
The next stage of the VBA code deals with 'looping' each spot through a set of procedures
aimed at validating the analysis in itself, validating it against the governing Task, and
evaluating Custom expressions and Built-in expression in a logical sequence, before
proceeding to the Task-independent 'central processing of the U-Pb data.

Unfortunately, in the early sections of the code, Ludwig has made extensive use of the
numeric values assigned to Booleans (in
VBA,
TRUE
=
-1
and
FALSE
=
0), as array-
references (for a series of two-column, zero-addressed arrays). He sought to exploit the fact
that, numerically, FALSE = -FALSE, and that -TRUE = 1. No doubt this is extremely 'clever',
but it makes the code unnecessarily difficult to read and interpret. In this wiki, the original
'Booleans-as-indices' usage has been retained (to guard against the introduction of errors
during translation), but wherever possible, plain-English comments have been added in order
to clarify what is going on.

Some
Definitions

Most of these appear in the VBA code, although they have been extended and reworded in
places, for clarity.

Integer piSpotNum (range from 1 to total number of spots analysed) is the index of the
total vector of Spots, in time sequence.
Integer vector piaNumSpots is a zero-addressed, two-element vector containing counts
of the number of analyses by type. piaNumSpots[0] = number of Sample spots in the run
(91 in demo XML); piaNumSpots[1] = number of Reference
206/238
material spots in the
run (23 in demo XML).
Integer array piaSpots is a two-row array in which the rows are zero-addressed (range 0
to 1) but the columns are not (range 1 to max(piaNumSpots) i.e. 91 in demo XML). The
first row (i.e. piaSpots[0, x]) contains the index numbers (i.e piSpotNum values) for each
Sample spot in the run; the second row (i.e. piaSpots[1, x]) contains the index numbers
(i.e piSpotNum values) for each Reference
206/238
material spot in the run. Unused
elements in the shorter of the two rows default to zero.
Integer vector piaSpotIndx is a zero-addressed, two-element vector containing the index
of piaSpots[w, x] of the current spot being processed. piaSpotIndx[0] = piaSpots[0, x]
when a Sample spot is being processed, and piaSpotIndx[1] = piaSpots[1, x] when a
Reference
206/238
material spot is being processed.
Integer vector piaSpotCt is a zero-addressed, two-element vector containing counts of
the number of analyses processed
so
far. piaSpotCt[0] = number of Sample spots
processed so far; piaSpotCt[1] = number of Reference
206/238
material spots
processed so far.

Sq2.50 Procedure Pt 2

Paraphrased
Code

pbStd	=	FALSE		

"Start of Reference Material-Sample Loop":

Do	--Start	of	Loop	A		
		pbStd	=	(pbStd	=	FALSE)	Or	(pbStdsOnly	=	TRUE)		
		--The	first	time	through	Loop	A,	this	sets	pbStd	=	TRUE,
		--in	which	case	integer/index	"[-pbStd]"	=	1		

		pbDone	=	FALSE		

		Do	--Start	of	Loop	B	("first	loop	of	spots")		

				Do	--Start	of	Loop	C	(counting,	and	"basic"	parsing	of	spot)		

						piaSpotCt[-pbStd]	=	1	+	piaSpotCt[-pbStd]		
						piaSpotIndx[-pbStd]	=	1	+	piaSpotIndx[-pbStd]		
						piSpotNum	=	piaSpots[-pbStd,	piaSpotIndx[-pbStd]]		

						ParseRawData	piSpotNum,	TRUE,	IgnoredChangedRunTable,	DateStr,	TRUE,
										FALSE,	TRUE		

See separately documented subroutine ParseRawData for the argument list. Note that (1)
FirstPass = TRUE here (as opposed to the prior call of ParseRawData in GetConcStdData,
documented in Sq2.50 Procedure Pt 1, and (2) the prior value of IgnoredChangedRunTable is
not specified, but this is ultimately irrelevant as it is set to FALSE near the start of
ParseRawData anyway. The incomplete Loop C proceeds as follows:

						If	(IgnoredChangedRunTable	=	TRUE)	And	(SpotNscans	>	1)		
								MsgBox("Run	Table	changes	at	spot	number	"	&	StR[piSpotNum]
												&	"	--	terminating.")
								CrashEnd		
						End	If		

				Loop	Until	IgnoredChangedRunTable	=	FALSE	--End	of	Loop	C

Loop C usually only runs once because IgnoredChangedRunTable is usually FALSE
throughout. When it does get set to TRUE (via failure of a ParseRawData test), it still only runs
once, because CrashEnd is immediately triggered in the vast majority of cases. But note that
there seems to be a gap in the VBA code logic here, in the case where an analysis with

https://github.com/CIRDLES/ET_Redux/wiki/SHRIMP:-Sub-ParseRawData
https://github.com/CIRDLES/ET_Redux/wiki/Sq2.50-Procedure-Pt-1

SpotNscans
=
1 failed a ParseRawData test, resulting in IgnoredChangedRunTable = TRUE. It
looks like such an analysis could never escape Loop C… but I don't have any 'real data' to
test this.

The incomplete Loop B proceeds as follows:

				DateStr	=	psaSpotDateTime[piSpotNum]
				ParseTimedate	DateStr,	Seconds

ParseTimeDate is a Ludwig function designed to convert a date-string (DateStr) into its
representation as a number of seconds (Seconds) elapsed since the commencement of
calendar 1990 (seems arbitrary; presumably chosen because SHRIMP output was not
computerised prior to that). The incomplete Loop B proceeds as follows:

				If	FirstSecond	=	0
						FirstSecond	=	Seconds
				End	If

				plSpotOutputRw	=	1	+	plSpotOutputRw

In the following, 'CFs' reflects a Ludwig function best considered as 'Cell Fill with String', and
'CF' reflects 'Cell Fill'. In each case, the function appears to have three arguments: the row the
cursor is to be placed in, the column the cursor is to be placed in, and the value to be placed.
The incomplete Loop B proceeds as follows:

				CFs	plSpotOutputRw,	1,	psSpotName
				CFs	plSpotOutputRw,	piDateTimeCol,	DateStr
				CF	plSpotOutputRw,	piHoursCol,	Excel.Fixed((Seconds	-	FirstSecond)	/	3600,	3)

Excel.Fixed invokes the Excel spreadsheet function FIXED, which returns a text representation
of a number rounded to a specified number (3 here) of decimal places (e.g.
https://www.techonthenet.com/excel/formulas/fixed.php). The third of these three statements
calculates the 'Hours' value, as shown in the third column of processed SQUID-books, as a
double-precision number (to 3 decimal places) defining the time elapsed in the analytical
session since the commencement of the first
Reference
206/238
material analysis.

At the time the code was written, this was presumably supposed to rigorously reflect the first
analysis collected, chronologically. However, at Geoscience Australia (and probably

https://www.techonthenet.com/excel/formulas/fixed.php)

elsewhere), sessions rarely commence with an analysis of the Reference 206/238 material,
with the result that a small handful of spots have negative Hours values. This is not an
operational problem: the primary function of the Hours column is to provide easy chronological
sorting of any set of analyses and to provide an easy 'axis' for time-dependent
representations and calculations (e.g. X-Y plots where X is analytical session time, and
calculation of any associated X-Y regressions).

The incomplete Loop B proceeds as follows:

				GetRatios	Ratios(),	RatioFractErrs(),	False,	BadSbm()		
				PlaceRawRatios	plSpotOutputRw,	Ratios,	RatioFractErrs

This pair of statements 'gets and places' the 'isotope ratios' for this row (i.e. in the initial
instance, the first (chronological) analysis of the reference 206Pb/238U material). In addition to
the Spot Name, Spot Date/Time and Hours data placed previously by the CFs and CF
statements above, this pair of statements results in the placement of:

All spot-specific data harvested directly from the XML file (in SQUID 2.50, these are the
QT1Y and QT1Z bit-values, the Stage X, Stage Y and Stage Z positions, and the primary
beam intensity in nA).
BackgroundCps and all TotCps values calculated at the end of SHRIMP: Step 2
All RatioVal and RatioFractErr (the latter as percentage) values, as calculated for each
'ratio of interest' by SHRIMP: Step 4. Note that this does not include the results of any
Task expressions, as these calculations have not yet been performed!

The procedure then turns firstly to the custom expressions of the governing Task. This first
pass through the expressions is (I think) primarily aimed at finding which of the 'custom'
expressions requires evaluation as input to any of the 'built-in' expressions. The incomplete
Loop B proceeds as follows:

				For	EqNum	=	1	to	Task.Neqns	--Remember	'built-ins'	have	EqNum	<	0

						If	Switch.LA	=	FALSE	And	Switch.SC	=	FALSE

								If	Switch.FO	=	TRUE	Or	Switch.AR	=	TRUE	Or	piaEqnRats[EqNum]	=	0
										--Second	condition	is	redundant,	I	think

										Formulae	Task.EqnAsString[EqNum],	EqNum,	pbStd,	piaEqCol[pbStd,	EqNum]
										--to	be	documented/paraphrased	separately

										If	Switch.FO	=	FALSE
												EqnResu	=	Cells[SpotOutputRw,	piaEqCol[pbStd,	EqNum]]
										End	If

https://github.com/CIRDLES/ET_Redux/wiki/SHRIMP:-Step-2
https://github.com/CIRDLES/ET_Redux/wiki/SHRIMP:-Step-4

								Else	--essentially	equivalent	to	"If	Switch.NU	=	TRUE"

										EqnInterp	Task.EqnAsString[EqNum],	EqNum,	EqnRes,	EqnFerr,	1,	0,	TRUE		
										--See	separate	documentation	of	Sub	EqnInterp	for	argument	list

										EqnResu	=	StR(EqnRes)	--double-to-string	conversion
										EqnFerro	=	StR(100	*	EqnFerr)	--formal	construction	of	%err	from	Ferr
										CFs	plSpotOutputRw,	piaEqCol[pbStd,	EqNum],	EqnResu
										CFs	plSpotOutputRw,	piaEqECol[pbStd,	EqNum],	EqnFerro
										--Note	"piaEqCol"	vs	"piaEqECol"	in	the	last	two	lines

								End	If

						End	If

				Next	EqNum

		Loop	Until	piaSpotIndx[-pbStd]	=	piaNumSpots[-pbStd]	--End	of	Loop	B

This marks the end of the first loop through a set of spots (i.e either reference 206Pb/238U
materials or samples, depending on the stage of the processing. Note that Loop A is not yet
closed, and the next stage of the processing revisits the Task's Custom expressions, this time
looking at 'single-cell' (or 'single-array') results generated from columns of pre-existing data.
The incomplete Loop A proceeds as follows:

		plHdrRw	=	flHeaderRow[pbStd]
		--Fixed	index-number	of	header-row:	6	for	ref	206/238	material,	2	for	samples
		Frw	=	FirstDatRw[-pbStd]
		--First	data-row:	essentially	=	1	+	plHdrRw
		--(i.e.	7	for	ref	206/238	material,	3	for	samples)
		Lrw	=	LastDatRw[-pbStd]
		--Last	data-row:	essentially	=	piaNumSpots[-pbStd]	+	plHdrRw	(i.e.	for	demo	XML,
		--ref	206/238	material	=	23	analyses,	plHdrRw	=	6,	so	Lrw	=	29,	and	for
		--samples	=	91	analyses,	plHdrRw	=	2,	so	Lrw	=	93.

With Frw and Lrw defined, the next step is to place any 'single-cell' (or 'single-array')
expressions for which Switch.LA (i.e. 'LAst') = FALSE. The incomplete Loop A proceeds as
follows:

		For	EqNum	=	1	to	Task.Neqns	--Custom	expressions	only!

				If	Switch.LA	=	FALSE	And	((Switch.AR	=	TRUE	And	Switch.ARrows	=	1)	Or
						(Switch.SC	=	TRUE))	--logic	repaired	from	Ludwig;	see	below

						Formulae	Task.EqnAsString[EqNum],	EqNum,	pbStd,	Frw,	piaEqCol[pbStd,	EqNum]
						--to	be	documented/paraphrased	separately
				End	If

		Next	EqNum

The above If statement incorporates repairs to the conditions originally imposed by Ludwig:
his VBA code omitted "Switch.AR = TRUE And" under the assumption that this Boolean was
implied by a non-zero value for Switch.ARrows. Unfortunately, a bug in the Task Editor permits
the proliferation of non-zero values for Switch.ARrows and Switch.ARcols, even when
Switch.AR = FALSE, and the real presence of this prohibited combination permitted
expressions with Switch.AR = FALSE to satisfy the If condition (it is safe to say this was
unintended!). Consequences included 're-evaluation' of NU-switched expressions as FO-
switched (in the first data-row only), as observed by Jim Bowring in the 29 April 2017 iteration
of the 100142_ShowcaseTask… output.

Loop A remains unfinished, but now that the first loop through the spot-groups has been
completed (via Loop B and subsequent), it is time to reset the counters and prepare for the
second loop through the spots.

plSpotOutputRw	=	plHdrRw
piaSpotIndx[-pbStd]	=	piaStartSpotIndx[-pbStd]	-	1
piaSpotCt[-pbStd]	=	0

The second loop through the spot-groups encompasses the calculation and placement, row-
by-row, of the Daughter-Parent ratios/constants, using the built-in expressions. This will be
documented in Procedural Framework: Part 3.

Task
parameters: Every Task has two fundamental binary switches that control its function
and roles of its built-in expressions:
1) "Ratio of primary interest": The choices are 206Pb/238U (i.e. 'primary parent nuclide'
Booleans pbU = TRUE, pbTh = FALSE) or 208Pb/232Th (i.e. pbU = FALSE, pbTh = TRUE), and
exactly
one of these combinations must be chosen.
2) "Method for calculating secondary ratio": The choices are "Directly, via the reference zircon"
or "Indirectly, via 232Th/238U", and exactly
one must be chosen. SQUID 2.50 stores this as a
Boolean named Switch.DirectAltPD.

The first of these is self-explanatory (and 99+% of the time, it is 206Pb/238U, so pbU = TRUE,
and pbTh = FALSE). Note that 'built-in' EqNum = -1 always refers to the ratio of primary
interest, no matter which is chosen.

The secondary ratio is simply whichever of the two candidates was not chosen as the primary
ratio, and there are two ways in which it can be calculated. The first (but more rare!) is to
simply determine the secondary ratio directly, via calculation of calibration constants
analogous to those used for the primary ratio. In the case of zircon, this would entail
calculating a '208Pb/232Th calib. constant' alongside the 206Pb/238U calib. constant we are
already familiar with. The problem with this approach is usually the reference zircon: it is
unusual for any material to be perfectly fit for purpose in both the U-Pb and Th-Pb systems, as
the geochemical behaviour of U and Th are quite different in most geological environments,
and properly closed U-Th-Pb systems seem to be quite difficult to maintain in nature. If (and
only
if) the 'direct' method is employed, ' built-in' EqNum = -2 always refers to the ratio of
secondary interest, no matter which is chosen. If the 'direct' method is not selected, EqNum =
-2 is null, and EqNum = -3 will be non-null (see below).

The alternative (but more common!) method of calculating the secondary ratio is indirect, and
relies on the appropriate rearrangement of the general equation:

(208Pb/232Th)	=	(206Pb/238U)	*	(238U/232Th)	*	(208Pb/206Pb)	

Note that one of the first two ratios is independently accounted for (as the primary ratio of
interest, via EqNum = -1), and the other is the secondary ratio we are interested in evaluating.
In general, the fourth ratio is relatively easily measured, which means we can determine our
target ratio if we have a means of evaluating the third ratio. In the case of zircon, Williams et al.
(1996) formulated an empirical relationship that works well enough; it takes the (familiar) form:

232Th/238U	=	(0.03446	*	["254/238"]	+	0.868)	*	["248/254"]	

Sq2.50 Procedure Pt 3

where the ratios in square brackets represent isotopic "ratios of interest" measured directly via
SHRIMP. If (and
only
if) the 'indirect' method is employed, ' built-in' EqNum = -3 always
refers to the expression specifically governing 232Th/238U. If the 'indirect' method is not
selected, EqNum = -3 is null, and EqNum = -2 will be non-null (see above).

So in general, one of EqNum = -2 and EqNum = -3 will always be null, and it is possible for
both to be null, in the special case where only one system is being investigated (e.g. U-Pb
geochronology where no proxy for Th is being measured (e.g. a 'normal' zircon list of mass-
stations lacking the 248 (ThO) peak).

So, there are four permutations of the two binary switches, and they are all valid in an isotopic
sense:

Case 1: Primary ratio = 206Pb/238U, Switch.DirectAltPD = FALSE (this is the most
common in SHRIMP geochronology)
Case 2: Primary ratio = 206Pb/238U, Switch.DirectAltPD = TRUE
Case 3: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = FALSE
Case 4: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = TRUE

Iteration-specific
parameters
for
a
Task: The above relates to fundamental properties of an
individual Task. There are a series of auxiliary settings, applied to a Task solely for a specific
iteration of its use. In theory, these auxiliary settings should not interact with the fundamental
Task properties… in practice, the way SQUID 2.50 is constructed, there is some overlap.

We have already dealt with two of these 'auxiliary' settings:
1) SBM-normalisation (on or off), and
2) Isotope-ratio calculation (weighted average or linear regression)

A third, which unfortunately does interact with the four Cases above, is the choice of 'index
isotope'. The 'index isotope' refers to the identity of the isotope of Pb used to calculate the
proportion of non-radiogenic Pb present in any given analysis, and perform the appropriate
correction. The two most-frequently used options are 204Pb and 207Pb, as neither are used in
the fundamental daughter-parent ratios that form the basis of U-Th-Pb geochronology. SQUID
2.50 does offer a third option: 208Pb. Note, however, that this option is not available to any
Task involving direct calculation of a 208Pb/232Th calibration constant (irrespective of
whether 208Pb/232Th is the primary or secondary ratio), and this restriction rules out Cases 2-
4. As a result, when index isotope is added to the permutations, there are nine valid
combinations requiring consideration:

Case 1a: Primary ratio = 206Pb/238U, Switch.DirectAltPD = FALSE, index isotope =
204Pb
Case 1b: Primary ratio = 206Pb/238U, Switch.DirectAltPD = FALSE, index isotope =
207Pb

Case
1c: Primary ratio = 206Pb/238U, Switch.DirectAltPD = FALSE, index isotope =
208Pb
Case 2a: Primary ratio = 206Pb/238U, Switch.DirectAltPD = TRUE, index isotope = 204Pb
Case 2b: Primary ratio = 206Pb/238U, Switch.DirectAltPD = TRUE, index isotope = 207Pb
Case 3a: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = FALSE, index isotope =
204Pb
Case 3b: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = FALSE, index isotope =
207Pb
Case 4a: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = TRUE, index isotope =
204Pb
Case 4b: Primary ratio = 208Pb/232Th, Switch.DirectAltPD = TRUE, index isotope =
207Pb

Traditionally, SQUID 2.50 requires the user to select a single index isotope, and the
calculations for one of the nine permutations above are carried out. In general, I think it would
be better if, once the Case number is established from the binary switch settings, the
calculations were carried out for all valid index isotopes for that Case. This would save the
user needing to test each index isotope via sequential iterations of data reduction (as SQUID
2.50 currently requires).

The superset of calculatable parameters, identified by column-header, is given below. In all
cases, these are row-by-row calculations aimed at filling cells in an array where the rows
represent individual analyses, as per the StandardData sheet produced by SQUID 2.50. Note
that no single data-reduction will ever calculate all of these: every Case will exclude some of
them. The parameters are grouped in the list below, to try and highlight some of the data
structure.

Calibration
constants
uncorrected
for
common
Pb

UncorrPb/Uconst
UncorrPb/Uconst %err
UncorrPb/Thconst
UncorrPb/Thconst %err

Pb/U
calibration
constants
corrected
from
common
Pb

4-corr206Pb/238Ucalibr.const
4-corr206Pb/238Ucalibr.const %err
4-corr206Pb/238U Age(Ma)
4-corr206Pb/238U Age(Ma) ±1s
7-corr206Pb/238Ucalibr.const
7-corr206Pb/238Ucalibr.const %err

7-corr206Pb/238U Age(Ma)
7-corr206Pb/238U Age(Ma) ±1s
8-corr206Pb/238Ucalibr.const
8-corr206Pb/238Ucalibr.const %err
8-corr206Pb/238U Age(Ma)
8-corr206Pb/238U Age(Ma) ±1s

Pb/Th
calibration
constants
corrected
for
common
Pb

4-corr208Pb/232Thcalibr.const
4-corr208Pb/232Thcalibr.const %err
4-corr208Pb/232Th Age(Ma)
4-corr208Pb/232Th Age(Ma) ±1s
7-corr208Pb/232Thcalibr.const
7-corr208Pb/232Thcalibr.const %err
7-corr208Pb/232Th Age(Ma)
7-corr208Pb/232Th Age(Ma) ±1s

Geochemical
parameters

ppmU
ppmTh
232Th/238U
232Th/238U %err

Common
and
radiogenic
206Pb
and
208Pb

4-corr%com206
7-corr%com206
8-corr%com206
4-corr%com208
7-corr%com208
4-corr208Pb/206Pb
4-corr208Pb/206Pb %err
7-corr208Pb/206Pb
7-corr208Pb/206Pb %err

204Pb
overcounts
assessed
via
207Pb
and
208Pb

204overcts/sec(fr. 207)
204overcts/sec(fr. 208)
204/206(fr. 207)

204/206(fr. 207) %err
204/206(fr. 208)
7-corr206Pb/238Uconst.delta%
8-corr206Pb/238Uconst.delta%

Dates
and
Concordia
data

4-corr207Pb/206Pbage
4-corr207Pb/206Pbage ±1s
4-corr207Pb/206Pb
4-corr207Pb/206Pb %err
4-corr207*/235
4-corr207*/235 %err
4-corr206*/238
4-corr206*/238 %err
4-corr errcorr
7-corr206*/238
7-corr206*/238 %err
8-corr207Pb/206Pbage
8-corr207Pb/206Pbage ±1s
8-corr207Pb/206Pb
8-corr207Pb/206Pb %err
8-corr207*/235
8-corr207*/235 %err
8-corr206*/238
8-corr206*/238 %err
8-corr errcorr

With this 'Task-anatomy' defined, we can rejoin the code. The next phase of Loop A is aimed
at the evaluation of many of the columns listed above, with emphasis on the role of the Case-
number in defining the exact expression used.

Loop A remains unfinished, but now that the first loop through the spot-groups has been
completed (via Loop B and subsequent), it is time to reset the counters and prepare for the
second loop through the spots. This second loop encompasses the calculation and
placement, row-by-row, of the Daughter-Parent ratios/constants, using the built-in
expressions.

Do	--Start	of	Loop	D	("second	loop	of	spots":	calculation	and	placement,	row-by-row,		
			--of	the	Daughter-Parent	ratios/constants)		

		Do	--Start	of	Loop	E	(counting,	and	"basic"	parsing	of	spot,	as	per	Loop	C)		
				piaSpotCt[-pbStd]	=	1	+	piaSpotCt[-pbStd]		

				piaSpotIndx[-pbStd]	=	1	+	piaSpotIndx[-pbStd]		
				piSpotNum	=	piaSpots[-pbStd,	piaSpotIndx[-pbStd]]		

				ParseRawData	piSpotNum,	FALSE,	IgnoredChangedRunTable
		Loop	Until	IgnoredChangedRunTable	=	FALSE	--End	of	Loop	E		

See separately documented subroutine ParseRawData for the argument list. Note that (1)
FirstPass = FALSE here (as opposed to the prior call of ParseRawData in Sq2.50 Procedure Pt
2, and (2) the prior value of IgnoredChangedRunTable is not specified, but this is ultimately
irrelevant as it is set to FALSE near the start of ParseRawData anyway. (I am not certain of the
purpose of Loop E, given that every analysis that reaches this point has already been through
Loop C.)

Ludwig
Q2

SQUID 2.50 proceeds by determining how many Daughter-Parent ratios require direct
evaluation. If Switch.DirectAltPD = TRUE, then piNumDauPar = 2 (i.e. calibration constants
must be calculated for both 206Pb/238U and 208Pb/232Th); otherwise, piNumDauPar = 1.
SQUID 2.50 starts by eliminating the trivial case where the user has specified
Switch.DirectAltPD = TRUE but provided no expression for evaluation of the calibration
constant of the secondary ratio. The incomplete Loop D proceeds as follows:

		plSpotOutputRw	=	1	+	plSpotOutputRw		
		plOutputRw	=	plSpotOutputRw
		MaxDPnum	=	piNumDauPar		

		If	MaxDPnum	=	2	AND	Switch.DirectAltPD	=	TRUE	AND	Task.Eqns[-2]	=	""		
				MaxDPnum	=	1		
		End	If		

SQUID 2.50 then proceeds to evaluate as many calibration constants as are needed (at least
one, via EqNum = -1, is mandatory), using the EqnInterp subroutine documented previously,
and placing the result in the appropriate column. SQUID 2.50 does this slightly awkwardly,
because it always stores the primary ratio calibration constant in the same place; it just applies
different column-header names depending on whether the primary ratio is 206Pb/238U or
208Pb/232Th. I think it would be a better idea to simply have all the relevant columns
permanently available and named, calculate whichever values are necessary/permitted, and
then designate which of the calibration constants is the primary one.

The following code-block populates at least some of UncorrPb/Uconst, UncorrPb/Uconst
%err, UncorrPb/Thconst, UncorrPb/Thconst %err, depending on binary switch settings. Note

that the EqnInterp-related arithmetic has already been performed (without context) in
Calamari, and the result has been output under the name '206/238 Calib Const'.

		For	DauParNum	=	1	To	MaxDPnum
				EqnInterp	Task.Eqns[-DauParNum],	-DauParNum,	EqnRes,	EqnFerr,	1,	TmpRej

				--Next	'If'	simply	identifies	sheets/columns	for	placing	calculated	values
				If	pbStd	=	TRUE		
						ValCol	=	piaStdUnCorrAcol[DauParNum]
						ErCol	=	piaStdUnCorrAerCol[DauParNum]		
				Else		
						ErCol	=	piaAeCol[DauParNum]		

						If	pbCanDriftCorr	=	TRUE	--beyond	current	scope	of	SQUID	3.0!
								ValCol	=	piUnDriftCorrConstCol		
						Else		
								ValCol	=	piaAcol[DauParNum]		
						End	If		
				End	If

				--Now	place	EqnRes	in	ValCol,	and	EqnFerr	(as	%)	in	ErCol
				CFs	plSpotOutputRw,	ValCol,	fsS(EqnRes)	--corrects	Ludwig's
								CDbl-CSng-CDbl	error		
				--fsS	is	a	Ludwig	function	that	converts	a	double-precision	number
								to	a	string.		
				--It	is	not	obvious	why	fsS	is	employed	here.		

