG2rAtVaXJ4RwYabC4vPPPwfgvffeq7BdKcWrr75a+1WJWqcN\nA1KPoQYOB0Bd0REVMQK9bQP0ugbVwsfaAoUQLs1UWCxdutTZdQhnO5sORYUQ1t6xSd1yN/roQWwj\nxlpYmBCiPjA9N1RZWRmHDx8mOzubwYMHU1xcDCBLqdYXvwxut/t1ESnlF4jbvHirKhJC1COmwuLH\nH39kwYIFeHh4cPbsWQYPHsz+/ftJSkpyTNEhXJv+8SjYbNDmCqtLEULUQ6bu4F6+fDm33347ixYt\nwt3dni9du3blwIEDTi1O1B6dehRah6E8aj6dvBCi8TEVFmlpaQwbNqzCtqZNm1a6lKpwIalHUWGy\njrkQonpMhUVwcDBHjx6tsO3IkSOEhIQ4pShRu/S5HMjJqjC4LYQQVWFqzOL2228nJiaGUaNGUVZW\nxtq1a/niiy+YMWOGs+sTtSH1GFBxcFsIIarC1JlFv379ePrppzl37hxdu3YlIyODxx9/nF69ejm7\nPlELfpnmQ84shBDVZerM4ty5c7Rv317WmKivUo9CYEtU8xZWVyKEqKdMhUV0dDTdunVj6NChDBgw\nQO6tqGd06lGQwW0hRA2Y6oaKj4+nb9++fP7550yfPp1Fixaxc+dOysvLnV2fqCFdXARnTqKkC0oI\nUQOmzix8fHy4/vrruf7668nIyGDr1q28++67/P3vf+eNN95wdo2iJtKO29eqkMFtIUQNmJ7u4xe5\nubnk5OSQl5dH8+bNnVGTqCFdVAgZpyDjtH1tbZBuKCFEjZgKi7S0NL788ku2bt3K+fPniYiI4Ikn\nnqBjx441OvjJkyeJi4tzPE5PT2fSpEkUFBSwYcMGfHzsM6FOnjyZvn371uhYDZ3WGn44gPHFOkjZ\nDvo366Nf0RECgqwrTghR75kKi7/+9a8MHDiQ6dOn061bN8cSqzUVGhrKwoULAfuKfDNmzOCaa65h\n06ZNjB07lvHjx9fKcRo6vXcXxsfvwLFD4OWNGn0zqv1VEBwCQa1QXnIGKISoGVNhsXz5csecUM6y\nd+9eQkJCCA4OdupxGhqdcRrj1Xn2S2PvnIkaPALVRK5WE0LULlMJ4O7uTk5ODkeOHCEvL8/e5fGz\nESNG1EohW7duZciQIY7H69evZ8uWLYSHhzNlyhS8vb1r5TgNjf7sQ7DZsD35Asov0OpyhBANlNK/\n/cl/CTt27GDJkiW0bt2a1NRUwsLCSE1NpUuXLjzzzDM1LqKsrIwZM2YQGxuLn58fOTk5jvGK1atX\nk52dTXR09AX7JSYmkpiYCEBMTEyNJjZ0d3enrKys2vtbofxsBpkzb6PZyHH4zHyiTo5ZH9vJCtJO\n5kg7mePMdvL0NDcTtakzi9WrVxMdHU1ERATTpk3jxRdfZNOmTaSmptaoyF+kpKTQvn17/Pz8ABx/\nA4wcOZIFCxZcdL+oqCiioqIcjzMzM6tdQ1BQUI32t4Kx+g0wyikZPqbOaq+P7WQFaSdzpJ3McWY7\nhYaGmnqdqZHqzMxMIiIiKmyLjIxky5YtVa/sIn7fBZWdne34eseOHYSFhdXKcRoSfS4HveUz1KDr\nUEGtrC5HCNHAmb4pLycnBz8/P4KDgzl06BAtWrTAMIzKd65EcXEx3377LdOnT3dsW7VqFcePH0cp\nRXBwcIXnhJ1OXAelpagb/2B1KUKIRsBUWIwcOZIDBw4waNAgxo4dy7PPPotSinHjxtW4gKZNm/Lm\nm29W2DZr1qwav29Dpgvy0Zs+QfUfigppa3U5QohGwFRYTJgwwfF1ZGQk3bp1o7i4mLZt5QeVFfQX\nCVBchBpzm9WlCCEaiWrdPBEUJHcDW0V//w36k/dR10Si2srkgEKIulE7t2KLOqGzMjD+sRBC2qDu\necDqcoQQjYiERT2hS0sxli2AslJsD/wF1dTL6pKEEI2IhEU9od/9Bxw7hG3aI6jWMlYkhKhbEhb1\ngN79FXrLetSNf0D1jah8ByGEqGUSFi5Oa43xn3ft4xQT7ra6HCFEIyVh4er2pUDqMdT1t6JsblZX\nI4RopCQsXJzx2QfgF4gaNNzqUoQQjZiEhQvTPxyAg3tRoyeg3D2sLkcI0YhJWLgw47MPoHkL1LDR\nVpcihGjkJCxclD75I+z5GjViLKppM6vLEUI0cs5dK1WYprWG8+ehvAzKy9GfvAeeTVDX1XyyRiGE\nqCkJCxdhvPI3+5VPv6FG3oRq4WNNQUII8RsSFi5Apx2HfSmoAcPgyk7g5g6enqh+QyrdVwgh6oKE\nhQvQW9aDuzvqzhkobzmTEEK4HhngtpguKUFv34zqO0SCQgjhsiQsLKZ3/g+KClCR11tdihBCXJKE\nhcX0lvXQOgw6dbO6FCGEuCQJCwvptGNw9CDq2tEopawuRwghLsklBrgffPBBmjZtis1mw83NjZiY\nGPLz84mLiyMjI4Pg4GBmz56Nt7e31aXWKp20Htw9UBEjrC5FCCEuyyXCAuCZZ57Bx+fXAd6EhAR6\n9OjBhAkTSEhIICEhgbvvbjhTdOuSYvTXm1H9h6Cat7C6HCGEuCyX7YZKTk4mMjISgMjISJKTky2u\nqHbpr5OgqBB17Q1WlyKEEJVymTOL+fPnAzBq1CiioqLIzc3F398fAD8/P3Jzc60sr1bp8yXo/6yG\nKzpCx6utLkcIISrlEmExb948AgICyM3N5bnnniM0NLTC80qpiw4AJyYmkpiYCEBMTAxBQUHVrsHd\n3b1G+1dFwQcryc/OxP/Rv+EZHFwnx6wtddlO9Zm0kznSTua4Qju5RFgEBAQA4Ovry4ABAzhy5Ai+\nvr5kZ2fj7+9PdnZ2hfGMX0RFRREVFeV4nJmZWe0agoKCarS/WfpcDsb7/4Re13AupB3UwTFrU121\nU30n7WSOtJM5zmyn3/9yfimWj1kUFxdTVFTk+Prbb7+lXbt29O/fn6SkJACSkpIYMGCAlWXWGv3x\nO3C+BNttU60uRQghTLP8zCI3N5eXXnoJgPLycoYOHUrv3r3p0KEDcXFxbNy40XHpbH2nT6Wit6xH\nRd6ACmlrdTlCCGGa5WHRqlUrFi5ceMH2Fi1aMHfuXAsqch7j/RXQpCnqpslWlyKEEFVieVg0Bjr1\nGMbH78C3yahb/4hq4Wt1SUIIUSUSFk6kf/oR46N/we6voJkX6qY7UKNutrosIYSoMgkLJ9GFBRgL\nngK0PSRGjkc1b1jTlQghGg8JCyfRWxOhqADb/8WiruxkdTlCCFEjll862xBpoxy94WPo1BUJCiFE\nQyBh4Qx7dsDZdGwjx1tdiRBC1AoJCycwNnwEgS2h90CrSxFCiFohYVHL9I8/wKF9qBFjUW5uVpcj\nhBC1QsKilunEj+033g0dZXUpQghRa+RqqBrQJSXob3eggkIgNAyKi9DJW1DDrkd5yWWyQoiGQ8Ki\nBvTq5ej/fY7+ZUPzFlBWhhoxzsqyhBCi1klYVJPel4L+3+eo68aguvRCnzwBaSegdRgqpI3V5Qkh\nRK2SsKgGXViAsXKJPRgm/gnl4YnqG2F1WUII4TQywF0N+v23IDsL29SHUR6eVpcjhBBOJ2FRRY7u\np9ETUOFXWV2OEELUCQmLKtCHvsNYsdje/XTznVaXI4QQdUbGLH5H79qK8dmHqF4DUAOuRbUKRedk\noT9Ygd6+GQKCsd33qHQ/CSEaFQmL39DnSzDeXQ4lJeh1/0av+ze0C4f0U1BWiho7CXXjRFSTJlaX\nKoQQdUrC4jf0pk8gJwvb489DcAh655fo3dugSy9st01FtQq1ukQhhLCEhMXPjIJ89KfvQ7c+qKu6\nA6BGT4DREyyuTAghrGdpWGRmZrJ06VJycnJQShEVFcWYMWNYs2YNGzZswMfHB4DJkyfTt29fp9ZS\nuO4dKMjDdssUpx5HCCHqI0vDws3NjXvuuYfw8HCKioqYM2cOPXv2BGDs2LGMH18360HoczkUfvwu\nqt8Q1BUd6uSYQghRn1gaFv7+/vj7+wPQrFkz2rRpQ1ZWVp3XoT