System for network traffic analysis and anomaly detection.
Switch branches/tags
Clone or download
cejkato2 build: attempt to pass --enable-repobuild automatically to submodules
This patch is related to issues:
#15
CESNET/Nemea-Modules#96

Argument "--enable-repobuild" is added now by default to configure in
subdirs.
Latest commit 3efe49d Oct 3, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
detectors @ 02d2e30 increased version, moved revision of submodules, added new release of… Dec 4, 2017
doc doc: README outline, system fig., moved dependencies to readme Jun 26, 2016
jenkins add jenkins configuration for CESNET's internal CI Jul 12, 2018
modules @ c84a0c3 increased version, moved revision of submodules, added new release of… Dec 4, 2017
nemea-framework @ d264606 updated framework submodule, debugging jenkins Jul 12, 2018
nemea-supervisor @ a8b26cd increased version, moved revision of submodules, added new release of… Dec 4, 2017
packer Updated default user configuration to match Dashboard v0.4 Mar 18, 2016
use-cases doc: minor improvements of README Mar 3, 2016
vagrant vagrant: centos7: replace repo with copr Dec 19, 2017
.gitmodules Adding new submodule detectors (Nemea-Detectors) Aug 30, 2015
.travis.yml enabled repobuild for submodules on travis Sep 27, 2017
CONTRIBUTING.md Create CONTRIBUTING.md Oct 6, 2016
COPYING add license Apr 1, 2016
Makefile.am build: options to disable supervisor/modules/detectors Mar 8, 2018
README.md README: replace specific version of libpcap, add bc(1) (used in tests) Mar 14, 2018
bootstrap.sh init of repository Aug 29, 2015
configure.ac build: attempt to pass --enable-repobuild automatically to submodules Oct 3, 2018
generate-rpm.sh scripts for creation of RPM packages Dec 1, 2015
nemea.spec.in rpm: update spec file, dependencies Aug 5, 2016
prepare-package.sh tools: prepare-package: add RPM build and copr upload Aug 8, 2018
rpms.sh rpm: changed generating python and pycommon rpm packages Mar 5, 2016
unirec_fields.md unirec dict: fixed column headers Feb 15, 2017
ur_dict_updater.sh unirec dict: fixed column headers Feb 15, 2017

README.md

README outline

Project status

Travis CI build: Build Status

NEMEA System

NEMEA (Network Measurements Analysis) system is a stream-wise, flow-based and modular detection system for network traffic analysis. It consists of many independent modules which are interconnected via communication interfaces and each of the modules has its own task. Communication between modules is done by message passing where the messages contain flow records, alerts, some statistics or preprocessed data.

Parts of the system

The following picture shows all important parts of the system.

NEMEA parts

  1. Modules - basic building blocks; separate system processes; receive stream of data on their input interfaces, process it and send another stream of data to their output interfaces; all modules are simply divided into two groups according to their task:
    • Detectors (red) - detect some malicious traffic, e.g. DNS tunnel, DoS, scanning
    • Modules (yellow) - export&storage of flow data, preprocess or postprocess the data (filter, aggregate, merge etc.)
  2. NEMEA Framework - set of libraries implementing features common for all modules
    • TRAP (Traffic Analysis Platform) (blue) - implements communication interfaces and functions for sending/receiving the messages between interfaces
    • UniRec (Unified Record) (orange) - implements efficient data format of the sent/received messages
    • Common library (purple) - implements common algorithms and data structures used in modules
  3. Supervisor (green) - central management and monitoring tool of the NEMEA system. It takes care of running modules according to a specified configuration.

Repositories

The project is divided into four repositories added as submodules:

Dependencies

Building environment

  • autoconf
  • automake
  • gcc
  • gcc-c++
  • libtool
  • libxml2-devel
  • libxml2-utils (contains xmllint on Debian)
  • make
  • pkg-config

Optional dependencies of modules and detectors

How to install dependencies:

Debian/Ubuntu:

apt-get install -y gawk bc autoconf automake gcc g++ libtool libxml2-dev make pkg-config libpcap-dev libidn11-dev bison flex

RHEL/CentOS/Fedora:

yum install -y bc autoconf automake gcc gcc-c++ libtool libxml2-devel make pkg-config libpcap-devel libidn-devel bison flex

Note: Latest systems (e.g. Fedora) use dnf instead of yum.

Installation

There are three different ways of installation of the NEMEA system covered in this document: vagrant, binary packages and source codes.

Vagrant

To try the system "out-of-box", you can use Vagrant. For more information see ./vagrant/.