				If	EqnRes	<>	SQUID_Error_Value	AND	EqnFerr	<>	SQUID_Error_Value
						CFs	plSpotOutputRw,	ErCol,	fsS(100	*	EqnFerr)	--corrects	Ludwig's
										CDbl-CSng-CDbl	error		
						--fsS	is	a	Ludwig	function	that	converts	a	double-precision	number
										a	string.		
						--It	is	not	obvious	why	fsS	is	employed	here.		
				End	If

				If	DauParNum	=	1		
						piWLrej	=	TmpRej		
				End	If
		Next	DauParNum

The next step is to populate row-by-row the concentrations of the 'primary element' ppm
values. This will populate at
most
one of the columns ppmU, ppmTh:

		StdElePpm	pbStd,	plSpotOutputRw	--subroutine	documented	separately		

Ludwig
Q3

Next is a test to see if the run-table contains both U-bearing peaks and Th-bearing peaks. If
so, then it is possible (but not mandatory), based on the 'primary element' ppm values, to
calculate 232Th/238U, as well as 'secondary element' ppm values.

SQUID 2.50 uses the Booleans pbHasU and pbHasTh to represent the existence of U- and Th-
bearing peaks in the run-table of interest. The values are assigned in a fairly unsophisticated
way: pbHasU = TRUE if there is a mass-station in the run-table with a nominal mass of 238 (=
U) and/or 254 (= UO) and/or 270 (= UO2), and likewise PbHasTh = TRUE if there is a mass-
station in the run-table with a nominal mass of 232 (= Th) and/or 248 (= ThO) and/or 264 (=
ThO2). These tests are a good first approximation, but should not be the sole determinant of
the Boolean values (as they currently are in SQUID 2.50).

A more rigorous approach for SQUID 3.0 would be to display check-boxes next to each mass-
station on the run-table screen (one for 'U-bearing' and one for 'Th-bearing'), each ticked
TRUE or FALSE according to the above criteria, but user-editable in case of unforeseen
nominal masses for U- and/or Th-bearing mass-stations. Then pbHasU could be an
aggregated Boolean i.e. set to TRUE if one or more of the mass-station-specific 'U-bearing'
check-boxes was marked; likewise pbHasTh would be set to TRUE if one or more of the
mass-station-specific 'Th-bearing' check-boxes was marked. Feedback to this effect could be
displayed on the run-table screen.

The incomplete Loop D proceeds:

		If	pbHasTh	=	TRUE	AND	pbHasU	=	TRUE		

				If	piNumDauPar	=	1		--"number	of	daughter-parents"
				--i.e.	Switch.DirectAltPD	=	FALSE	and	therefore		
				--Secondary	U-Th/Pb	expression	(EqNum	=	-2)	is	NULL		

						ThUfromFormula	pbStd,	plSpotOutputRw		
						--calculates	232Th/238U	using	EqNum	=	-3
						--Calamari	already	does	this,	without	context
						--subroutine	documented	separately		

						SecondaryParentPpmFromThU	pbStd,	plSpotOutputRw
						--calculates	'secondary	element'	ppm	value,	using	combination
						--of	'primary	element'	value	and	calculated	232Th/238U
						--subroutine	documented	separately		

The 'Else' of this unfinished 'If' relates to piNumDauPar = 2, which corresponds to
Switch.DirectAltPD = TRUE and therefore Secondary U-Th/Pb expression (EqNum = -2) = NOT
NULL. It predominantly caters for Sample (rather than Standard) analyses, for which 'total
206/238' (as well as 'total 238/206' when pbU = TRUE) and 'total 208/232' values are
calculated using the respective calibration constants.

From there, and irrespective of whether the analysis is Standard or Sample, 232Th/238U is
also calculated based on each pair of calibration constants (although Ludwig has noted these
expressions need to be re-evaluated later because 'column mean' values for the calibration
constants do not yet exist).

Finally, for Sample analyses only, the 'secondary element' ppm value is calculated, using the
combination of 'primary element' ppm value and calculated 232Th/238U. The incomplete 'If'
statement proceeds as follows:

		Else	--i.e.	if	piNumDauPar	=	2
		--i.e.	Switch.DirectAltPD	=	TRUE	and	therefore	Secondary		
		--U-Th/Pb	expression	(EqNum	=	-2)	is	NOT	NULL		

				If	pbStd	=	FALSE	--i.e.	sample	analysis		
						Tot68_82_fromA	plSpotOutputRw		
						--Produces	total	206/238	and	total	208/232	from		
						--calibration	constants	A(206/238)	and	A(208/232)		
						--subroutine	documented	separately		
				End	If		

				ThUfromA1A2	pbStd,	plSpotOutputRw,	TRUE	--following	from	Ludwig:		
				--NOTE:	must	recalc	later	because	WtdMeanA1/2	range	doesn't	yet	exist
				--subroutine	documented	separately		

				If	pbStd	=	FALSE	--i.e.	sample	analysis		
						SecondaryParentPpmFromThU	pbStd,	plSpotOutputRw		
						--subroutine	documented	separately			
				End	If		

		End	If

Ludwig
Q4

The next stage of the incomplete Loop D deals with Standard analyses ONLY, firstly by
evaluating 204 'overcounts' on a spot-by-spot basis, and secondly by applying a 'common-Pb
correction' to the calculated calibration constant value(s) for each spot (and augmenting the
calibration constant %err value for each spot, to reflect the additional uncertainty associated
with the 'common Pb correction').

The first part of Ludwig Q4 populates the following StandardData columns:

204overcts/sec(fr. 207)
204overcts/sec(fr. 208)
204/206(fr. 207)
204/206(fr. 207) %err

204/206(fr. 208)
7-corr206Pb/238Uconst.delta%
8-corr206Pb/238Uconst.delta%

The second part of Ludwig Q4 populates the following StandardData columns:

4-corr206Pb/238Ucalibr.const
4-corr206Pb/238Ucalibr.const %err
7-corr206Pb/238Ucalibr.const
7-corr206Pb/238Ucalibr.const %err
8-corr206Pb/238Ucalibr.const
8-corr206Pb/238Ucalibr.const %err
4-corr208Pb/232Thcalibr.const
4-corr208Pb/232Thcalibr.const %err
7-corr208Pb/232Thcalibr.const
7-corr208Pb/232Thcalibr.const %err

The incomplete Loop D proceeds as follows:

		If	pbStd	=	TRUE		

				If	Switch.ShowOverCtCols	=	TRUE	--SQUID	2.50	does	not	offer	this
				--Switch	as	a	User-option;	presumably	set	to	TRUE	by	default		

						OvercountColumns	(plSpotOutputRw)		
						--calculates	&	places	apparent	204	overcount	data		
						--subroutine	documented	separately
						--first	part	of	Ludwig	Q4	completed		

				End	If		

				--Second	part	of	Ludwig	Q4	commences:
				--correct	206/238	and/or	208/232	calibration	constants	for	common	Pb,	and		
				--augment	calibration	constant	%errs	to	reflect	uncertainty	related	to	correction		

				For	DauParNum	=	1	to	piNumDauPar		
				--i.e.	for	one	or	both	of	the	daughter-parent	combinations	that	can	be	calibrated	directly,		
				--check	to	see	if	the	system	(for	this	iteration)	is	Pb/U	or	Pb/Th,	by	setting	Boolean

						If	(pbU	=	TRUE	AND	DauParNum	=	2)	OR	(pbTh	=	TRUE	AND	DauParNum	=	1)		
								IsPbTh	=	TRUE		
						Else		
								IsPbTh	=	FALSE		
						End	If		

						--Now	calculate	common	Pb-corrected	calibration	constant	VALUES:		
						--piStdCorrType	=	0	means	'204-corrected'
						--piStdCorrType	=	1	means	'207-corrected'
						--piStdCorrType	=	2	means	'208-corrected'		

						--Traditionally	SQUID	2.50	requires	ONE	piStdCorrType	value,	but		
						--I	would	like	SQUID	3.0	to	calculate	ALL	piStdCorrType	values.		

						If	piStdCorrType	=	0	--	'204-corrected'		

								If	IsPbTh	=	TRUE		

										FinalTerm1	=	(1	-	["204/206"]	/	["208/206"]	*	sComm84)
														*	["UncorrPb/Thconst"]		
										--fills	column	["4-corr208Pb/232Thcalibr.const"]		

								Else		

										FinalTerm1	=	(1	-	["204/206"]	*	sComm64)	*	["UncorrPb/Uconst"]		
										--fills	column	["4-corr206Pb/238Ucalibr.const"]		

								End	If		

						Elseif	piStdCorrType	=	1	--	'207-corrected'		

								If	IsPbTh	=	TRUE		

										FinalTerm1	=	(1	-	["204/206(fr.	207)"]	/	["208/206"]	*	sComm84)
														*	["UncorrPb/Thconst"]		
										--fills	column	["7-corr208Pb/232Thcalibr.const"]		

								Else		

										FinalTerm1	=	(1	-	["204/206(fr.	207)"]	*	sComm64)	*	["UncorrPb/Uconst"]		
										--fills	column	["7-corr206Pb/238Ucalibr.const"]		

								End	If		

						Elseif	piStdCorrType	=	2	--	'208-corrected',	can't	use	Pb/Th	calibration	here

								FinalTerm1	=	(1	-	["204/206(fr.	208)"]	*	sComm64)	*	["UncorrPb/Uconst"]		
								--fills	column	["8-corr206Pb/238Ucalibr.const"]
								--typo	in	original	expression	now	corrected	(2018-03-17)

						End	If		

						PlaceFormulae	FinalTerm1,	plSpotOutputRw,	piaSacol[DauParNum]

						--Now	calculate	common	Pb-corrected	calibration	constant	ERRORS:		

						If	piStdCorrType	=	0	--	'204-corrected'		

								If	IsPbTh	=	TRUE		

										Term1	=	["UncorrPb/Thconst	%err"]^2	+
												(sComm84	/	(["208/206"]	/	["204/206"]	-	sComm84))^2
																*	["204/206	%err"]^2		
										FinalTerm2	=	sqrt(Term1)
										--fills	column	["4-corr208Pb/232Thcalibr.const	%err"]		

								Else		

										Term1	=	["UncorrPb/Uconst	%err"]^2	+
												(sComm64	/	(1	/	["204/206"]	-	sComm64))^2	*	["204/206	%err"]^2
										FinalTerm2	=	sqrt(Term1)
										--fills	column	["4-corr206Pb/238Ucalibr.const	%err"]		

								End	If		

						Elseif	piStdCorrType	=	1	--	'207-corrected'		

								If	IsPbTh	=	TRUE

										Term1	=	["UncorrPb/Thconst	%err"]^2	+		
												(sComm84	/	(["208/206"]	/	["204/206(fr.	207)"]	-	sComm84))^2	*
												(["208/206	%err"]^2	+	["204/206(fr.	207)	%err"]^2)
										FinalTerm2	=	sqrt(Term1)
										--fills	column	["7-corr208Pb/232Thcalibr.const	%err"]			

								Else

										Term1	=	["UncorrPb/Uconst	%err"]^2	+
												(sComm64	/	(1	/	["204/206(fr.	207)"]	-	sComm64))^2	*
												["204/206(fr.	207)	%err"]^2
										FinalTerm2	=	sqrt(Term1)
										--fills	column	["7-corr206Pb/238Ucalibr.const	%err"]			

								End	If

						Elseif	piStdCorrType	=	2	--	'208-corrected',	can't	use	Pb/Th	calibration	here
						--NOTE	that	it	is	also	necessary	for	calculated	232Th/238U	and	its	%err
										to	exist!		
						--Eqns	for	Term1	and	FinalTerm2	corrected	2017-12-31
						--Eqn	for	Term1	replaced	with	Term2,	and	FinalTerm2	RE-corrected	2018-03-19

								Term2	=	(sComm64	*	["UncorrPb/Uconst"]	*	["204/206(fr.	208)"]
																		/	["8-corr206Pb/238Ucalibr.const"])^2
								Term3	=	(["208/206"]	*	["208/206	%err"]	/
										(["208/206"]	-	StdRad86fact	*	["232Th/238U"]))^2		
								Term4	=	1	/	(["208/206"]	-	StdRad86fact	*	["232Th/238U"])	+		
										sComm64	/	(sComm84	-	sComm64	*	StdRad86fact	*	["232Th/238U"])
								Term6	=	(Term4	*	StdRad86fact	*	["232Th/238U"]	*	["232Th/238U	%err"])^2

								FinalTerm2	=	sqrt(["UncorrPb/Uconst	%err"]^2	+	(Term2	*	(Term3	+	Term6)))
								--fills	column	["8-corr206Pb/238Ucalibr.const	%err"]			

						End	If

						If	FinalTerm2	<>	""	--FinalTerm2	is	placed	in	the	"calib.const.	%err"	column

								PlaceFormulae	FinalTerm2,	plSpotOutputRw,	piaSaEcol[DauParNum]

						End	If

				Next	DauParNum		

		End	If	--end	of	Ludwig	Q4		

		plHdrRw	=	flHeaderRow[pbStd]
		--just	returns	the	cursor	to	the	top	row	of	StandardData	data,	I	think

Loop	Until	piaSpotIndx[-pbStd]	=	piaEndSpotIndx[-pbStd]	--End	of	Loop	D		

Loop A still remains unfinished, but now that the second loop through the spot-groups has
been completed (via Loop D and subsequent), it is time to do the rest of the simple row-by-
row calculations, followed by preparations for calculation of the key "column mean" values,
which are in turn used in other row-by-row expressions. The remainder of Loop A,
encompassing these processes, is documented in Sq2.50 Procedural Framework: Part 4.

SQUID
2.50
Sub:
StdElePpm

The subroutine evaluates, on an analysis-by-analysis basis, the concentration of the 'primary'
parent element (usually U, but can be Th, and it is also possible for the user to specify 'No U or
Th concentration', whereupon this subroutine is exited).

Usage

StdElePpm(Std, SpotRow)

Mandatory
variables

Std: Boolean input which dictates, for each specific invocation of StdElePpm, whether the
analysis is that of a 'primary-ratio' reference material, or not.

SpotRow: Index number of the output-row, to which the value calculated by StdElePpm is to
be written.

Definition
of
variables

Values
of
type
Boolean
Std

Values
of
type
Integer
c, p, SpotRow

Values
of
type
Double
v, pdMeanParentEleA, pdConcStdPpm

Vectors
comprising
values
of
type
Double
BkrdCPS, count_time_sec, NetCps, TotCps

Arrays
comprising
values
of
type
Double
AbsNetPkCps, NetPkCps, PkCounts, PkCps, PkFerr, SBMCounts, SBMCps, time_stamp_sec,
TrimMass, TrimTime

Arrays
comprising
values
of
type
String
psaSpotNames, psaSpotDateTime

The function of the subroutine is paraphrased as follows:

--Recalling	that	Std	=	-1	if	TRUE,	0	if	FALSE,	use	
--p	and	c	to	define	sheet/column	for	output
p	=	-Std		

If	pbUconcstd	=	TRUE	--if	user-defined	primary	element	is	U		
		c	=	piaPpmUcol[p]				
Else		
		c	=	piaPpmThcol[p]			
End	If		

--Note	that	if	user	selected	"No	U	or	Th	Std",	then	c	=	0:		
If	c	=	0		
		Exit	Sub		
End	If

If the code reaches this point, then the arithmetic is performed by reference to
pdMeanParentEleA, which was calculated in Sq2.50 Procedure Pt 1. Note that piLwrIndx
simply refers to the EqNum with the lowest numeric value i.e. piLwrIndx = - 4 (corresponding
to the expression for the 'primary parent' concentration constant) for SQUID 2.50 Tasks for U-
Th-Pb geochronology. (Ludwig
uses
the
variable
piLwrIndx
because
SQUID
2.50
allows
'non-
geochronology'
Tasks,
which
are
characterised
by
the
absence
of
all
'built-in'
expressions;
in
those
Tasks
(which
are
outside
our
scope),
all
user-defined
expressions
are
'custom'
and
piLwrIndx
=
1). The code proceeds:

If	pdMeanParentEleA	>	0	AND	pdMeanParentEleA	<>	SQUID_Error_Value
		--define	the	address	for	the	output:		
		piSpotOutputCol	=	piaEqCol[Std,	piLwrIndx]		

		EqnInterp	Task.Eqns[piLwrIndx],	piLwrIndx,	v,	0,	1,	0		
		--Note	that	Calamari	already	does	this	arithmetic,	without	context		

		If	v	=	SQUID_Error_Value		
				Exit	Sub		
		End	If		

		--pdConcStdPpm	is	the	reference/model	ppm	value	for	the	primary	element,
		--in	the	concentration	reference	material.	In	our	demo	XML,	that	material		
		--has	the	prefix	'M257',	and	its	model	U	value	is	840	ppm.		

		v	=	v	/	pdMeanParentEleA	*	pdConcStdPpm		
End	If		

If	v	>	0		
		--CFs	fills	the	target	cell	
		--fsS	converts	double-precision	number	to	string	(not	sure	why)
		CFs	SpotRow,	c,	fsS(v)		

End	If		

End	Sub		

SQUID
2.50
Sub:
ThUfromFormula

The subroutine evaluates, on an analysis-by-analysis basis, the 232Th/238U, using the "built-
in" expression for 232Th/238U specified by Task EqNum = -3.

Usage

ThUfromFormula(Std, SpotRow)

Mandatory
variables

Std: Boolean input which dictates, for each specific invocation of ThUfromFormula, whether
the analysis is that of a 'primary-ratio' reference material, or not.

SpotRow: Index number of the output-row, to which the value calculated by ThUfromFormula
is to be written.

Definition
of
variables

Values
of
type
Boolean
Std

Values
of
type
Integer
c, p, SpotRow

Values
of
type
Double
MeanV, MeanVferr

The function of the subroutine is paraphrased as follows:

--Recalling	that	Std	=	-1	if	TRUE,	0	if	FALSE,	use	
--p	and	c	to	define	sheet/column	for	output,	and	then	
p	=	-Std		
c	=	piaTh2U8col[p]				
piSpotOutputCol	=	piaEqCol[Std,	-3]		

The code proceeds, apparently without any error-check on the calculated value of MeanV:

EqnInterp	Task.Eqns[-3],	-3,	MeanV,	MeanVferr,	1,	1		
--Note	that	Calamari	already	does	this	arithmetic,	without	context		
--CFs	fills	the	target	cell	
--fsS	converts	double-precision	number	to	string	(not	sure	why)
CFs	SpotRow,	c,	fsS(MeanV)		

There is, however, an error-check on MeanVferr, as follows:

If	(Std	=	FALSE	OR	piaTh2U8ecol[1]	>	0)	AND		
		(MeanV	<>	SQUID_Error_Value)	AND
		(MeanVferr	<>	SQUID_Error_Value)

		--CFs	fills	the	target	cell	
		--fsS	converts	double-precision	number	to	string	(not	sure	why)
		CFs	SpotRow,	c	+	1,	fsS(100	*	MeanVferr)

End	If		

End	Sub		

SQUID
2.50
Sub:
SecondaryParentPpmFromThU

The subroutine evaluates, on an analysis-by-analysis basis, the 'secondary parent' (Th or U)
ppm concentration, based on a previously-calculated 'primary parent' (U or Th) ppm value and
a previously-calculated 232Th/238U value. (U-Pb geochron Tasks only.)

Note that unlike other SQUID 2.50 expressions implemented thus far, SQUID 2.50 constructs
this result as an 'Excel equation' that is placed in the target cell via PlaceFormulae. In Excel,
this obviously means the output updates whenever any of the inputs update. Given that
SQUID 3.0 won't have these sorts of 'moving parts', perhaps it's best if I simply specify the
expression constructed by PlaceFormulae.

Usage

SecondaryParentPpmFromThU(Std, SpotRow)

Mandatory
variables

Std: Boolean input which dictates, for each specific invocation of
SecondaryParentPpmFromThU, whether the analysis is that of a 'primary-ratio' reference
material, or not.

SpotRow: Index number of the output-row, to which the value calculated by
SecondaryParentPpmFromThU is to be written.

Definition
of
variables

Values
of
type
Boolean
Std

Values
of
type
Integer
c, p, SpotRow

Values
of
type
String
t1

The function of the subroutine is paraphrased as follows:

--Recalling	that	Std	=	-1	if	TRUE,	0	if	FALSE,	use	
--p	and	c	to	define	sheet/column	for	output,	and	then	
p	=	-Std		

If	pbUconcStd	=	TRUE	--i.e.	concentration	material	constrains	U(ppm)
		c	=	piaPpmThcol[p]	--i.e.	'secondary	element'	column
Elseif	pbThconcStd	=	TRUE	--i.e	concentration	material	constrains	Th(ppm)
		c	=	piaPpmUcol[p]	--i.e.	'secondary	element'	column		
End	If		

Note that the above expression from c is constructed so that c is only assigned if pbUconcStd
= TRUE OR pbThconcStd = TRUE. In SQUID 2.50, it is possible to specify (via checkbox) "No
U or Th concentration standard", which presumably sets both pbUconcStd = FALSE AND
pbThconcStd = FALSE, and which in this situation would presumably ensure that c is not
calculated. And in fact, the subroutine only continues if the three relevant columns have been
satisfactorily identified:

If	piaTh2U8col[p]	>	0	AND	piaPpmUcol[p]	>	0	AND	piaPpmThcol[p]	>	0		
--i.e.	column-indices	for	232Th/238U	AND	Uppm	AND	Thppm	(respectively)		
--are	non-zero	(i.e.	they	exist),	then	define	string	t1:		

		If	pbUconcStd	=	TRUE		
				t1	=	["ppmU"]	*	["232Th/238U"]	/	1.033
		ElseIf	pbThconcStd	=	TRUE		
				t1	=	["ppmTh"]	/	["232Th/238U"]	*	1.033		
		End	If		
		--see	notes	about	'magic	number'	1.033	below

		PlaceFormulae	"=	t1",	SpotRow,	c
		--subroutine	placing	formula-string	in	cell	defined	by		
		--row	SpotRow	and	column	c		
End	If		

End	Sub

The placed formula contains a mysterious 'magic number' 1.033, which will need to be
retained in the initial instance, for the purpose of SQUID 2.50 vs SQUID 3.0 comparisons. But I
have done some work unpacking it, and it appears to be the product of (1) the ratio of the
masses of the U and Th 'isotopes of interest' (i.e. 238 and 232 respectively), and (2) the
abundance of 238U as a proportion of 'total' U(ppm), which in turn reflects a 'constant' value
for present-day 238U/235U of 137.88 (e.g. Steiger & Jaeger, 1977). Basically:

1.033	=	(238/232)	*	[Present	238U/235U]	/	([Present	238U/235U]	-	1)
--where	[Present	238U/235U]	=	137.88.		

The snag is that no record survives regarding how Steiger & Jaeger (1977) arrived at 137.88,
and more recent triple-spiked ID-TIMS measurements (Hiess et al., 2012) instead indicate a
value near 137.82. The main point is that the user should be able to specify their preferred
value of [Present 238U/235U], and therefore that 'magic numbers' like 1.033 should not be
hard-wired into the production version of SQUID: the above expansion should be used
instead.

SQUID
2.50
Sub:
Tot68_82_fromA

The subroutine evaluates, on an analysis-by-analysis basis (and for SAMPLE spots only), the
total (calibrated) values for both 206Pb/238U and 208Pb/232Th, using the values for both
206Pb/238U calibration constant and 208Pb/232Th calibration constant, evaluated using the
"built-in" expressions specified by Task EqNum = -1 and EqNum = -2.

Note that this subroutine is not traversed unless Switch.DirectAltPD = TRUE and
piNumDauPar = 2 (i.e. it applies to Sample analyses in Perm2 and Perm4 only)

Usage

Tot68_82_fromA(SpotRow)

Mandatory
variables

SpotRow: Index number of the output-row, to which the value calculated by Tot68_82_fromA
is to be written.

Definition
of
variables

Values
of
type
String
t1, t2, t3

Values
of
type
Integer
DpNum, m, SpotRow, w

The function of the subroutine is paraphrased as follows (remembering that piNumDauPar is
always 2 by the time we reach this point: it has been specified by the enclosing If statement
(within 'Ludwig Q3' of Squid2.50 Procedural Framework: Part 3):

For	DpNum	=	1	To	piNumDauPar

		If	(pbU	=	TRUE	AND	DpNum	=	1)	OR	(pbTh	=	TRUE	AND	DpNum	=	2)		
				w	=	1		
				m	=	piPb6U8_totCol	--i.e.	write	to	column	["Total	206Pb/238U"]
		Else		
				w	=	2		
				m	=	piPb8Th2_totCol	--i.e.	write	to	column	["Total	208Pb/232Th"]

		End	If		

There is a slight complication here, arising from the more restricted function of SQUID 2.50
relative to that envisaged/ implemented for SQUID 3.0. You will recall that for SQUID 3.0, I
requested all the permissible index-isotope ratio-combinations to be calculated for each
permutation (e.g. ["206Pb/238U calibration constant"] in Perm1 can have 204corr-, 207corr-,
and 208corr- variants; whereas the range of calibration constants calculated in Perm2, Perm3
and Perm4 can only have 204corr- and 207corr- variants: see the set of Cases in the Intro of
the Procedural Framework Part 3).

The issue is that SQUID 2.50 calculates only one (pre-specified by 'index isotope') variant of
each calibration constant, so there is never any ambiguity when performing calculations on
those values, and using the outputs of those calculations in other expressions downstream.
Obviously, such ambiguity does exist in our SQUID 3.0 implementation, so we need to resolve
it (at least in a preliminary way) via a similar user-specified control (which would live on the
same screen as the controls for SBM-normalisation and SpotAvg vs LinReg) called 'Preferred
index isotope', with options 204Pb, 207Pb, 208Pb (strictly, the availability of 208Pb on this list
should hinge on whether the selected Task is Perm1-type or not; something to look at later).
Down the track, it would be good if there was scope for the user to switch 'preferred index
isotope' after the StandardData and SampleData sheets are produced, but we can talk about
that later too.