95D33+PLYJd9X5sYUQoj5wmfss\n0tPTOXbsGB07dgRg/fr1PP7448THx5Ofn++04+qzGeikT2k6YgwqpK3TjiOEEPWZ0lrryl/mXMXF\nxTzzzDPceuutDBw4kJycHMd4xerVq8nOziY6OvqC/RITE0lMTAQgJiaG8+fPV/nYZT+dIO+NRfjP\n+v/AP7Bm30gj4O7uTllZmdVluDxpJ3OkncxxZjt5epq7Z8zysCgrK2PBggX06tWLceMunNo7PT2d\nBQsWEBsbW+l7nTx5stp1BAUFkZmZWe39GwtpJ3OkncyRdjLHme0UGmrulgBLu6G01ixbtow2bdpU\nCIrs7GzH1zt27CAsLMyK8oQQQvzM0gHugwcPsmXLFtq1a8cTTzwB2C+T3bp1K8ePH0cpRXBwMNOn\nT7eyTCGEaPQsDYsuXbqwZs2aC7Y7+54KIYQQVeMyV0MJIYRwXRIWQgghKiVhIYQQolISFkIIISol\nYSGEEKJSlt+UJ4QQwvXJmcXP5syZY3UJ9YK0kznSTuZIO5njCu0kYSGEEKJSEhZCCCEqJWHxs6io\nKKtLqBekncyRdjJH2skcV2gnGeAWQghRKTmzEEIIUSlLJxJ0BXv27OGtt97CMAxGjhzJhAkTrC7J\nJWRmZrJ06VJycnJQShEVFcWYMWPIz88nLi6OjIwMgoODmT17Nt7e3laXaznDMJgzZw4BAQHMmTOH\n9PR0Fi1aRF5eHuHh4cyaNQt390b/342CggKWLVtGamoqSikeeOABQkND5TP1O//5z3/YuHEjSinC\nwsKIjo4mJyfH0s9Uoz6zMAyDN954g6effpq4uDi2bt1KWlqa1WW5BDc3N+655x7i4uKYP38+69ev\nJy0tjYSEBHr06MHixYvp0aMHCQkJVpfqEj755BPatGnjeLxq1SrGjh3LkiVLaN68ORs3brSwOtfx\n1ltv0bt3bxYtWsTChQtp06aNfKZ+Jysri08//ZSYmBhiY2MxDINt27ZZ/plq1GFx5MgRQkJCaNWq\nFe7u7gwePJjk5GSry3IJ/v7+hIeHA9CsWTPatGlDVlYWycnJREZGAhAZGSntBZw9e5bdu3czcuRI\nwL6o1759+xg0aBAAw4cPl3YCCgsL+f777xkxYgRgXyq0efPm8pm6CMMwOH/+POXl5Zw/fx4/Pz/L\nP1ON+rw4KyuLwMBf190ODAzk8OHDFlbkmtLT0zl27BgdO3YkNzcXf39/APz8/MjNzbW4OuutWLGC\nu+++m6KiIgDy8vLw8vLCzc0NgICAALKysqws0SWkp6fj4+NDfHw8J06cIDw8nKlTp8pn6ncCAgK4\n6aabeOCBB/D09KRXr16Eh4db/plq1GcWonLFxcXExsYydepUvLy8KjynlEIpZVFlrmHXrl34+vo6\nzsLEpZWXl3Ps2DFGjx7Niy++SJMmTS7ocpLPFOTn55OcnMzSpUt57bXXKC4uZs+ePVaX1bjPLAIC\nAjh79qzj8dmzZwkICLCwItdSVlZGbGwsw4YNY+DAgQD4+vqSnZ2Nv78/2dnZ+Pj4WFyltQ4ePMjO\nnTtJSUnh/PnzFBUVsWLFCgoLCykvL8fNzY2srCz5XGE/cw8MDKRTp04ADBo0iISEBPlM/c7evXtp\n2bKlox0GDhzIwYMHLf9MNeoziw4dOnDq1CnS09MpKytj27Zt9O/f3+qyXILWmmXLltGmTRvGjRvn\n2N6/f3+SkpIASEpKYsCAAVaV6BLuvPNOli1bxtKlS3nkkUfo3r07Dz/8MN26dWP79u0AbN68WT5X\n2LuYAgMDOXnyJGD/odi2bVv5TP1OUFAQhw8fpqSkBK21o52s/kw1+pvydu/ezT//+U8Mw+C6667j\n1ltvtbokl3DgwAHmzp1Lu3btHN0CkydPplOnTsTFxZGZmSmXOf7Ovn37+Pjjj5kzZw5nzpxh0aJF\n5Ofn0759e2bNmoWHh4fVJVru+PHjLFu2jLKyMlq2bEl0dDRaa/lM/c6aNWvYtm0bbm5uXHnllcyc\nOZOsrCxLP1ONPiyEEEJUrlF3QwkhhDBHwkIIIUSlJCyEEEJUSsJCCCFEpSQshBBCVErCQjRKjz76\nKPv27bPk2JmZmdxzzz0YhmHJ8YWoDrl0VjRqa9as4fTp0zz88MNOO8aDDz7IjBkz6Nmzp9OOIYSz\nyZmFEDVQXl5udQlC1Ak5sxCN0oMPPsif/vQnXnrpJcA+XXZISAgLFy6ksLCQf/7zn6SkpKCU4rrr\nrmPSpEnYbDY2b97Mhg0b6NChA1u2bGH06NEMHz6c1157jRMnTqCUolevXtx77700b96cJUuW8OWX\nX+Lu7o7NZuO2224jIiKChx56iHfeeccxz8/y5cs5cOAA3t7e3HzzzY41l9esWUNaWhqenp7s2LGD\noKAgHnzwQTp06ABAQkICn376KUVFRfj7+3PffffRo0cPy9pVNFyNeiJB0bh5eHhwyy23XNANtXTp\nUnx9fVm8eDElJSXExMQQGBjIqFGjADh8+DCDBw9m+fLllJeXk5WVxS233MLVV19NUVERsbGxvPfe\ne0ydOpVZs2Zx4MCBCt1Q6enpFep45ZVXCAsL47XXXuPkyZPMmzePkJAQunfvDthntn3ssceIjo7m\n3Xff5c0332T+/PmcPHmS9evX88ILLxAQEEB6erqMgwinkW4oIX4jJyeHlJQUpk6dStOmTfH19WXs\n2LFs27bN8Rp/f39uvPFG3Nzc8PT0JCQkhJ49e+Lh4YGPjw9jx45l//79po6XmZnJgQMHuOuuu/D0\n9OTKK69k5MiRjon1ALp06ULfvn2x2Wxce+21HD9+HACbzUZpaSlpaWmOuZZCQkJqtT2E+IWcWQjx\nG5mZmZSXlzN9+nTHNq11hUWygoKCKuyTk5PDihUr+P777ykuLsYwDNMT4WVnZ+Pt7U2zZs0qvP8P\nP/zgeOzr6+v42tPTk9LSUsrLywkJCWHq1Km89957pKWl0atXL6ZMmSLToQunkLAQjdrvF9oJDAzE\n3d2dN954w7EqWWXeeecdAGJjY/H29mbHjh28+eabpvb19/cnPz+foqIiR2BkZmaa/oE/dOhQhg4d\nSmFhIf/4xz/417/+xaxZs0ztK0RVSDeUaNR8fX3JyMhw9PX7+/vTq1cvVq5cSWFhIYZhcPr06ct2\nKxUVFdG0aVO8vLzIysri448/rvC8n5/fBeMUvwgKCuKqq67i3//+N+fPn+fEiRNs2rSJYcOGVVr7\nyZMn+e677ygtLcXT0xNPT89Gv8qccB4JC9GoRUREAHDvvffy1FNPAfDQQw9RVlbGo48+yrRp03j5\n5ZfJzs6+5HtMnDiRY8eO8cc//pEXXniBa665psLzEyZM4IMPPmDq1Kl89NFHF+z/5z//mYyMDGbM\nmMFLL73ExIkTTd2TUVpayr/+9S/uvfde7r//fs6dO8edd95ZlW9fCNPk0lkhhBCVkjMLIYQQlZKw\nEEIIUSkJCyGEEJWSsBBCCFEpCQshhBCVkrAQQghRKQkLIYQQlZKwEEIIUSkJCyGEEJX6/wG3Vkil\nyo892QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAENCAYAAAD+CUlOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVXawPHf2lxURO4oQViJmnfNNMU0TNEu+pY5ZdnF\ndCx11C46OtnMvKmjFWZ4TasxG7OrNjNavTXVoIaT1mipaSIq3k0SgQOigFz2ev84eYpQOQKHfc7h\n+X4+feTss/fZzwPmw1prr7WU1lojhBBCXIJhdQBCCCHcnxQLIYQQVZJiIYQQokpSLIQQQlRJioUQ\nQogqSbEQQghRJSkWQgghqiTFQgghRJWkWAghhKiSFAshhBBV8q2Lm2RnZ7NkyRLy8vJQSpGYmMjt\nt9/OmTNnmD9/PqdOnSIyMpJJkyYRGBgIwJo1a1i/fj2GYTBq1Ci6dOlS5X1OnDhR7RgjIiLIzs6u\n9vXuSvLyPN6am+TlnqKjo506r06KhY+PDw899BAtWrSgqKiIadOm0alTJ7744gs6duzIkCFDWLt2\nLWvXruXBBx/k+PHjbN68mXnz5mGz2Zg1axYLFy7EMKQhJIQQVqiTf31DQ0Np0aIFAI0aNSImJobc\n3Fy2bt1KQkICAAkJCWzduhWArVu30qtXL/z8/GjatClRUVFkZGTURahCCCEuoM5/Vc/KyuLQoUO0\nbNmS/Px8QkNDAQgJCSE/Px+A3NxcwsPDHdeEhYWRm5tb16EKIYT4SZ10Q51XXFxMcnIyI0eOJCAg\noMJ7SimUUpf1eSkpKaSkpACQlJREREREtWPz9fWt0fXuSvLyPN6am+Tl2eqsWJSVlZGcnEyfPn3o\n0aMHAMHBwdhsNkJDQ7HZbAQFBQH2lkROTo7j2tzcXMLCwip9ZmJiIomJiY7XNRlk8vRBqouRvDyP\nt+YmebknZwe466QbSmvNK6+8QkxMDIMHD3Yc79atG6mpqQCkpqbSvXt3x/HNmzdTWlpKVlYWmZmZ\ntGzZsi5CFUIIcQF10rLYu3cvGzdupHnz5kydOhWA4cOHM2TIEObPn8/69esdj84CxMbGEh8fz+TJ\nkzEMg9GjR8uTUEIIYSHlTduqyjyLyiQvz+OtuUletU9rjf7y36iQMFTHbtX6DLeaZyGEEKIyfWgf\n5uvzUXFtUDcPQl3lfHe7Li5Cv7UU/d9U6N6n2sXCWVIshBDCAvpAOubCGeDfAP3NJvSmdXBNa3vR\n6NYb5ed38WuPH8J89QU4mYm68wHU7Xe7PF4pFkIIUcd0xh57oWgSjDHlWWgYgP5qPXrDJ+jX56NX\nL0d17w0t26Hi2kJYBEopR7eTfvevENAY4/ezUNd2rJOYpVgIIUQd0vvTMBfOhOBQjN/PRoXZ52io\n/v+DvnkQpH+HueFf9pbGhk/QACHhqLg2aLMctn8NbTtjPDIZFRRaZ3FLsRBCiDqi932PuegvEBKO\nMWU2KiS8wvvKMKDddfi0uw5dXg7HD6MP7IED6egD6ZCXg7rzftTt96AMnzqNXYqFEEK4iC4thVOZ\n8OMP6Mxj6E/eh7BIe4sipPJE419SPj5wVRzqqjjoZ5+fpsvL7cctIMVCCCFqkS4uRL/9qr1FkJ0F\n2vz5zatbYUz8Myq4et1HVhUKkGIhhBC1RhcXYS78CxxMR10XDz0SoFkMKirG/mejgKo/xE1JsRBC\niFqgzxVjLp4FB9JRj/4eo3sfq0OqVbKGhhBC1JA+dw7zpdmwPw01epLXFQqQYiGEEDWiS85hLn0W\n9u5CjXoCo0eC1SG5hBQLIYSoJl1aQl7S07DnO9TDj2PE32x1SC4jYxZCCHGZdFEhOvVf6JSPKMnP\nRY2YiHFjf6vDcikpFkII4SSdb0Ov+xD9xadQdBbadib09zM5fcVVVofmclIshBDiErRZDvt2o7/e\ngP7vRigvR3WNR906FHV1K/wjIsALl17/NSkWQgjxK1prOJyB3pKK3vol5OdCg0aoXv1RtwxBNXVu\nDwhvIsVCCCF+Qf9wFPPl5+HkD+DrCx26oW64CdWpO6pBA6vDs4wUCyGE+Ik2yzHfWASFZ1AjJqK6\n9kI1DrQ6LLcgxUIIIX6iUz+DQ/tQoydj9OxrdThuReZZCCEEoPNy0WtWQtvOKC+dWFcTddKyWLp0\nKdu2bSM4OJjk5GQA5s+fz4kTJwAoLCwkICCAuXPnkpWVxaRJkxybiLdq1YoxY8bURZhCiHpMr14O\npaUYD/wOpZTV4bidOikWffv25dZbb2XJkiWOY5MmTXJ8vXLlSgICfl6NMSoqirlz59ZFaEIIgf5+\nG3rrf1B33I9qVv+edHJGnXRDtWvXjsDACw8Saa356quvuPHGG+siFCGEqECXnMN85xWIikHd+hur\nw3Fblg9w79mzh+DgYK644grHsaysLKZOnUpAQAD33Xcfbdu2tTBCIYQ30x+vhlM/2nev8/OzOhy3\nZXmx2LRpU4VWRWhoKEuXLqVJkyYcPHiQuXPnkpycXKGb6ryUlBRSUlIASEpKIiIiotpx+Pr61uh6\ndyV5eR5vzc0d8yo7epCcz9fQsO9tBPfuV63PcMe8XMHSYlFeXs6WLVtISkpyHPPz88Pvp+reokUL\nmjVrRmZmJnFxcZWuT0xMJDEx0fE6uwZT7iMiImp0vbuSvDyPt+ZmdV76tA2OHUb/cAR+OGL/M/Mo\nNGhEyR33Vzs2q/OqqfMPE1XF0mKxa9cuoqOjCQ8Pdxw7ffo0gYGBGIbByZMnyczMpFmzZhZGKYTw\nZLqoEL3mTfQXn4DW9oPBoRDdHHXTrageCagmwdYG6QHqpFgsWLCAtLQ0CgoKGDduHMOGDaNfv36V\nuqAA0tLSWL16NT4+PhiGwaOPPnrRwXEhhLgYrTVs+wrzvb9Cvg3V9zbU9TdC9FWoJkFWh+dxlNbn\nS63nOz9vozo8vSl5MZKX5/HW3OoyL52ThfnOq7BzK8Reg/HQRNQ1rVxyL0//eXlEN5QQQtQmfdqG\n3vAv9OdrAFD3/BbV/39QPj4WR+b5pFgIITyePnYInfIheksqlJXBdT0x7n0EFd7U6tC8hhQLIYTH\n0mnbMT/5O+zdBf4NUL0H2lsSUTFWh+Z1pFgIITySPnIAc/50CI1A/eZhVJ+BqMZNrA7La0mxEEJ4\nJPOjdyGgMcaMxaiAxlaH4/VkiXIhhMfRh/bDd1tQA++SQlFHpFgIIdyGPltA+ZxpmJ+8f8nzzA/f\ngcZNUP0H11FkQrqhhBBuQZeVYi59HjLS0Blp6KtaotpfV/m8A+nw/beooQ+jGlZeM064hrQshBCW\n01qjV74E+75HjZgI0c0xl89D59sqnWt++C40CUbdfLsFkdZfUiyEEJbTH69Gf7UBdcf9GH0GYoz9\nA5wrwnwtGW2W/3ze/jRI2466ZSiqYSMLI65/pFgIISxl/jcV/cHbqJ43owbfC4CKbo66bwyk70R/\n8vefz/3wHQgKQfWVVkVdkzELIYRldEYaesUiaN0eNWJihb2vVe8B9mLx4bvo1h1Am5C+E3XvaFSD\nBhZGXT9JsRBCWEJnn8Rc8hyERWL87ulKu9QppeDB8ejD+zGXvQih4RAchrrpVosirt+kG0oIUat0\nUWHV52iNuWIRlJdhPP4MKvDCS4arRgEYY/4AZ/Lh0D7U7Xej/KVVYQVpWQghakyfLUBv+Q96Uwoc\nPYAa9SRG/M0XP/8/n8HeXfaup2aXXiJbXRWHenACeutGVJ+BtR26cJIUCyFEtWizHNJ2oDetQ+/4\n2r7a65VXQ+w16DeXoKObo66qvB2yzs1Gv/83aNPJPi7hBOPG/nBj/1rOQFwOKRZCiGrR7y1Db/gE\nApugEm5D9eqHah6HPp2HOXsy5svPY/xpXoVd6bTWmG8tBdPE+NWAtnBvMmYhhLhsWmv0N5ug8w0Y\nL6zAuO9RVHN7K0IFhWD87mnIt2Eum4su/8U8if+mwq5vUHc9iIqMsip8UQ1SLIQQl+/EMSjIR3Xp\nUekpJgB1TSvUA+Ngz3foNW8CYOblolctg7g2qH6yppOnkW4oIcRl0+k7AVBtOl30HKP3AMzD+9Gf\n/RN9dUtOf/8tFBfZu58M2ebU09RJsVi6dCnbtm0jODiY5ORkAFavXs26desICrL3Zw4fPpyuXbsC\nsGbNGtavX49hGIwaNYouXbrURZhCCCfp9J0Q3hQV0eyS56n7HkUfP4y5fB7nyspQdz6Aim5eR1GK\n2lQnxaJv377ceuutLFmypMLxQYMGcccdd1Q4dvz4cTZv3sy8efOw2WzMmjWLhQsXYhjSYyaEO9Bm\nOezbhbouvspzla8fxrinMGdPxjcsAvPW39RBhMIV6qRYtGvXjqysLKfO3bp1K7169cLPz4+mTZsS\nFRVFRkYGrVu3dnGUQginHDsMhWfhEl1Qv6RCwjFmLiG0aVNyz1Y9YU+4J0vHLD799FM2btxIixYt\nGDFiBIGBgeTm5tKqVSvHOWFhYeTm5loYpRDil34er+jo9DWqcSBGowCQYuGxLCsWAwcO5O677wZg\n1apVrFy5kvHjx1/WZ6SkpJCSkgJAUlISERER1Y7H19e3Rte7K8nL87h7braD6ZTHXEVEy2sv6zp3\nz6u6vDWvX7OsWISEhDi+7t+/P3PmzAHsLYmcnBzHe7m5uYSFhV3wMxITE0lMTHS8zs7OrnY8ERER\nNbreXUlensedc9NlZZi7t6Pib77sGN05r5rw9Lyioy+93Mp5lo0a22w/74C1ZcsWYmNjAejWrRub\nN2+mtLSUrKwsMjMzadmypVVhCiF+6fB+OFd8yUdmhXdyqmVx5swZPvzwQ44cOUJxcXGF92bOnFnl\n9QsWLCAtLY2CggLGjRvHsGHD2L17N4cPH0YpRWRkJGPGjAEgNjaW+Ph4Jk+ejGEYjB49Wp6EEsJN\n6L277F+0dn68QngHp4rFwoULKSsrIz4+Hn9//8u+yZNPPlnpWL9+/S56/tChQxk6dOhl30cI4Vo6\nfSdceU2F9Z5E/eBUsdi3bx+vvfYafheY1i+EqB90aQlk7JEtTespp/p3mjdvXmHQWQhRDx1Ih7LS\ny3pkVngPp1oWHTp04LnnnqNv374VnmKCS3cnCSG8h967C5QBrdpbHYqwgFPFIj09nfDwcHbt2lXp\nPSkWQtQPOn0nXN0SFdDY6lCEBaosFlprxo0bR0REBD4+slKkEPWRLi6y74E9cIjVoQiLVDlmoZRi\nypQpsqOVEPVZRhqUl8v8inrMqQHuq6++mszMTFfHIoRwUzp9F/j4Qlw7q0MRFnFqzKJ9+/Y899xz\nJCQkVFoDRcYshPB+On0ntGiNatDA6lCERZwqFnv37qVp06bs2bOn0ntSLITwbvpIBhw9iBo8zOpQ\nhIWcKhbTp093dRxCCDek03ZgLn0eQsNRvQdYHY6wkFPFwjTNi74n6zYJ4Z3MrV+il8+DqBiMJ2ag\nQsOtDklYyKliMXz48Iu+t2rVqloLRgjhHswNH6Pf/SvEtcWY+GdU40CrQxIWc6pYvPTSSxVe22w2\n1q5dS7du3VwSlBDCGlpr9Advoz9eDZ1vwBgzFeUvg9rCyUdnIyMjK/zXunVrJk6cyAcffODq+IQQ\ndUh/9B7649WoGxMxfve0FArhUO2d8goLCzl9+nRtxiKEsJA+koH+eBWqRwLq4cdkIq6owKlisXjx\n4gp/cc6dO8eePXvo06ePywITQtQdXVqK+beFEBSCGj5WCoWoxKliERUVVeF1gwYNGDBgAJ06ydR/\nIbyB/ngV/HAE47H/lcFscUFOFYsuXbrQqlWrSsczMjJkf2whPJw+koH+199R8f1QnbpbHY5wU04N\ncM+ePfuCx5999tlaDUYIUbcqdD/d+4jV4Qg3dsliYZompmnaH6fT2vHaNE0yMzNlyXIhPJz+v5+6\nnx6aIN1P4pIu2Q31y8l49913X4X3DMPgrrvucuomS5cuZdu2bQQHB5OcnAzAm2++ybfffouvry/N\nmjVj/PjxNG7cmKysLCZNmkR0dDQArVq1YsyYMZeVlBCiavpIBvpT6X4SzrlksXjppZfQWjNjxgxm\nzpyJ1hqlFEopgoKC8Pf3d+omffv25dZbb2XJkiWOY506deL+++/Hx8eHt956izVr1vDggw8C9gH1\nuXPn1iAtIcSlaK0xVyyS7ifhtEsWi8jISMDeMgB7t1R+fj6hoaGXdZN27dqRlZVV4Vjnzp0dX7du\n3Zqvv/76sj5TCFEDB9Lh+GHUyMel+0k4xamnoc6ePctrr73G119/ja+vL2+++SbffPMNGRkZlbqn\nqmP9+vX06tXL8TorK4upU6cSEBDAfffdR9u2bWt8DyHEz/SWjeDnj7q+V9UnC4GTxWLZsmU0btyY\npUuXMnnyZMDeGli5cmWNi8U///lPfHx8HBP8QkNDWbp0KU2aNOHgwYPMnTuX5ORkAgICKl2bkpJC\nSkoKAElJSZU2Zrocvr6+NbreXUlensfVuenyMrK3bca/e29Crmzusvv8mrf+zLw1r19zqljs2rWL\nV199FV/fn08PCgoiPz+/Rjf/4osv+Pbbb3nmmWccM0b9/Pzw8/MDoEWLFjRr1ozMzEzi4uIqXZ+Y\nmEhiYqLjdXZ2drVjiYiIqNH17kry8jyuzk3v3o6Zb6O0c486/R5668/M0/M6/zBRVZyaZxEQEEBB\nQUGFY9nZ2Zc9dvFLO3bs4IMPPuCpp56iwS+2ajx9+rRj/4yTJ0+SmZlJs2bNqn0fIURF+r+p0Kgx\ndLze6lCEB3GqZdG/f3+Sk5O577770Fqzb98+3n33XQYMcG7nrAULFpCWlkZBQQHjxo1j2LBhrFmz\nhrKyMmbNmgX8/IhsWloaq1evxsfHB8MwePTRRwkMlAE4IWqDLjmH3v4V6vpeKD/nnmYUApwsFnfe\neSf+/v4sX76c8vJyXn75ZRITE7n99tudusmTTz5Z6djF9u7u2bMnPXv2dOpzhRCXade3UFyEuiHB\n6kiEh6myWJimyRdffMGAAQOcLg5CCPdkbtkIQSHQpqPVoQgPU+WYhWEYrFy50jHoLITwTLqoEHZu\nRXXrjTJkqR5xeZwa4L7++uv55ptvXB2LEMKF9PavoKwUdcNNVociPJBTYxalpaXMmzeP1q1bEx4e\nXmFjlIkTJ7osOCFE7dFbNkJEM2hxrdWhCA/kVLGIjY0lNjbW1bEIIVxEn86DPd+hbv2N7IInqsWp\nYnHPPfe4Og4hhAvpbzeBaUoXlKg2p8YshBCeTf83FWKuQsVcZXUowkNJsRDCy+nsk3AgXVoVokak\nWAjhxXThWfu2qcpAde9jdTjCgzk1ZiGE8Dw6Lwdz4UzIPIb67ZOoyCirQxIezKliobVm3bp1bNq0\niYKCAl588UXS0tLIy8ursA+FEMI96B+PYy6YAWdOYzz2DKr9dVaHJDycU91Qq1atYsOGDSQmJjqW\n4g0PD+eDDz5waXBCiMunD+7FnPMUlJzDmPKsFApRK5wqFqmpqTz11FPceOONjme0mzZtWmmrVCGE\ntfT32zCT/wyNGmNMm4O6upXVIQkv4VQ3lGmaNGzYsMKx4uLiSseEENbRWmOufAkimmFMnoUKrv5+\nM0L8mlMti+uuu46VK1dSWloK2P9Srlq1iuuvl81ThHAbudlgy0Yl3CqFQtQ6p4rFiBEjsNlsjBw5\nksLCQkaMGMGpU6d44IEHXB2fEMJJ+mA6ACqujcWRCG/kVDdUQEAAU6dOJS8vj+zsbCIiIggJCXF1\nbEKIy3EgHfz9IeZqqyMRXsjpMQuAoKAggoKCHMcMQ+b0CeEu9MG9cHUrlK9MnxK1z6m/VcOHD7/g\ncR8fH0JDQ+nRowfDhg2TAW8hLKJLS+DoQdSAO60ORXgpp4rFqFGj2Lp1K0OGDCE8PJzs7Gw+/PBD\nunbtSnR0NO+//z4rVqxg3Lhxro5XCHEhRzKgvAwVJ3tVCNdwqlh8/PHHzJkzh4CAAACio6OJi4tj\n2rRpLF68mObNm/PUU09d9PqlS5eybds2goODSU5OBuDMmTPMnz+fU6dOERkZyaRJkwgMDARgzZo1\nrF+/HsMwGDVqFF26dKlpnkJ4NX1gr/0L2dhIuIhTgw6FhYWcO3euwrFz585RWFgIQEhICCUlJRe9\nvm/fvvzxj3+scGzt2rV07NiRRYsW0bFjR9auXQvA8ePH2bx5M/PmzeNPf/oTy5cvd4yZCCEuTB9M\nh4hmqCB5ZFa4hlPFIiEhgdmzZ5OSksKOHTtYt24dzz77LAkJCQB89913REdHX/T6du3aOVoN523d\nutVxfUJCAlu3bnUc79WrF35+fjRt2pSoqCgyMjKqlZwQ9YHWGg7sRbWQR2aF6zjVDfXggw8SFRXF\n5s2bsdlshISEcMstt5CYmAhA+/btmTlz5mXdOD8/n9BQ+29BISEh5OfnA5Cbm0urVj8vURAWFkZu\nbu5lfbYQ9UruKcjPBRmvEC7kVLEwDIOBAwcycODAC77v7+9foyCUUtXaFzglJYWUlBQAkpKSiIiI\nqHYMvr6+NbreXUlenudycyves518IPT6nvi58ffEW39m3prXrzn9QHZeXh4ZGRkUFBTYm70/6dev\nX7VuHBwcjM1mIzQ0FJvN5pi/ERYWRk5OjuO83NxcwsLCLvgZiYmJjtYN4FgRtzoiIiJqdL27krw8\nz+XmZn73Dfj7k9c4BOXG3xNv/Zl5el6XGkL4JaeKxZYtW1i8eDFXXHEFx44dIzY2lmPHjtGmTZtq\nF4tu3bqRmprKkCFDSE1NpXv37o7jixYtYvDgwdhsNjIzM2nZsmW17iFEfaAPpMtkPOFyTv3tWrVq\nFePHjyc+Pp5Ro0bxwgsvsGHDBo4dO+bUTRYsWEBaWhoFBQWMGzeOYcOGMWTIEObPn8/69esdj84C\nxMbGEh8fz+TJkzEMg9GjR8tMcSEuQpecg2MHUQOGWB2K8HJOFYvs7Gzi4+MrHEtISGDMmDGMGDGi\nyuuffPLJCx5/5plnLnh86NChDB061JnQhKjfjhyA8nKZjCdczqlf2YOCgsjLywMgMjKSffv2cfLk\nSZn/IITFzq80izw2K1zMqZZF//79SU9Pp2fPngwaNIiZM2eilGLw4MGujk8IcQn6QDpERqGCZBVo\n4VpOFYs77rjDMW6QkJBA+/btKS4u5sorr3RpcEKIi9Naw8G9qDadrA5F1ANVdkOZpslDDz3k2CUP\n7I+KSaEQwmK5pyDfBrLZkagDVRYLwzCIjo6moKCgLuIRQjhJH/hpZzwZrxB1wKluqN69ezNnzhxu\nu+02wsPDK8y27tChg8uCE0JcwsG94N8Arrza6khEPeBUsfj8888BeP/99yscV0rx0ksv1X5UQogq\nOSbj+fhYHYqoB5wqFkuWLHF1HEKIy+CYjDdQJuOJuuH01OiysjL27NnD5s2bASguLqa4uNhlgQkh\nLkwXnkWvecs+GU/GK0QdcaplcfToUebMmYOfnx85OTn06tWLtLQ0UlNTHct0CCFcS5eWolP/hf54\nFZwpQPVIgA5drQ5L1BNOFYtly5Zx7733ctNNNzFq1CjAvqHRq6++6tLghBCgTRO99T/otW9B9klo\n2xnjNw+jrpIFNkXdcapYHD9+nD59+lQ41rBhw0tupSqEqDmdeQxzxSL7k09XXoPxxAxof1219n8R\noiacKhaRkZEcPHiQuLg4x7GMjAyioqJcFpgQ9ZkuL0d/vhb94TvQoCFq1BOonjejZAVmYRGnisW9\n995LUlISAwYMoKysjDVr1vDvf/+bsWPHujo+IeqdsqMHMefPhMP7oWs8xgPjUEGhVocl6jmnisX1\n11/PH//4R9atW0e7du04deoUU6ZMoUWLFq6OT4h6Q5sm+tN/kPPRe9CwEWrMH1DdbpQuJ+EWnCoW\np0+f5pprruGRRx5xdTxC1Eu6vBz9xiL0VxtoEH8zpXePkpVkhVtxqliMHz+e9u3b07t3b7p3707D\nhg1dHZcQ9YYuLcV87UXY9hXqzgcIfnh8hX3ohXAHThWLpUuX8tVXX/H555+zbNkyunbtSu/evbnu\nuuvwkaUGhKg2fe4c5svPwe7tqHsfwUi8Q7qdhFtyqlgEBQVxyy23cMstt3Dq1Ck2bdrEe++9x8sv\nv8zy5ctdHaMQXkkXnsV8aRZk7EE9/BhG7wFWhyTERTlVLH4pPz+fvLw8CgoKaNy4sStiEsLr6YLT\nmAtnwPFDqEenYHTvU+U1QljJ6Ul5X375JZs2baKkpIT4+HimTp1Ky5Y1m0F64sQJ5s+f73idlZXF\nsGHDOHv2LOvWrSMoKAiA4cOH07WrLGsgvIM+cxpz3p/h5AmM8X9EdepudUhCVMmpYvG///u/9OjR\ngzFjxtC+fXvHFqs1FR0dzdy5cwH7jnxjx47lhhtuYMOGDQwaNIg77rijVu4jhLvQhWcw50+HH3/A\neOzPqHbXWR2SEE5xem0oX9/L7rG6LLt27SIqKorIyEiX3kcIq+iiQswFM+CHIxgT/iiFQngUpyqA\nr68veXl5ZGRkUFBQYN8o/if9+vWrlUA2bdrEjTfe6Hj96aefsnHjRlq0aMGIESMIDAyslfsIYQVd\nXIS5aCYcPYAx7ilUx25WhyTEZVH6l//yX8SWLVtYvHgxV1xxBceOHSM2NpZjx47Rpk0bpk+fXuMg\nysrKGDt2LMnJyYSEhJCXl+cYr1i1ahU2m43x48dXui4lJYWUlBQAkpKSarSwoa+vL2VlZdW+3l1J\nXtbT54qxzZ5CadoOgif/hYY3XvoXLE/K7XJIXu7J39/fqfOcalmsWrWK8ePHEx8fz6hRo3jhhRfY\nsGEDx44dq1GQ523fvp1rrrmGkBD7jNXzfwL079+fOXPmXPC6xMREEhMTHa+zs7OrHUNERESNrndX\nkpe19MG9mP94A/bvRo2ezJlrO3Gmirg9JbfLJXm5p+joaKfOc2qkOjs7m/j4+ArHEhIS2Lhx4+VH\ndgG/7oKy2WyOr7ds2UJsbGyt3EeIuqBLSzG/2kD5s7/HfH4qHD2AGvUkRo8Eq0MTotqcnpSXl5dH\nSEgIkZGR7Nu3jyZNmmCaZo0DKC4uZufOnYwZM8Zx7K233uLw4cMopYiMjKzwnhDuSp+2odd/jN74\nGRTkQ9RYSRHZAAAUFUlEQVSVqPvHouJvRjUMsDo8IWrEqWLRv39/0tPT6dmzJ4MGDWLmzJkopRg8\neHCNA2jYsCGvv/56hWOPPfZYjT9XiLqiz5xGf7YGvf7/oLQEOnXH6DcY2naWpTuE13CqWAwZMsTx\ndUJCAu3bt6e4uJgrr7zSZYEJ4e504Rn0vz9Ep3wA54pRN9yE+p/hqGbO9QEL4UmqNXkiIiKituMQ\nwi3p0hLY9Q367BkoOWf/71wxFJ5B/3cjFJ6B63th/M/9qJjmVocrhMu4dqadEB5MF5zGXPosZOyp\n+IZS4N8A2nTCuGM4qnnchT9ACC8ixUKIC9A//mCfRGfLQf12EuraDvYC4d8A/PxlLELUO1IshPgV\nve97zCXPgWFgTHkWFdfG6pCEsJwUCyF+wfx6A3rFYoiMwnj8GVRklNUhCeEWpFiIek/n22D/bvT3\n36I3rYNrO2L87mlUY1mPTIjzpFiIekOXlkBeLtiy0dknIWMPev9u+PEH+wn+DVB9b0Pd+wjK18/a\nYIVwM1IshFfSthz0nu9gz3fo44cgLwfOFFQ8qVFjaNUO1XsAqlV7aB6HcvFS/EJ4Kvk/Q3gNnbYd\nvWOLvUj8eNx+sEkwXN3KPkgdGgEh4ajQMAiNhGZXoAwfa4MWwkNIsRBewfx8Lfr91+2PtrZuj+oz\nANW2C8RchaqlnR2FqM+kWAiPZ2742F4oru+FMfr3KD8ZbxCitkmxEB7N/M/n6Hdehc43YDwyRcYc\nhHARaZ8Lj2V+vQH95hLo0BVj7FNSKIRwISkWwiMVb1qPfn0htO5gnxMhXU9CuJQUC+EWdL4NM/VT\ndOHZS59nlmN+8Qn586dD3LUYE/+M8m9QR1EKUX9Ju11YTh89gLl4NuTloNe+iRp0LyrhtkqtBb0/\nDfO9v8LRg/h36kbZI1NQDRtZFLUQ9YsUC2Epve0rzOXzILAJaswf0P/5DL3qNfS6j1BDHkR17wN5\nueh/rEBv2QhhEagxfyDk1jvJycmxOnwh6g0pFqJW6LwcOHnCPgu6UdX7TWut0Z/+A/3PlXBNa4wJ\nf0IFh0L33ui07Zh/X4F+LRn9yfuQfRJMEzX4PtStv0E1aCBLhAtRx6RYiBrTh/ZhLpwJZwvsGwNF\nN0e1uBauaY26phU0Dvp5LwhfXygrQ7/5EvqrDfatSB9+rMK4g2p3HcafO6O3bER/tgY6Xo/xm5Gy\nAqwQFrK8WEyYMIGGDRtiGAY+Pj4kJSVx5swZ5s+fz6lTp4iMjGTSpEkEBsoKoO5Ip+3AXPocBIVg\njJiA/uEo+uBe9Leb4T+fo399gTLsBaO0BHXH/ajB916wlaAMA9