Binary packages

Latest RPM packages can be found in COPR: https://copr.fedorainfracloud.org/groups/g/CESNET/coprs/ The NEMEA repository is at https://copr.fedorainfracloud.org/coprs/g/CESNET/NEMEA/

After installation of COPR repository, NEMEA can be installed as any other package (run as root/sudo):

yum install nemea

Note: Latest systems (e.g. Fedora) use dnf instead of yum.

For development purposes, there is nemea-framework-devel package that installs all needed development files and docs.

Currently, we do not have .deb packages (for Debian/Ubuntu/...) but we are working on it. Please follow installation from source codes

Source codes

The whole system is based on GNU/Autotools build system that makes dependency checking and building process much more easier.

To clone the NEMEA repositories, use:

git clone --recursive https://github.com/CESNET/nemea

After successful clone and dependencies installation (!), use:

./bootstrap.sh

that will create configure scripts and other needed files.

The configure script supplies various possibilities of configuration and it uses some environmental variables that influence the build and compilation process. For more information see:

./configure --help

We recommend to set paths according to the used operating system, e.g.:

./configure --enable-repobuild --prefix=/usr --bindir=/usr/bin/nemea --sysconfdir=/etc/nemea --libdir=/usr/lib64

After finishing ./configure, build process can be started by:

make

The make(1) tool has various parameters, to build the NEMEA package faster on multicore systems, we recommend to use parameter -j with the number of jobs that should be run in parallel.

When the compilation process ends without any error, the package can be installed into paths that were set by configure. It is recommended NOT to change target paths by passing variables directly to make(1). The installation can be done by (usually it requires root / sudo):

make install

Congratulations, the whole NEMEA system should be installed right now... :-)

Quick start and how to

Try out NEMEA modules

Execute a module

NEMEA modules using have two implicit arguments. module -h for help (optional) and module -i IFC_SPEC for communication interface (IFC) specification. The -i parameter is mandatory for all NEMEA modules.

Module help -h

The example below shows part of help output of logger. It contains module's name, description, number of input and output IFC, modules parameters and TRAP library parameters (common for all modules).

TRAP module, libtrap version: 0.7.6 b258bb4
===========================================
Name: Logger
Inputs: variable
Outputs: 0
Description:
  This module logs all incoming UniRec records to standard output or into a specified file. Each record
  is written as one line containing values of its fields in human-readable format separated by chosen
  delimiters (CSV format). If you use more than one input interface you have to specify output format by
  parameter "-o".

Usage:  logger [COMMON]... [OPTIONS]...

Parameters of module [OPTIONS]:
-------------------------------
  -w  --write <string>             Write output to FILE instead of stdout (rewrite the file).

  -a  --append <string>            Write output to FILE instead of stdout (append to the end).

  -t  --title                      Write names of fields on the first line.

  -c  --cut <uint32>               Quit after N records are received, 0 can be useful in combination
                                   with -t to print UniRec.

Common TRAP parameters [COMMON]:
--------------------------------
  -h [trap,1]                      If no argument, print this message. If "trap" or 1 is given, print
                                   TRAP help.

  -i IFC_SPEC                      Specification of interface types and their parameters, see "-h trap"
                                   (mandatory parameter).

  -v                               Be verbose.

Environment variables that affects output:
------------------------------------------
  LIBTRAP_OUTPUT_FORMAT            If set to "json", information about module is printed in JSON format.

  PAGER                            Show the help output in the set PAGER.

Interface specifier -i

The -i parameter with the interface specifier IFC_SPEC (module -i IFC_SPEC) specifies modules interfaces - their types and parameters. The interface specifier has the following format:

<IFC 1>,<IFC 2>,...,<IFC N>

where <IFC x> looks like

<type>:<par1>:<par2>:...:<parN>.

<type> can be one of the following: t - TCP socket (for remote communication), u - UNIX socket (for local communication), b - blackhole to drop all messages during sending, f - File IFC.

Interfaces are separated by , and their parameters are separated by :. Input IFCs must be specified at first, output IFCs follow. Examples below show

Example:

module1 -i t:address:port1,t:port2

module1 uses TCP interfaces (for machine to machine communication). Let's assume it has one input and one output interface (number of input and output IFCs is given by programmer of the module). Therefore, input IFC will connect to address:port1 and output IFC will listen on port2.

TCP type of IFC expects mandatory parameter port and optionally, additional parameter address (as it is used in example). Default value of address is localhost.

Example:

module2 -i u:sock1,u:sock2

UNIX type of IFC expects unique identifier of the socket. For compatibility with TCP IFC, address can be specified but it has no effect!

Important findings:

  • TCP interface for machine to machine communication, UNIX-SOCKET for communication on the same machine
  • input interface behaves as a client, output interfaces behaves as a server

Detailed information and another examples of IFC_SPEC can be found in libtrap/README.ifcspec.md.