This is only a minor change - I still want you to "calculate everything" as you have been doing.
The aim of the control is solely to specify which specific permutation should be propagated to
downstream calculations, in a bid to minimise the number of pointless permutations we
generate downstream.

The (paraphrased) code continues:

		If	w	=	1	--then	we	are	dealing	with	the	206Pb/238U	system,	and		
				--t1	and	t2	refer	to	calculations	that	use	'preferred'	index		
				--isotope	X	to	generate	["X-corr206Pb/238Ucalibr.const"]:		

				t1	=	StandardData!WtdMeanA1	--calculated	by	Sub	WtdMeanAcalc
				t2	=	StandardData!ExtPerr1	--calculated	by	Sub	WtdMeanAcalc		

				--t3	has	NO	dependence	on	index	isotope;	it	is	an	intrinsic	property
				--of	the	206Pb/238U	reference	material	(see	Intro	to	Part	3):		

				t3	=	StandardData!StdUPbRatio

				--Now	fill	column	["Total	206Pb/238U"]	i.e.	the	VALUE	column:

				PlaceFormulae	"=["UncorrPb/Uconst"]	/	t1	*	t3",	SpotRow,	m

				--Now	fill	column	["Total	206Pb/238U	%err"]	i.e.	the	UNCERTAINTY
				--in	the	adjacent	column	to	the	right	(i.e.	m	+	1):

				PlaceFormulae	"=SQRT(["UncorrPb/Uconst	%err"]^2	+	(t2)^2)",	SpotRow,	m	+	1

		Else	--we	are	dealing	with	the	208Pb/232Th	system,	and		
				--t1	and	t2	refer	to	calculations	that	use	'preferred'	index		
				--isotope	X	to	generate	["X-corr208Pb/232Thcalibr.const"]:		

				t1	=	StandardData!WtdMeanA2	--calculated	by	Sub	WtdMeanAcalc
				t2	=	StandardData!ExtPerr2	--calculated	by	Sub	WtdMeanAcalc		

				--t3	has	NO	dependence	on	index	isotope;	it	is	an	intrinsic	property
				--of	the	208Pb/232Th	reference	material	(see	Intro	to	Part	3):		

				t3	=	StandardData!StdThPbRatio

				--Now	fill	column	["Total	208Pb/232Th"]	i.e.	the	VALUE	column:

				PlaceFormulae	"=["UncorrPb/Thconst"]	/	t1	*	t3",	SpotRow,	m

				--Now	fill	column	["Total	208Pb/232Th	%err"]	i.e.	the	UNCERTAINTY
				--in	the	adjacent	column	to	the	right	(i.e.	m	+	1):

				PlaceFormulae	"=SQRT(["UncorrPb/Thconst	%err"]^2	+	(t2)^2)",	SpotRow,	m	+	1		

		End	If

Next	DpNum		

End	Sub		

SQUID
2.50
Sub:
ThUfromA1A2

The subroutine evaluates, on an analysis-by-analysis basis, the 232Th/238U, by ratioing the
206Pb/238U calibration constant and the 208Pb/232Th calibration constant. Note that this
subroutine only applies when Switch.DirectAltPD = TRUE, and piNumDauPar = 2 (i.e. it is
essential that calibration constants for both U-Pb and Th-Pb systems have been calculated:
Perm2 and Perm4).

Usage

ThUfromA1A2(Std, SpotRow, Only1)

Mandatory
variables

Std: Boolean input which dictates, for each specific invocation of ThUfromA1A2, whether the
analysis is that of a 'primary-ratio' reference material, or not.

SpotRow: Index number of the output-row, to which the value calculated by ThUfromFormula
is to be written.

Optional
variables

Only1: Boolean input which dictates, for each specific invocation of ThUfromA1A2, whether
the 232Th/238U value column is to be populated with the dummy value '1', or not. DEFAULT
value = FALSE.

According to Ludwig, Only1 = TRUE happens when "the two WtdMeanA formulae and values
have not yet been calculated, [it is necessary to] pass first time & put dummy values of 1. Put
in real formulae later." With context from both invocations, it might be possible to rework this
later.

Definition
of
variables

Values
of
type
Boolean
Std, Only1

Values
of
type
Integer
p, SpotRow, Th2U8col, Th2U8ecol

Values
of
type
String
Exp232, Exp238, t1, t2

The function of the subroutine is paraphrased as follows:

--Recalling	that	Std	=	-1	if	TRUE,	0	if	FALSE,	use	p	to	define
--sheet/column	for	output.	Note	also	t2	is	explicitly	cleared:

p	=	-Std		
Th2U8col	=	piaTh2U8col[p]				
Th2U8ecol	=	piaTh2U8ecol[p]			

t2	=	""	

As per subroutine Tot68_82_fromA, there is a slight complication here, arising from the more
restricted function of SQUID 2.50 relative to that envisaged/implemented in SQUID 3.0. You
will recall that for SQUID 3.0, I requested all the permissible index-isotope ratio-combinations
to be calculated for each permutation (e.g. the pairs of calibration constants calculated in
Perm2 and Perm4 can have 204corr- and 207corr- variants: see the set of Cases in the Intro of
the Procedural Framework Part 3).

The issue is that SQUID 2.50 calculates only one (pre-specified by 'index isotope') variant of
each calibration constant, so there is never any ambiguity when performing calculations on
those values, and using the outputs of those calculations in other expressions downstream.
Obviously, such ambiguity does exist in our SQUID 3.0 implementation, so we need to resolve
it (at least in a preliminary way) via a similar user-specified control (which would live on the
same screen as the controls for SBM-normalisation and SpotAvg vs LinReg) called 'Preferred
index isotope', with options 204Pb, 207Pb, 208Pb (strictly, the availability of 208Pb on this list
should hinge on whether the selected Task is Perm1-type or not; something to look at later).
Down the track, it would be good if there was scope for the user to switch 'preferred index
isotope' after the StandardData and SampleData sheets are produced, but we can talk about
that later too.

This is only a minor change - I still want you to "calculate everything" as you have been doing.
The aim of the control is solely to specify which specific permutation should be propagated to
downstream calculations, in a bid to minimise the number of pointless permutations we
generate downstream.

The (paraphrased) code continues:

If	Only1	=	TRUE		

		t1	=	"1"	--note	that	this	is	a	string	(in	VBA),	not	a	number		

ElseIf	Th2U8col	>	0	--i.e.	a	destination	exists	for	232Th/238U	values

		If	(Std	=	TRUE)	AND	(piStdRad86col	>	0)	--the	second	part	means	that	if	
		--'preferred	index	isotope'	=	204Pb,	then	there	exists	a	column	named		
		--["4-corr208Pb*/206Pb*"],	or	alternatively,	if	'preferred	index	isotope'
		--=	207Pb,	then	there	exists	a	column	named	["7-corr208Pb*/206Pb*"].	In
		--SQUID	3.0,	I	think	piStdRad86col	>	0	can	simply	be	assumed	TRUE.	

		--Recall	that	Lambda238Ma	and	Lambda232Ma	are	the	decay	constants	of	238U	
		--and	232Th	respectively,	expressed	in	units	of	"Ma^-1"	i.e.	1.55125e-04		
		--and	4.9475e-05	respectively.

				If	'preferred	index	isotope'	=	204Pb
						Exp238	=	"(EXP	(Lambda238Ma	*	["4-corr206Pb/238UAge(Ma)"])	-	1)"
						Exp232	=	"(EXP	(Lambda232Ma	*	["4-corr208Pb/232ThAge(Ma)"])	-	1)"
						t1	=	"=["4-corr208Pb*/206Pb*"]	*	Exp238	/	Exp232"
				Else	--'preferred	index	isotope'	=	207Pb	
						Exp238	=	"(EXP	(Lambda238Ma	*	["7-corr206Pb/238UAge(Ma)"])	-	1)"
						Exp232	=	"(EXP	(Lambda232Ma	*	["7-corr208Pb/232ThAge(Ma)"])	-	1)"
						t1	=	"=["7-corr208Pb*/206Pb*"]	*	Exp238	/	Exp232"
				End	If		

		ElseIf	Std	=	FALSE	--sample	spots	only;	use	uncorrected	values		

				t1	=	["208/206"]	*	["Total206Pb/238U"]	/	["Total208Pb/232Th"]		

		End	If	--(Std	=	TRUE)	AND	(piStdRad86col	>	0)

Now evaluate the associated uncertainty by quadratic addition. The unfinished ElseIf
(Th2U8col > 0) continues:

		If	Th2U8ecol	>	0	--i.e.	a	destination	exists	for	232Th/238U	uncertainties

				If	Std	=	TRUE		

						If	'preferred	index	isotope'	=	204Pb
								t2	=	'=SQRT(["4-corr208Pb*/206Pb*	%err"]^2	+	
																					["4-corr206Pb/238Ucalibr.const	%err"]^2	+
																					["4-corr208Pb/232Thcalibr.const	%err"]^2)		
						Else	--'preferred	index	isotope'	=	207Pb	
								t2	=	'=SQRT(["7-corr208Pb*/206Pb*	%err"]^2	+	
																					["7-corr206Pb/238Ucalibr.const	%err"]^2	+
																					["7-corr208Pb/232Thcalibr.const	%err"]^2)		
						End	If		

				Else	--i.e.	sample	spots;	Ludwig	wrote	
				--"Elseif	'preferred	index	isotope'	is	not	208Pb",	but	this	seems	redundant:	
				--entry	into	ThUfromA1A2	precludes	208Pb	as	preferred	index	isotope		

						t2	=	'=SQRT(["208/206	%err"]^2	+	["Total206Pb/238U"	%err]^2	+
																			["Total208Pb/232Th"	%err]^2)

				End	If		--(Std	=	TRUE)

		End	If		--(Th2U8ecol	>	0)

End	If		--(ElseIf	Th2U8col	>	0)

Finally, place the analysis-by-analysis formulae according to the expression-strings developed
above. First, the value:

PlaceFormulae	t1,	SpotRow,	Th2U8col

And secondly, the uncertainty (if the expression has been developed):

If	t2	<>	""		
		PlaceFormulae	t2,	SpotRow,	Th2U8ecol	
End	If

End	Sub		

SQUID
2.50
Sub:
OverCtMeans

This subroutine (which is solely for
the
Standard) does a bit more than the name implies.
Firstly it places, row-by-row, formulae to calculate the 204-corrected 207Pb/206Pb ratio and
its 1sigma percentage uncertainty, as well as invoking (row-by-row) the relevant LudwigLibrary
functions to calculate the associated 204-corrected 207Pb/206Pb date and its 1sigma
absolute uncertainty.

Secondly, it identifies which columns can usefully have robust means calculated, performs
those calculations (using LudwigLibrary function TukeysBiweight, with tuning 9) and places the
output of the expression as a 3 x 1 array beneath the relevant column. The SQUID 2.50
subroutine requires the index number of the last row of analytical data as an input, so it can
determine in which rows the "summary" results should be placed so that the calculated
biweights appear directly beneath the input data.

Usage

OverCtMeans plaLastDatRw

Mandatory
variable

plaLastDatRw: Integer index number of the last row containing spot-by-spot data (for the
Standard).

Definition
of
variables

Values
of
type
Boolean
ShowOverCtCols

Values
of
type
Integer
c, k, kk, plaFirstDatRw

Values
of
type
String
t0, t1, t2, t3, t4, t5

The subroutine starts by calculating the 204Pb-corrected 207Pb/206Pb, its uncertainty, and
the associated date and uncertainty.

If	piaAgePb76_4Col[1]	>	0	--i.e.	if	column	["4-corr207Pb/206Pb"]	exists	on	StandardData:

		t0	=	"=(["207/206"]	/	["204/206"]	-	sComm_74)	/	(1	/	["204/206"]	-	sComm_64)"		

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pb"]	on	StandardData:
		PlaceFormulae	t0,	plaFirstDatRw,	piStdPb76_4Col,	plaLastDatRw

		--Now	calculate	the	associated	%err:
		t1	=	"((["207/206"]	*	["207/206%err"])^2	+
							(["204/206"]	*	(["4-corr207Pb/206Pb"]	*	sComm_64	-	sComm_74)
										*	["204/206%err"])^2)"
		t2	=	"(["207/206"]	-	["204/206"]	*	sComm_74)^2"
		t3	=	"=sqrt(t1	/	t2)"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pb%err"]	on	StandardData:
		PlaceFormulae	t3,	plaFirstDatRw,	piStdPb76_4eCol,	plaLastDatRw

		--Now	invoke	LudwigLibrary	functions	to	calculate	associated	age	and	error:		
		t4	=	"=AgePb76(["4-corr207Pb/206Pb"])"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pbage"]	on	StandardData:
		PlaceFormulae	t4,	plaFirstDatRw,	piaAgePb76_4Col,	plaLastDatRw

		--Convert	["4-corr207Pb/206Pb%err"]	to	absolute,	to	calculate	age	error:
		t5	=	"=AgeErPb76(["4-corr207Pb/206Pb"]	,	["4-corr207Pb/206Pb"]
						*	["4-corr207Pb/206Pb%err"]	/	100)"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pbage±1sigma"]	on	StandardData:
		PlaceFormulae	t5,	plaFirstDatRw,	piaAgePb76_4eCol,	plaLastDatRw

End	If

The second part of the subroutine calculates the various biweight means, for the range of
columns for which they are relevant. In practice, the "entry" Boolean is always TRUE, because
Ludwig set the nominally user-defined Boolean ShowOverCtCols to TRUE, and then removed
the relevant check-box from the user form! Note that a possibly unintended consequence of
"locking in" this Boolean is that it formally requires all SQUID 2.50 U-Pb Geochronology Tasks
to include 204Pb in the list of mass-stations.

__(There will come a time when it is necessary for us to formally assess the absolute minimum
mass-stations in order to perform U-Pb (or Th-Pb) geochronology in SQUID 3.0. My feeling is
that the absolute minimum lists are as follows:

206Pb/238U: 206Pb, 238U (or a proxy thereof), and ONE OF (204Pb or 207Pb)
208Pb/232Th: 208Pb, 232Th (or a proxy thereof), and ONE OF (204Pb or 207Pb)

At present, SQUID 2.50 enforces "BOTH OF". Certainly the "alternate" daughter-isotope (i.e.

208Pb for U-Pb, 206Pb for Th-Pb) should be optional, and probably Background should be
optional too (even though including 204Pb in a run-table without including Background would
be terrible practice. Something to revisit later, and the stakes are relatively low: it doesn't really
matter exactly what the 'bare bones' list of mass-stations is, as long as we warn SQUID 3.0
users up-front… it would be an improvement on SQUID 2.50!)__

The subroutine proceeds:

If	ShowOverCtCols	=	TRUE	OR	piaAgePb76_4Col[1]	>	0	--i.e.	if	StandardData
		contains	["4-corr207Pb/206Pbage"]		

		If	piaOverCts4Col[7]	>	0	Or	piaOverCts4Col[8]	>	0	Or	piaAgePb76_4Col[1]	>	0		
		--i.e.	if	ANY	of	the	columns	["204overcts/sec(fr.	207)"],
						["204overcts/sec(fr.	208)"],		
		--["4-corr207Pb/206Pbage"]	exist	on	the	StandardData	sheet,	then	define
						the	extent	of	calculations		
		--to	be	performed:		

				If	ShowOverCtCols	=	TRUE		
						kk	=	1
				Else		
						kk	=	5		
				End	If

				For	k	=	kk	To	5

						Select	Case	k	--all	column-indices	refer	to	StandardData	sheet:
								Case	1:	c	=	piaOverCts4Col[7]	--index	for	["204overcts/sec(fr.	207)"]
								Case	2:	c	=	piaOverCts4Col[8]	--index	for	["204overcts/sec(fr.	208)"]
								Case	3:	c	=	piacorrAdeltCol[7]	--index	for	["7-corr206Pb/238Uconst.delta%"]
								Case	4:	c	=	piacorrAdeltCol[8]	--index	for	["8-corr206Pb/238Uconst.delta%"]
								Case	5:	c	=	piaAgePb76_4Col[1]	--index	for	["4-corr207Pb/206Pbage"]
						End	Select

						If	c	>	0		

								--Define	Range	bw	as	3	x	1,	with	the	first	row	immediately	following
												analytical	data:
								Set	bw	=	frSr(1	+	plaLastDatRw,	c,	3	+	plaLastDatRw)	--sets	Range
												bw	=	3	rows	by	1	col		

								--Invoke	LudwigLibrary	function	Biweight	(tuning	9)	on	the	data	in
												the	column	above	bw.
								--Note	that	for	k	=	3	or	4,	the	values	in	this	range	have	not	yet
												been	calculated!
								bw.FormulaArray	=	"=Biweight("	&	frSr(plaFirstDatRw,	c,	plaLastDatRw).Address	&	

								--Finally,	add	Names	(and	explanatory	Notes)	to	result-cells.	These	are
												relevant	because		
								--the	Names	can	be	used	in	Task-expressions,	and	the	Notes	matter
												because	the	columns	are		
								--quite	abstract	concepts	for	non-SHRIMP	geochronologists	(as	well

														as	SHRIMP	beginners):		

								--Note	that	I	have	recast	the	following	If	to	make	it	longer	but	more	transparent:

								If	k	=	1		
										t1	=	"StandardData!Pb204OverCts7corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the
														Biweight	Value	element
										t2	=	"StandardData!Pb204OverCts7corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the
														Biweight	95%	conf.	element
										t3	=	"Robust	avg	204	overcts	assuming	206Pb/238U-207Pb/235U	age
														concordance"
								ElseIf	k	=	2		
										t1	=	"StandardData!Pb204OverCts8corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"StandardData!Pb204OverCts8corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	204	overcts	assuming	206Pb/238U-208Pb/232Th	age
														concordance"
								ElseIf	k	=	3		
										t1	=	"OverCtsDeltaP7corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"OverCtsDeltaP7corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	of	diff.	between	207-corr.	and	204-corr.	calibr.	const."
								ElseIf	k	=	4		
										t1	=	"OverCtsDeltaP8corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"OverCtsDeltaP8corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	of	diff.	between	208-corr.	and	204-corr.	calibr.	const."
								Else	--interestingly,	SQUID	2.50	does	not	assign	Names	(t1,	t2)	to	the
												Biweight
										--elements	calculated	for	the	["4-corr207Pb/206Pbage"]	column.
														Probably	an	oversight!
										t3	=	"Robust	average	of	204-corrected	207/206	age"
								End	If	--k	=	1	to	5

								--Now	VBA	function	"Note"	to	add	text	t3	as	Comment	on	the	Biweight
												Value	element:
								Note	1	+	plaLastDatRw,	c,	t3		

								--Corresponding	Comment	on	the	Biweight	95%	conf.	element	is
												context-sensitive:		
								If	k	=	3	OR	k	=	4
										t3	=	"95%-conf.	error	in	above	difference"
								Else		
										t3	=	"95%-conf.	error	in	above"
								End	If

								Note	3	+	plaLastDatRw,	c,	t3		

						End	If	--c	>	0

				Next	k

		End	If	--piaOverCts4Col[7]	>	0	Or	piaOverCts4Col[8]	>	0	Or
						piaAgePb76_4Col[1]	>	0

		ClearObj	bw

End	If	--ShowOverCtCols	=	TRUE	OR	piaAgePb76_4Col[1]	>	0

End	Sub

The next phase of Loop A does many of the remaining simple row-by-row calculations,
followed by preparations for calculation of the key "column mean" values, which are in turn
used in other row-by-row expressions. The incomplete Loop A proceeds as follows:

If	pbStd	=	FALSE	--Calculate	a	couple	of	"SampleData-only"	columns:

	--Firstly	["7-corr204Pb/206Pb"]:		
	Term1	=	Pb46cor7(["207/206"],	sComm64,	sComm74,	["207corr206Pb/238UAge"])	
	--recalling	that	subroutine	"Pb46cor7"	is	defined	in	LudwigLibrary
	PlaceFormulae	Term1,	Frw,	piPb46_7col,	Lrw

	--Secondly	["8-corr204Pb/206Pb"]:		
	Term1	=	Pb46cor8(["208/206"],	["232Th/238U"],	sComm64,	sComm84,
			["208corr206Pb/238UAge"])		
	--recalling	that	subroutine	"Pb46cor8"	is	defined	in	LudwigLibrary
	PlaceFormulae	Term1,	Frw,	piPb46_8col,	Lrw

End	If

The next step is to calculate ALL of the applicable proportions of common Pb (which in turn
reflect all the permutations of index isotope (204-, 207-, and 208-corrected) and daughter-Pb
isotope (206Pb and 208Pb, for Pb/U and Pb/Th respectively), firstly for the StandardData
sheet and secondly for the SampleData sheet:

If	pbStd	=	TRUE	--StandardData	first	

	--First,	fill	column	["4-corr%com206"]:
	Term2	=	100	*	sComm64	*	["204/206"]
	PlaceFormulae	Term2,	Frw,	piStdCom6_4col,	Lrw

	--Second,	fill	column	["7-corr%com206"]:
	Term2	=	100	*	sComm64	*	["204/206	fr.207"]
	PlaceFormulae	Term2,	Frw,	piStdCom6_7col,	Lrw

	--Third,	fill	column	["8-corr%com206"]:
	Term2	=	100	*	sComm64	*	["204/206	fr.208"]
	PlaceFormulae	Term2,	Frw,	piStdCom6_8col,	Lrw

	--Fourth,	fill	column	["4-corr%com208"]:
	Term2	=	100	*	sComm84	/	["208/206"]	*	["204/206"]
	PlaceFormulae	Term2,	Frw,	piStdCom8_4col,	Lrw

	--Fifth,	fill	column	["7-corr%com208"]:
	Term2	=	100	*	sComm84	/	["208/206"]	*	["204/206	fr.207"]
	PlaceFormulae	Term2,	Frw,	piStdCom8_7col,	Lrw

Else	--i.e.	SampleData	second

Sq2.50 Procedure Pt 4

		--First,	fill	column	["4-corr%com206"],	same	as	StandardData:
		Term2	=	100	*	sComm64	*	["204/206"]
		PlaceFormulae	Term2,	Frw,	piStdCom6_4col,	Lrw

		--Second,	fill	column	["7-corr%com206"],	different	to	StandardData:
		Term2	=	100	*	sComm64	*	["7-corr204Pb/206Pb"]
		PlaceFormulae	Term2,	Frw,	piStdCom6_7col,	Lrw

		--Third,	fill	column	["8-corr%com206"],	different	to	StandardData:
		Term2	=	100	*	sComm64	*	["8-corr204Pb/206Pb"]
		PlaceFormulae	Term2,	Frw,	piStdCom6_8col,	Lrw

		--Fourth,	fill	column	["4-corr%com208"],	same	as	StandardData:
		Term2	=	100	*	sComm84	/	["208/206"]	*	["204/206"]
		PlaceFormulae	Term2,	Frw,	piStdCom8_4col,	Lrw

End	If		

The next step is to calculate all the applicable radiogenic 208Pb/206Pb values. Note that
SQUID 2.50 currently calculates both possible 208Pb/206Pb values (204-corrected and 207-
corrected) for all analyses on the SampleData sheet, but only calculates (at most) one
radiogenic 208Pb/206Pb value for the StandardData sheet. I don't see why this should be so: I
think SQUID 3.0 should calculate both (and therefore that the If criteria below should be
modified accordingly):

If	pbStd	=	FALSE	OR	piStdCorrType	=	0	--i.e.	all	SampleData,
--plus	StandardData	when	index	isotope	selected	is	204Pb:		

		--First,	prepare	to	fill	column	["4-corr208Pb*/206Pb*"]:
		FinalTerm1	=	(["208/206"]	/	["204/206"]	-	sComm84)	/	(1	/	["204/206"]
				-	sComm64)

		--Second,	assemble	the	expression	for	column	["4-corr208Pb*/206Pb*	%err"]:
		--Note	that	the	following	If	now	*seems*	obsolete,	because	we	are	using
						the	same
		--column-name	(["4-corr208Pb*/206Pb*"])	for	204Pb-corrected	208Pb/206Pb
						in	both
		--the	StandardData	and	SampleData	sheets	(Ludwig	did	not	do	this).		
		--All	expressions	for	Term5	and	FinalTerm2	corrected	2018-03-21:

		If	pbStd	=	TRUE		
				Term5	=	((["208/206	%err"]	/	100	*	["208/206"])^2	+
						(["4-corr208Pb*/206Pb*"]	*	sComm64	-	sComm84)^2	*		
						(["204/206	%err"]	/	100	*	["204/206"])^2)		
						/	(1	-	sComm64	*	["204/206"])^2		
				FinalTerm2	=	100	*	sqrt(Term5)	/	abs(["4-corr208Pb*/206Pb*"])		

				--Now	place	the	FinalTerm1	formula	for	["4-corr208Pb*/206Pb*"]	and		
				--and	the	FinalTerm2	formula	for	["4-corr208Pb*/206Pb*	%err"]:
				OutpCol	=	["4-corr208Pb*/206Pb*"]
				PlaceFormulae	FinalTerm1,	Frw,	OutpCol,	Lrw

				PlaceFormulae	FinalTerm2,	Frw,	1	+	OutpCol,	Lrw

		Else		

				Term5	=	((["208/206	%err"]	/	100	*	["208/206"])^2	+
						(["4-corr208Pb*/206Pb*"]	*	sComm64	-	sComm84)^2	*
						(["204/206	%err"]	/	100	*	["204/206"])^2)		
						/	(1	-	sComm64	*	["204/206"])^2		
				FinalTerm2	=	100	*	sqrt(Term5)	/	abs(["4-corr208Pb*/206Pb*"])		

				--Now	place	the	FinalTerm1	formula	for	["4-corr208Pb*/206Pb*"]	and		
				--and	the	FinalTerm2	formula	for	["4-corr208Pb*/206Pb*	%err"]:
				OutpCol	=	["4-corr208Pb*/206Pb*"]
				PlaceFormulae	FinalTerm1,	Frw,	OutpCol,	Lrw
				PlaceFormulae	FinalTerm2,	Frw,	1	+	OutpCol,	Lrw

		End	If

End	If

If	pbStd	=	FALSE	OR	piStdCorrType	=	1	--i.e.	all	SampleData,
--plus	StandardData	when	index	isotope	selected	is	207Pb:		