WzL/TsWwdZCCGqYnmxAJg+fTpB\nQUGO12vXrqVjx44MGTKEtWvXsnbtWh588EELIxQXordtxlz2IjSLwXhyJiokDNW1l/09reHkCfSx\ng1BUCCXFcO4clJRASTGqbWdUp+4WZyCEcJZbFItf27p1KzNmzAAgISGBGTNmSLFwM+aX/0avXAIt\nWmM89kylvR+UUhAVg4qKsShCIURtcotiMWvWLAzDYMCAASQmJpKfn09oaCgAISEh5OfnWxyh+CXH\non3trsMY/zSqQUOrQxJCuJjlxWLWrFmEhYWRn5/P7NmziY6OrvC+UuqiT76kpKSQkpICQFJSEhER\nEdWOw9fXt0bXu6vazuvsP9/kzPuv06BXP4KfnG7ZzGlv/XmB9+YmeXk2y4tFWFgYAMHBwXTv3p2M\njAyCg4Ox2WyEhoZis9kqjGf8UmJiIomJiY7X2dnZ1Y4jIiKiRte7q9rMy/z3B+jVy1E33ETpw4+R\nY2GLz1t/XuC9uUle7unXv6BfjKXLfRQXF1NUVOT4eufOnTRv3pxu3bqRmpoKQGpqKt27y0Co1cwN\nH6NXL4euvVC/nSSbBglRz1jassjPz+fFF18EoLy8nN69e9OlSxfi4uKYP38+69evdzw6K1xHaw25\npyAwGNWg8jpL5sZP7cuAd+mB8egUlI8UCiHqG6W1rvQovKc6ceJEta/19KakLi2BvFyw5dhnU+fl\nQF4ujZoEUdSwMSoswr6taFgE+PrB4f3oA+nog3vh4F44c9o+/yGurf2x1nZd4Ko49Fcb0CsWQcdu\nbrW6q6f/vC7FW3OTvNyTs91Qlo9ZiJrRWqPXfYT++wooL6v4pr8/heXlUF5eeXLceVEx9vkOV7eC\n7JPotB3otW+h174FAY3tcyTadcH43TS3KRRCiLonxcKD6fJy9HvL0F98Ap26o7r2QoWEQUg4hIZB\no8ZEhIWRfSgDcrPtrQ7bKSguRl0VBy2uRTVuUvlzT+eh03fCnu/A1xd1929Rfv4WZCiEcBdSLDyU\nLirE/Otc+P5b1C13oYY+jDIqP6+gfHxQIeH2AgI4s/yeCgpB3XAT3HBTLUcthPBUUiw8kM45hbn4\nL5B5DPXQBIybbrE6JCGEl5Ni4WH0oX2YS56FknMYT0xHtbvO6pCEEPWAFAsPoUtL0f+3Cv3p3yE0\nAmPSLFRMc6vDEkLUE1IsPIA+tA9zxSI4cRQV3w917yOVFu4TQghXkmJRh3Rpqf3JJa1R0bFwRXP7\nNqEXWftKl5xDf/gO+vMPICQM4/HpqI7X13HUQgghxaLO6LxczFeS4EC6/fX5Nxo0guhYCAmD8nL7\nXImyMvvXuVmQm43qMxB19yhUQGPL4hdC1G9SLOqAPpBuLxSFZzHG/gGu7QiZx9Anjtn/zDwGWZng\n4ws+PvaZ1L6+ENsC4+HHZBBbCGE5KRYuZn75b/TbL0NIOMbTc1FXXm1/o0kwqnUHS2MTQghnSbFw\nEV1Whl79GnrDJ/blMsZMveBsaSGE8ARSLFxAFxdhvpwEadtRA+9CDR0hK7UKITyaFItapgvyMRf9\nBY4eQD38GEbvAVaHJIQQNSbFohbpnCzM+dMh9xTG+D+iOt9gdUhCCFErpFg4SWsNu7ehd26F2Bao\nNp0gopljjoQ+fhhz4Qz7MhyT/oJq1c7agIUQohZJsaiC1hp2foP5f+/B4f32x1vLy+zzJMKboq7t\nCLFXoz96D/wbYPwhCRVzldVhCyFErZJicRHaNGHHfzE/XgVHD9pbEQ9NQMX3g1OZ6L270Ok70d9t\ngc3rICoG48mZqPCmVocuhBC1TorFBejCs/aVXfd9D02vQI18AtUjAeX707crujkqujncPMheVE7+\nAGFNL7h/tRBCeAMpFr+iC/IxF8yAH46gHhqPunHAJR97VYYBV8TWXYBCCGEBS4tFdnY2S5YsIS8v\nD6UUiYmJ3H777axevZp169YRFBQEwPDhw+natavL49G2HMz5z0D2SYwJf5JF+4QQ4ieWFgsfHx8e\neughWrRoQVFREdOmTaNTp04ADBo0iDvuuKPOYik/eQLzhWlw5jTGEzNQ18pSHEIIcZ6lxSI0NJTQ\n0FAAGjVqRExMDLm5uXUeh848Ru6C6XDuHMbk2ahrWtV5DEII4c4MqwM4Lysri0OHDtGyZUsAPv30\nU6ZMmcLSpUs5c+aMy+6rjx/CfOFp0Bpj6nNSKIQQ4gKU1lpXfZprFRcXM336dIYOHUqPHj3Iy8tz\njFesWrUKm83G+PHjK12XkpJCSkoKAElJSZSUlFz2vcvzcjm9YCah46dB0ytqlogb8vX1payszOow\nap235gXem5vk5Z78/f2dOs/yYlFWVsacOXPo3LkzgwcPrvR+VlYWc+bMITk5ucrPOnHiRLXjiIiI\nIDs7u9rXuyvJy/N4a26Sl3uKjo526jxLu6G01rzyyivExMRUKBQ2m83x9ZYtW4iNlUdThRDCSpYO\ncO/du5eNGzfSvHlzpk6dCtgfk920aROHDx9GKUVkZCRjxoyxMkwhhKj3LC0Wbdq0YfXq1ZWO18Wc\nCiGEEM5zm6ehhBBCuC8pFkIIIaokxUIIIUSVpFgIIYSokhQLIYQQVbJ8Up4QQgj3Jy2Ln0ybNs3q\nEFxC8vI83pqb5OXZpFgIIYSokhQLIYQQVfKZMWPGDKuDcBctWrSwOgSXkLw8j7fmJnl5LhngFkII\nUSXphhJCCFElSxcSdAc7duzgb3/7G6Zp0r9/f4YMGWJ1SNW2dOlStm3bRnBwsGP/jzNnzjB//nxO\nnTpFZGQkkyZNIjAw0OJIL092djZLliwhLy8PpRSJiYncfvvtHp9bSUkJ06dPp6ysjPLycnr27Mmw\nYcM8Pq/zTNNk2rRphIWFMW3aNK/Ja8KECTRs2BDDMPDx8SEpKclrcrskXY+Vl5friRMn6h9//FGX\nlpbqKVOm6GPHjlkdVrXt3r1bHzhwQE+ePNlx7M0339Rr1qzRWmu9Zs0a/eabb1oVXrXl5ubqAwcO\naK21Liws1I8//rg+duyYx+dmmqYuKirSWmtdWlqqn376ab13716Pz+u8jz76SC9YsEA///zzWmvv\n+Luotdbjx4/X+fn5FY55S26XUq+7oTIyMoiKiqJZs2b4+vrSq1cvtm7danVY1dauXbtKv81s3bqV\nhIQEABISEjwyv9DQUMcAYqNGjYiJiSE3N9fjc1NK0bBhQwDKy8spLy9HKeXxeQHk5OSwbds2+vfv\n7zjmDXldjDfndl697obKzc0lPDzc8To8PJz9+/dbGFHty8/PJzQ0FICQkBDy8/MtjqhmsrKyOHTo\nEC1btvSK3EzT5KmnnuLHH3/klltuoVWrVl6R14oVK3jwwQcpKipyHPOGvM6bNWsWhmEwYMAAEhMT\nvSq3i6nXxaK+UUqhlLI6jGorLi4mOTmZkSNHEhAQUOE9T83NMAzmzp3L2bNnefHFFzl69GiF9z0x\nr2+//Zbg4GBatGjB7t27L3iOJ+Z13qxZswgLCyM/P5/Zs2dX2sPak3O7lHpdLMLCwsjJyXG8zsnJ\nISwszMKIal9wcDA2m43Q0FBsNhtBQUFWh1QtZWVlJCcn06dPH3r06AF4T24AjRs3pn379uzYscPj\n89q7dy/ffPMN27dvp6SkhKKiIhYtWuTxeZ13/t+I4OBgunfvTkZGhtfkdin1eswiLi6OzMxMsrKy\nKCsrY/PmzXTr1s3qsGpVt27dSE1NBSA1NZXu3btbHNHl01rzyiuvEBMTw+DBgx3HPT2306dPc/bs\nWcD+ZNTOnTuJiYnx+Lzuv/9+XnnlFZYsWcKTTz5Jhw4dePzxxz0+L7C3bs93rRUXF7Nz506aN2/u\nFblVpd5Pytu2bRtvvPEGpmly8803M3ToUKtDqrYFCxaQlpZGQUEBwcHBDBs2jO7duzN//nyys7M9\n9pG+9PR0nnnmGZo3b+5o3g8fPpxWrVp5dG5HjhxhyZIlmKaJ1pr4+HjuvvtuCgoKPDqvX9q9