Interconnect two modules

Let´s try to interconnect logreplay and logger modules to see them communicate. Logreplay module has one output IFC. It reads CSV file created by logger module and sends it in UniRec format. Logger has one input interface and it logs all incoming UniRec records to standard output or into specified file in CSV format. These two modules can be interconnected using one input IFC and one output IFC.

use-cases/logger-repeater.sh can be used for the demonstration. With no parameter, it prints help with description. With generate parameter, the script creates a CSV file with header and 3 flow records (see use-cases/logger-repeater.sh#L53). Thereafter it executes logreplay and logger modules

logreplay -i "u:my_socket"` -f CSV_file

and

logger -i "u:my_socket" -t

Logreplay has one UNIX output IFC listening on my_socket and logger has one UNIX input IFC which connects to my_socket.

To see the effect, go to use-cases/ and execute the script:

./logger-repeater.sh generate

It should print exactly the same output as generated CSV tmp input (header and 3 records). In use-cases there are more examples with basic modules. logreplay is one of possible ways of getting data into the NEMEA system.

Other data sources are discussed later in Get flows to your system.

Deploy NEMEA

This section shows how to deploy NEMEA in four steps.

It only covers the basics needed to run the system in its default configuration. Keep in mind that NEMEA was designed as a very flexible framework, so every user can (and should) adjust the configuration of NEMEA modules to their own purposes.

1. Installation

First of all, the whole system (NEMEA Framework, Modules, Detectors and Supervisor) has to be installed. Follow installation instructions to install the system from RPM or from source codes.

2. Prepare configurations

To avoid manual control of the system, there is NEMEA Supervisor. It is a central management and monitoring tool of the system and it takes care of running modules according to a specified XML configuration.

We need to prepare XML configuration file for Supervisor. Fortunately, almost everything is already done.

After installation (from RPM or from source codes with recommended configure parameters), there are 2 important paths with configurations:

  • /ush/share/nemea-supervisor/ - contains default prepared XML configuraions of all NEMEA modules (like nemea-supervisor/configs/)
  • /etc/nemea/ - contains XML configuration file for Supervisor and directories with used modules configurations (they are empty after installation)

Note: these two paths depend on datarootdir and sysconfdir parameters of the configure script during the installation.

The only thing we have to do is this (probably with sudo / root):

cp -r /usr/share/nemea-supervisor/*/ /etc/nemea

After this command, supervisor will use default configurations of the modules. It is shown in nemea-supervisor/configs/supervisor_config_template.xml.in#L8 that the paths from sysconfdir (/etc/nemea/ in our case) are included in the configuration file. For detailed information about supervisor configuration see README of Supervisor.

3. Start and control modules

Once the configurations are prepared, modules can be managed by Supervisor. It can be easily started as a systemd service with

service nemea-supervisor start (recommended, probably with root / sudo)

or manually

/usr/bin/nemea/supervisor --daemon -T /etc/nemea/supervisor_config_template.xml -L /var/log/nemea-supervisor Note: manual approach does not change UID that supervisor runs with. Contrary, using service, NEMEA runs as nemead UID and nemead GID.

See all service commands in README and all program parameters with /usr/bin/nemea/supervisor -h. You can also check whether the process is running or not with ps -ef | grep supervisor. If Supervisor has not started successfully, it should print error info directly to system log (in case of service), which can be browsed with journalctl -xe, or to stdout (in case of manual start). Runtime errors and events can be found in supervisor_log file located in the -L directory (/var/log/nemea-supervisor by default).

Now we can connect to running supervisor with supervisor client simply with command supcli. The menu with options is described in detail in README. After pressing number 4 and enter, it prints current status of the system. By default, all detectors and loggers (except flow_meter logger) should be enabled and running.

The modules are running, but they don't receive any data yet. We need to send some flow data to the system...

4. Get flows to your system

IPFIXcol

(recommended) Use IPFIXcol to collect NetFlow/IPFIX data from routers/probes and an IPFIXcol unirec plugin to re-send the data to NEMEA.

  • needed to install IPFIXcol and the plugin and to set up the routers/probes
  • default and recommended solution for production

FlowMeter

Use NEMEA internal flow exporter (flow_meter module).

  • it reads data directly from network interface (via libpcap), measures flows and export it to other NEMEA modules
  • simple, but not very performing solution (flow_meter was not designed for performance), suitable only for testing or very small networks
    • TODO: measure how much traffic can flow_meter handle and make recommendation what "very small network" means?

NfReader

NfReader reads nfdump files and sends flow records in UniRec format on its output TRAP interface.

LogReplay

LogReplay converts CSV format of data, from logger module to UniRec format and sends it to the output interface.