		--First,	prepare	to	fill	column	["7-corr208Pb*/206Pb*"]:
		If	pbStd	=	TRUE		

				FinalTerm1	=	(["208/206"]	/	["204/206	fr.207"]	-	sComm84)	/
						(1	/	["204/206	fr.207"]	-	sComm64)		

		Else

				FinalTerm1	=	(["208/206"]	/	["7-corr204Pb/206Pb"]	-	sComm84)	/
						(1	/	["7-corr204Pb/206Pb"]	-	sComm64)		

		End	If		

		--Second,	assemble	the	expression	for	column	["7-corr208Pb*/206Pb*	%err"]:
		If	pbStd	=	TRUE		
				--assemble	10	arguments	for	separate	subroutine	StdPb86radCor7per:
				--the	following	expression	was	corrected	2018-03-26:
				Term5	=	["208/206"],	["208/206	%err"],	["207/206"],	["207/206	%err"],
						["7-corr208Pb*/206Pb*"],	["204/206	fr.207"],	Std_76,	sComm64,	sComm74,
										sComm84		
				FinalTerm2	=	StdPb86radCor7per(Term5)		
				--subroutine	StdPb86radCor7per	to	be	documented	separately		

				--Now	place	the	FinalTerm1	and	2	formulae	for	["7-corr208Pb*/206Pb*"]
								and		
				["7-corr208Pb*/206Pb*	%err"]	respectively:
				OutpCol	=	["7-corr208Pb*/206Pb*"]
				PlaceFormulae	FinalTerm1,	Frw,	OutpCol,	Lrw
				PlaceFormulae	FinalTerm2,	Frw,	1	+	OutpCol,	Lrw

		Else	--and	assuming	["Total206Pb/238U"]	and	["207corr206Pb/238UAge"]
						both	exist

				--assemble	10	arguments	for	separate	AND	DIFFERENT	subroutine
				Pb86radCor7per:
				Term5	=	["208/206"],["208/206	%err"],	["207/206"],["207/206	%err"],
				["Total206Pb/238U"],
						["Total206Pb/238U	%err"],["207corr206Pb/238UAge"],	sComm64,	sComm74,
						sComm84		
				FinalTerm2	=	Pb86radCor7per(Term5)		
				--subroutine	Pb86radCor7per	to	be	documented	separately		

				--Now	place	the	FinalTerm1	and	2	formulae	for	["7-corr208Pb*/206Pb*"]	and		
				["7-corr208Pb*/206Pb*	%err"]	respectively:
				OutpCol	=	["7-corr208Pb*/206Pb*"]
				PlaceFormulae	FinalTerm1,	Frw,	OutpCol,	Lrw
				PlaceFormulae	FinalTerm2,	Frw,	1	+	OutpCol,	Lrw

		End	If

End	If		

The next step is to calculate some column-means, firstly a weighted mean of the common-Pb
calibration constants, and then biweights of some of the other columns related to 204-
overcounts. The incomplete Loop A proceeds:

If	pbStd	=	TRUE		

		If	piaSpotCt[-pbStd]	>	1
		--i.e.	if	more	than	one	spot-analysis	corresponding	to	specified	prefix
						for	Standard
		--then	SQUID	2.50	assigns	the	name	"StdHrs"	to	the	cell	range	corresponding
						to	column		
		--"Hours"	in	sheet	StandardData.	Then:

				If	pbSBMnorm	=	TRUE	--i.e.	if	user	requested	SBM-normalisation		
				--then	ReDim	the	following	double-precision	vectors	(not	zero-addressed!)\

						ReDim	SbmOffs[1	to	Task.Npeaks]		--number	of	mass-stations	in	Task/XML
										file
						ReDim	SbmOffsErr[1	to	Task.Npeaks]		
						ReDim	SbmPk[1	to	piaSpotCt[-pbStd]]		--number	of	Standard	analyses	in
										XML	file		

				End	If		

				--Now	calculate	weighted	mean	calibration	constants	for	Standard
				--(subroutine	documented	separately)		
				WtdMeanAcalc	BadSbm(),	Adrift(),	AdriftErr()		

				--Then	calculate	and	place	robust	means	of	204-overcount	columns	for
								Standard:		
				--(subroutine	documented	separately)		
				OverCtMeans	plaLastDatRw[-pbStd]		

		Else	--i.e.	piaSpotCt[-pbStd]	<=	1,	i.e	only	one	analysis	with	prefix
						matching	that		
		--defined	for	the	Standard	<<string	StdPrefix>>,	or	none	at	all.
						Processing	must	quit,			
		--but	SQUID	2.50	tries	to	construct	a	helpful	error-message	first:		

				If	(pbFoundStdName	=	TRUE)	AND	(piaSpotCt[-pbStd]	=	0)		

						Msg	=	"Unable	to	parse	the	raw-data	file."

				ElseIf	piaSpotCt[-pbStd]	=	1		

						Msg	=	"Only	1	spot	found	with	label	similar	to	<<string	StdPrefix>>
													-	did	you	correctly	specify	the	Standard	name?"

				Else		

						Msg	=	"No	spots	found	with	label	similar	to	<<string	StdPrefix>>
													-	did	you	correctly	specify	the	Standard	name?"

				End	If

				Exit	Sub	--quit	processing

		End	If		

		--Since	piaSpotCt[-pbStd]	>	1,	attend	to	StandardData	SBM	display:		
		--2018-06-12:	THIS	SECTION	SKIPPED;	GRAPHICAL	OUTPUT	ONLY,	ATTEND	TO
						IT	LATER
		If	(pbSbmNorm	=	TRUE)	AND	(BadSBM[-pbStd]	<	piaSpotCt[-pbStd]	*
						Task.Npeaks	/	2)		

				SBMdata	SbmOffs(),	SbmPk(),	SbmOffsErr(),	pdaSbmDeltaPcnt(),	CanChart
				--subroutine	to	be	documented	separately

				If	CanChart	=	TRUE

						AddSBMchart	plHdrRw,	SbmOffs(),	SbmOffsErr()
						--subroutine	to	be	documented	separately

				End	If	--CanChart

		End	If	--(pbSbmNorm	=	TRUE,	etc.)

End	if	--pbStd	=	TRUE	as	per	beginning	of	this	Part	4.		

The code then proceeds to the final stretch of the incomplete Loop A that commenced at the
beginning of Part 1. That code is documented in Part 5.

SQUID
2.50
Sub:
WtdMeanAcalc

This subroutine evaluates, for
the
Standard, the weighted mean (and associated parameters)
of each relevant set of common-Pb corrected calibration constant values. This mean is the
value to which all spot-by-spot calibration constants determined for the unknowns will be
calibrated, and all spot-by-spot, 'directly-calculated daughter/parent dates' (i.e. 206Pb/238U
and/or 208Pb/232Th as appropriate) are calculated from there, because SHRIMP (and
secondary ion mass spectrometry in general) is an indirect dating technique. Thus this is a
critical step.

Usage

WtdMeanAcalc BadSbm(), Adrift(), AdriftErr()

Optional
variables

BadSbm: Array containing index numbers of spots for which 'bad' SBM values exist (e.g
values lower than SBMzero).

Adrift: Array of double-precision values arising from 'correction' of the measured calibration-
constant values for secular drift associated with the duration of the analytical session (i.e.
"Hours"). Currently out of scope.

AdriftErr: Array of double-precision uncertainties associated with values arising from
'correction' of the measured calibration-constant values for secular drift associated with the
duration of the analytical session (i.e. "Hours"). Currently out of scope.

Definition
of
variables

Values
of
type
Boolean
NoReject, NoUPbConstAutoReject, pbCanDriftCorr, pbU, pbTh, [Task]Switch.DirectAltPD

Values
of
type
Integer
c,DauParNum, ErN, h, i, j, LargeErRegN, Npts, Nrej, NtotRej, NumDauPar, r, rw1, rwn

Values
of
type
Double
ExtPerr, ExtPtSigma, Lambda, MedianEr, MSWD, Nmadd, Prob, pscLm2, pscLm8,
StdThPbRatio, StdUPbRatio, WtdMean, WtdMeanErr

Values
of
type
String
s, Ele, t1, t2, t4, t5

Vectors
of
type
Integer
LargeErRej, Rejected

Vectors
of
type
Double
Acol, Aecol, Arange, Aerange, ErrVals

Arrays
of
type
Double
Adatrange

Arrays
of
type
Variant/Mixed
wW

The function commences with some setting up. NoUPbConstAutoReject is a user-defined
Boolean that dictates whether SQUID 2.50 will be permitted to reject 'aberrant' calibration-
constant values (according to its own conventions, and subject to its own rules) in order to
calculate the 'best' weighted mean calibration-constant value. In practice, it is useful to allow
SQUID 2.50 to identify and exclude its own rejections (i.e. user usually sets
NoUPbConstAutoReject = FALSE), just to get an idea of which values it considers aberrant.
Once the calculation is complete, the user has the authority to 'unreject' SQUID's outliers, and
that option is frequently exercised. After all, the reference material is supposed to be
isotopically homogeneous (as usually demonstrated by ID-TIMS data) and if the SHRIMP-
derived population of calibration constants displays significant dispersion, then this is likely to
be an instrumental effect which must be faithfully propagated to analyses of the unknowns. In
some cases, rejections might be allowed to stand if there is independent evidence of
(hopefully transient!) sub-optimal analytical conditions, such as instability in the primary beam
or secondary beam, or poor focus of the beam on the sample.

pbCanDriftCorr is another user-defined Boolean that (if set to TRUE) instructs SQUID 2.50 to
evaluate the spot-by-spot measured values of the calibration constants in terms of when they
were acquired (during the course of the analytical session, typically described as "secular
drift"). In practice, this can be quite a useful thing to be able to do, but at this stage of SQUID
3.0 development, it should be considered out-of-scope, and a working value of
pbCanDriftCorr = FALSE should be assumed.

rw1	=	plaFirstDatRw[-pbStd]	--first	row	of	StandardData		
rwn	=	plaLastDatRw[-pbStd]	--last	row	of	StandardData		

If	NoUPbConstAutoReject	=	TRUE	AND	pbCanDriftCorr	=	FALSE		
		NoReject	=	TRUE		

Else		
		NoReject	=	FALSE		
End	If		

As before, catch non-meaningful cases where NumDauPar has been set to 2, without the
proper specification of a direct calibration-expression for the 'second' DauPar, via
Task.saEqns[-2]:

If	NumDauPar	=	2	AND	Switch.DirectAltPD	=	TRUE	AND	Task.saEqns[-2]	=	""
						--i.e.	"null"		
		NumDauPar	=	1		
End	If

Now a long 'For' loop, which runs once for each calibration-constant mean that needs to be
calculated:

For	DauParNum	=	1	to	NumDauPar

		Acol	=	piaSacol[DauParNum]	--select	appropriate	column	of	calib.	constant
						values		
		Aecol	=	piaSaEcol[DauParNum]	--appropriate	column	of	calib.	constant
						uncertainties		

		s	=	fsS(DauParNum)	--string	representation	of	DauParNum,	used	for
						labelling	purposes		

		If	(pbU	=	TRUE	AND	NumDauPar	=	1)	OR	(pbTh	=	TRUE	AND	NumDauPar	=	2)
				--we	are	dealing	specifically	with	a	206Pb/238U	calib.	constant:		
				Lambda	=	pscLm8	--i.e.	238U	decay	constant	in	units	of	"Ma^-1"
				Ele	=	"U"		
		Else	--we	are	dealing	specifically	with	a	208Pb/232Th	calib.	constant:
				Lambda	=	pscLm2	--i.e.	232Th	decay	constant	in	units	of	"Ma^-1"
				Ele	=	"Th"		
		End	If

Next, Name and define some Ranges: SQUID 2.50 uses the Ludwig custom functions
"AddName" and "frSr" for this purpose.

"AddName" has 6 arguments (first 4 mandatory, last 2 optional) corresponding to (1) the string
Name being defined, (2) a Boolean defining the sheet the Name applies to (TRUE =
StandardData, FALSE = SampleData), (3) the address of the top row, (4) the address of the left
column, (5) the address of the bottom row, and (6) the address of the right column, for a
contiguous cell-range.

"frSr" has only the final 4 arguments of AddName, and can accept Names as input. The For
loop continues:

		AddName	"Arr_"	&	s,	TRUE,	rw1,	Acol,	rwn,	Acol		
		--Name	is	thus	"Arr_1"	or	"Arr_2",	for	single	Acol	alone		

		AddName	"Aer_"	&	s,	TRUE,	rw1,	Aecol,	rwn,	Aecol		
		--Name	is	thus	"Aer_1"	or	"Aer_2",	for	single	Aecol	alone

		AddName	"Adat_"	&	s,	TRUE,	rw1,	Acol,	rwn,	Aecol		
		--Name	is	thus	"Adat_1"	or	"Adat_2",	for	both	columns		

		Set	Arange	=	Range("Arr_"	&	s)		
		Set	AerRange	=	Range("Aer_"	&	s)		
		Set	AdatRange	=	Range	("Adat_"	&	s)

		Npts	=	Count(AdatRange)	/	2	--seems	indirect!		
		ErN	=	Count(AerRange)

		ReDim	ErrVals[1	to	ErN]	--apparently	not	zero-addressed		

Now clean the uncertainty values in the Range, and the ErrVals calculation-input. Then
calculate the median (and median absolute deviation) of the ErrVals, as inputs for (potential)
filtering of calibration-constant value-uncertainty pairs from the eventual calculation of the
weighted mean:

		For	i	=	1	to	ErN		

				If	(fbIsNum(AdatRange[i,	2])	=	TRUE)	AND	(IsEmpty(AdatRange[i,	2])
										=	FALSE)			
						--function	fbIsNum	is	in	the	Ludwig	Library		
						ErrVals[i]	=	AdatRange[i,	2]
				Else		
						ErrVals[i]	=	0		
						AdatRange[i,	2]	=	""		
				End	If		

		Next	i		

		MedianEr	=	Median(AerRange)	--why	clean	col2	of	AdatRange	if	not	to	use	it	here?		

		GetMAD	ErrVals,	ErN,	MedianEr,	0,	0	--GetMAD	is	a	Ludwig	Library	function	(I	hope)
		--It	is	not	obvious	what	(if	anything)	is	achieved	by	this	invocation	of
		--subroutine	GetMAD,	given	that	function	fdNmad	is	invoked	in	the	next	line:

		Nmadd	=	fdNmad(ErrVals)	--function	fdNmad	defined	separately		

		LargeErRegN	=	0

If the user has specified that they would like SQUID to attempt 'auto-rejection' of suspect
calibration-constant measurements (i.e. NoReject = FALSE; unfortunately, very many of
Ludwig's logic tests are double-negatives!), the next step is to assess the uncertainties of the
calibration-constants, in a search for anomalous-looking values. Two criteria are used for
ErrVal-based rejection:

1) ErrVals residuals (relative to MedianEr) that exceed Nmadd by more than an order of
magnitude
2) ErrVals of 0

The unfinished 'For DauParNum…' clause continues:

		If	NoReject	=	FALSE		
				ReDim	LargeErRej[1	to	99]	--won't	have	more	than	99	rejections!		

				For	i	=	1	to	ErN		

						If	(ABS(ErrVals[i]	-	MedianEr	>	10	*	Nmadd)	OR	(ErrVals[i]	=	0)		

								--The	following	'For'	applies	Strikethrough	font	to	both	the	offending
								--ErrVals[i]	value	AND	the	associated	calibration-constant	*VALUE*
								--in	the	column	immediately	to	its	left.	This	is	significant	because
								--when	SQUID	invokes	functions	like	WtdAv	in	a	spreadsheet	environment,
								--rows	with	Strikethrough	are	*EXCLUDED*	from	the	calculation.

								For	j	=	0	to	1
										AerRange[i,	j].Font.Strikethrough	=	TRUE
								Next	j		

								LargeErRegN	=	1	+	LargeErRegN		

								LargeErRej[LargeErRegN]	=	i		

						End	If		

				Next	i		

				If	LargeErRegN	>	0		
						ReDim	Preserve	LargeErRej[1	to	LargeErRegN]		
				End	If

		End	If	--NoReject	=	FALSE		

SQUID 2.50 then nominates a place for the weighted mean result to be places (the two-
column output array will appear directly beneath the relevant calibration-constant value-
uncertainty pair of columns, with a 3-row gap in between:

		h	=	3	+	rwn		

		AddName	"WtdMeanA"	&	s,	TRUE,	h,	Acol	--names	a	single	cell
		AddName	"WtdMeanAPerr"	&	s,	TRUE,	1	+	h,	Acol
		--names	the	cell	in	the	row	directly	BENEATH	WtdMeanA

Now perform the actual weighted mean calculation (which might involve a detailed review of
the operation of subroutine WtdAv). Remember that for the initial implementation of SQUID
3.0, we assign pbCanDriftCorr = FALSE. The unfinished 'For DauParNum…' clause continues:

		If	pbCanDriftCorr	=	TRUE		

				[out-of-scope	stuff]		

		Else		

				wW	=	WtdAv	Adatrange,	TRUE,	TRUE,	1,	(NOT	NoReject),	TRUE,	1		

The output wW of WtdAv is an array with 2 columns and up
to
7 rows. The left-hand column
contains mostly numeric data (values, errors, MSWD, probability of fit, etc.), and the right-hand
column contains text labels for the data in the left-hand column. Remember that analyses for
which Font.Strikethrough was applied (above) are excluded from the calculation in
advance,
and so are not assessed as part of WtdAv's "CanReject" provisions - "CanReject" data-points
are separate and additional, and the two rejection-sources are amalgamated into a single list
of 'rejected points' in the code below.

Before that, however, Ludwig out elements of the array wW and gives them variable-names.
Unfortunately, this simple-looking process is complicated by the fact the the output of WtdAv
is conditional: the third row of the 7 x 2 array does not appear if it is not applicable (which is
an awful 'feature'!), so this complicates addressing of the ensuing values in what might be a 6
x 2 array. The unfinished Else continues:

				WtdMean	=	wW[1,	1]		
				WtdMeanErr	=	wW[2,	1]		

Assigning the remaining values depends on whether the data are so dispersed (MSWD >> 1)
that the subroutine WtdAv calculated a 'constant external error' (i.e. a constant additional
uncertainty which, when added in quadrature to EACH of the data-point uncertainties, would
yield a weighted mean value with an MSWD of ~1). The unfinished Else continues:

				If	wW[3,	2]	=	"MSWD"	--then	data	were	NOT	dispersed,	and	NO	constant
																									--external	error	was	calculated:
						ExtPtSigma	=	0
						MSWD	=	wW[3,	1]
						Prob	=	wW[5,	1]

				Else	--data	WERE	dispersed,	a	constant	external	error	WAS	calculated,
									--and	the	addresses	of	subsequent	array-elements	is	different:		
						ExtPtSigma	=	wW[3,	1]		
						MSWD	=	wW[4,	1]
						Prob	=	wW[6,	1]									

				End	If		

In SQUID 2.50, when WtdAv is invoked with Boolean input CanReject = TRUE (as is the case
here), the final row of the output array is a space-delimited list of the index-numbers of
analyses rejected (remembering that, for the invocation being documented here, analyses
identified for rejection by the "LargeErRej"-related criteria documented above were never
assigned an index-number by WtdAv: those analyses were ignored before WtdAv even started
applying its "CanReject" criteria).

The SQUID 2.50 code continues:

				ParseLine	wW[7,	1],	Rejected(),	Nrej,	"	"	--subroutine	not	worth	documenting

Subroutine ParseLine is basically a generalised text-editing subroutine, which transforms a
delimited string into an array of the values (numeric, string, or mixed) separated by the
delimiting character (specified above as a single space " "). In terms of Java implementation,
all that is required here is:

1) generation of a vector array (Rejected) whose elements are the analysis index-numbers
specified in wW[7, 1]
2) definition of integer Nrej = length(Rejected)

In SQUID 2.50, the upshot of all this is that when after the subroutine WtdAv has been invoked
by subroutine WtdMeanAcalc, there exists up to two sets of rejected analyses: (1) those
potentially generated by "LargeErRej" provisions above, and (2) those potentially generated by
CanReject = TRUE within the WtdAv routine. With respect to the overall set of calibration
constant value-uncertainty pairs, we need the union/superset of these two sets. The
unfinished Else continues:

				If	LargeErRegN	>	0

						For	i	=	1	To	Nrej
								For	j	=	1	To	LargeErRegN

										--If	LargeErRej[j]	<	Rejected[i]	--Ludwig	original,	which	is	incorrect.
										--The	following	line	(Bodorkos	2018-02-25)	is	the	correct	replacement:

										If	LargeErRej[j]	<	Rejected[i]	OR	LargeErRej[j]	=	Rejected[i]
												Rejected[i]	=	1	+	Rejected[i]		
										End	If

								Next	j
						Next	i

				End	If	--LargeErRegN	>	0			

				NtotRej	=	Nrej	+	LargeErRegN		

				If	NtotRej	>	0		
						ReDim	Preserve	Rejected[1	To	NtotRej]

						For	i	=	(Nrej	+	1)	To	NtotRej
								Rejected[i]	=	LargeErRej[i	-	Nrej]
						Next	i

						BubbleSort	Rejected	--subroutine	Bubblesort	is,	according	to	Ludwig,
						--a	"quick	and	dirty	string-sorter"	which	can	also	be	used	for	numbers.
						--I	have	not	documented	it;	does	not	seem	worthwhile.	All	that	is
						--required	here	is	that	the	elements	of	the	vector	Rejected	are
						--rearranged	into	ascending	order.		

						Nrej	=	NtotRej		

						t1	=	Rejected[1]	--Ludwig	now	constructs	the	*COMMA*-delimited	string
						--of	index-numbers	of	rejected	analyses,	for	eventual	placement	at	the
						--base	of	the	"WtdMeanA"	summary	on	StandardData	sheet.

						For	i	=	2	To	Nrej
								t1	=	t1	&	",	"	&	Rejected[i]	--separate	index	nos	with	"comma-space"
						Next	i

						wW[7,	1]	=	t1		

				Else	--i.e.	NtotRej	=	0		

						t1	=	"none"		

				End	If	--NtotRej	>	0		

				--Finally,	Ludwig	assembles	the	various	elements	in	their	'final'	form,
				--as	shown	beneath	the	spot-rows	on	StandardData	sheet:		

				Cells[h,	Acol]	=	WtdMean		
				Cells[h	+	1,	Acol]	=	WtdMeanErr		
				--Assignment	of	Cells[h	+	2,	Acol]	is	separate,	outside	this	Else	statement
				Cells[h	+	3,	Acol]	=	MSWD		

				Cells[h	+	4,	Acol]	=	Prob		
				Cells[h	+	5,	Acol]	=	wW[7,	1]		

				--Finally,	derive	an	element-dependent	label-string:		
				t2	=	"Wtd	Mean	of	Std	Pb/"	&	Ele	&	"	calibr."		

		End	If	--(pbCanDriftCorr	=	TRUE)		

		Set	ExtPerr	=	Cells[h	+	2,	Acol]	--identifies	the	cell	to	be	known	as	ExtPerr
		ExtPerr.Name	=	"ExtPerr"	&	s	--names	it	ExtPerr1	or	ExtPerr2,	based	on	DauParNum
		ExtPerr	=	ExtPtSigma	--assigns	the	double-precision	value	calculated	by	WtdAv

		If	pbCanDriftCorr	=	TRUE
				[out-of-scope	stuff]
		End	If

		If	MSWD	>=	100		
				MSWD	=	Drnd(MSWD,	3)
				--Drnd	is	a	function	(Isoplot3	-	Pub)	that	takes	a	double-precision	number
				--(the	first	argument),	and	rounds	it	to	a	set	number	of	significant	figures		
				--(the	second	argument).	I	don't	understand	the	need	for	this	If	statement.
		End	If		

		If	pbCanDriftCorr	=	TRUE

				[out-of-scope	stuff]

		ElseIf	Cells(h	+	5,	Acol).Value	>	0
		--i.e.	if	there	ARE	some	rejected	spots,then	show	the	rejected	calib.-
		--constant	values	with	strikethrough,	and	colour	them	yellow:

				For	i	=	1	To	Nrej
						j	=	Adatrange[Rejected[i],	1].Row	--selects	the	row

						Fonts	j,	Acol,	,	3	+	Acol,	StrikeThrough=True
						--applies	StrikeThrough	to	four	columns	in	that	row,	the	leftmost	of
						--which	is	the	calibration-constant	value	column

						IntClr	vbYellow,	j,	Acol,	,	3	+	Acol
						--applies	interior	colour	yellow	to	the	same	range	of	cells
				Next	i										

		End	If

The next thing SQUID 2.50 does is define the cell-ranges which will contain the "Age(Ma)"
data, the "Age(Ma)±1sigma" and the "Age(Ma)±2sigma". In all cases, these three columns are
stored immediately to the right of their source calibration-constant value-uncertainty pairs, as
defined below (recalling that rw1 and rwn are the first and last data-rows respectively on sheet
StandardData):

		AddName	"Aadat"	&	s,	TRUE,	rw1,	1	+	Aecol,	rwn,	1	+	Aecol
		AddName	"Aaerdat1_"	&	s,	TRUE,	rw1,	2	+	Aecol,	rwn,	2	+	Aecol
		AddName	"Aaerdat2_"	&	s,	TRUE,	rw1,	3	+	Aecol,	rwn,	3	+	Aecol

Next, assemble formulae for age-calculation, which naturally depend on the identity of the
daughter-parent (i.e. 206Pb/238U or 208Pb/232Th), but also the identity of the index isotope
(204-corr, 207-corr, etc.) under our "calculate everything" philosophy. So below, I have used
'X' as shorthand identifier for all 'permissible' index isotopes in a given permutation (recall the
Cases outlined in the Introduction of Procedural Framework Part 3).