ezcf\nffQR06ZN84q8Tp48yYsvvgjYH0ro3bs3Q4cO9YrcqlLvi4UQQoiq1etuKCGEEM6RYiGEEKJKUiyE\nEEJUSYqFEEKIKkmxEEIIUSUpFqJemjx58kVnF7tadnY2Dz30EKZpWnJ/IapDHp0V9drq1av58ccf\nefzxx112jwkTJjB27Fg6derksnsI4WrSshCiBsrLy60OQYg6IS0LUS9NmDCB3/72t47ZuL6+vkRF\nRTF37lwKCwt544032L59O0opbr75ZoYNG4ZhGHzxxResW7eOuLg4Nm7cyMCBA+nbty+vvvoqR44c\nQSlF586dGT16NI0bN2bx4sV8+eWX+Pr6YhgGd999N/Hx8UycOJF3330XHx8fcnNzWbZsGenp6QQG\nBnLnnXeSmJgI2Fs+x48fx9/fny1bthAREcGECROIi4sDYO3atfzrX/+iqKiI0NBQHnnkETp27GjZ\n91V4r3q9kKCo3/z8/LjrrrsqdUMtWbKE4OBgFi1axLlz50hKSiI8PJwBAwYAsH//fnr16sWyZcso\nLy8nNzeXu+66i7Zt21JUVERycjLvv/8+I0eO5LHHHiM9Pb1CN1RWVlaFOBYuXEhsbCyvvvoqJ06c\nYNasWURFRdGhQwfAvorr73//e8aPH897773H66+/zrPPPsuJEyf47LPPeP755wkLCyMrK0vGQYTL\nSDeUEL+Ql5fH9u3bGTlyJA0bNiQ4OJhBgwaxefNmxzmhoaHcdttt+Pj44O/vT1RUFJ06dcLPz4+g\noCAGDRpEWlqaU/fLzs4mPT2dBx54AH9/f66++mr69+/vWJQOoE2bNnTt2hXDMLjppps4fPgwYF/e\nvLS0lOPHj1NWVkbTpk2Jioqq1e+HEOdJy0KIX8jOzqa8vJwxY8Y4jmmtK2ySFRERUeGavLw8VqxY\nwZ49eyguLsY0TacXkbPZbAQGBtKoUaMKn3/gwAHH6+DgYMfX/v7+lJaWUl5eTlRUFCNHjuT999/n\n+PHjdO7cmREjRnjdMvvCPUixEPXarzepCQ8Px9fXl+XLl+Pj4+PUZ7z77rsAJCcnExgYyJYtW3j9\n9dedujY0NJQzZ85QVFTkKBjZ2dlO/4Pfu3dvevfuTWFhIX/96195++23eeyxx5y6VojLId1Qol4L\nDg7m1KlTjr7+0NBQOnfuzMqVKyksLMQ0TX788cdLdisVFRXRsGFDAgICyM3N5aOPPqrwfkhISKVx\nivMiIiK49tpreeeddygpKeHIkSNs2LCBPn36VBn7iRMn+P777yktLcXf3x9/f3+v3KFNuAcpFqJe\ni4+PB2D06NE89dRTAEycOJGysjImT57MqFGjmDdvHjab7aKfcc8993Do0CEefvhhnn/+eW644YYK\n7w8ZMoR//OMfjBw5kg8//LDS9U888QSnTp1i7NixvPjii9xzzz1OzckoLS3l7bffZvTo0Tz66KOc\nPn2a+++//3LSF8Jp8uisEEKIKknLQgghRJWkWAghhKiSFAshhBBVkmIhhBCiSlIshBBCVEmKhRBC\niCpJsRBCCFElKRZCCCGqJMVCCCFElf4fdLYnnWbZuqsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -713,7 +818,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.3" + "version": "3.6.0" } }, "nbformat": 4, diff --git a/policy_gradient/policy.py b/policy_gradient/policy.py index 99fecf3..98400d1 100644 --- a/policy_gradient/policy.py +++ b/policy_gradient/policy.py @@ -30,6 +30,8 @@ def __init__(self, in_dim, out_dim, hidden_dim, optimizer, session): Sample solution is about 2~4 lines. """ # YOUR CODE HERE >>>>>> + hidden_layer = tf.contrib.layers.fully_connected(inputs = self._observations, num_outputs = hidden_dim, activation_fn = tf.tanh) + probs = tf.contrib.layers.fully_connected(inputs = hidden_layer, num_outputs = out_dim, activation_fn = tf.nn.softmax) # <<<<<<<< # -------------------------------------------------- @@ -72,6 +74,7 @@ def __init__(self, in_dim, out_dim, hidden_dim, optimizer, session): Sample solution is about 1~3 lines. """ # YOUR CODE HERE >>>>>> + surr_loss = -tf.reduce_mean(tf.multiply(log_prob, self._advantages)) # <<<<<<<< grads_and_vars = self._opt.compute_gradients(surr_loss) diff --git a/policy_gradient/util.py b/policy_gradient/util.py index 61ef302..a4a015a 100644 --- a/policy_gradient/util.py +++ b/policy_gradient/util.py @@ -32,6 +32,9 @@ def discount_bootstrap(x, discount_rate, b): Sample code should be about 3 lines """ # YOUR CODE >>>>>>>>>>>>>>>>>>> + #print(b) + #print(np.append(b[1:], 0)) + return np.add(x, np.multiply(np.append(b[1:], 0), discount_rate)) # <<<<<<<<<<<<<<<<<<<<<<<<<<<< def plot_curve(data, key, filename=None): diff --git a/report.md b/report.md index 1e5017e..9f5e559 100644 --- a/report.md +++ b/report.md @@ -1,3 +1,30 @@ # Homework3-Policy-Gradient report +105062575 何元通 -TA: try to elaborate the algorithms that you implemented and any details worth mentioned. +## Introduction + +        In this assignment, we are asked to perform policy gradient to solve the cartpole problem. We will build a neural network to learn the parameters. And, the agent is able to select better actions without consulting a value function. + +## Implementation + +        When implementing the functionality, what we should do is to finish the functions. All functions have been given without several critical lines of codes. Consequently, we simply need to fill in the correct codes in specific position. + +        For the problem 1, we have to build a two-layered fully-connected neural network. I directly use the function from tensorflow