Create your own module in C

Important: Nemea-Framework has to be installed in advance. Follow installation instructions

Use Example module as a template

Let ~/mighty-module/ be the directory we want to develop our module in (replace path ~/mighty-module/ in all commands with another directory if needed) and mighty_module the name of our module. We will use example module as a template - copy the directory nemea-framework/examples/c/module/ to ~/mighty-module/.

In ~/mighty-module/configure.ac update the following lines

AC_INIT([example_module], [1.0.0], [traffic-analysis@cesnet.cz])
AC_CONFIG_SRCDIR([example_module.c])

with

AC_INIT([migty_module], [1.0.0], [YOUR EMAIL ADDRESS])
AC_CONFIG_SRCDIR([mighty_module.c])

In ~/mighty-module/Makefile.am update the following lines

bin_PROGRAMS=example_module
example_module_SOURCES=example_module.c fields.c fields.h
example_module_LDADD=-lunirec -ltrap

with

bin_PROGRAMS=mighty_module
mighty_module_SOURCES=mighty_module.c fields.c fields.h
mighty_module_LDADD=-lunirec -ltrap

Finally, execute

mv ~/mighty-module/example_module.c ~/mighty-module/mighty_module.c

to rename the source file.

Build the module

Execute the following commands in ~/might-module/:

  1. Let Autotools process the configuration files.
autoreconf -i
  1. Configure the module directory.
./configure
  1. Build the module.
make
  1. (Optional) Install the module. The command should be performed as root (e.g. using sudo).
make install

Code explanation

The example module already links TRAP (libtrap) and UniRec libraries. It is a simple module with one input and one output interface which receives on input inteface a message in UniRec format with two numbers and sends them together with their sum to output interface.

The code contains comments but here is the list of important operations:

Libtrap

Generated doxygen doc for module developers: https://rawgit.com/CESNET/Nemea-Framework/master/libtrap/doc/doxygen/html/index.html

Generated doxygen doc for libtrap developers: https://rawgit.com/CESNET/Nemea-Framework/master/libtrap/doc/devel/html/index.html

  1. Basic module information - specify name, description and number of input / output interfaces of the module
  2. Module parameters - define parameters the module accepts as program arguments
  3. Module info structure initialization - initialize a structure with information from the two previous points
  4. TRAP initialization - initialize module interfaces
  5. GETOPT macro - parse program arguments
  6. Main loop:
  7. TRAP and module info clean-up - free everything, libtrap finalization

UniRec

Generated doxygen doc: https://rawgit.com/CESNET/Nemea-Framework/master/unirec/doc/html/index.html

  1. UniRec fields definition - define data types and names of the fields which will be used in UniRec messages (both received and sent messages), e.g. uint32 PACKETS
  2. Templates creation - create UniRec templates separately for every interface (a template defines set of fields in the message) note: two input interfaces receiving same messages can use one template
  3. Output record allocation - allocate a memory for message sent via output interface
  4. Main loop (fields manipulation):
    • get field - get a value of specified field from received message according to UniRec template
    • set field - set a value of specified field in message which will be sent according to UniRec template
    • copy fields - copy values of fields in received message to fields in message which will be sent according to UniRec templates of both interfaces (only fields that are common for both interfaces are copied)
  5. UniRec cleanup - free everything, UniRec finalization

Execute the module

Module help

After executing ~/mighty-module/mighty_module -h, program prints help which contains information from module info structure:

  • module basic information - name, description, number of input / output interfaces
  • module parameters - short opt, long opt, description, argument data type
  • TRAP library parameters - parameters common for all modules using libtrap

Develop the module

Now just modify the algorithm in the main loop and the job is done :-)

Add new module to running configuration

This section is for those who has already deployed the system (Deploy NEMEA section) and wants to add their module to the running configuration. It can be done in 3 steps:

  1. Create a .sup config file for your module. You can use this empty template and fill it according to this example (example with comments).
  2. Add the new .sup file to directory included in the Supervisor configuration file. If you have used recommended parameters of the configure script during the installation, both the configuration file and the directories should be located in /etc/nemea, otherwise check the paths in the configuration file the Supervisor is running with. Than copy the file to one of the directories you want e.g. cp ./your_module.sup /etc/nemea/others.
  3. Connect to Supervisor using supcli command and select option 6 reload configuration. New module should be added and if the enabled flag is set to true, it should be also running.

For detailed information about Supervisor configuration see its README.

Further Information

Attribution

We kindly ask anyone using NEMEA for research and write an academic paper about it to cite NEMEA as follows:

@inproceedings{nemea16,
    author = {Tomas Cejka, Vaclav Bartos, Marek Svepes, Zdenek Rosa, Hana Kubatova},
    title = {NEMEA: A Framework for Network Traffic Analysis},
    booktitle = {12th International Conference on Network and Service Management (CNSM 2016)},
    year = 2016
}

NEMEA Related Publications