		If	(pbU	=	TRUE	AND	NumDauPar	=	1)	OR	(pbTh	=	TRUE	AND	NumDauPar	=	2)
				--we	are	dealing	specifically	with	a	206Pb/238U	calib.	constant:

				t1	=	"=LN(1	+	["X-corr206Pb/238Ucalibr.const"]	/	("WtdMeanA"	&	s)
						*	StdUPbRatio)	/	Lambda"

				--Now	fill	column	["X-corr206Pb/238U	Age(Ma)"]:		
				For	i	=	rw1	To	rwn
						PlaceFormulae	t1,	i,	piaSAgeCol[DauParNum]		
				Next	i

				t4	=	"EXP(Lambda	*	["X-corr206Pb/238U	Age(Ma)"])"

				t5	=	["X-corr206Pb/238Ucalibr.const	%err"]	/	100	*	(t4	-	1)	/	Lambda	/	t4		

			--Now	fill	columns	["X-corr206Pb/238U	Age(Ma)±1sigma"]	and
			--["X-corr206Pb/238U	Age(Ma)±2sigma"]
				For	i	=	rw1	To	rwn
						PlaceFormulae	t5,	i,	piaSAgeECol[DauParNum]		--±1sigma
						PlaceFormulae	"2	*	t5",	i,	1	+	piaSAgeECol[DauParNum]		--±2sigma
				Next	i

		Else
				--we	are	dealing	specifically	with	a	208Pb/232Th	calib.	constant:		
				t1	=	"=LN(1	+	["X-corr208Pb/232Thcalibr.const"]	/	("WtdMeanA"	&	s)
								*	StdThPbRatio)	/	Lambda"

				--Now	fill	column	["X-corr208Pb/232Th	Age(Ma)"]:		
				For	i	=	rw1	To	rwn
						PlaceFormulae	t1,	i,	piaSAgeCol[DauParNum]		
				Next	i

				t4	=	"EXP(Lambda	*	["X-corr208Pb/232Th	Age(Ma)"])"

				t5	=	["X-corr208Pb/232Thcalibr.const	%err"]	/	100	*	(t4	-	1)	/	Lambda	/	t4		

			--Now	fill	columns	["X-corr208Pb/232Th	Age(Ma)±1sigma"]	and
			--["X-corr208Pb/232Th	Age(Ma)±2sigma"]
				For	i	=	rw1	To	rwn
						PlaceFormulae	t5,	i,	piaSAgeECol[DauParNum]		--±1sigma

						PlaceFormulae	"2	*	t5",	i,	1	+	piaSAgeECol[DauParNum]		--±2sigma
				Next	i

		End	If

The SQUID 2.50 code now embarks on a massive round of plotting and formatting, most of
which seems irrelevant to the arithmetic. Buried inside it, however, is a call to the complex
subroutine "ExtractGroup", which I will document separately and in detail, as it is also invoked
when assessing populations of sample/unknown analyses. Its task is to find and extract the
largest "statistically coherent" subgroup of analyses (i.e. with a weighted mean exceeding a
specified probability-of-fit threshold), and this functionality is very useful to analysts trying to
extract some sort of "rock age" from a high-n dataset complicated by lots of inherited zircon,
Pb loss, etc.

		If	pbCanDriftCorr	=	TRUE

				[out-of-scope	stuff]

		Else	--i.e.	pbCanDriftCorr	=	FALSE

				ExtractGroup	TRUE,	0,	UPbConst,	FALSE,	TRUE,	0,	[NULL],	DauParNum,	[NULL]
				--subroutine	documented	separately

		End	If

Finally, I also found the code that manually over-rides a calculated external error that is "too
small" (in the subjective opinion of the analyst) with a user-specified static minimum value. I
have included some of the addressing code, because like everything else so far, this
manipulation is theoretically applicable to every set of calibration-constant calculations:

		If	pbCanDriftCorr	=	FALSE

				With	Range("WtdMeanA"	&	s)
						r	=	Range.Row
						c	=	Range.Column
				End	With

		End	If

		Set	extBox	=	frSr(r,	c)

		With	extBox
				extBox.Name	=	"ExtPerrA"	&	s	--note	that	extBox.Name	is	the	identity
				--of	the	external	uncertainty	that	is	actually	propagated	to
				--measurements	of	the	unknowns

				extBox.Formula	=	"=MAX("User-specified	minimum	external	1sigma	%err",	ExtPerr)
				--user-specified	value	is	set	in	Preferences:	GA	uses	0.75%	based	on
				--long-term	observations
		End	With

Next	DauParNum

End	Sub

SQUID
2.50
Function:
fdNmad

This subroutine evaluates the double-precision value fdNmad (median absolute deviation)
corresponding to an input vector v comprising double-precision numbers.

Usage

fdNmad(v)

Mandatory
variables

v: Vector containing double-precision values.

Definition
of
variables

Values
of
type
Integer
i, N, Nn

Values
of
type
Double
med, medyr2, fdNmad

Arrays
of
type
Double
v, yr2

The function utilises the Excel function UBound (http://www.excelfunctions.net/vba-ubound-
function.html) to determine the length of the input vector:

N	=	UBound(v)	--like	length(v)		
med	=	Median(v)

Nn	=	Max(3,	N)	--minimum	value	of	3
ReDim	yr2[1	to	N]	--apparently	not	zero-addressed	

For	i	=	1	to	N		
		yr2[i]	=	(v[i]	-	med)^2		
Next	i

medyr2	=	Median(yr2)				

fdNmad	=	1.4826	*	(1	+	5	/	(Nn	-	2))	*	Sqrt(medyr2)

http://www.excelfunctions.net/vba-ubound-function.html

End	Function

The magic number 1.4826 is hard-coded (by Ludwig and by most other users of MAD-related
functions: this value ensures that "± MAD" encompasses 50% (i.e. between 1/4 and 3/4) of the
normal cumulative distribution function (e.g.
https://en.wikipedia.org/wiki/Median_absolute_deviation).

https://en.wikipedia.org/wiki/Median_absolute_deviation)

SQUID
2.50
Sub:
ExtractGroup

This
documentation
has
been
(temporarily)
abandoned
incomplete
as
of
2018-04-27,
because
it
is
not
clear
what
effect
(if
any)
these
calculations
can
have
on
calibration
constants.
This
subroutine
and
it's
sub-subroutines
will
be
revisited
at
the
time
it
becomes
necessary
to
deal
with
Grouping
of
Sample
analyses.

This subroutine extracts a statistically coherent age group (i.e. one with probability of fit >=
Mprob), and (in Excel-speak) constructs its range addresses, as well as placing the results on
the active sheet. The SQUID 2.50 VBA code also constructs a weighted-average chart inset,
but that aspect of its function is not documented here.

This procedure was probably written long ago; once again, it makes extensive use of Ranges
in contexts where newer code-modules, executing similar operations, have explicitly defined
and utilised double-precision arrays. VBA code dealing with arrays tends to be much more
intelligible than that dealing with spreadsheet-ranges, but the latter is what we've got.

I have documented this subroutine in detail, because it is also invoked when assessing
populations of sample/unknown analyses. Its functionality is very useful to analysts trying to
extract some sort of "rock age" from a high-n dataset complicated by lots of inherited zircon,
Pb loss, etc.

Usage

ExtractGroup Std, Mprob, t, RedoOnly, StdCalc, AgeResult, TypeCol, DpNum, Xrange

Mandatory
variables

Std: Boolean input indicating whether the input to ExtractGroup is from the StandardData
sheet or not.

Mprob: Double-precision value (0 <= Mprob <= 1) defining the minimum probability-of-fit
required to satisfy the test of "statistical coherence" in the extracted group. Mprob = 0.05 is a
common setting.

t: The cell-range containing the input data (can be thought of as a double-precision array). I
think it usually has two columns: values and uncertainties

Optional
variables

RedoOnly: Boolean input indicating whether this invocation of ExtractGroup is being run 'from
scratch' (RedoOnly = FALSE), or whether it is a 're-run' of an pre-existing weighted-mean
calculation (RedoOnly = TRUE) but aimed at investigating the effect of user-defined rejections
and inclusions since the previous time ExtractGroup was run on the input data. DEFAULT
value = FALSE.

StdCalc: Boolean input indicating whether this invocation of ExtractGroup is being run on
calibration-copnstant value-uncertainty pairs on the StandardData sheet (StdCalc = TRUE) or
not. DEFAULT value = FALSE.

AgeResult: Double-precision output value of the weighted average calculation.

TypeCol: Appears unused in the final implementation of the routine.

DpNum: For StandardData calibration-constants only, an integer value indicating whether
ExtractGroup is being invoked for the 'primary' daughter-parent ratio (DpNum = 1) or the
alternate ratio (DpNum = 2). DEFAULT value = 1.

Xrange: Unused in the final implementation of the routine.

Definition
of
variables
-
NEEDS
UPDATING
FOR
EXTRACTGROUP

Values
of
type
Boolean
NoReject, NoUPbConstAutoReject, pbCanDriftCorr, pbU, pbTh, [Task]Switch.DirectAltPD

Values
of
type
Integer
c,DauParNum, ErN, h, i, j, LargeErRegN, Npts, Nrej, NtotRej, NumDauPar, r, rw1, rwn

Values
of
type
Double
ExtPerr, ExtPtSigma, Lambda, MedianEr, MSWD, Nmadd, Prob, pscLm2, pscLm8,
StdThPbRatio, StdUPbRatio, WtdMean, WtdMeanErr

Values
of
type
String
s, Ele, t1, t2, t4, t5

Vectors
of
type
Integer
LargeErRej, Rejected

Vectors
of
type
Double

Acol, Aecol, Arange, Aerange, ErrVals

Arrays
of
type
Double
Adatrange

Arrays
of
type
Variant/Mixed
wW

The function commences with some definitions.

--Reinitialise	AgeResult:
If	fbNIM(AgeResult)	=	TRUE	--i.e.	AgeResult	exists			
		AgeResult	=	0		
End	If		

--Define	Boolean	DoAll:
If	RedoOnly	=	TRUE
		DoAll	=	FALSE
Else
		DoAll	=	TRUE
End	If

--Define	string	version	of	DpNum:
If	Std	=	TRUE
		Dp	=	fsS(DpNum)	--fsS	converts	double-precision	to	string
Else
		Dp	=	""	--i.e.	nothing
End	If		

Recalling that the input data t is defined as a single contiguous range (on a spreadsheet), it is
necessary to define where on the spreadsheet the range is located, as well as the locations of
the important components of the range:

With	t
		ar1	=	.Row	--address	of	the	FIRST	row	of	the	range
		ArN	=	.Rows.Count	--number	of	rows	in	the	range
		ArL	=	ar1	+	ArN	-	1	--derived	address	of	the	LAST	row	of	the	range
		arc	=	.Column	--address	of	the	LEFT	(value/age)	column	of	the	range
End	With

Ludwig now defines the Boolean Rad76age by searching the cell at [ar1 - 1, arc], which is the
cell immediately above the top-left cell of the input range, on the off-chance that it is a
column-header which contains the text-fragment "207Pb/206Pb". If it does, then Rad76age =

TRUE, else it is FALSE.

Next is some addressing of the column-header row, the first row of data and the last row of
data on any given worksheet, bearing in mind that the addresses of these rows can differ
between the StandardData and SampleData sheets:

HdrRowGrp	=	flHeaderRow[-Std]		--recalling	Std	=	TRUE	has	numeric	value	-1,	FALSE	=	0
FirstGrpDatRw	=	plaFirstDatRw[-Std]
LastGrpDatRw	=	plaLastDatRw[-Std]

--Then	define	the	range	Hours,	by	finding	the	relevant	range	on	the	relevant	sheet:
Set	Hours	=	frSr(FirstGrpDatRw,	piHoursCol,	LastGrpDatRw)

Now populate the arrays rX and RxE (or X and Xerr), as well as vOK, according to the Boolean
inputs of ExtractGroup, as well as the presence of numeric data in the 'values' and 'errors'
columns of range t:

N	=	ArN

If	RedoOnly	=	TRUE	Or	StdCalc	=	TRUE

		SetArrayVal	TRUE,	vOK	
		--simply	sets	all	elements	of	VOK	to	value	TRUE

Else

		For	i	=	1	To	ArN

				tB	=	TRUE
				vOK[i]	=	FALSE

				For	j	=	1	To	2
						tB	=	tB	And	(IsEmpty(t[i,	j])	=	FALSE	And	IsNumeric(t[i,	j]	=	TRUE)
				Next	j

				If	tB	=	TRUE
						k	=	1	+	k

						If	StdCalc	=	TRUE
								rX[k]	=	t[i,	1]
								RxE[k]	=	t[i,	2]
						Else
								X[k]	=	t[i,	1]
								Xerr[k]	=	t[i,	2]
						End	If

						vOK[i]	=	TRUE
				End	If

		Next	i

		Nn	=	k
		BadCt	=	N	-	Nn
		OkCt	=	Nn

End	If

If	N	<	2	--should	come	immediately	after	"N	=	ArN",	surely!
		Exit	Sub
End	If

How the code proceeds depends on what it is trying to do. If StdCalc = TRUE, then the
business of identifying and rejecting outliers is covered elsewhere (i.e. in WtdmeanAcalc), and
if RedoOnly = TRUE, then an attempt at extracting a group has already been made, and the
code is merely assessing the effect of modifications manually applied by the user (i.e.
rejections/unrejections defined by the presence/absence of Strikethrough font) since the last
ExtractGroup attempt.

If	RedoOnly	=	TRUE	Or	StdCalc	=	TRUE
		Nn	=	0
		j	=	0
		k	=	0
		ReDim	rX[1	To	ArN]	--values	column,	for	Stds

		For	i	=	1	To	ArN

				Set	Tt	=	t[i,	1]	
				--range	Tt	is	the	'value',	row-by-row,	in	range	t

				If	Len(Tt.Text)	>	0	And	IsNumeric(Tt)	=	TRUE	And	Val(Tt)	>	0

						If	Tt.Font.Strikethrough	=	FALSE	And	fbIsNumber(Tt.Text)	=	TRUE
								Nn	=	1	+	Nn
								rX[Nn]	=	Tt
								RxE[Nn]	=	t[i,	2]	/	100	*	Tt
						End	If

				End	If

		Next	i

		OkCt	=	Nn
		BadCt	=	ArN	-	OkCt

ElseIf	StdCalc	=	FALSE

		FindCoherentGroup	N,	Nn,	BadCt,	BadRwIndx,	X(),	Xerr(),	rX(),	
					RxE(),	Mean,	MeanErr,	MSWD,	Prob,	Mprob,	pdMinFract,	OkVal
		--subroutine	to	be	documented	separately

		If	OkVal	=	FALSE
				CFs	LastGrpDatRw	+	2,	arc,	"No	coherent	age	group"
				--place	string	"No	coherent	age	group"	in	the	'values'	column,
				--two	rows	below	the	final	row	of	the	input	range.

				Exit	Sub
		End	If

Else	--i.e.	StdCalc	=	TRUE	And	RedoOnly	=	FALSE

		If	Nn	>	2
				OkVal	=	TRUE
		Else
				OkVal	=	FALSE
		End	If

End	If

There follows a block of text aimed primarily at formatting (I think). Picking it up again at the
point where a ±2sigma (absolute) error-column is inserted adjacent to (and to the right of) the
±1sigma (absolute) error column:

Code
documentation
temporarily
abandoned
at
this
point
2018-04-27

If	StdCalc	=	TRUE

		Er2SigCol	=	4	+	t.Column	
		--4	columns	to	the	right	of	the	calib.	const.	'values'	column,	because
		--the	intervening	columns	are	calib.	const.	%err,	Age	(Ma),	and	
		--Age	(Ma)	±1sigma,	and	Er2SigCol	is	the	address	for	Age	(Ma)	±2sigma.

Else	--all	other	cases

		Er2SigCol	=	2	+	t.Column	
		--2	columns	to	the	right	of	the	'values'	column,	because	the	only
		--intervening	column	is	±1sigma,	and	Er2SigCol	is	the	address	for	±2sigma.

End	If

If	RedoOnly	=	FALSE	And	StdCalc	=	FALSE	And	Cells[HdrRowGrp,	Er2SigCol]	<>	""

		For	i	=	FirstGrpDatRw		To	LastGrpDatRw
				Cells[i,	Er2SigCol]	=	"=2*"	&	Cells[i,	Er2SigCol	-	1].Address(0,	0)
		Next	i

End	If

If	Nn	=	0
		MsgBox	"Can't	reduce	this	data."
		End

End	If

OkCt	=	0
BadCt0	=	BadCt
BadCt	=	0
Tct	=	t.Rows.Count	--can't	see	how	this	differs	from	ArN

If	BadCt0	>	0	
		ReDim	TmpBadRwIndx[1	To	BadCt0]
End	If

NokGrps	=	0
NbadGrps	=	0
StartNewGrp	=	FALSE

For	j	=	1	To	Tct

		OkCt0	=	OkCt

		For	i	=	1	To	UBound(rX)	--i.e.	length	(rX)

				Set	Tt	=	t[j,	1]

				If	IsNumber(Tt.Text)	=	TRUE	And	Tt.Font.Strikethrough	=	FALSE

						If	Tt	<>	0	And	Tt	=	rX[i]	

								Set	Ra1	=	Tt[1,	0]
								Set	Ra4	=	Tt[1,	1]
								Set	Ra5	=	Tt[1,	2]

								If	StdCalc	=	TRUE
										Set	Ra2	=	Tt[1,	3]
										Set	Ra3	=	Tt[1,	5]
								Else
										Set	Ra2	=	Tt[1,	1]
										Set	Ra3	=	Tt[1,	3]
								End	If

								Set	Ra6	=	Range(Ra4,	Ra5)
								Set	Ra7	=	Range(Ra1,	Ra4)
								Set	ur1	=	Union(Ra1,	Ra2)

								With	Ra6
										.Font.Strikethrough	=	False
								End	With

								OkCt	=	1	+	OkCt
								OK[OkCt]	=	rX[i]
								OKrwIndx[OkCt]	=	j

								If	StdCalc	=	TRUE
										OkVals[OkCt,	1]	=	Ra1
										OkVals[OkCt,	2]	=	Ra4
										OkErrVals[OkCt]	=	Ra5	--1sigma	absolute	errors
								End	If

								OkAgeVals[OkCt,	1]	=	Ra1
								OkAgeVals[OkCt,	2]	=	Ra2
								OkAgeErrVals[OkCt]	=	Ra3	--2sigma	absolute	errors

								If	OkCt	=	1
										NokGrps	=	1
										ReDim	OkAgeAddr[1	To	1],	OkAgeErAddr[1	To	1],	OkBreak[1	To	1]
										Set	OKspots	=	Ra7
										Set	OkErrs	=	Ra5
										Set	OkAge	=	ur1
										Set	OkAgeErrs	=	Ra3
								ElseIf	StartNewGrp	=	TRUE
										NokGrps	=	1	+	NokGrps
										ReDim	Preserve	OkAgeAddr[1	To	NokGrps],	OkAgeErAddr[1	To	NokGrps],
												OkBreak[1	To	NokGrps]
										StartNewGrp	=	FALSE
										Set	OkAge	=	ur1
										Set	OkAgeErrs	=	Ra3
								Else
										Set	OkAge	=	Union(OkAge,	ur1)
										Set	OkAgeErrs	=	Union(OkAgeErrs,	Ra3)
								End	If

								Set	OKspots	=	Union(OKspots,	Ra7)
								Set	OkErrs	=	Union(OkErrs,	Ra5)
								OkAgeAddr[NokGrps]	=	OkAge.Address
								OkAgeErAddr[NokGrps]	=	OkAgeErrs.Address
								OkBreak[NokGrps]	=	j

								Exit	For

						End	If	--Tt	<>	0	And	Tt	=	rX[i]	

				End	If	--IsNumber(Tt.Text)	=	TRUE	And	Tt.Font.Strikethrough	=	FALSE

		Next	i

		If	OkCt	=	OkCt0	
				BadCt	=	1	+	BadCt
				BadRwIndx[BadCt]	=	j
		End	If

Next	j

If	BadCt	>	0

		k	=	Max(BadCt,	BadCt0)

		ReDim	Preserve	BadRwIndx[1	To	k],	TmpBadRwIndx[1	To	k]
		ReDim	TmpBadRwIndx[1	To	k]

		NbadGrps	=	0
		StartNewGrp	=	FALSE

		For	i	=	1	To	BadCt

				TmpBadRwIndx[i]	=	BadRwIndx[i]
		Next	i

		k	=	0

		For	i	=	1	To	BadCt
				m	=	TmpBadRwIndx[i]

				With	Range(t[m,	1],	t[m,	2])
						.Font.Strikethrough	=	True
						.Interior.Color	=	vbYellow
				End	With

				Set	Tt	=	t[m,	1]

				If	IsNumber(Tt.Text)	=	TRUE

						If	Val(Tt)	<>	0	
								k	=	1	+	k

								Set	Ra1	=	Tt(1,	0)

								If	StdCalc	=	TRUE
										Set	Ra2	=	Tt[1,	3]
										Set	Ra3	=	Tt[1,	5]
								Else
										Set	Ra2	=	Tt[1,	1]
										Set	Ra3	=	Tt[1,	3]
								End	If

								Set	Ra7	=	Union(Ra1,	Ra2)

								BadRwIndx[k]	=	m
								BadAgeVals[k,	1]	=	Ra1
								BadAgeVals[k,	2]	=	Ra2
								BadAgeErrVals[k]	=	Ra3

								If	k	=	1
										NbadGrps	=	1
										ReDim	BadAgeAddr[1	To	1],	BadAgeErAddr[1	To	1],	BadBreak[1	To	1]

										Set	BadAge	=	Ra7
										Set	BadAgeErrs	=	Ra3

								ElseIf	StartNewGrp	=	TRUE
										NbadGrps	=	1	+	NbadGrps
										ReDim	Preserve	BadAgeAddr[1	To	NbadGrps],	BadAgeErAddr[1	To	NbadGrps],
												BadBreak[1	To	NbadGrps]

										StartNewGrp	=	TRUE
										Set	BadAge	=	Ra7
										Set	BadAgeErrs	=	Ra3

								Else
										Set	BadAge	=	Union(BadAge,	Ra7)
										Set	BadAgeErrs	=	Union(BadAgeErrs,	Ra3)

								End	If

								BadAgeAddr[NbadGrps]	=	BadAge.Address
								BadAgeErAddr[NbadGrps]	=	BadAgeErrs.Address
								BadBreak[NbadGrps]	=	m

						End	If	--Val(Tt)	<>	0

				End	If	--IsNumber(Tt.Text)	=	TRUE

		Next	i

		BadCt	=	k

		If	NbadGrps	>	0

				If	BadBreak[NbadGrps]	=	0	
						BadBreak[NbadGrps]	=	m
				End	If

		End	If

		If	BadCt	>	0
				ReDim	Preserve	BadRwIndx[1	To	k]
		End	If

End	If	--BadCt	>	0

SQUID
2.50
Sub:
OverCtMeans

This subroutine (which is solely for
the
Standard) does a bit more than the name implies.
Firstly it places, row-by-row, formulae to calculate the 204-corrected 207Pb/206Pb ratio and
its 1sigma percentage uncertainty, as well as invoking (row-by-row) the relevant LudwigLibrary
functions to calculate the associated 204-corrected 207Pb/206Pb date and its 1sigma
absolute uncertainty.

Secondly, it identifies which columns can usefully have robust means calculated, performs
those calculations (using LudwigLibrary function TukeysBiweight, with tuning 9) and places the
output of the expression as a 3 x 1 array beneath the relevant column. The SQUID 2.50
subroutine requires the index number of the last row of analytical data as an input, so it can
determine in which rows the "summary" results should be placed so that the calculated
biweights appear directly beneath the input data.

Usage

OverCtMeans plaLastDatRw

Mandatory
variable

plaLastDatRw: Integer index number of the last row containing spot-by-spot data (for the
Standard).

Definition
of
variables

Values
of
type
Boolean
ShowOverCtCols

Values
of
type
Integer
c, k, kk, plaFirstDatRw

Values
of
type
String
t0, t1, t2, t3, t4, t5

The subroutine starts by calculating the 204Pb-corrected 207Pb/206Pb, its uncertainty, and
the associated date and uncertainty.

If	piaAgePb76_4Col[1]	>	0	--i.e.	if	column	["4-corr207Pb/206Pb"]	exists	on	StandardData:

		t0	=	"=(["207/206"]	/	["204/206"]	-	sComm_74)	/	(1	/	["204/206"]	-	sComm_64)"		

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pb"]	on	StandardData:
		PlaceFormulae	t0,	plaFirstDatRw,	piStdPb76_4Col,	plaLastDatRw

		--Now	calculate	the	associated	%err:
		t1	=	"((["207/206"]	*	["207/206%err"])^2	+
							(["204/206"]	*	(["4-corr207Pb/206Pb"]	*	sComm_64	-	sComm_74)
										*	["204/206%err"])^2)"
		t2	=	"(["207/206"]	-	["204/206"]	*	sComm_74)^2"
		t3	=	"=sqrt(t1	/	t2)"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pb%err"]	on	StandardData:
		PlaceFormulae	t3,	plaFirstDatRw,	piStdPb76_4eCol,	plaLastDatRw

		--Now	invoke	LudwigLibrary	functions	to	calculate	associated	age	and	error:		
		t4	=	"=AgePb76(["4-corr207Pb/206Pb"])"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pbage"]	on	StandardData:
		PlaceFormulae	t4,	plaFirstDatRw,	piaAgePb76_4Col,	plaLastDatRw

		--Convert	["4-corr207Pb/206Pb%err"]	to	absolute,	to	calculate	age	error:
		t5	=	"=AgeErPb76(["4-corr207Pb/206Pb"]	,	["4-corr207Pb/206Pb"]
						*	["4-corr207Pb/206Pb%err"]	/	100)"

		--Then	place	this	formula	in	column	["4-corr207Pb/206Pbage±1sigma"]	on	StandardData:
		PlaceFormulae	t5,	plaFirstDatRw,	piaAgePb76_4eCol,	plaLastDatRw

End	If

The second part of the subroutine calculates the various biweight means, for the range of
columns for which they are relevant. In practice, the "entry" Boolean is always TRUE, because
Ludwig set the nominally user-defined Boolean ShowOverCtCols to TRUE, and then removed
the relevant check-box from the user form! Note that a possibly unintended consequence of
"locking in" this Boolean is that it formally requires all SQUID 2.50 U-Pb Geochronology Tasks
to include 204Pb in the list of mass-stations.

__(There will come a time when it is necessary for us to formally assess the absolute minimum
mass-stations in order to perform U-Pb (or Th-Pb) geochronology in SQUID 3.0. My feeling is
that the absolute minimum lists are as follows:

206Pb/238U: 206Pb, 238U (or a proxy thereof), and ONE OF (204Pb or 207Pb)
208Pb/232Th: 208Pb, 232Th (or a proxy thereof), and ONE OF (204Pb or 207Pb)

At present, SQUID 2.50 enforces "BOTH OF". Certainly the "alternate" daughter-isotope (i.e.