package. The function is capable of building a fully-connected layer. Thus, I just call the function twice and decides its input, output dimension, and activation function. Eventually, the network will give us outputs of probability for action selection. + +        Then, finish the loss function of the network for problem 2. I follow the loss function provided in .ipynb file. In addition, the accumulated discounted rewards have been provided and the action probabilities have been computed before as well. As a consequence, following with the formula, I add the reward vector and probability vector elementwisly and compute the mean of the addition one. It should be notice that since we would like to maximize the function, we have to multiply it with negative one. + +        I merely follow the formulas in problem 3, that changes the loss function. Different from the original one, we substract the baseline from the rewards. And, it is similar to problem 3, I just copy all of the codes in problem 3 to problem 4 and not substract the baseline. With running results, it is much convenient for comparison. + +        We are asked to complete a function in policy.py in problem 5. Following the hint and formulas from both .py and .ipynb files, I orinially simply multiply the baseline with discount vactor and add it with the immediate rewards elementwisly. Nonetheless, it is noticed that we should first remove the first element of the baseline and append a zero to it. As we have to give it a space for the next state and keep the size of the array. And, in problem 6, I use the discount function to compute the generalized advantage estimation with given parameters. + +## Discussion + +        For problem 3 and for problem 4, the main difference is the former's reward substract a baseline, but the later's is not. According to the results from the two parts, the one with baseline can converge quicklier than the one without.(As shown at the following two plots. The former is of problem 3 and the later is of problem4.) From the codes, the baseline is a value function. When we add the value function into the function, it will not influence the expectation of the function. Thus, it can be added for a faster convergence. As to why can it converge faster, I consider that because we would like to maximize the function, it performs the same as minimizing the function with the negative rewards. And, the value function stand for the predicted reward for next few states. So, if we substract the value from the reward, it is similar to maximize the target function and the target function can inffer from some future states. Contrary to the problem 4, which does not use baseline, the value function makes it precisely on selection of the policy and makes it be able to converge more quicklier. + +  + +        As to problem 5 and problem 6, it introduces a hyperparameter lamda to improve the original policy gradient. From the discussion of my classmate and I and the data searched from Internet, we consider this change will improve the original policy gradient. It seems to update the values for each step other than updating for each round. Thus, we assume that the higher frequency it updates, the faster it converges. And, the lamda also influence the steps it considers. This may effect its speed of convergence. Moreover, as showed in the following two images. The former is the plot of problem 3 and the later is the plot of problem 6. The change of loss in problem 6 is stabler than the one in problem 3. There is much less sharp promotion or sharp drop in problem 6 contrary to problem 3. I consider this may also caused by the improvement since updating for each step can help it find a better value in local small area. + +  + +       By the way, we have also found the disadvange of it. From the data from the Internet, it tells us this algorithm is hard to converge. Of course, this happens on us that we should re-run it for several times to satisfy the request of around 80 iteration. Thus, I think this may be a crucial challenge to improve it.