208Pb for U-Pb, 206Pb for Th-Pb) should be optional, and probably Background should be
optional too (even though including 204Pb in a run-table without including Background would
be terrible practice. Something to revisit later, and the stakes are relatively low: it doesn't really
matter exactly what the 'bare bones' list of mass-stations is, as long as we warn SQUID 3.0
users up-front… it would be an improvement on SQUID 2.50!)__

The subroutine proceeds:

If	ShowOverCtCols	=	TRUE	OR	piaAgePb76_4Col[1]	>	0	--i.e.	if	StandardData
		contains	["4-corr207Pb/206Pbage"]		

		If	piaOverCts4Col[7]	>	0	Or	piaOverCts4Col[8]	>	0	Or	piaAgePb76_4Col[1]	>	0		
		--i.e.	if	ANY	of	the	columns	["204overcts/sec(fr.	207)"],
						["204overcts/sec(fr.	208)"],		
		--["4-corr207Pb/206Pbage"]	exist	on	the	StandardData	sheet,	then	define
						the	extent	of	calculations		
		--to	be	performed:		

				If	ShowOverCtCols	=	TRUE		
						kk	=	1
				Else		
						kk	=	5		
				End	If

				For	k	=	kk	To	5

						Select	Case	k	--all	column-indices	refer	to	StandardData	sheet:
								Case	1:	c	=	piaOverCts4Col[7]	--index	for	["204overcts/sec(fr.	207)"]
								Case	2:	c	=	piaOverCts4Col[8]	--index	for	["204overcts/sec(fr.	208)"]
								Case	3:	c	=	piacorrAdeltCol[7]	--index	for	["7-corr206Pb/238Uconst.delta%"]
								Case	4:	c	=	piacorrAdeltCol[8]	--index	for	["8-corr206Pb/238Uconst.delta%"]
								Case	5:	c	=	piaAgePb76_4Col[1]	--index	for	["4-corr207Pb/206Pbage"]
						End	Select

						If	c	>	0		

								--Define	Range	bw	as	3	x	1,	with	the	first	row	immediately	following
												analytical	data:
								Set	bw	=	frSr(1	+	plaLastDatRw,	c,	3	+	plaLastDatRw)	--sets	Range
												bw	=	3	rows	by	1	col		

								--Invoke	LudwigLibrary	function	Biweight	(tuning	9)	on	the	data	in
												the	column	above	bw.
								--Note	that	for	k	=	3	or	4,	the	values	in	this	range	have	not	yet
												been	calculated!
								bw.FormulaArray	=	"=Biweight("	&	frSr(plaFirstDatRw,	c,	plaLastDatRw).Address	&	

								--Finally,	add	Names	(and	explanatory	Notes)	to	result-cells.	These	are
												relevant	because		
								--the	Names	can	be	used	in	Task-expressions,	and	the	Notes	matter
												because	the	columns	are		
								--quite	abstract	concepts	for	non-SHRIMP	geochronologists	(as	well

														as	SHRIMP	beginners):		

								--Note	that	I	have	recast	the	following	If	to	make	it	longer	but	more	transparent:

								If	k	=	1		
										t1	=	"StandardData!Pb204OverCts7corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the
														Biweight	Value	element
										t2	=	"StandardData!Pb204OverCts7corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the
														Biweight	95%	conf.	element
										t3	=	"Robust	avg	204	overcts	assuming	206Pb/238U-207Pb/235U	age
														concordance"
								ElseIf	k	=	2		
										t1	=	"StandardData!Pb204OverCts8corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"StandardData!Pb204OverCts8corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	204	overcts	assuming	206Pb/238U-208Pb/232Th	age
														concordance"
								ElseIf	k	=	3		
										t1	=	"OverCtsDeltaP7corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"OverCtsDeltaP7corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	of	diff.	between	207-corr.	and	204-corr.	calibr.	const."
								ElseIf	k	=	4		
										t1	=	"OverCtsDeltaP8corr"
										AddName	t1,	TRUE,	1	+	plaLastDatRw,	c	--Name	for	the	Biweight	Value
														element
										t2	=	"OverCtsDeltaP8corrEr"
										AddName	t2,	TRUE,	3	+	plaLastDatRw,	c	--Name	for	the	Biweight
														95%	conf.	element
										t3	=	"Robust	avg	of	diff.	between	208-corr.	and	204-corr.	calibr.	const."
								Else	--interestingly,	SQUID	2.50	does	not	assign	Names	(t1,	t2)	to	the
												Biweight
										--elements	calculated	for	the	["4-corr207Pb/206Pbage"]	column.
														Probably	an	oversight!
										t3	=	"Robust	average	of	204-corrected	207/206	age"
								End	If	--k	=	1	to	5

								--Now	VBA	function	"Note"	to	add	text	t3	as	Comment	on	the	Biweight
												Value	element:
								Note	1	+	plaLastDatRw,	c,	t3		

								--Corresponding	Comment	on	the	Biweight	95%	conf.	element	is
												context-sensitive:		
								If	k	=	3	OR	k	=	4
										t3	=	"95%-conf.	error	in	above	difference"
								Else		
										t3	=	"95%-conf.	error	in	above"
								End	If

								Note	3	+	plaLastDatRw,	c,	t3		

						End	If	--c	>	0

				Next	k

		End	If	--piaOverCts4Col[7]	>	0	Or	piaOverCts4Col[8]	>	0	Or
						piaAgePb76_4Col[1]	>	0

		ClearObj	bw

End	If	--ShowOverCtCols	=	TRUE	OR	piaAgePb76_4Col[1]	>	0

End	Sub

The final phase of Loop A "cleans up" the 232Th/238U calculations in the Perm2 and Perm4
cases (i.e. where piNumDauPar = 2): the subroutine ThUfromA1A2 can now be executed
properly, because WtdMeanA1 and WtdMeanA2 now both exist. Unfortunately, this entails
some really nasty code, much of which looks (to my eye) obsolete and pointless. But I can't be
certain, so I have documented it below.

Recalling that pbHasTh is TRUE if the run-table contains at least one peak with mass 232, 248
or 264 (which it usually does, for geochronology), and pbHasU is TRUE if the run-table
contains at least one peak with mass 238, 254 or 270 (which it almost always will, for
geochronology), then the code for the Perm2 and Perm4 scenarios proceeds (from the end of
Part 4) as follows:

	If	(pbHasTh	=	TRUE)	AND	(pbHasU	=	TRUE)	AND	(piNumDauPar	=	2)

	--Then	replace	the	dummy	values	of	"1"	for	232Th/238U	with	true	formulae
	If	(pbStd	=	TRUE)	AND	(piNumDauPar	=	2)

	Set	CalibConst1	=	frSr(1	+	plaFirstDatRw[1],	[WtdMeanA1].Column,	Lrw)	

The previous line looks like it contains a bug: this frSr statement defines a one-column cell-
range containing the calibration-constant values for the primary calibration constant (i.e.
206Pb/238U for Perm2, 208Pb/232Th for Perm4), but the use of "1 + plaFirstDatRw[1]" means
that the cell-range excludes the first row! Having stepped through the code, I am convinced
this is a slip, and that the "1 +" should be deleted. Let's leave it in place for now, because with
respect to our SQUID-books of record, it's "what SQUID 2.50 does".

The next line of code invokes a SQUID 2.50 subroutine which Ludwig named "Clean", which is
a bit confusing, because Microsoft VBA has a function of the same name, which does a
different thing. For the sake of this documentation (and to allay my own considerable
confusion!), I have renamed Ludwig's subroutine "SQUIDClean". In addition to the first two
arguments (which are the input and output cell-ranges) and the third argument (which
enumerates the "clean" data-rows), SQUIDClean has 7 optional Boolean arguments, the first 6
of which are assigned their default values. The last ("AddStrikeThru") is set to TRUE, where its
default is FALSE:

	SQUIDClean	CalibConst1,	CleanedConst,	0,	,	,	,	,	,	,	TRUE	
	--subroutine	documented	separately		

In this context, SQUIDClean takes the input range of 20 (not 21!) primary calibration-constant
values (remember that the first row is ignored owing to the bug described above), and "cleans"

Sq2.50 Procedure Pt 5

them to remove those that have already been excluded via the application of Strikethrough
font as part of the WtdMeanAcalc subroutine earlier. CleanedConst comprises the 15 primary
calibration-constant values that survive the cleaning process.

						AvCalibrConst	=	Average(CalibConst1)		

						If	CleanedConst.Count	<	CalibConst1.Count	--these	"counts"	refer	to	number	of	rows
								p	=	12		
						Else
								p	=	0
						End	If

				End	If	--(pbStd	=	TRUE)	AND	(piNumDauPar	=	2)

I do not understand the relevance of the parameter p. As far as I can see, its sole purpose is to
force multiple iterations of the subroutine ThUfromA1A2 in the code below, but the benefit of
these iterations remains unclear, as I can't see any place that the value of p or its dependents
actually influences the input to ThUfromA1A2… The code continues:

				Do

						p	=	p	+	1
						AvCalibrConst0	=	AvCalibrConst

						For	DatRow	=	Frw	To	Lrw
								ThUfromA1A2	pbStd,	(DatRow),	FALSE
								--because	WtdMeanA1	and	WtdMeanA2	now	exist
								--subroutine	previously	documented	(Procedure	Part	3)
						Next	DatRow

						Recalculate

						If	(p	>	12)	OR	((pbStd	=	TRUE)	AND	(piNumDauPar	=	2))	=	FALSE		
								Exit	Do
						End	If		

						AvCalibrConst	=	Average(CalibConst1)
						vTmp	=	100	*	Abs((AvCalibrConst	-	AvCalibrConst0)	/	AvCalibrConst)		

				Loop	Until	(p	>	1)	AND	(vTmp	<	0.001)

I can't see any point to the iterated calculation of AvCalibrConst and vTmp. As far as I can see,
the sole benefit of the above Do… loop is the invocation of subroutine ThUfromA1A2 for
Perm2 and Perm4 Tasks, and even there, the subroutine need only be invoked once. The code
proceeds by calculating ["ppmTh"] for the Perm2 and Perm4 cases:

				If	(piaPpmUcol[-pbStd]	>	0)	AND	(piaPpmThcol[-pbStd]	>	0)	
				--i.e.	if	the	StandardData	(or	SampleData)	sheets	has	columns	
				--for	BOTH	"ppmU"	and	"ppmTh":

						Term1	=	"	=	["232Th/238U"]	*	["ppmU"]	*	0.9678	"
						--"magic	number"	0.9678	documented	below

						--now	use	Term1	to	populate	column	["ppmTh"]	for	Perm2/Perm4
						PlaceFormulae	Term1,	Frw,	{ppmTh-column},	Lrw

				End	If	--(piaPpmUcol[-pbStd]	>	0)	AND	(piaPpmThcol[-pbStd]	>	0)

The "magic number" 0.9678 (4 decimal places) is hard-coded into the SQUID 2.50 code,
which is a bit naughty because it actually is actually the product of several physical
"constants" related to the masses and isotopic abundances of Th and U. Essentially it
represents the product:

("Atomic mass of 232Th"/"Atomic mass of 238U") * (("238U"/"AllNaturalU") /
("232Th"/"AllNaturalTh"))

The atomic masses of 232Th and 238U are immutable physical properties: 238U comprises
92 protons and 146 neutrons by definition, so its atomic mass is 238 by definition. Similarly,
232Th is defined as the isotope containing 90 protons and 142 neutrons, so its atomic mass of
232 is an intrinsic property.

However, the ratios ("238U"/"AllNaturalU") and ("232Th"/"AllNaturalTh") have more scope for
variation, and should certainly be modelled separately. Having scoured the internet and the
literature, I believe Ludwig explicitly assumed exact values (4 decimal places) of 0.9928 for the
former and 1.0000 for the latter. Both are perfectly reasonable values, but ought to be
identified as explicit physical "constants" constraining the arithmetic. So the magic number
0.9678 represents the product:

(232/238) * (0.9928/1.0000)

rounded to 4 decimal places. For the present, we ought to retain the hard-coded "magic
number" (0.9678). The If clause concludes with some tidying up for Standards, basically
assembling a string of index-numbers of the Rejected calibration-constan:

				If	pbStd	=	TRUE

						--{Compile	and	report	a	list	of	index-numbers	of	Rejected	calibration-constant	values,
						--for	each	set	of	calibration	constants}				

				End	If

		End	If	--(pbHasTh	=	TRUE)	AND	(pbHasU	=	TRUE)	AND	(piNumDauPar	=	2)		
		--i.e.	End	of	If	that	commenced	Part	5

Loop	Until	(pbStd	=	FALSE)	OR	(pbStdsOnly	=	TRUE)	--End	of	Loop	A	that	commenced	at	start	

This concludes the major "Standard-Sample" loop that has spanned Procedural
Framework
Parts
1-5.

The remainder of the master "SquidfGeochron" routine will be documented in Part 6.

I have named this subroutine "SQUIDClean". Ludwig named it "Clean" in his VBA code, but
that is confusing, because there exists a Microsoft VBA function of the same name, and it took
me a while to work out there was a difference!

Sub Clean(DatRange As Range, CleanedDat As Range, NumCleanRows%, _
Optional ZeroesOK As Boolean = False, Optional BlankOk As Boolean = False, _
Optional AllColsOK As Boolean = False, Optional BothNegPos As Boolean = True, _
Optional StrikeThruOK As Boolean = False, Optional AllComers As Boolean = False, _
Optional AddStrikeThru As Boolean = False)
' Returns Cleandat as array cleaned of all noncomplying rows.

Dim First As Boolean, OkCel As Boolean
Dim Nareas%, Ncols%, OKcol%, Col%, AreaIndx%, TempNum%, CleanedRowCt%
Dim Rw&, RowCt&, v#
Dim Cel As Range, Area As Range, Crow As Range

First	=	TRUE		

With	DatRange		

		If	AllColsOK	=	TRUE
				Ncols	=	DatRange.Columns.Count
		Else
				Ncols	=	1
		End	If		

		CleanedRowCt	=	0		

		Nareas	=	DatRange.Areas.Count

		For	AreaIndx	=	1	To	Nareas		

				TempNum	=	1	+	CleanedRowCt		

				Set	Area	=	DatRange.Areas[AreaIndx]		

				With	Area
						RowCt	=	Area.Rows.Count

						For	Rw	=	1	To	RowCt
								TempNum	=	1	+	CleanedRowCt		
								OKcol	=	0

								For	Col	=	1	To	Ncols
										Set	Cel	=	Area.Item[Rw,	Col]
										OkCel	=	FALSE

										If	(BlankOk	=	TRUE)	OR	(Cel.Formula	<>	"")	OR	(AllComers	=	TRUE)	--Area1

												If	(IsNumeric(Cel)	=	TRUE)	Or	(AllComers	=	TRUE)	--Area2

														With	Cel

																v	=	Cel.Value

																If	(ZeroesOK	=	TRUE)	OR	(v	<>	0)	OR	(AllComers	=	TRUE)	--Cel1

																		If	(BothNegPos	=	TRUE)	OR	(v	>	0)	OR	(AllComers	=	TRUE)	--Cel2

																				If	(StrikeThruOK	=	TRUE)	OR	(Cel.Font.Strikethrough	=	FALSE)	Or	(AllComers	=	

																						OKcol	=	1	+	OKcol
																						OkCel	=	TRUE

																				End	If	--Cel3

																		End	If	--Cel2

																End	If	--Cel1

														End	With	--Cel

												End	If	--Area2

										End	If	--Area1

										If	(OkCel	=	FALSE)	AND	(AddStrikeThru	=	TRUE)
												Cel.Font.Strikethrough	=	TRUE
										End	If

										If	OKcol	<	Col	
												Exit	For
										End	If
								Next	Col

								If	OKcol	=	Ncols	

										CleanedRowCt	=	1	+	CleanedRowCt
										Set	Crow	=	Range(Area.Item[Rw,	1],	Area.Item[Rw,	Ncols])

										If	First	=	TRUE		

												Set	CleanedDat	=	Crow
												First	=	FALSE

										Else

												Set	CleanedDat	=	Union(CleanedDat,	Crow)

										End	If	--First	=	TRUE

								End	If	--OKcol	=	Ncols

						Next	Rw

				End	With	--Area
		Next	AreaIndx

End	With	--DatRange

NumCleanRows	=	CleanedRowCt

End	Sub

Now that Loop A has finally been completed, the code finishes off with the calculation of the
remaining columns (SQUID 2.50 performs these calculations separately for the StandardData
and SampleData sheets). The code continues:

If	(pbCanDriftCorr	=TRUE)	AND	(pbStdsOnly	=	FALSE)

		[out-of-scope	stuff]	

End	If

The next step is to calculate all LA-switched expression columns and cells. SQUID 2.50 does
this via subroutine LastEquations, which has two Boolean inputs:

StdCalc (TRUE = perform calculations on StandardData sheet; FALSE = SampleData
sheet)
IncludeSingleCells (obsolete; always TRUE. It was presumably replaced by Switch.SC at
some point)

The code continues:

LastEquations	TRUE,	TRUE	--subroutine	not	documented,	probably	obsolete
--This	invocation	calculates	LA-switched	expression	on	StandardData	only.

"StdConcPlots" is a Boolean set buy the user in SQUID 2.50's preferences. In essence, it
dictates whether SQUID 2.50 should attempt to portray analyses of the Standard on a
conventional (Wetherill) concordia diagram, for visualisation of data quality. This is a somewhat
artificial process, because in secondary ion mass spectrometry, calibrated 206Pb/238U is not
independently determined for the Standard. Instead, the WtdMeanA value (determined from
the calibration constants) is defined as a proxy for the IDTIMS-defined reference 206Pb/238U
of the Standard. From there, 206Pb/238U "values" for individual analyses of the Standard can
be derived by assessing the extent to which the analysis-specific calibration constant value is
offset from the WtdMeanA value defined by the population, and offsetting the analysis-specific
206Pb/238U value from the IDTIMS-defined reference 206Pb/238U value in proportion.

It's not completely clear why StdConcPlots is user-controlled; I think maybe it could simply be
set to TRUE, as it embodies calculations that are commonly useful, and which are not
performed at all when StdConcPlots = FALSE. The only reason I can think of is that perhaps in
geologically young reference materials (< 50 Ma), it might be possible to calculate spurious
isotopic ratios that could not be properly represented on a concordia diagram. But it seems to
me that in that case, error handling should be handled differently anyway. The code continues:

Sq2.50 Procedure Pt 6

If	StdConcPlots	=	TRUE		

		StdRadiogenicCols	plaFirstDatRw(1),	plaLastDatRw(1)
		--subroutine	documented	separately

End	If

The code now turns to the corresponding calculations on the SampleData sheet. It begins with
a rather inelegant kluge on the SampleData set, essentially aimed at refreshing all the
expression-results and calculations, and which I will not document.

If	pbStdsOnly	=	FALSE	--i.e.	if	processing	loops	includes	Samples	AND	Standards

		[Activate	SampleData	sheet]
		Rows(plHdrRw).Font.Bold	=	TRUE

		If	(piaSpotCt[0]	>	0)	OR	(piaSpotCt[1]	>	0)	
		--i.e.	trivial	check	for	the	presence	of	ANY	analyses

				[Kluge	to	"refresh	formulas	so	will	be	current"]
				plOutputRw	=	plSpotOutputRw

				If	piaSpotCt[0]	>	0	--i.e.	if	there	are	ANY	Sample	analyses
				--then	do	SamRadiogenicCols	from	first	to	last	row	on	SampleData

						SamRadiogenicCols	plaFirstDatRw[0],	plaLastDatRw[0]
						--subroutine	being	documented	separately

				End	If

		End	If

		LastEquations	FALSE,	TRUE
		--This	invocation	calculates	LA-switched	expression	on	SampleData	only.

End	If	--pbStdsOnly	=	FALSE

SQUID
2.50
Sub:
StdRadiogenicCols

This subroutine (which is solely for
the
Standard) places, row-by-row, formulae to calculate
radiogenic (i.e. corrected for common Pb) ratios for Pb/U (and Pb/Th, as a proxy) in the
StandardData sheet.

Usage

StdRadiogenicCols plaFirstDatRw, plaLastDatRw

Mandatory
variables

plaFirstDatRw: Integer index number of the first row containing spot-by-spot data (for the
Standard).
plaLastDatRw: Integer index number of the last row containing spot-by-spot data (for the
Standard).

Definition
of
variables

Values
of
type
Boolean
pbTh, pbU

Values
of
type
Integer
f, L, piNumDauPar

Values
of
type
String
q, s, SA, sae, t, WtdMnA

Values
of
type
Range
rw1, rw2, r4

The subroutine starts by determining the address of the column in which the row-by-row
["206Pb/238U calibr. const."] values will be found. In truth, this column occurs as the primary
calibration constant for both Perm1 and Perm2, and as the secondary calibration constant in
Perm4. However, Perm3 does not include a direct calculation of ["206Pb/238U calibr. const."],
so this code incorporates an (isotopic) "kluge" where 208Pb/232Th
is
substituted
for
206Pb/238U. It is important to note that this does not make sense in terms of portraying the

data (e.g. on a Concordia diagram), but at the same time, it is clear that Ludwig did this
Perm3-specific substitution deliberately, as will become clear from the following code.

Note also that all of this SQUID 2.50 code is predicated on the calculation of no
more
than
one
of
each calibration constant (206Pb/238U
and/or
208Pb/232Th), because in SQUID 2.50,
the index isotope has already been uniquely specified by the user. This means that in due
course, some of this code will require additional generalisation, with particular respect to
Perm1 and catering for the possibility of 208-corrected data. The following documents the
SQUID 2.50 code as written, but also points out gaps to be addressed later.

The following "If" incorporates bug-fixes required in the SQUID 2.50 code (and implemented
by me there, dated 2018-07-02). Ludwig realised that "SA" (which is the column of
["206Pb/238U calibr. const."] values) would be located in a different column for Perm4 than is
the case for Perms1-3, as described above. However, he appears not to have realised that
"WtdMnA" (i.e. the value of the weighted mean of ["206Pb/238U calibr. const."]) and "sae" (i.e.
the location of ["206Pb/238U calibr. const. %err"] both also required analogous Perm4-
specific addressing. Instead, the Perm1-3 addresses were used universally for WtdMnA and
sae, with nonsensical results in Perm4.

If	(pbTh	=	TRUE)	and	piNumDauPar	=	2	--i.e.	Perm4

		SA	=	"	sA(2)	"	
		WtdMnA	=	"	WtdMeanA2	"
		sae	=	"	sAe(2)	"
		--because	206/238	is	the	"secondary"	calibr.	const.	in	Perm4

Else	--Perm1,	Perm2,	Perm3

		SA	=	"	sA(1)	"	
		WtdMnA	=	"	WtdMeanA1	"
		sae	=	"	sAe(1)	"
		--because	206/238	is	the	"primary"	calibr.	const.	in	Perm1	and	Perm2,	and	
		--because	for	Perm3,	206/238	is	being	"kluged"	using	208/232,	which	is	the	
		--"primary"	calibr.	const.	in	Perm3	

End	If		

f	=	plaFirstDatRw
L	=	plaLastDatRw		

Note that the following headers are not always an accurate representation of the data within
the column. It is true that "207/235"
=
["4corr-207Pb/235U"] always, but the same is not
always true for "206/238".
In
fact,
for
Perm1,
Perm2,
and
Perm4,
"206/238" = ["Xcorr-
206Pb/238U"],
where
X
denotes
the
(user-specified)
index
isotope
for
common-Pb
correction
(i.e.
one
of
4,
7,
or
(in
the
case
of
Perm1
only)
8).
In
the
case
of
Perm3,
"206/238" = ["Xcorr-

208Pb*/232Th"], where X denotes the (user-specified) index isotope for common-Pb
correction (i.e. 4 or 7). This is definitely odd, but it seems clear in the code that it is
deliberate…

If	piStdPb7U5_4col	>	0	--i.e.	if	column	204corr	207Pb*/235U	exists	on	StandardData

		If	(pi204PkOrder	>	0)	AND	(pi207PkOrder	>	0)	AND	(pbHasU	=	TRUE)		
		--i.e.	if	mass	stations	204Pb	AND	207Pb	AND	at	least	one	U-bearing	mass-station
		--(e.g.	238U,	254UO,	270UO2)	have	ALL	been	measured,	then	define	the	headers:

				CFs	plHdrRw,	piStdPb7U5_4col,	"207*|/235",	-1	--header	for	204corr	207Pb*/235U
				CFs	plHdrRw,	piStdPb7U5_4eCol,	"%err",	-1	--header	for	204cor	207Pb*/235U	%err	

				--The	following	are	so-called	204corr	206*/238	(and	err	corr)	but	see	above!
				CFs	plHdrRw,	piStdPb6U8_4col,	"206*|/238",	-1	--header	for	204corr	206Pb*/238U
				CFs	plHdrRw,	piStdPb6U8_4eCol,	"%err",	-1	--header	204corr	206Pb*/238U	%err
				CFs	plHdrRw,	piStdPb7U5Pb6U8_4rhoCol,	"err|corr",	-1	--header	204c	err	correl.

		End	If

End	If

The next step is to specify the IDTIMS-determined reference isotopic ratio for the Standard
(part of the Standard-specific "model", and derived in SQUID 2.50 simply by converting the
reference "age" of the Standard (206Pb/238U,
or
208Pb/232Th, or both) to the corresponding
isotopic ratio value. As described previously, those age-specific reference isotopic ratios are
stored as StdUPbRatio (206Pb/238U),
StdThPbRatio
(208Pb/232Th), and Std_76
(207Pb/206Pb), respectively. The code continues:

If	piStdPb6U8_4col	>	0	--i.e.	if	column	204corr	206Pb*/238U	exists	on	StandardData

		If	(pbTh	=	TRUE)	AND	(piNumDauPar	=	1)	--i.e.	Perm3

				q	=	"StdThPbRatio"

		Else	--i.e.	Perm1,	Perm2,	Perm4

				q	=	"StdUPbRatio"

		End	If

		s	=	"="	&	SA	&	"/"	&	WtdMnA	&	"*"	&	q				
		--so-called	["4corr-206Pb*/238U"],	with	Ludwig	bugs	repaired.

		--Now	place	the	expression	for	so-called	["4corr-206Pb*/238U"]:
		PlaceFormulae	s,	f,	piStdPb6U8_4col,	L

		--The	following	line	places	the	expression	for	so-called	
		--["4corr-206*/238	%err"],	but	Ludwig's	code	contains	a	bug!

		--PlaceFormulae	"=	sAe(1)	",	f,	1	+	piStdPb6U8_4col,	L	--Ludwig	original

		s	=	"="	&	sae	--Bodorkos	2018-07-02	addition
		PlaceFormulae	s,	f,	1	+	piStdPb6U8_4col,	L	--Bodorkos	2018-07-02	revision

		--When	primary	D/P	ratio	=	208/232	and	piNumDauPar	=	2	(i.e.	206/238	calculated
		--directly	as	secondary	ratio),	corresponding	to	Perm4,	Ludwig's	original	code
		--wrongly	equates	["206*/238	%err"]	with	the	%err	of	the	208/232	calibr.	const.
		--This	is	obviously	bad:	instead,	["206*/238	%err"]	should	be	equated	with	%err
		--of	the	206/238	calibr.	const.	Easily	fixed	via	Perm-dependent	definition	of
		--"sae"	near	the	start	of	sub	StdRadiogenicCols.

End	If

If	piStdPb7U5_4col	>	0	--i.e.	if	column	204corr	207Pb*/235U	exists	on	StandardData

		--Place	the	expression	for	["4corr-207Pb*/235U"]:
		t	=	"	=	["4corr-207Pb*/206Pb*]	*	["4corr-206Pb*/238U"]	*	[Present	238U/235U]	"
		--where	SQUID	2.50	specifies	[Present	238U/235U]	=	137.88.		
		PlaceFormulae	t,	f,	piStdPb7U5_4col,	L

		--Place	the	expression	for	["4corr-207Pb*/235U	%err"]:
		q	=	"	=sqrt(["4corr-206Pb*/238U	%err"]^2	+	["4corr-207Pb*/206Pb*	%err]^2)	"
		PlaceFormulae	q,	f,	piStdPb7U5_4eCol,	L

		--Place	the	expression	for	["4corr-errcorr"]:
		q	=	"	=	["4corr-206Pb*/238U	%err"]	/	["4corr-207Pb*/235U	%err"]	"
		PlaceFormulae	q,	f,	2	+	piStdPb6U8_4col,	L		
		--Note	that	"2	+	piStdPb6U8_4col"	corresponds	to	the	"err	corr"	column.

End	If

Now all that is left in this subroutine is to perform a row-by-row assessment of the radiogenic
ratios, to assess their usefulness for plotting on a Wetherill concordia diagram. Data-rows that
have returned errors, or nonsensical numerical values, are marked for exclusion via application
of Strikethrough font:

If	(piStdPb7U5_4col	>	0)	AND	(piStdPb6U8_4col	>	0)	
--i.e.	if	columns	204corr	207Pb*/235U	and	204corr	206Pb*/238U	both
--exist	on	StandardData:

		For	i	=	f	To	L		--row-by-row	assessment	of	recently	calculated	data
		---with	respect	to	its	fitness	for	use	on	a	Concordia	diagram	
				Set	rw1	=	Cells(i,	piStdPb7U5_4col)	--i.e.	207*/235	value
				Set	rw2	=	Cells(i,	piStdPb6U8_4col)	--i.e.	so-called	206*/238	value
				Set	r4	=	Cells(i,	2	+	piStdPb6U8_4col)	--i.e.	err	corr	value

				--frSr	defines	5-column	range	in	row	i:
				With	frSr(i,	piStdPb7U5_4col,	,	2	+	piStdPb6U8_4col)

						If	(IsError(rw1)	=	TRUE)	OR	(IsError(rw2)	=	TRUE)	OR	
						(rw1	<	1e-5)	OR	(rw2	<	1e-4)	OR	(r4	>=	1)	OR	(r4	<=	0)

								Font.Strikethrough	=	TRUE

						End	If

				End	With
		Next	i

End	If

End	Sub

Note that this subroutine makes no attempt to calculate 208corr 207Pb/235U
(as
could
be
legitimately
required
by
Perm1
where
index
isotope
=
208Pb,
nor
(by
analogy)
208corr
207Pb/206Pb.
Similarly,
for
the
radiogenic
daughter-parent
pair,
the
focus
is
exclusively
on
206Pb/238U, whereas in Perm2 and Perm4, there ought to be an analogous calculation for
208Pb/232Th
(it's
possible
that
this
is
done
later,
but
there
isn't
much
code
left!).
Furthermore,
in
Perm3,
we
see
the
calculation
for
208Pb/232Th (as the sole daughter-parent pair)
deliberately inserted into the column labelled "206*/238", which really shouldn't happen,
although I can see why Ludwig found it expedient.

So at some future point, it will be necessary to revisit these calculations to ensure that all the
relevant calculations for each Perm are performed and tabulated. This should not require the
invention of new arithmetic; it should rather just involve a wider range of analogous
calculations in each Perm.

SQUID
2.50
Sub:
SamRadiogenicCols

This subroutine (which is solely for
SampleData) places, row-by-row, formulae to calculate
radiogenic (i.e. corrected for common Pb) Pb/Pb, Pb/U, and Pb/Th ratios and ages in the
SampleData sheet.

Usage

SamRadiogenicCols plaFirstDatRw, plaLastDatRw

Mandatory
variables

plaFirstDatRw: Integer index number of the first row containing spot-by-spot data (for the
Standard).
plaLastDatRw: Integer index number of the last row containing spot-by-spot data (for the
Standard).

Definition
of
variables

Values
of
type
Boolean
pbCalc8corrConcPlotRats, pbTh, pbU, Switch.DirectAltPD

Values
of
type
Integer
f, L, m, piNumDauPar

Values
of
type
String
d2, t5

Values
of
type
Double
Alpha, Beta, Gamma, d1, d3, d4, d5, NetAlpha, NetBeta, NetGamma, radd6, radd8,
sComm_68, t1, t3, TotPb6U8AbsErr, TotPb76AbsErr, TotPb8Th2AbsErr

The subroutine starts by calculating the Pb-isotope ratios used for the common-Pb correction.
Note that these are not predicated on the user having specified "the right" numerator-
denominator combinations as part of their Task definition: rather, SQUID 2.50 mandates that
ratios ["204/206"], ["207/206"] and ["208/206"] are always calculated if the relevant mass-
stations are present in the run-table, even if the user did not specifically request those ratios
(i.e. they are evaluated 'in the background'). Define row-by-row values of Alpha, Beta and

Gamma:

Alpha	=	1	/	["204/206"]	--measured	["206/204"],	i.e.	total	206/204
Beta	=	["207/206"]	/	["204/206"]	--measured	["207/204"],	i.e.	total	207/204
Gamma	=	["208/206"]	/	["204/206"]	--measured	["208/204"],	i.e.	total	208/204

In each case, the measured (or total) Pb-isotope ratio can be considered as the sum of the
radiogenic component and the common component. Using ["206/204"] as an example, R64
as shorthand for the ratio, and suffixes m, r, and c to denoted measured, common, and
radiogenic components respectively: R64m = R64r + R64c. It is then possible to isolate the
radiogenic component, by subtracting the common component from each measured value to
generate row-by-row values of NetAlpha, NetBeta and NetGamma:

NetAlpha	=	Alpha	-	sComm_64	--i.e.	R64r	=	R64m	-	R64c
NetBeta	=	Beta	-	sComm_74	--i.e.	R74r	=	R74m	-	R74c
NetGamma	=	Gamma	-	sComm_68	--i.e.	R84r	=	R84m	-	R84c

For the daughter isotopes of calibration-related interest (i.e 206Pb and 208Pb), it is possible to
define, row-by-row, proportionality factors describing the radiogenic component as a fraction
of the total measured value. The calculated values of radd6 and radd8 are used later in this
subroutine:

radd6	=	NetAlpha	/	Alpha	--i.e.	R64r	/	R64m
radd8	=	NetGamma	/	Gamma	--i.e.	R84r	/	R84m

Start by calculating one or both of ["Total 206Pb/238U"] and/or ["Total 208Pb/232Th"] where
calibration
constants
are
available, as required by Perms1-4. Note that as per previously-
documented subroutine StdRadiogenicCols, this arithmetic is predicated on having only
one
calibration constant per daughter-parent pair (following the user-defined index isotope for the
common Pb correction), whereas SQUID 3.0 will be calculating multiple calibration constants
corresponding to all the candidate index-isotope values. The following expressions will
therefore require generalisation:

For	i	=	1	To	piNumDauPar	--recall	piNumDauPar	=	2	for	Perm2	and	Perm	4,	else	1

		If	((i	=	1)	AND	(pbU	=	TRUE))	OR	((i	=	2)	AND	(pbTh	=	TRUE))
		--	first	part	of	the	If	covers	Perm1	and	Perm2;	the	second	part	covers	Perm4

				m	=	piPb6U8_totCol	--index	number	for	["Total	206Pb/238U"]	column

				--NOTE	that	SQUID	3.0	will	need	to	key	this	to	index-isotope,	no	matter	how
				--counter-intuitive	that	seems!

		ElseIf	((i	=	1)	AND	(pbTh	=	TRUE))	OR	((i	=	2)	AND	(pbU	=	TRUE))
		--	first	part	of	the	If	covers	Perm3	and	Perm4;	the	second	part	covers	Perm2

				m	=	piPb8Th2_totCol	--index	number	for	["Total	208Pb/232Th"]	column
				--NOTE	that	SQUID	3.0	will	need	to	key	this	to	index-isotope,	no	matter	how
				--counter-intuitive	that	seems!

		Else

				m	=	0	--should	never	happen

		End	If

		--Now	place	formulae	for	so-called	["Total	206Pb/238U"]	and/or	so-called
		--["Total	208Pb/232Th"].	Note	that	in	SQUID	3.0,	because	we	are	performing
		--calculations	for	ALL	candidate	index-isotopes,	these	calculations	need	to
		--be	generalised	to	give	results	like	["Xcorr	Tot	206Pb/238U"]	(where	X	can
		--be	4	or	7	(Perm1,2,4)	or	8	(Perm1	only)),	or	["Ycorr	Total	208Pb/232Th"]
		--(where	Y	can	be	4	or	7	(Perm2,3,4)).

		--We	will	need	to	evaluate	the	Xcorr...	results	carefully,	because	it	seems
		--to	me	that	there	should	not	be	much	variation,	and	it	occurs	to	me	that
		--the	calculation	would	be	more	efficiently	AND	more	correctly	done	by	direct
		--reference	to	our	["Uncorr	Pb/U	const."]	and/or	[Uncorr	Pb/Th	const."]
		--columns	that	we	calculated	long	ago	(note	that	this	approach	would	also
		--yield	the	intuitively	expected	"single"	["Total	206Pb/238U"]	and/or
		--["Total	208Pb/232Th"]).	But	for	the	present,	I	will	document	Ludwig's
		--calculations	in	SQUID	2.50.

		--Calculate	["Total	206Pb/238U"]	or	["Total	208Pb/232Th"]
		If	m	=	piPb6U8_totCol	--Place	row-by-row	expression	for	["Total	206Pb/238U"]

				If	i	=	1	--Perm1	and	Perm2

						--Place	row-by-row	expression	for	["Total	206Pb/238U"]
						PlaceFormulae	"	=	["Xcorr	206Pb/238U	calibr.	const."]	/	WtdMeanA1	*
								StdUPbRatio	",	f,	m,	L	--i.e.	place	expression	in	col	m,	rows	f	to	L		

						--Place	row-by-row	expression	for	["Total	206Pb/238U	%err"]
						PlaceFormulae	"	=	SQRT(["Xcorr	206Pb/238U	calibr.	const.	%err"]^2
								+	ExtPerrA1	^	2)	",	f,	m	+	1,	L
								--i.e.	place	expression	in	col	m	+	1,	rows	f	to	L
								--Recall	that	ExtPerrA	is	defined	as	max(R,	S)	where	S	is	the	ExtPerr
								--value	(at	1-sigma,	as	a	percentage)	returned	by	the	relevant
								--WtdMeanAcalc,	and	R	is	an	arbitrary	"minimum"	value	for	S	(R	=	0.75%
								--at	Geoscience	Australia,	by	convention).	There	is	more	detail	on	this
								--at	the	very	end	of	the	documentation	of	subroutine	WtdMeanAcalc:	it
								--is	described	under	extBox.

				ElseIf	i	=	2	--Perm4

						--Place	row-by-row	expression	for	["Total	206Pb/238U"]
						PlaceFormulae	"	=	["Xcorr	206Pb/238U	calibr.	const."]	/	WtdMeanA2	*

								StdUPbRatio	",	f,	m,	L	--i.e.	place	expression	in	col	m,	rows	f	to	L		

						--Place	row-by-row	expression	for	["Total	206Pb/238U	%err"]
						PlaceFormulae	"	=	SQRT(["Xcorr	206Pb/238U	calibr.	const.	%err"]^2
								+	ExtPerrA2	^	2)	",	f,	m	+	1,	L
								--i.e.	place	expression	in	col	m	+	1,	rows	f	to	L

				End	If	--i	=	1	or	2

		ElseIf	m	=	piPb8Th2_totCol	--Place	expression	for	["Total	208Pb/232Th"]

				If	i	=	1	--Perm3	and	Perm4

						--Place	row-by-row	expression	for	["Total	208Pb/232Th"]
						PlaceFormulae	"	=	["Xcorr	208Pb/232Th	calibr.	const."]	/	WtdMeanA1	*
								StdThPbRatio	",	f,	m,	L	--i.e.	place	expression	in	col	m,	rows	f	to	L		

						--Place	row-by-row	expression	for	["Total	208Pb/232Th	%err"]
						PlaceFormulae	"	=	SQRT(["Xcorr	208Pb/232Th	calibr.	const.	%err"]^2
								+	ExtPerrA1	^	2)	",	f,	m	+	1,	L
								--i.e.	place	expression	in	col	m	+	1,	rows	f	to	L

				ElseIf	i	=	2	--Perm2

						--Place	row-by-row	expression	for	["Total	208Pb/232Th"]
						PlaceFormulae	"	=	["Xcorr	208Pb/232Th	calibr.	const."]	/	WtdMeanA2	*
								StdThPbRatio	",	f,	m,	L	--i.e.	place	expression	in	col	m,	rows	f	to	L		

						--Place	row-by-row	expression	for	["Total	208Pb/232Th	%err"]
						PlaceFormulae	"	=	SQRT(["Xcorr	208Pb/232Th	calibr.	const.	%err"]^2
								+	ExtPerrA2	^	2)	",	f,	m	+	1,	L
								--i.e.	place	expression	in	col	m	+	1,	rows	f	to	L

				End	If	--i	=	1	or	2

		End	If	--m	=	piPb8Th2_totCol

Next	i

Now calculate the corresponding ["Total 238U/206Pb"], via simple inversion:

If	piPb6U8_totCol	>	0	--i.e.	if	["Total	206Pb/238U"]	exists

		--Fill	column	["Total	238U/206Pb"]:
		PlaceFormulae	"	=	1	/	["Total	206Pb/238U"]	",	f,	piU8Pb6_totCol,	L		

		--Fill	column	["Total	238U/206Pb	%err"]:
		PlaceFormulae	"	=	["Total	206Pb/238U	%err"]	",	f,	piU8Pb6_TotEcol,	L

End	If

Now calculate the "secondary" daughter-parent isotopic ratio, for the permutations where no
calibration constant is available. Specifically, this means calculating ["Total 208Pb/232Th"] for
Perm1, and ["Total 206Pb/238U"] for Perm3. Note that the previously documented analogue of
this subroutine for Standard data (Sub StdRadiogenicCols in SQUID 2.50) does not contain
this step, but Squid3 should be revised to include it.

If	(pbU	=	TRUE)	AND	(Switch.DirectAltPD	=	FALSE)	--i.e.	Perm1	only

		If	piPb8Th2_totCol	>	0		--i.e.	if	column	["Total	208Pb/232Th"]	exists

				--Fill	column	["Total	208Pb/232Th"]	on	SampleData:
				PlaceFormulae	"	=	["Total	206Pb/238U"]	*	["208/206"]	/	["232Th/238U"]	",
						f,	piPb8Th2_totCol,	L

				--Fill	column	["Total	208Pb/232Th	%err"]	on	SampleData:
				PlaceFormulae	"	=	SQRT(["208/206	%err"]^2	+	["Total	206Pb/238U	%err"]^2	+
						["232Th/238U	%err"]^2)	",	f,	piPb8Th2_totEcol,	L

		End	If

ElseIf	(pbTh	=	TRUE)	AND	(Switch.DirectAltPD	=	FALSE)	AND	(piPb6U8_totCol	>	0)
--i.e.	Perm3	only,	and	even	then,	only	if	column	["Total	206Pb/238U"]	exists

		--Fill	column	["Total	238U/206Pb"]	on	SampleData:
		PlaceFormulae	"	=	["Total	208Pb/232Th"]	/	["208/206"]	*	["232Th/238U"]	",
				f,	piPb6U8_totCol,	L

		--Fill	column	["Total	238U/206Pb	%err"]	on	SampleData:
		PlaceFormulae	"	=	SQRT(["208/206	%err"]^2	+	["Total	208Pb/232Th	%err"]^2	+
						["232Th/238U	%err"]^2)	",	f,	piPb6U8_totEcol,	L

End	If

Now, if a uranium concentration reference material has been defined (i.e. column ["ppmU"]
contains data), it is time to calculate and populate the columns containing the ppm values of
radiogenic Pb, according to the various index isotope. There are a total of five permutations,
comprising ["X-corr ppm 206"],
where
X
=
4,
7
or
8,
and
[Y-corr
ppm
208"], where Y = 4 or 7.

Note that SQUID 2.50 uses the 'magic number' 0.859 hard-coded, and for initial testing, this
should be replicated. In terms of models of physical constants, however, the value 0.859 is
derived via:

0.859	=	(1	-	(1	/	Present238U235U)	*	206	/	238

where 206 is the atomic mass of 206Pb, 238 is the atomic mass of 238U, and Ludwig

assumes a value of Present238U235U of 137.88. More recently, other values of
Present238U235U have been measured via EARTHTIME (e.g. 137.818 by Hiess et al., 2012),
so the hard-coded value should ultimately be replaced by the expression containing
Present238U235U above.

With this in mind, the SQUID 2.50 code populates each of these 5 column in turn:

If	piaPpmUcol	>	0	--i.e.	["ppmU"]	exists	on	SampleData

		For	p	=	1	To	5		

				Select	Case	p

						Case	1	--populate	column	["4-corr	ppm	206*"]
						PlaceFormulae	"	=	["Total	206Pb/238U"]	*	["ppmU"]	*	0.859	*
								(1	-	["204/206"]	*	sComm_64)	",	f,	piaRadDauCol_46,	L

						Case	2	--populate	column	["7-corr	ppm	206*"]
						PlaceFormulae	"	=	["Total	206Pb/238U"]	*	["ppmU"]	*	0.859	*
								(1	-	["204/206	fr.	207"]	*	sComm_64)	",	f,	piaRadDauCol_76,	L

						Case	3	--populate	column	["8-corr	ppm	206*"]
						PlaceFormulae	"	=	["Total	206Pb/238U"]	*	["ppmU"]	*	0.859	*
								(1	-	["204/206	fr.	208"]	*	sComm_64)	",	f,	piaRadDauCol_86,	L

						Case	4	--populate	column	[4-corr	ppm	208*"],	noting	that	this	calculation
										draws
						--on	the	row-by-row	results	determined	in	Case	1
						PlaceFormulae	"	=	["4-corr	ppm	206*"]	*	["4-corr	208Pb*/206Pb*"]	*	208/206	",
								f,	piaRadDauCol_48,	L
						--where	208	is	the	atomic	mass	of	208Pb	and	206	is	the	atomic	mass	of	206Pb.

						Case	5	--populate	column	[7-corr	ppm	208*"],	noting	that	this	calculation
										draws
						--on	the	row-by-row	results	determined	in	Case	2
						PlaceFormulae	"	=	["7-corr	ppm	206*"]	*	["7-corr	208Pb*/206Pb*"]	*	208/206	",
								f,	piaRadDauCol_78,	L
						--where	208	is	the	atomic	mass	of	208Pb	and	206	is	the	atomic	mass	of	206Pb.

				End	Select

		Next	p

End	If

If column ["4corr 206/238"]
exists,
calculate
204Pb-corrected
206Pb/238U values (and their
uncertainties), and place them in columns ["4corr 206/238"]
and
["4corr
206/238 %err"], along
with their corresponding dates, which are placed in columns ["204corr 206Pb/238U Age"] and

["204corr 206Pb/238U Age 1serr"]. Strictly, these calculations are predicated on the presence
of the column ["204/206"], but this code permits the calculation to proceed even if ["204/206"]
does not exist (albeit by instead calculating an ["Total 206Pb/238U Age"]). Squid3 could (and
probably should) calculate BOTH ["204corr 206Pb/238U Age"] and ["Total 206Pb/238U Age"]
as a matter of course, just because we can:

If	piPb6U8_4col	>	0	--i.e.	if	column	["4corr	206*/238"]	exists

		--Populate	column	["4corr	206*/238"]:
		PlaceFormulae	=	"	=	["Total	206Pb/238U"]	*	radd6	",	f,	piPb6U8_4col,	L

		--Now	populate	column	["4corr	206*/238	%err"].	Ludwig	commented	the	expression:
		--Var(Rad6/8)	=	Var(Tot6/8)	+	(sComm_64/(Alpha-sComm_64))^2	*	Var(Alpha)
		--which	is	correct	in	detail,	although	easier	to	read	if	rearranged:
		--Var(Rad6/8)	=	Var(Tot6/8)	+	Var(Alpha)	*	((sComm_64/(Alpha-sComm_64))^2)
		--Defining	["4corr	206*/238	%err"]	=	sqrt[Var(Rad6/8)]:

		PlaceFormulae	"	=	SQRT(["Total	206Pb/238U	%err"]^2	+	(sComm_64	*		
				["204/206	%err"]	/	(1	/	["204/206"]	-	sComm_64))^2)	",	f,	piPb6U8_4ecol,	L

		If	piU8Pb6_4col	>	0	--i.e.	if	column	["4corr	238/206*"]	exists

				--Populate	column	["4corr	238/206*"]	via	simple	inversion:
				PlaceFormulae	"	=	1	/	["4corr	206*/238"]	",	f,	piU8Pb6_4col,	L

				--Populate	column	["4corr	238/206*	%err"]:
				PlaceFormulae	"=	["4corr	206*/238	%err"]	",	f,	piU8Pb6_4ecol,	L

		End	If

		--Now	populate	column	["204corr	206Pb/238U	Age"]:
		PlaceFormulae	"	=	LN(1	+	["4corr	206*/238"])	/	Lambda238Ma	",
				f,	piAgePb6U8_4col,	L
		--where	Lambda238Ma	has	units	"Ma^-1",	so	Age	will	be	in	Ma.

		--Now	calculate	and	populate	column	["204corr	206Pb/238U	Age	1serr"]:

		d1	=	(NetAlpha	*	["Total	206Pb/238U	%err"]	/	100)^2
		d3	=	(["204/206	%err"]	*	sComm_64	/	100)^2
		d4	=	(["Total	206Pb/238U"]	*	["204/206"])^2
		d5	=	(1	/	Lambda238Ma	/
									EXP(Lambda238Ma	*	["204corr	206Pb/238U	Age"]))^2
		--where	Lambda238Ma	has	units	"Ma^-1".

		PlaceFormulae	"	=	SQRT(d5	*	d4	*	(d1	+	d3))	",	f,	piAgePb6U8_4ecol,	L

ElseIf	(piPb46col	=	0)	AND	(piAgePb6U8_4col	>	0)	--this	curious	ElseIf
--covers	the	possibility	that	a	column	["204corr	206Pb/238U	Age"]	might
--exist	even	in	the	absence	of	column	["204/206"],	which	would
--ordinarily	be	a	prerequisite	for	the	calculation.	In	this	scenario,
--Ludwig	simply	calculates	the	Age	from	the	**uncorrected**	206/238,
--and	modifies	the	relevant	column-header	accordingly.

		--Populate	the	column	**designated**	["204corr	206Pb/238U	Age"]	with
		--an	expression	**reflecting**	["Total	206Pb/238U	Age"]:
		PlaceFormulae	"	=	LN(1	+	["Total	206Pb/238U"])	/	Lambda238Ma,
				f,	piAgePb6U8_4col,	L
		--where	Lambda238Ma	has	units	"Ma^-1",	so	Age	will	be	in	Ma.

		--...and	then	change	its	header	to	["Total	206Pb/238U	Age"]!!
		CFs	plHdrRw,	piAgePb6U8_4col,	"total|206Pb|/238U|age",	TRUE

		--Now	populate	column	**designated**	["204corr	206Pb/238U	Age	1serr"]
		--with	an	expression	**reflecting**	["Total	206Pb/238U	Age	1serr"]:
		PlaceFormulae	"	=	["Total	206Pb/238U"]	/	Lambda238Ma	/
				(1	+	["Total	206Pb/238U"])	*	["Total	206Pb/238U	%err"]	/	100	",
				f,	piAgePb6U8_4ecol,	L
		--where	Lambda238Ma	has	units	"Ma^-1",	so	Age	1serr	will	be	in	Ma.

End	If	--piPb6U8_4col	>	0	--i.e.	if	column	["4corr	206*/238"]	exists.

The next step is to perform the superset of calculations enabled by the measurement of
["207/206"]. These start with 4corr 207/206 analogous to the 206/238
calculations
described
above,
but
also
encompass
4corr
207/235, plus 207Pb-corrected 206*/238. The code
continues:

If	piPb76col	>	0	--i.e.	if	column	["207/206"]	exists

		If	piU8Pb6_totCol	>	0	--i.e.	if	column	["Total	238U/206Pb"]	exists

				--Place	["Total	207Pb/206Pb"];	used	for	Tera-Wasserburg	plots	and	calculations
				PlaceFormulae	"=	["207/206"]	",	f,	piPb76_totCol,	L

				--Place	["Total	207Pb/206Pb	%err"]
				PlaceFormulae	"	=	["207/206	%err"]	",	f,	piPb76_totEcol,	L

		End	If	--column	["Total	238U/206Pb"]	exists

		If	(piPb46col	>	0)	AND	(piU8Pb6_4col	>	0)	--i.e.	if	BOTH	columns
		--["204/206"]	and	["4corr	238/206*"]	exist

				--Populate	column	["4corr	207*/206*"]
				PlaceFormulae	"	ABS(NetBeta	/	NetAlpha	")	",
						f,	piPb76_4col,	L

				--Populate	column	["4corr	207*/206*	%err"]
				--Complicated	expression;	note	that	it	uses	["4corr	207*/206*"]:

				t1	=	((["207/206"]	-	["4corr	207*/206*"])	*	["204/206	%err"]
											/	100	/	["204/206"])^2
				t3	=	(["207/206	%err"]	/	["204/206"]	/	100	*	["207/206"])^2

				PlaceFormulae	"	=	ABS(SQRT(t1	+	t3)	/	NetAlpha	*	100	/

								["4corr	207*/206*"])	",
							f,	piPb76_4eCol,	L

				If	piaAgePb76_4Col	>	0	--i.e.	if	column	["204corr	207Pb/206Pb	Age"]	exists,
				--the	form	of	the	next	calculations	depend	on	whether	column	["204/206"]
				--exists,	analogous	to	the	previous	calculation	of	206*/238	(i.e.	if	**NO**
				--["204/206"]	exists,	a	["Total	207Pb/206Pb	Age"]	will	be	calculated;	else
				--["204corr	207Pb/206Pb	Age"]	will	be	calculated	as	would	be	expected.

						If	piPb46col	>	0	--i.e.	if	column	["204/206"]	exists

								--Place	LudwigLibrary	expression	for	["204corr	207Pb/206Pb	Age"]:
								PlaceFormulae	"	=	AgePb76(["4corr	207*/206*"])	",
										f,	piaAgePb76_4Col,	L

								--Place	LudwigLibrary	expression	for	["204corr	207Pb/206Pb	Age	1serr"]:
								PlaceFormulae	"	=	AgeErPb76(["4corr	207*/206*"],["4corr	207*/206*	%err"]
										,,,,	TRUE)	",	f,	piaAgePb76_4eCol,	L		

						Else	--i.e.	if	column	["204/206"]	does	*NOT*	exist.	Note	that	this	Else
						--appears	to	be	redundant,	as	this	If	loop	cannot	be	traversed	unless	BOTH
						--["204/206"]	and	["4corr	238/206*"]	exist,	as	per	If	clause	near	the	top
						--of	this	block:

								--Place	LudwigLibrary	expression	for	["Total	207Pb/206Pb	Age"]
								--in	the	column	**designated**	["204corr	207Pb/206Pb	Age"]...
								PlaceFormulae	"	=	AgePb76(["Total	207/206"])	",
										f,	piaAgePb76_4Col,	L

								--...and	then	change	the	column-header	to	reflect	the	contents!
								CFs	plHdrRw,	piaAgePb76_4Col,	["Total	207Pb/206Pb	Age"],	TRUE

								--Place	LudwigLibrary	expression	for	["Total	207Pb/206Pb	Age	1serr"]
								--in	the	column	**designated**	["204corr	207Pb/206Pb	Age	1serr"]:
								PlaceFormulae	"	=	AgeErPb76(["Total	207*/206*"],["Total	207*/206*	%err"]
										,,,,TRUE)	",	f,	piaAgePb76_4eCol,	L		

						End	If	--piPb46col	>	0	--i.e.	if	column	["204/206"]	exists

				End	If	--piaAgePb76_4Col	>	0	--i.e.	if	["204corr	207Pb/206Pb	Age"]	exists

				--Now	place	expressions	for	["4corr	207*/235"]	and	["4corr	207*/235	%err"]:

				If	(piPb7U5_4col	>	0)	AND	(piPb6U8_4col	>	0)	--i.e.	if	BOTH	columns
				--["4corr	207*/235"]	and	["4corr	206*/238"]	exist

						--Calculate	and	place	["4corr	207*/235"]:
						PlaceFormulae	"	=	["4corr	207*/206*"]	*	["4corr	206*/238"]	*	Present238U235U	",
								f,	piPb7U5_4col,	L

						--Calculate	and	place	["4corr	207*/235	%err"]:
						PlaceFormulae	"	=	SQRT(["4corr	207*/206*	%err"]^2	+
								["4corr	206*/238	%err"]^2),	f,	piPb7U5_4ecol,	L

						--Calculate	and	place	rho	(error	correlation)	value	["4corr	err	corr"]:
						PlaceFormulae	"	=	["4corr	206*/238	%err"]	/	["4corr	207*/235	%err"]	",

								f,	piPb7U5Pb6U8_4rhoCol,	L

				End	If	--BOTH	columns	["4corr	207*/235"]	and	["4corr	206*/238"]	exist

		End	If	--BOTH	columns	["204/206"]	and	["4corr	238/206*"]	exist

		--Now	calculate	and	place	["204corr	Discordance"],	noting	that	SQUID	2.50
		--column-headers	do	not	specify	the	index	isotope	prefix:

		If	(piDiscordCol	>	0)	AND	(piPb46col	>	0)	--i.e.	if	BOTH	columns
		--["204corr	Discordance"]	and	["204/206"]	exist

				--SQUID	2.50	defines	Discordance	as	100	*	(1	-	R68m	/	R68i)	where
				--R68i	is	the	concordant	206*/238	RATIO	(corresponding	to	the	measured
				--207*/206*	RATIO)	and	R68m	is	the	measured	206*/238	RATIO.	First	calculate
				--the	row-by-row	values	of	(204corr)	R68i:

				R68i	=	EXP(Lambda238Ma	*	["204corr	207Pb/206Pb	Age"])	-	1

				--Then	place	the	expression	for	["204corr	Discordance"]:
				PlaceFormulae	"	=	100	*	(1	-	["4corr	206*/238"]	/	R68i)	",
						f,	piDiscordCol,	L

		End	If	--BOTH	columns	["204corr	Discordance"]	and	["204/206"]	exist

		--Now	calculate	and	place	["207corr	206Pb/238U	Age"]	and	its	uncertainty.
		--Note	that	this	code	does	*NOT*	encompass	the	["7corr	206*/238"]	RATIO,	but	it
		--SHOULD;	the	relevant	code	is	misplaced	a	little	further	along.	Below	I	have
		--marked	the	spot	at	which	["7corr	206*/238"]	and	["7corr	206*/238	%err"]
		--SHOULD	be	evaluated!

		If	piAgePb6U8_7col	>	0	--i.e.	if	column	["207corr	206Pb/238U	Age"]	exists

				--Place	LudwigLibrary	expression	for	["207corr	206Pb/238U	Age"]:
				PlaceFormulae	"	=	Age7corr(["Total	206Pb/238U"],	["207/206"],	sComm_76)	",
						f,	piAgePb6U8_7col,	L

				--Place	LudwigLibrary	expression	for	["207corr	206Pb/238U	Age	1serr"],	noting
				--that	Ludwig	function	AgeEr7corr	has	a	total	of	seven	arguments.	Two	of	these
				--arguments	are	*ABSOLUTE*	uncertainties,	which	I	have	evaluated	in	advance,
				--for	clarity.	Calculate	TotPb6U8AbsErr	and	TotPb76AbsErr	as:

				TotPb6U8AbsErr	=	["Total	206Pb/238U	%err"]	/	100	*	["Total	206Pb/238U"]
				TotPb76AbsErr	=	["Total	207Pb/206Pb	%err"]	/	100	*	["Total	207Pb/206Pb"]

				PlaceFormulae	"	=	AgeEr	7corr(["207corr	206Pb/238U	Age"],
						["Total	206Pb/238U"],	TotPb6U8AbsErr,	["207/206"],	TotPb76AbsErr,
						sComm_76,	0)	",	f,	piAgePb6U8_7ecol,	L

				--This	is	the	spot	at	which	["7corr	206*/238"]	and	["7corr	206*/238	%err"]
				--SHOULD	be	evaluated!	The	relevant	lines	are	marked	in	the	next	code-block.

		End	If	--piAgePb6U8_7col	>	0	--i.e.	if	["207corr	206Pb/238U	Age"]	exists

End	If	--piPb76col	>	0	--i.e.	if	column	["207/206"]	exists

The next step is to calculate Xcorr 208Pb/232Th ratios, dates and uncertainties (where X = 4
or 7). The 204Pb-corrected calculations are analogous to those for 206/238
and
207/206.
Note
also
that
the
following
code
contains
an
out-of-place
block
relating
to
["7corr
206/238"] and
["7corr 206*/238 %err"]. This is undesirable at two levels: (1) it should have been evaluated in
the previous code-block, subject to the If conditions that are relevant to the calculation, and (2)
The If conditions employed below are not appropriate to the calculation: they could result in
the evaluation being skipped for no good reason. The code continues:

If	(piPb8Th2_totCol	>	0)	AND	(piPb86col	>	0)	--i.e.	if	BOTH	columns
--["Total	208Pb/232Th"]	and	["208/206"]	exist

		If	piPb46col	>	0	--i.e.	if	column	["204/206"]	exists

				--Place	the	expression	for	["4corr	208*/232"]:
				PlaceFormulae	"	=	["Total	208Pb/232Th"]	*	radd8	",	f,	piPb8Th2_4col,	L

				--Place	the	expression	for	["4corr	208*/232	%err"].	Ludwig	notes	that	this
				--expression	"neglects	the	208/206	error":
				PlaceFormulae	"	=	SQRT(["Total	208Pb/232Th	%err"]^2	+
						(sComm_84	/	NetGamma)^2	*	["204/206	%err"]^2)",	f,	piPb8Th2_4eCol,	L

		End	If

		If	piPb46col	>	0	--i.e.	if	column	["204/206"]	exists

				--Place	expression	for	["204corr	208Pb/232Th	Age"]:
				PlaceFormulae	"	=	LN(1	+	["4corr	208*/232"])	/	Lambda232Ma	",
						f,	piAgePb8Th2_4col,	L
				--where	Lambda232Ma	has	units	"Ma^-1",	so	Age	will	be	in	Ma.

				--Place	expression	for	["204corr	208Pb/232Th	Age	1serr"]:
					PlaceFormulae	"	=	["4corr	208*/232"])	/	Lambda232Ma	/
							(1	+	["4corr	208*/232"])	*	["4corr	208*/232	%err"]	/	100	",
							f,	piAgePb8Th2_4eCol,	L		
				--where	Lambda232Ma	has	units	"Ma^-1",	so	Age	1serr	will	be	in	Ma.

		Else	--i.e.	if	column	["204/206"]	does	*NOT*	exist

				--Place	expression	for	["Total	208Pb/232Th	Age"]	in	the	column
				--**designated**	["204corr	208Pb/232Th	Age"]...
				PlaceFormulae	"	=	LN(1	+	["Total	208Pb/232Th"])	/	Lambda232Ma	",
						f,	piAgePb8Th2_4col,	L

				--...and	then	change	the	column-header	to	reflect	the	contents!
				CFs	plHdrRw,	piAgePb8Th2_4col,	["Total	208Pb/232Th	Age"],	TRUE

				--Place	expression	for	["Total	208Pb/232Th	Age	1serr"]	in	the	column
				--**designated**	["204corr	208Pb/232Th	Age	1serr"]:
				PlaceFormulae	"	=	["Total	208Pb/232Th"])	/	Lambda232Ma	/

							(1	+	["Total	208Pb/232Th"])	*	["Total	208Pb/232Th	%err"]	/	100	",
							f,	piAgePb8Th2_4eCol,	L		

		End	If	--piPb46col	>	0	--i.e.	if	column	["204/206"]	exists

		--Ludwig's	next	If	block	is	superfluous:	it	repeats	the	evaluation	of
		--["4corr	208*/232	%err"],	adding	an	unnecessary	Boolean,	and	an	absolute
		--value	of	NetGamma,	which	is	moot	as	the	NetGamma-bearing	term	is	squared
		--anyway.	So	I	have	commented-out	the	following	lines:
		--
		--If	(pbTh	=	TRUE)	AND	(piPb46col	>	0)	--i.e.	if	(Perm3	or	Perm4)	AND	column
		----["204/206"]	exists:		
		--
		--		PlaceFormulae	"	=	SQRT(["Total	208Pb/232Th	%err"]^2	+
		--				(sComm_84	/	ABS(NetGamma))^2	*	["204/206	%err"]^2)",
		--				f,	piPb8Th2_4eCol,	L
		--
		--End	If

		--Ludwig's	next	If	block	is	OUT	OF	PLACE;	it	should	have	appeared	at	the	base
		--of	the	previous	code-block,	in	the	location	I	have	marked	there.	I	have
		--included	the	code	below,	but	I	have	inserted	some	comments	of	my	own.
		--**NOTE	ALSO**	that	Ludwig's	code	below	also	contained	an	arithmetical	bug:
		--he	used	the	wrong	Lambda	at	one	point,	which	results	the	value	being	too	small
		--by	a	factor	of	about	3!!

		If	piAgePb6U8_7col	>	0	--i.e.	if	column	["207corr	206Pb/238U	Age"]	exists.	This
		--criterion	on	its	own	is	appropriate	for	the	following	calculation,	and	it	is
		--also	consistent	with	the	If	criterion	already	in	place	at	the	proper
		--destination	(shown	in	the	previous	code-block)	for	the	following	expressions.
		--But	note	that	this	criterion	is	**NOT**	appropriate	in	combination	with	the
		--2-column	If	criteria	applied	at	the	top	of	the	current	code-block.	As	written,
		--the	following	calculation	would	not	be	performed	if	["208/206"]	was	not
		--measured,	which	is	ridiculous.

				--CODE	TO	BE	TRANSPLANTED	TO	PREVIOUS	CODE-BLOCK	STARTS	**HERE**
				--Place	expression	for	["7corr	206*/238"]:
				PlaceFormulae	"	=	EXP	(Lambda238Ma	*	["207corr	206Pb/238U	Age"])	-	1	",
						f,	piPb6U8_7col,	L
				--where	Lambda238Ma	has	units	"Ma^-1".

				--Place	expression	for	["7corr	206*/238	%err"].	Ludwig's	code	contains	a	bug
				--in	the	following	line	(commented	out),	where	his	expression	incorrectly
				--commences	with	Lambda232Ma:
				--PlaceFormulae	"	=	Lambda232Ma	*	EXP(Lambda238Ma	*
										["207corr	206Pb/238U	Age"])	*
				--		["207corr	206Pb/238U	Age	1serr"]	/	["7corr	206*/238"]	*	100	",
				--		f,	piPb6U8_7ecol,	L

				--The	corrected	expression	commences	with	Lambda238Ma:
				PlaceFormulae	"	=	Lambda238Ma	*	EXP(Lambda238Ma	*
										["207corr	206Pb/238U	Age"])	*
						["207corr	206Pb/238U	Age	1serr"]	/	["7corr	206*/238"]	*	100	",	f,
										piPb6U8_7ecol,	L
				--CODE	TO	BE	TRANSPLANTED	TO	PREVIOUS	CODE-BLOCK	ENDS	**HERE**

		End	If	--piAgePb6U8_7col	>	0	i.e.	if	column	["207corr	206Pb/238U	Age"]	exists.
		--Code	transplantation	should	result	in	abolition	of	the	previous	If.

		--Now	perform	calculations	related	to	["7corr	208*/232"]:
		If	piAgePb8Th2_7col	>	0	--i.e.	if	column	["207corr	208Pb/232Th	Age"]	exists:

				--Place	LudwigLibrary	expression	for	["207corr	208Pb/232Th	Age"],	which	has	a
				--total	of	7	arguments:
				PlaceFormulae	"	=	Age7corrPb8Th2(["Total	206Pb/238"],	["Total	208Pb/232Th"],
						["208/206"],	["207/206"],	sComm_64,	sComm_76,	sComm_86)	",
						f,	piAgePb8Th2_7col,	L

				--Place	LudwigLibrary	expression	for	["207corr	208Pb/232Th	Age	1serr"],	which
				--has	a	total	of	11	arguments	(i.e.	includes	%err	values	for	the	first	four
				--arguments	of	the	previous	function).	Note	also	that	the	input	order	of
				--["207/206"]	and	["208/206"]	is	*REVERSED*	in	this	second	function!
				PlaceFormulae	"	=	AgeErr7corrPb8Th2(["Total	206Pb/238"],
						["Total	206Pb/238	%err"],["Total	208Pb/232Th"],	["Total	208Pb/232Th	%err"],
						["207/206"],	["207/206	%err"],	["208/206"],	["208/206	%err"],	sComm_64,
						sComm_76,	sComm_86)	",	f,	piAgePb8Th2_7ecol,	L

				--Place	expression	for	["7corr	208*/232"]:
				PlaceFormulae	"	=	EXP	(Lambda232Ma	*	["207corr	208Pb/232Th	Age"])	-	1	",
						f,	piPb8Th2_7col,	L
				--where	Lambda232Ma	has	units	"Ma^-1".

				--Place	expression	for	["7corr	208*/232	%err"]:
				PlaceFormulae	"	=	Lambda232Ma	*	EXP(Lambda232Ma	*
										["207corr	208Pb/232Th	Age"])	*
						["207corr	208Pb/232Th	Age	1serr"]	/	["7corr	208*/232"]	*	100	",
						f,	piPb8Th2_7ecol,	L

		End	If	--piAgePb8Th2_7col	>	0	i.e.	if	column	["207corr	208Pb/232Th	Age"]	exists

The next thing SQUID 2.50 does is calculate ["208corr 206Pb/238U Age"] and its uncertainty.
As for the 207corr equivalent, this is a hangover from SQUID 1, where these two ages and
their errors were presented without the actual source ratios! SQID 2.50 rectifies that, but only
"in reverse" (i.e. it still calculates the Age first, and then derives the ratios from the Ages). Note
that the following If condition seems irrelevant at best (incorrect at worst), as neither
["204/206"] nor any of its dependents are required in order to perform the LudwigLibrary
calculations 'Age8Corr' or 'AgeEr8Corr'. I think it is possible that the condition should read "If
piPb86col > 0" (i.e. if column ["208/206"] exists), because that would make more sense, but
note that piPb86col > 0 is already a precondition of the entire loop, and so would be
redundant here.

After some deliberation, I have left the If condition (piPb4col > 0) as it was specified by
Ludwig. One possibility is that the If condition should be removed entirely; perhaps these
particular calculations should be mandatory if the foregoing If conditions have been satisfied.

For use as arguments in ensuing LudwigLibrary functions, first define sComm_68 as the
inverse of sComm_86, and TotPb8Th2AbsErr as the Th-Pb equivalent of the previously
defined TotPb6U8AbsErr, and then proceed:

		sComm_68	=	1	/	sComm_86
		TotPb8Th2AbsErr	=	["Total	208Pb/232Th	%err"]	/	100	*	["Total	208Pb/232Th"]

		--If	piPb46col	>	0	--i.e.	if	["204/206"]	exists,	although	this	doesn't	make	sense!

				--Place	LudwigLibrary	expression	for	["208corr	206Pb/238U	Age"]:
				PlaceFormulae	"	=	Age8Corr(["Total	206Pb/238U"],	["Total	208Pb/232Th"],
						["232Th/238U"],	sComm_68)	",	f,	piAgePb6U8_8col,	L

				--Place	LudwigLibrary	expression	for	["208corr	206Pb/238U	Age	1serr"],	noting
				--that	the	function	has	a	total	of	9	arguments:
					PlaceFormulae	"	=	AgeEr8Corr(["208corr	206Pb/238U	Age"],["Total	206Pb/238U"],
							TotPb6U8AbsErr,	["Total	208Pb/232Th"],	TotPb8Th2AbsErr,	["232Th/238U"],	0,
							sComm_68,	0)	",	f,	piAgePb6U8_8ecol,	L

		End	If	--piPb46col	>	0	--i.e.	if	["204/206"]	exists.

SQUID 2.50 has a user-controlled Boolean (pbCalc8corrConcPlotRats) which controls whether
the 208corr isotopic ratios required for Wetherill and Tera-Wasserburg concordia plots are
calculated (possibly because they frequently give results that are ridiculous or impossible in
the case of high-Th analyses). But in Squid3, I would think that errors in calculations would be
handled separately, and that this Boolean ought to at least be TRUE by default, if not hard-
coded TRUE. Then, if column ["208corr 206Pb/238U Age"] exists, the code continues:

		If	(pbCalc8corrConcPlotRats	=	TRUE)	AND	(piAgePb6U8_8col	>	0)
		--i.e.	if	user	has	requested	208corr	Concordia	ratios	AND	the	column
		--["208corr	206Pb/238U	Age"]	exists:

				If	piU8Pb6_8col	>	0	--i.e.	if	column	["8corr	238/206*"]	exists

						--PLace	LudwigLibrary	expression	for	["8corr	206*/238"]	first:
						PlaceFormulae	"	=	Pb206U238rad(["208corr	206Pb/238U	Age"])	",
								f,	piPb6U8_8col,	L

						--Then	place	expression	for	["8corr	206*/238	%err"]:
						PlaceFormulae	"	=	Lambda238Ma	*	(1	+	["8corr	206*/238"])	*
								["208corr	206Pb/238U	Age	1serr"]	*	100	/	["8corr	206*/238"]	",
								f,	piPb6U8_8ecol,	L

						--Then	place	expression	for	["8corr	238/206*"]	by	simple	inversion:
						PlaceFormulae	"	=	1	/	["8corr	206*/238"]	",	f,	piU8Pb6_8col,	L

						--Finally,	["8corr	238/206*	%err"]	is	equivalent	to	["8corr	206*/238	%err"]:

						PlaceFormulae	"	=	["8corr	206*/238	%err"]	",	f,	piU8Pb6_8ecol,	L

				End	If	--piU8Pb6_8col	>	0	--i.e.	if	column	["8corr	238/206*"]	exists

				If	piPb7U5_8col	>	0		--i.e.	if	column	["8corr	207*/235"]	exists

						--Place	LudwigLibrary	expression	for	["8corr	207*/235"]:
						PlaceFormulae	"	=	Rad8corPb7U5(["208corr	206Pb/238U	Age"],["Total	206Pb/238U"],
								["207/206"],	sComm_76)	",	f,	piPb7U5_8col,	L

						--Define	row-by-row	TotPb7U5	as	follows	(noting	that	SQUID	2.50	hard-codes	a
						--numeric	value	of	137.88	in	lieu	of	physical	constant	Present238U235U):
						TotPb7U5	=	["Total	206Pb/238U"]	*	["207/206"]	/	Present238U235U

						--Now	place	LudwigLibrary	expression	for	[8corr	207*/235	%err"],	noting	that
						--the	function	has	a	total	of	12	arguments:
						PlaceFormulae	"	=	Rad8corPb7U5perr(["Total	206Pb/238U"],
								["Total	206Pb/238U	%err"],	["8corr	206*/238"],	TotPb7U5,	["232Th/238U"],
								["232Th/238U	%err"],	["207/206"],	["207/206	%err"],	["208/206"],
								["208/206	%err"],	sComm_76,	sComm_86)	",	f,	piPb7U5_8ecol,	L

						--Now	place	LudwigLibrary	expression	for	[8corr	err	corr"],	noting	that	the
						--function	has	a	total	of	11	arguments	(as	per	previous,	without	TotPb7U5):
						PlaceFormulae	"	=	Rad8corConcRho(["Total	206Pb/238U"],	["Total	206Pb/238U	%err"],
								["8corr	206*/238"],	["232Th/238U"],	["232Th/238U	%err"],	["207/206"],
								["207/206	%err"],	["208/206"],	["208/206	%err"],	sComm_76,	sComm_86)	",
								f,	piPb7U5Pb6U8_8rhoCol,	L

				End	If	--piPb7U5_8col	>	0		--i.e.	if	column	["8corr	207*/235"]	exists

The final step in this loop is to evaluate ["8corr 207/206"] and its uncertainty, and then use
those to generate ["208corr 207Pb/206Pb Age"] and its error:

				If	piPb76_8col	>	0	--i.e.	if	column	["8corr	207*/206*"]	exists

						--Place	expression	for	["8corr	207*/206*"],	noting	that	once	again	SQUID	2.50
						--uses	the	hard-coded	numeric	value	137.88	in	lieu	of	Present238U235U::
						PlaceFormulae	"	=	["8corr	207*/235"]	/	["8corr	206*/238"]	/	Present238U235U	",
								f,	piPb76_8col,	L

						--Place	expression	for	["8corr	207*/206*	%err"]:
						PlaceFormulae	"	=	SQRT(["8corr	207*/235	%err"]^2	+
										["8corr	206*/238	%err"]^2	-
								2	*	["8corr	207*/235	%err"]	*	["8corr	206*/238	%err"]
												*	["8corr	err	corr"])	",
								f,	piPb76_8ecol,	L						

				End	If	--piPb76_8col	>	0	--i.e.	if	column	["8corr	207*/206*"]	exists

				If	piAgePb76_8col	>	0	--i.e.	if	column	["208corr	207Pb/206Pb	Age"]	exists

						--Place	LudwigLibrary	expression	for	["208corr	207Pb/206Pb	Age"]:
						PlaceFormulae	"	=	AgePb76(["8corr	207*/206*"])	",	f,	piAgePb76_8col,	L

						--Place	LudwigLibrary	expression	for	["208corr	207Pb/206Pb	Age	1serr"]:						
						PlaceFormulae	"	=	AgeErPb76(["8corr	207*/206*"],	["8corr	207*/206*	%err"]
								,,,,	TRUE)	",	f,	piAgePb76_8ecol,	L

						--PLACE	EXPRESSION	FOR	208CORR	DISCORDANCE	(SQUID	2.50	DOES	NOT	EVALUATE	IT)
						--INSERT	IDENTICAL	EXPRESSION	TO	204CORR	DISCORDANCE,	BUIT	WITH	8CORR	RATIOS
						--AND	AGES	SUBSTITUTED!

				End	If	--piAgePb76_8col	>	0	--i.e.	column	["208corr	207Pb/206Pb	Age"]	exists

		End	If	--(pbCalc8corrConcPlotRats	=	TRUE)	AND	(piAgePb6U8_8col	>	0)
		--i.e.	if	user	has	requested	208corr	Concordia	ratios	AND	the	column
		--["208corr	206Pb/238U	Age"]	exists

End	If	--If	(piPb8Th2_totCol	>	0)	AND	(piPb86col	>	0)	--i.e.	if	BOTH	columns
--["Total	208Pb/232Th"]	and	["208/206"]	exist

--The	subroutine	finishes	with	some	formatting	to	colour	the	rows	corresponding	to
--the	Uranium	concentration	reference	material	pale	yellow.

End	Sub

